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Abstract

This work concerns a method for identifying an optimal basis for linear program-
ming problems in the setting of interior point methods. To each iterate z* generated
by a primal interior point algorithm, say, we associate an indicator vector q* with
the property that if z¥ converges to a nondegenerate vertex z*, then ¢* converges to
the 0-1 vector sign(z"). More interestingly, we show that the convergence of ¢* is
quadratically faster than that of z* in the sense that ||g* — ¢~|| = O(||z* — z=||?). This
clear-cut separation and rapid convergence allow one to infer at an intermediate stage
of the iterative process which variables will be zero at optimality and which will not.
We also show that under suitable assumptions this method is applicable to dual as
well as primal-dual algorithms and can be extended to handle certain types of degen-
eracy. Numerical examples are included to corroborate the convergence properties of
the indicators. The practical limitations of the indicator technique are also discussed.
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1 Introduction

This paper concerns linear programs in the standard form:

minimize Tz,
subject to Az = b, : (LD
z 2> 0,

where ¢,z € R, b € R™, A € R™*"(m < n) and A has full rank m. The dual linear
program of (1.1) is
maximize b7y,
subject to ATy +z =c¢, (1.2)
20,

where z € R™ is the vector of dual slack variables.

The simplex method for linear programming can be viewed as an active set method that
utilizes the combinatorial structure of linear programs and has an exponential worst-case
complexity. On the other hand, interior-point methods such as the ellipsoid algorithm and
the Karmarkar algorithm do not rely on the combinatorial structure and possess polynomial
complexity. Recent developments have demonstrated that interior-point algorithms have the
real potential to be competitive in practice with the simplex method.

Theoretically, with integer data an interior-point algorithm can be terminated when the
current iterate is sufficiently close to an optimal solution and then is rounded to the nearby
optimal solution. However, theoretical termination criteria of this kind are difficult to define
and are usually inefficient. | .

A promising approach for improving the efficiency of Karmarkar-type interior point algo-
rithms seems to be the development of reliable techniques for identifying optimal basic and
nonbasic variables in the early stages of an interior point iterative process. In this way either
an early termination or a reduction in problem size can be obtained. In other words, the
efficiency of interior point methods may be improved by utilizing the combinatorial structure
of linear programs. '

Suppose that an interior point method is generating a sequence {z*} that is converging
to an optimal solution of the linear program (1.1). For simplicity, let us assume that z~
is a nondegenerate basic feasible solution. At the k-th iteration, for example, if one can
partition, using some identification technique, the current iterate z* into a set of m likely
basic variables and a set of n —m likely nonbasic variables with a reasonable certainty, then

one may want to set the nonbasic variable candidates to zero in the constraint equations
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Az = b and solve the resulting square system for the basic variable candidates. If the
solution obtained in this manner is indeed a basic feasible solution and the corresponding
reduced costs are all nonnegative, then the optimal solution has been obtained and the
algorithm can be terminated. Otherwise, one proceeds with the interior pdint algorithm to
the next iteration. In a procedure of this kind, the identification technique p’lays the central
role. In order to successfully terminate the interior point algorithm as early as possiblé. the
identification technique must be reliable, inexpensive, and most importantly. able to identify
an optimal basis in an early stage of the iterative process.

In the presence of degeneracies, the situation becomes more complicated. For example,
it is no longer a straightforward matter to determine an optimal basis or even to check the
optimality of a basic feasible solution in the case of primal degeneracy (i.e.. when there are
more than n —m zero variables) even after the zero and nonzero variables have been correctly
identified. Nevertheless, any information telling us which variables are zero and which are
nonzero at optimality is still of some value and may be used to improve the efficiency of
interior point methods. For instance, once it has been determined that some variables
are zero at optimality, they may be eliminated from the problem, yielding a reduction in
the problem size. Also inequality constraints may be removed if their corresponding slack
variables are identified as nonzero at optimality. For large scale problems, these reductions
in problem size may result in savings in computational effort.

