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Abstract

The success of large-scale parallel architectures is
limited by the difficulty of developing machine-
independent parallel programs. We have devel-
oped Fortran D, a version of Fortran extended
with data decomposition specifications, to provide
a portable data-parallel programming model. This
paper presents the design of two key components
of the Fortran D programming system: a proto-
type compiler and an environment to assist auto-
matic data decomposition. The Fortran D com-
piler addresses program partitioning, communica-
tion generation and optimization, data decompo-
sition analysis, run-time support for unstructured
computations, and storage management. The For-
tran D programming environment provides a static
performance estimator and an automatic data par-
titioner. We believe that the Fortran D program-
ming system will significantly ease the task of writ-
ing machine-independent data-parallel programs.

1 Introduction

It is widely recognized that parallel computing rep-
resents the only plausible way to continue to in-
crease the computational power available to com-
putational scientists and engineers. However, it
is not likely to be widely successful until parallel
computers are as easy to use as today’s vector su-
percomputers. A major component of the success
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of vector supercomputers is the ability to write
machine-independent vectorizable programs. Au-
tomatic vectorization and other compiler technolo-
gies have made it possible for the scientist to struc-
ture Fortran loops according the well-understood
rules of “vectorizable style” and expect the result-
ing program to be compiled to efficient code on any
vector machine [6, 32].

Compare this with the current situation for par-
allel machines. Scientists wishing to use such a
machine must rewrite their programs in an exten-
sion of Fortran that explicitly reflects the architec-
ture of the underlying machine, such as a message-
passing dialect for MIMD distributed-memory ma-
chines, vector syntax for SIMD machines, or an
explicitly parallel dialect with synchronization for
MIMD shared-memory machines. This conversion
is difficult, and the resulting parallel programs are
machine-specific. Scientists are thus discouraged
from porting programs to parallel machines be-
cause they risk losing their investment whenever
the program changes or a new architecture arrives.

One way to overcome this problem would be
to identify a “data-parallel programming style”
that allows the efficient compilation of Fortran
programs on a variety of parallel machines. Re-
searchers working in the area, including ourselves,
have concluded that such a programming style is
useful but not sufficient in general. The reason for
this is that not enough information can be included
in the program text for the compiler to accurately
evaluate alternative translations. Similar reason-
ing argues against cross-compilations between the



current parallel extensions of Fortran.

For these reasons, we have chosen a different ap-
proach. We believe that selecting a data decompo-
sition is one of the most important intellectual step
in developing data-parallel scientific codes. How-
ever, current parallel programming languages pro-
vide little support for data decomposition [26]. We
have therefore developed an enhanced version of
Fortran that introduces data decomposition spec-
ifications. We call the extended language For-
tran D, where “D” suggests data, decomposition,
or distribution. When reasonable data decomposi-
tions are provided for a Fortran D program written
in a data-parallel programming style, we believe
that advanced compiler technology can implement
it efficiently on a variety of parallel architectures.

We are developing a prototype Fortran D com-
piler to generate node programs for the iPSC/860,
a MIMD distributed-memory machine. If suc-
cessful, the result of this project wil go far
towards establishing the feasibility of machine-
independent parallel programming, since a MIMD
shared-memory compiler could be based directly on
the MIMD distributed-memory implementation.
The only additional step would be the construc-
tion of an effective Fortran D compiler for SIMD
distributed-memory machines. We have initiated
at Rice a project to build such a compiler based on
existing vectorization technology.

The Fortran D compiler automates the time con-
suming task of deriving node programs based on
the data decomposition. The remaining compo-
nents of the Fortran D programming system, the
static performance estimator and automatic data
partitioner, support another important step in de-
veloping a data-parallel program—selecting a data
decomposition. The rest of this paper presents the
data decomposition specifications in Fortran D, the
structure of a prototype Fortran D compiler, and
the design of the Fortran D programming environ-
ment. We conclude with a discussion of our vali-
dation strategy.

2 Fortran D

The data decomposition problem can be ap-
proached by considering the two levels of paral-
lelism in data-parallel applications. First, there is
the question of how arrays should be aligned with
respect to one another, both within and across ar-

ray dimensions. We call this the problem mapping
induced by the structure of the underlying com-
putation. It represents the minimal requirements
for reducing data movement for the program, and
is largely independent of any machine considera-
tions. The alignment of arrays in the program de-
pends on the natural fine-grain parallelism defined
by individual members of data arrays.

Second, there is the question of how arrays
should be distributed onto the actual parallel ma-
chine. We call this the machine mapping caused by
translating the problem onto the finite resources of
the machine. It is affected by the topology, com-
munication mechanisms, size of local memory, and
number of processors in the underlying machine.
The distribution of arrays in the program depends
on the coarse-grain parallelism defined by the phys-
ical parallel machine.

Fortran D is a version of Fortran that provides
data decomposition specifications for these two lev-
els of parallelism using DECOMPOSITION, ALIGN, and
DISTRIBUTE statements. A decomposition is an ab-
stract problem or index domain; it does not require
any storage. Each element of a decomposition rep-
resents a unit of computation. The DECOMPOSITION
statement declares the name, dimensionality, and
size of a decomposition for later use.