Working primarily with the Karmarkar algorithm or one of its variants the optimal basis
identification problem has been considered in recent years by several authors, including
Kojima [9], Ye and Todd [19], Asic et al. (2], Todd [13], Ye [17] and Gay (6].

In this paper, we will propose and study a new identification technique using an indi-
cator to identify the optimal basis. This indicator will be shown to possess several elegant
mathematical properties. However, its practical applicability seems to be limited because
it requires nondegeneracy assumptions, and for highly sparse problems the added expense
incurred in calculating the indicator may dominate any gain obtained from its use.

This paper is organized as follows. In Section 2, we define our indicator and study its
properties. The applications of the indicator to primal, dual and primal-dual algorithms for
identifying an optimal basis are developed in Section 3. Section 4 deals with the numerical
computation of the indicator. The extension of our indicator technique to degenerate prob-
lems is studied in Section 5. Described in Section 6 are methods for randomly generating
nondegenerate and primal degenerate problems for use in numerical experimentations. Nu-
merical examples are presented in Section 7 and some concluding remarks are given in the

final section.



2 Definition and Properties of the Indicator

A key ingredient in essentially every interior point method motivated and influenced by
Karmarkar’s milestone work of 1984 [3] is a matrix of the form DAT(AD?AT)™' 4D, where
D is a diagonal matrix that changes at every iteration. In primal algorithms (affine variants
of the Karmarkar algorithm, for example, see (3], (3] and [16]), we see D = diag(z). In
dual algorithms (see Adler et al. (1] and Monma and Morton [11], for example), we see
D = [diag(z)]™!, where z is the vector of dual slack variables. And in primal-dual algorithms
(see Kojima et al. [10], for example), we see D? = diag(z)[diag(z)]~". In this work, we will
show that under suitable assumptions, optimal basis information can be obtained from the
diagonal of this matrix DAT(AD?AT)~'AD, which we shall call the indicator vector or
simply the indicator.

Now we give a formal definition of the indicator. For a fixed matrix A € R™**(m < n),

consider the matrix-valued function H : R* — R"*" defined by
H(d) = DAT(AD?*AT)* 4D, (2.1)

where d € R™, D = diag(d) and the superscript “+” denotes the generalized inverse. We
will be primarily interested in the function ¢ : R* — R" obtained as the diagonal of H(d),
le.,

q(d) = diag(H(d)) or g¢i(d) = Hy(d), i=1,2,3,..,n. (2.2)

This function q(d) is defined for all d € R"; however it will not be continuous at points
d where the matrix AD?AT changes rank in every neighborhood of d. At points d where
AD?AT has constant rank in some neighborhood of d, ¢(d) will be infinitely smooth.

Ye and Todd [19] were probably the first to observe that the diagonal elements of such a
matrix contain valuable information. In a primal-dual context, they developed an interesting

criterion which was guaranteed eventually to identify the optimal basis for a nondegenerate

vertex. Their criterion involved several quantities including the diagonal of a matrix of the
form (2.1). However, they did not consider the diagonal as an indicator and did not study
the properties of the diagonal.

As the first step towards showing that g(d) has several interesting properties, we offer -

the following lemma.

Lemma 2.1 If q(d) is given by (2.2), then for all d € R™ we have

0<q(d <1



Moreover, if A has no zero columns and AD has full rank, then ¢;(d) = 0 if and only if
d; = 0.

Proof: Observe that both H(d) and I — H(d) are orthogonal projections satisfying PT=P
and P? = P; they are therefore positive semi-definite and must have nonnegative diagonals.
This proves the first part.

The second part follows from the formula

¢i(d) = & of (AD*AT)'a;,

where a; is the i-th column of A and the fact that the quantity al (AD?AT)'a; > 0 under
the given assumptions. O

The following two lemmas are crucial to the development of our theory.

Lemma 2.2 Ford € R™ let q(d) be given by (2.2) for some A of full row rank. Consider
the n-dimensional vector d* where some components of d* may be infinite. Assume that the

components of d= can be divided into two sets: So and Sg, such that

1. S, contains m and Sp contains n — m components of d°;

[

. all elements in S, are nonzero and

max{|d;|: di € S} _
min{|d|: df € Sa}

0; (2.3)

(¥

. the m by m submatriz of A consisting of columns corresponding to the components in

S ts nonsingular.
Then, as d converges to d*

, 1, ifd€Sa,
1 (d) = ¢;(d°) = : 2.4
Jlim gi(d) = g:(d") {0’ Fde Sy (2.4)

Proof: Without lose of generality, we assume that
So = {d},d3, ..., d5} and Sp = {drs1sdmyas - dn}

Let A, and A be the submatrices of A consisting of the first m and the last n — m columns
of A, respectively. By Assumption 3, A, is nonsingular. Similarly, let D, and Dg be the
submatrices of D consisting of the first m and the last n—m columns of D, respectively, where
D = diag(d) and d converges to d*. Alsoletr =1/ min{|d;| : di € Sa}. From Assumption 2
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we know that r is well defined for d sufficiently close to d* and all the diagonal elements of
rDa have absolute value greater than or equal to 1. Substituting AD = [A.D, ApDp]into
H(d), we have for d close to d~

H(d) = [rAaDo rAsDs)T[Aa(r Do) AT + Ap(rDp)? Ag"] ™ [rAaDa rAsDp).

Since Assumption 2 implies that limy_4. rDs = 0, it is evident that

(V)
Ot
~—

. ] I0
dh_rgH(d):H(d).-_[O OJ, (2.

which proves (2.4). O
Since d* may have infinite components, we will define the derivatives of ¢ at d* by
continuity.

Lemma 2.3 Let q(d) be given as in (2.2) and d* satisfy the conditions in Lemma 2.2.
Define the derivatives of q(d) at the point d* as the limits of corresponding derivative values
at d € R™ as d converges to d*. Then q(d) is at least twice continuously differentiable at d-.

Moreover, the Jacobian matriz of q(d) vanishes at d*; or equivalently,
Va(d)=0, i=1,2,...,n. (2.6)

Proof: To verify the differentiability of q(d) at d=, we first assume that d is finite. By
Assumption 3 of Lemma 2.2, AD?AT is nonsingular at d=. It is therefore nonsingular in a
neighborhood of d*. Observe that g(d) is a rational function of d near d~ with a nonzero
denominator. This follows from the well-known adjoint form for the inverse matrix and the
fact that all elements of AD?AT are quadratic functions of d. T herefore, ¢(d) is actually
infinitely differentiable at finite d*. |

Now we show that ¢(d) has continuous second-order partial derivatives even at an infinite
d*. (Since we will only make use of second derivatives in our analysis, we will not concern
ourselves with derivatives of order higher than 2.) Obviously, our definition of derivatives at
d* guarantees that if a derivative exists at d*, then it is also continuous at d-.

Let the matrix-valued function P be defined as
P(d) = AT(AD?*AT)"'A.
From the definitions of H(d) and ¢(d), we have that for any finite d sufficiently close to d-,
Hij(d) = did;P;j(d) and g;(d) = Hi(d) = d?P;(d), (2.7)
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where P;;(d), the (i, j)-th élement of P(d), is given by
Pi;(d) = al (AD*AT)'a;,
and a; is the i-th column of A. By the Sherman-Morrison-Woodbury formula (see [12, p.

50], for example),

2ed; + €2
1 + (2ed¢ + €2) Ppe(d)
Dividing the right-hand side by € and letting € go to zero, we obtain

P,'j(d + ee,) - P,'j(d) = P,'g(d)Pje(d).

0Pi(d) _ 94, Py(d)Pse(d). (2.8)
dd,
It follows from (2.7) and (2.8) that
M = —Qd;H;j(d)ng(d) -+ 25,’jd,'P,','(d), (29)

(o5
Qu

J
where §;; is the Kronecker delta.

Let us consider Sy, S3, Ao, Ag and Dy, Dg as in Lemma 2.2. We note that Assumption 2
in Lemma 2.2 guarantees that df # 0 for all d € S,. A direct calculation gives

. - (1901.‘)_2 (Da-)-zAa-lAB
lim P(d) = P(d") = ‘ ) 2.10
dir?‘ ( ) ( ) AﬁTAa-T(Da-)-z ABTAa-T(Da-)-zAa—IA.B ( )

where the convention 1/co = 0 is used. Clearly, P(d") is finite.