The ALIGN statement is used to map arrays onto
decompositions. Arrays mapped to the same de-
composition are automatically aligned with each
other. Alignment can take place either within or
across dimensions. The alignment of arrays to
decompositions is specified by placeholders in the

‘subscript expressions of both the array and decom-

position. In the example below,

REAL X(N,N)
DECOMPOSITION A(N,N)
ALIGN X(I,J) with A(J-2,I+3)

A is declared to be a two dimensional decomposi-
tion of size N x N. Array X is then aligned with
respect to A with the dimensions permuted and
offsets within each dimension.

After arrays have been aligned with a decom-
position, the DISTRIBUTE statement maps the de-
composition to the finite resources of the physical
machine. Distributions are specified by assigning
an independent attribute to each dimension of a
decomposition. Predefined attributes are BLOCK,
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Figure 1: Fortran D Data Decomposition .Specifications

CYCLIC, and BLOCK_CYCLIG. The symbol “:” marks
dimensions that are not distributed. Choosing the
distribution for a decomposition maps all arrays
aligned with the decomposition to the machine. In
the following example,

DECOMPOSITION A(N,N)
DISTRIBUTE A(:, BLOCK)
DISTRIBUTE A(CYCLIC,:)

distributing decomposition 4 by (:,BLOCK) results
in a column partition of arrays aligned with A.
Distributing A by (CYCLIC,:) partitions the rows
of A in a round-robin fashion among processors.
These sample data alignment and distributions are
shown in Figure 1.

Predefined regular data distributions can effec-
tively exploit regular data-parallelism. However,
irregular distributions and run-time processing is
required to manage the irregular data parallelism
found in many unstructured computations. In For-
tran D, irregular distributions may be specified
through an explicit user-defined function or data
array. In the example below,

INTEGER MAP(N)
DECOMPOSITION IRREG(N)
DISTRIBUTE IRREG(MAP)

elements of the decomposition IRREG(i) will be
mapped to the processor indicated by the array
MAP(i). Fortran D also supports dynamic data
decomposition; i.e., changing the alignment or dis-
tribution of a decomposition at any point in the
program.

We should note that our goal in designing For-
tran D is not to support the most general data de-
compositions possible: Instead, our intent is to pro-
vide decompositions that are both powerful enough
to express data parallelism in scientific programs,
and simple enough to permit the compiler to pro-
duce efficient programs. Fortran D is a language
with semantics very similar to sequential Fortran.
As a result, it should be quite usable by computa-
tional scientists. In addition, we believe that our
two-phase strategy for specifying data decomposi-
tion is natural and conducive to writing modular
and portable code. Fortran D bears similarities to
both CM Fortran [31] and KAL1 [22]. The complete
language is described in detail elsewhere [8].

3 Fortran D Compiler

As we have stated previously, two major steps in
writing a data-parallel program are selecting a data
decomposition, and then using it to derive node
programs with explicit communications to access
nonlocal data. Manually inserting communications
is unquestionably the most time-consuming, te-
dious, non-portable, and error-prone step in par-
allel programming. Significant increases in source
code size are not only common but expected. A
major advantage of programming in Fortran D will
be the ability to utilize advanced compiler tech-
niques to automatically generate node programs
with explicit communication, based on the data de-
compositions specified in the program. The proto-
type compiler is being developed in the context of
the ParaScope parallel programming environment
[4], and will take advantage of the analysis and
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Figure 2: Fortran D Compiler Output

transformation capabilities of the ParaScope Edi-
tor [19, 20].

The main goal of the Fortran D compiler is to
derive from the data decomposition a parallel node
program that minimizes load imbalance and com-
munication costs. Our approach is to convert For-
tran D programs into single-program, multiple-data
(SPMD) form with explicit message-passing that
executes directly on the nodes of the distributed-
memory machine. Our basic strategy is to parti-
tion the program using the owner computes rule,
where every processor only performs computation
on data it owns [5, 29, 34]. However, we will relax
the rule where it prevents the compiler from achiev-
ing good load balance or reducing communication

costs.

The Fortran D compiler bears similarities to
ARF [33], Aspar [18], ID NouvEau [29], KaLI
[22], MiMDIZER [13], and SUPERB (34]. The cur-
rent prototype generates code for a subset of the
decompositions allowed in Fortran D, namely those
with BLOCK distributions. Figure 2 depicts the out-
put of a Livermore loop kernel generated by the
Fortran D compiler.

3.1 Program Partitioning

The first phase of the compiler partitions the pro-
gram onto processors based on the data decompo-
sition. We define the iteration set of a reference R
on the local processor t, to be the set of loop itera-
tions that cause R to access data owned by t,. The



iteration set is calculated based on the alignment
and distribution specified in the Fortran D pro-
gram. According to the owner computes rule, the
set of loop iterations that ¢, must execute is the
union of the iteration sets for the left-hand sides
(lhs) of all the individual assignment statements
within the loop.