To prove (2.6), we look at the following two different cases.

Case 1: i = j. If df =0, then the limit of (2.9) as d goes to d” obviously exists and is
zero. If df # 0, then as d goes to d” in (2.9) and using (2.5), we have

0q:(d) 2

5 = EHii(d.)(l - Hi(d")) = 0.

Case 2: i # j. Now we only have the first term in (2.9). Assume that |d; | = oo; otherwise
the proof would be trivial because H;;(d*) = 0. Now we have d; € S,, i.e.,, 0 <1 < m. If
dj # 0, then from the first equation in (2.7)

Bq,-(d)
ad;
which has a zero limit at d* by (2.5). If dj = 0, then dj € Sp,ie,m+1 <7< n Let
d — d=, then from (2.10) and (2.5) we have
9gi(d”) _ _2Hi(d)[As"" Aglijom
6d,- d;

= 2H d))?
—-3;( i5(d))

=0.




So far we have proved that the Jacobian matrix of q(d) exists and is zero at d*. A direct
calculation shows that for d close but not equal to d-,

g;qgj)- = SHiz(d)Hjl(d)Pij(d) - 45leil(d)P££(d) - 45;[Hj¢(d)Pje(d) (2.11)

= 26:;(dePie(d))? + 26i¢6;¢ Pu(d).

The second-order pa.rtia.l derivatives in (2.11) can be shown to have finite limits as d — d-
This completes the proof. O ,

It should not be a surprise that the Jacobian matrix of q(d) is zero at d*. According to
Lemma 2.2 either the maximum (g;(d*) = 1) or the minimum (g;(d") = 0) is reached at d-
for every component of ¢(d).

3 Applications of the Indicator

In this section, we show how the indicator developed in the previous section can be used in
a primal, dual or primal-dual interior point algorithm to identify an optimal basis (under

appropriate nondegeneracy assumptions).

Primal Algorithms
Our first result concerns primal algorithms.

Theorem 3.1 Let {z*¥} C R" converge to a nondegenerate vertez (basic feasible solution)
z" of the linear program (1.1). If ¢* = q(z*) is given by (2.2), then

klim F=q= sign(z”). (3.1)

Moreover,
lg* = ¢7Il = O(ll=* — z||?).

Proof: Let S, in Lemma 2.2 contain the nonzero cdmponents of z* and let S; contain the
zero components. Then obviously Assumptions 1 and 2 of Lemma 2.2 hold. The fact that
2" is a nondegenerate basic feasible solution guarantees that Assumption 3 is also satisfied.
The first part of the theorem now follows from Lemma 2.2.

The second part follows directly from the fact proved in Lemma 2.3 that the Jacobian
matrix of ¢(z) is zero at z* and ¢(z) is twice continuously differentiable. O

The theoretical advantages of using the ¢;’s as indicators, as opposed to the variables
z;’s themselves, are twofold. First, the g¢;’s provide a fixed separation which is problem
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independent. This is not true of the z;'s for which the separation between zero and nonzero
variables can be arbitrarily small. Second, the ¢;’s converge quadratically faster than the
z;’s. Hence an earlier termination is guaranteed.

In our numerical experiments, if high accuracy is required, then usually in less than
half of the number of iterations needed for convergence, a clear 0-1 pattern will appear. A
plausible explanation for this phenomenon follows. If {z*} converges to z* at an R-linear
rate (which is expected and observed in practice for most primal interior point algorithms
on nondegenerate problems), then there exist positive constant C; and r < 1, such that for
k large

lzF — z7|| < C.rt.

From Theorem 3.1, there exists some constant Cg, such that
k = k
llg* — Il < Cor™.

For a given small positive number ¢ < 1, it will take approximately

lne—=1nC; N Ine

Inr “lInr

steps for ||z¥ — z*|| < € to be satisfied, while only about half of that number of iterations is
needed for the satisfaction of ||¢* — ¢”|| < e.

In the context of a primal algorithm Barnes [3] used a matrix, not exactly of the form of
(2.1) but quite similar, to construct estimates of the Lagrange multipliers associated with the
constraints Az = b. He demonstrated that these estimates converge to the true multipliers
quadratically faster than the the nonbasic variables converge to zero. While this result is not
directly related to our result, it does have a similar flavor. Indeed, Barnes suggested using

these multiplier estimates to identify an optimal basis.

Dual Algorithms

In the dual affine algorithms developed by a number of authors as variants of Karmarkar's
algorithm (see Adler et al. [1] and Monma and Morton [11], for example), the matrix H(d)
in (2.1) appears with d; = 1/z;. For these dual algorithms, we have the following result,

which is analogous to its primal counterpart Theorem 3.1.

Theorem 3.2 Let {z*} C R" converge to a dual slack vector z* associated with a non-

degenerate vertez of the dual linear program (1.2). If ¢ = q(d¥) is given by (2.2) with



df =1/zF, i=1,2,...m, then

I r . 0, ifzr>0,
me=a=1 c g

k—o0

Moreover,

lg* — a7l = O(ll=* — =z7||?).

Proof: The proof given below was suggested by an anonymous referee. It is considerably
shorter than our original proof.

Let B € R("~™)%" have full row rank and be such that its rows are orthogonal to those
of A. For any positive diagonal matrix D, the rows of BD~! are othogonal to those of AD.
It is straightforward to verify that

H(d) = DAT(AD*AT)'AD = I — ZBY(BZ*BT)"'B2Z,

where Z = diag(z) = D1. Let

9(z) = diag(ZBT(BZ*BT)'BZ).

It can be shown that the nondegeneracy assumption implies that z* has n — m nonzero
components and the corresponding n — m columns of B are linearly independent. Applying

Lemmas 2.2 and 2.3 to g(z), we have

and
lg* — g7l = O(llz* - ="||%).

Since gi(d) = 1 — gi(z), the conclusions of the theorem follow immediately. O

Primal-Dual Algorithms

Our technique is also applicable to primal-dual algorithms (see Kojima et al. (10], for ex-
ample) where the matrix H(d*) in (2.1) appears with ¥ = \/z¥/z¥ and z* and z* are kept
strictly positive for all k. Since both the primal and the dual programs are involved, different
results can be obtained by using different combinations of assumptions (primal nondegener-
acy, dual nondegeneracy, strict complementarity). Because these results and their proofs are

all very similar, we choose only to present one result that is based on primal nondegeneracy.
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Theorem 3.3 Let {z*} C'R™ and {z*} C R™ be positive and converge to an optimal solution
z" of the primal program (1.1) and an optimal dual slack vector z* of the dual program (1.2),
respectively. Assume that (i) 2 is a nondegenerate vertez of (1.1); and (ii) there are positive

constants o; and B; such that for k large
aizf < zf < Bizf, if 27 =0 and 27 = 0.

Let ¢* = q(d*) be given by (2.2) with d¥ = \/z¥/zk, i =1,2,..,n. Then ¢* converges to a

0-1 vector with m ones and n — m zeros, and

L . {o, if 7 =0,

lim ;. — q; =
W= 1, ifz;>0.

k—oo

Proof: Define

d: = limsup \/z¥/zf.

k—oo
Recall that z* is a nondegenerate vertex of (1.1). There are m nonzero components and
n — m zero components in z°. Let S, in Lemma 2.2 contain those df’s corresponding to
the nonzero components of = and Sz contain those d}’s corresponding to the zero z}’s. By
complementarity z7z; = 0, so we have df = oo for df € S,. On the other hand, d; =0
for df € S5 and 2z > 0. In addition, d} < oo for df € Sp and z7 = 0 by Assumption (ii).
Therefore, S, and Sj satisfy Assumptions 1 and 2 of Lemma 2.2. The assumption that z~
is a vertex guarantees that Assumption 3 of Lemma 2.2 is also satisfied. It is not difficult
to see from the proof of Lemma 2.2 that as long as the three assumptions in Lemma 2.2 are
satisfied, we still have that q(dx) converges to the 0-1 vector with m ones and n —m zeros as
given in (2.4) even though we have d; = limsup d¥ instead of di = limdf for some d} € Sp.
It also follows that ¢q7 = 1 whenever z7 > 0. This completes the proof of the theorem. O

The second assumption in the above theorem basically assumes that if both z; and z;
converge to zero, then they do so at the same rate. This assumption seems to be quite
reasonable.

Basis Identification Criterion

Our optimal basis identification criterion based on the previous theorems is defined as follows:

Given a small positive number ¢, if
(i:q(d)>1-¢l<i<n} Ui qu(d) <1 <i<n}={12,..,n}, (32)
then test to see if an optimal basis has been identified.
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If an orthonormal basis U(d) of DAT (i.e., of the column space of DAP) is computed by
2 QR method or an SVD method, then obviously H (d) = U(d)U(d)T and

gi(d) = ui(d)Tui(d), i=1,2, ey T,

where u;(d) is the i-th row of U (d) In this case, the cost of computing the indicator vector
is O(mn) for dense matrices.

If a Cholesky factorization AD?AT = L(d)L(d)T is computed (as is done currently in
most implementations of variants of the Karmarkar algorithm) instead of a QR factorization
of DAT, then to obtain an orthonormal basis U (d) for DAT, one needs to solve the lower
triangular system L(d)U(d)T = AD which requires O(m?n) operations for dense matrices.
As we can see, this cost is one order of m higher than what is requxred when an orthonormal
basis of DAT is available.

4 Extension to Degenerate Problems

In general, the indicator as defined in (2.2 2) is not directly applicable to degenerate problems.
However, we will show in this section that for primal interior point algorithms (i.e., d = z)
a modified primal indicator can be devised to handle problems with only primal degeneracy,
or more precisely, primal problems that have a unique solution. We will focus on the primal
indicator for primal algorithms only, though the results obtained also apply to the dual
indicator for dual algorithms. ‘

We consider a sequence {z*} that converges to a degenerate basic feasible solution z*
with r nonzero components, where r < m. We first assume that the first  rows of AX*™ are
linearly independent, i.e., A, X* has full row rank, where A, is the matrix that consists of
the first 7 rows of A. Then the diagonal of X AT(A.X?AT)* A, X, which we will call ¢ (z),
will tend to sign(z”) and can be used as the indicator. It is fortunate that one need not
know the number r in advance and the indicator q{")(z) is readily available if an orthonormal
basis U(z) of X AT is computed (by a QR or an SVD method, for example). One only need
look through ¢((z) for j = 1,2,...,m to search for a 0-1 pattern, where

¢)(z) = D (z) + (Us(2))* and ¢(z) =0, i=1,2,..,n. (4.1)

The cost is still O(mn) for dense matrices.
The assumption that the first r rows of AX* are linearly independent can be removed
in the following way. Let X*ATP*¥ = U*R*, where U* is an orthonormal basis of X* AT,

R* is upper triangular and P* is a permutation matrix which forces the diagonal elements

12
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of R* to appear in descending order by absolute value (this can be done during the QR
decomposition). Then as z* converges to z*, the last m — r diagonal elements of R* will
tend to zero and the first r rows of P*AX* will be linearly independent for all sufficiently
large k. If we denote UF as the first r columns of U*, then '

lim ¢("(z%) = Jlim diag(UrUXT) = sign(z™). ' (4.2)

k—oo x4

The indicator ¢{")(z¥) can be computed recursively using (4.1).
We state the above discussion formally as a theorem.

Theorem 4.1 Let {zF} C R™ converge to a degenerate basic feasible solution z* of the
linear program (1.1) with r nonero components where r < m. Let A, be an r x n submatriz
of A such that A, X" has rank r. If §* = §(z*) is given by (2.2) with A replaced by A,, then

. sk _ oam o _» -
lim ¢* = §" = sign(z”).
Moreover,
1g* = ¢l = O(ll=* — =||).

Proof: The proof is essentially the same as that of Theorem 3.1, so we omit it. O

It is worth observing from (4.1) that once q,(j°)(2:') = 1 for some jo < m, then qu)(:c') =1

for all jo < 7 £ m. This is so because of the monotonicity of qu)(:z:) with respect to j and
the fact that ¢(z) < 1.
It is unfortunate that for problems with both primal and dual degeneracy, our indicator

k — z= (or zF — z7) because

is incapable of identifying all the zero and nonzero variables as z
some components of the indicator vector may not have limits at optimality. This drawback
undoubtedly limits the practical usefulness of the indicator because most real-world problems

do have both primal and dual degeneracies.

5 Numerical Behavior of the Indicator

To corroborate our theory, we have performed some numerical experiments to explore the
numerical behavior of the indicator. In our experiments we used randomly generated prob-
lems, fully aware that they are by no means representative of real-world problems. We stress
that the numerical results have not demonstrated the effectiveness of our indicator approach,
but have corroborated our theoretical convergence results.

Both nondegenerate problems and degenerate problems with only primal degeneracy are

constructed. The methods of construction are described below.

13




To generate the cost vector ¢ and the first m — 1 rows of the constraint matrix A4, we
use the Matlab M-file “rand” to obtain uniformly distributed random numbers in the unit
interval (0,1) and then use the tangent function tan(w(z — 1/2)) to map (0,1) onto the
entire real line (—oo,+00). For the m-th row of A, we apply the mapping tan(xz/2)) to
make all the elements of that row strictly positive so that the feasible set will be bounded.
The strictly positive initial feasible point zg is also obtained this way. Caution is taken to
ensure that the generated A matrices are always of full row rank. The right-hand side vector
bis set equal to Azo. After A, b, c and z, are generated, we replace A by AXy, ¢ by Xoc and
zo by e — the vector of all ones, where X, = diag(zo). These replacements are equivalent
to applying an affine transformation to the problem so that e is feasible for the transformed
problem. Although there is no guarantee in theory that random problems generated in this
manner should be nondegenerate, in practice the chances of getting degenerate problems
seem to be extremely small. '

To construct primal degenerate problems, we first solve a nondegenerate problem and
obtain the solution z”. Then we generate an ¢ by n random matrix Bfor1 < ¢ <n —m
and redefine the data A, b and ¢ by

A:=I:A 0 ],b::( b ),andc::(c). (5.1)
B B(z=—¢€) Bz- 0

We also extend z° = e to the (n + 1)-dimensional vector of all ones which is feasible for
the new problem. The solution to the new problem is (z*7,0)7 which is obviously primal
degenerate because there are still m nonzeros in the solution but there are now m + ¢
constraints. Also we know that the first m rows of AX" (with new 4 and X~) are linearly
independent. Obviously, the problem has a unique solution.

In our tests, we implemented the so-called standard form variant of the Karmarkar pro-
jective algorithm, a primal algorithm, developed independently By a number of authors. In
this implementation we use the procedure suggested by de Ghellinck and Vial [4] and by
Ye and Kojima [18] (both based on an earlier work of Todd and Burrell [14]) which uses
. duality to construct and update lower bounds 7 for the objective function so the duality
gap is minimized. In our numerical experiments, we set the initial lower bound 7° to —108, -
which happens to be adequate for our experiments. We have observed that the performance
of the algorithm is not sensitive to the values of the initial lower bound.

Instead of trying to minimize the Karmarkar potential function in the search direction at
each iteration by a line search, we used a simple back-tracking technique to ensure that the
potential function was reduced by a fixed amount at each iteration. The initial step length
was set to 0.95 times the step length that takes the iterate to the boundary of the simplex.
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The program was written in Matlab and run on a SUN workstation network at Rice
University with a machine epsilon of about 2.22 x 1016,

The stopping criterion used in our tests was that the duality gap be less than 10-8, ie.,
Tz¥ —n* <1078 . (5.2)

We tested the optimal basis identification criterion (3.2) for ¢ = 0.1 on 10 randomly
generated nondegenerate problems with n ranging from 20 to 200. We also tested the
modified identification procedure using the recursive search as prescribed by (4.1) for 10
randomly generated primal degenerate problems. The numerical results are included in the
following two tables. In the tables, the iteration numbers at which an optimal basis is
identified and the stopping criterion is satisfied, respectively, are given in the fourth and
sixth columns. The corresponding duality gaps are listed in the fifth and seventh columns,
respectively. The rest of the tables are self-explanatory. We also include several figures
which illustrate the fast convergence of the indicator. Each curve in the figures represents
the history of a component of the indicator during the iterative process. As one can see from
these graphs, the convergence of the indicator vectors (i.e., the separation of the two groups
of indicator components converging to either zero or one) is indeed much faster than that
of the iterates. From Tables 1 and 2, we see savings of about 30% to 70% in the number of
iterations.

Although these numerical experiments have confirmed our convergence analysis, the com-
putational efficiency of the indicator approach depends on how effectively the indicator can
be calculated and used. For dense matrices, the cost of computing the indicator, given a
Cholesky factor, is comparable with the cost of forming AD?AT, which is acceptable. How-
ever, recently David Gay [7] demonstrated that for sparse problems, the computation of the
indicator was the dominant work in an iteration and in some cases this cost was prohibitively
high. His results suggest that despite its fast convergence, the indicator may not lend it-
self to efficient implementations for solving sparse problems in the framework of Cholesky
factorization.
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Table 1: Numerical results for nondegenerate problems

Problem | variables | constraints | basis identified | algorithm stopped | Iterations

number n m iter. gap iter. gap saved
1 20 10 8 20E+2 | 24 42E-8 67%
2 40 20 13 .23E+41 | 27 .94E-8 52%
3 60 30 " 14 46E+2 | 29 .35E-8 52%
4 80 40 16 .85E+0 | 30 .32E-8 47%
5 100 50 13 .12E+2 | 29 .63E-8 55%
6 120 60 19 .66E+4+0 | 33 .26E-8 42%
T 140 70 18 .18E+40 | 30  .95E-8 40%
8 160 80 22 .69E-1 34 .83E-8 35%
9 180 90 19 .16E+40 | 32 .J0E-8 40%
10 200 100 27 .22E-1 38 55E-8 29%

Table 2: Numerical results for degenerate problems

Problem | variables | constraints | basis identified | algorithm stopped | Iterations

number n m iter. gap iter. gap saved
1 20 12 8 .69e+1 | 23 .T1e-8 65%
2 40 24 11 .76e+1 | 27 .34e-8 59%
3 60 36 13 .10e+1 | 27 .62e-8 52%
4 80 48 15 .38e+0 | 28 .96e-8 46%
5 100 60 14  .18e+1 | 29 .52e-8 52%
6 120 72 15 .72e+1 | 31 42e-8 52%
7 140 84 16 .13e+0 | 29 .51e-8 45%
8 160 96 16 .49e+1 | 32 4le-8 50%
9 180 108 15 .72e4+0 | 29 .69e-8 48%
10 200 120 18  .32e+1 | 34 .35e-8 47%
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6 Concluding Remarks

In this paper, we have studied an indicator for identifying optimal bases in the setting of
interior point linear programming algorithms. This indicator has the theoretical properties
of being problem-independent and rapidly convergent for linear programming problems with
unique solutions. It is applicable to primal, dual and primal-dual algorithms. Our randomly
generated numerical examples have confirmed our theoretical analysis, showing that the use
of the indicator can reduce the number of iterations by a large percentage.

From a theoretical point of view, we believe that the main result of this work is the
establishment of the convergence properties of the indicator on problems without general
degeneracy. However, the practical applicability of the indicator to real-world problems is
severely limited by two factors. First, it is not applicable to problems with both primal and
dual degeneracies. Second, the relative cost of computing the indicator can be very high for
large sparse problems. Although it is still possible that the method may find application in

some very special problems, at this point it seems to be mainly of theoretical interest.
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