To partition the computation among processors,
we first reduce the loop bounds so that each pro-
cessor only executes iterations in its own set. With
multiple statements in the loop, the iteration set of
an individual statement may be a subset of the it-
eration set for that loop. For these statements we
also add guards based on membership tests for the

iteration set of the lhs to ensure that all assign-

ments are to local array elements. _
3.2 Communication Introduction

Once the computation has been partitioned, the
Fortran D compiler must introduce communica-
tions for nonlocal data accesses to preserve the se-
mantics of the original program. This requires cal-
culating the data that must be sent or received by
each processor. We can calculate the send itera-
tion set for each right-hand side (rhs) reference as
its iteration set minus the iteration set of its (hs.
Similarly, the receive iteration set for each rhs is
the iteration set of its [hs minus its own iteration
set. These sets represent the iterations for which
data must be sent or received by ¢,. The Fortran D
compiler summarizes the array locations accessed
on the send or receive iterations using rectangular
or triangular regions known as regular sections [12];
they are used to generate calls to communication
primitives.

3.3 Communication Optimization

A naive approach for introducing communication
is to insert send and receive operations directly
preceding each reference causing a nonlocal data
access. This generates many small messages that
may prove inefficient due to communication over-
head. The Fortran D compiler will use data depen-
dence information to determine whether commu-
nication may be inserted at some outer loop, vec-
torizing messages by combining many small mes-
sages. The algorithm to calculate the appropriate
loop level for each message is described by Bala-
sundaram et al. and Gerndt [2, 10].

A major goal of the Fortran D compiler is to

aggressively optimize communications. We intend
to apply techniques proposed by Li and Chen to
recognize regular computation patterns that can
utilize collective communications primitives [24]. It
will be especially important to recognize reduction
operations. For regular communication patterns,
we plan to employ the collective communications
routines found in EXPRESS [27]. For unstructured
computations with irregular communications, we
will incorporate the PARTI primitives of Saltz et al.
[33].

The Fortran D compiler may utilize data decom-
position and dependence information to guide pro-
gram transformations that improve communication
patterns. We are considering the usefulness of sev-
eral transformations, particularly loop interchang-

‘ing, strip mining, loop distribution, and loop align-

ment. Replicating computations and processor-
specific dead code elimination will also be applied
to eliminate communication.

Communications may be further optimized by
considering interactions between all the loop nests
in the program. Intra- and interprocedural
dataflow analysis of array sections can show that
an assignment to a variable is live at a point in the
program if there are no intervening assignments to
that variable. This information may be used to
eliminate redundant messages. For instance, as-
sume that messages in previous loop nests have
already retrieved nonlocal elements for a given ar-
ray. If those values are live, messages to fetch those
values in succeeding loop nests may be eliminated.
Data from different arrays being sent to the same
processor may also be buffered together in one mes-
sage to reduce communication overhead.

The owner computes rule provides the basic
strategy of the Fortran D compiler. We may also
relax this rule, allowing processors to compute val-
ues for data they do not own. Forinstance, suppose
that multiple Ths of an assignment statement are
owned by a processor that is not the owner of the
lhs. Computing the result on the processor owning
the rhs and then sending the result to the owner of
the lhs could reduce the amount of data commu-
nicated. This optimization is a simple case of the
owner stores rule proposed by Balasundaram [1].

In particular, it may be desirable for the For-
tran D compiler to partition loops amongst pro-
cessors so that each loop iteration is executed on



a single processor, such as in KALI [22] and PARTI
[33]. This technique may improve communication
and provide greater control over load balance, es-
pecially for irregular computations. It also elimi-
nates the need for individual statement guards and
simplifies handling of control flow within the loop

body.
3.4 Data Decomposition Analysis

Fortran D provides dynamic data decomposition
by permitting ALIGN and DISTRIBUTE statements
to be inserted at any point in a program. This com-
plicates the job of the Fortran D compiler, since it
must know the decomposition of each array in or-
der to generate the proper guards and communica-
tion. We define reaching decompositions to be the
set of decomposition specifications that may reach
an array reference aligned with the decomposition;
it may be calculated in a manner similar to reach-
ing definitions. The Fortran D compiler will apply
both intra- and interprocedural analysis to calcu-
late reaching decompositions for each reference to a
distributed array. If multiple decompositions reach
a procedure, node splitting or run-time techniques
may be required to generate the proper code for
the program.

To permit a modular programming style, the ef-
fects of data decomposition specifications are lim-
ited to the scope of the enclosing procedure. How-
ever, procedures do inherit the decompositions of
their callers. These semantics require the com-
piler to insert calls to run-time data decomposition
routines to restore the original data decomposition
upon every procedure return. Since changing the
data decomposition may be expensive, these calls
should be eliminated where possible. -

We define live decompositions to be the set of
decomposition specifications that may reach some
array reference aligned with the decomposition; it
may be calculated in a manner similar to live vari-
ables. As with reaching decompositions, the For-
tran D compiler needs both intra- and interpro-
cedural analysis to calculate live decompositions
for each decomposition specification. Any data
decompositions determined not to be live may be
safely eliminated. Similar analysis may also hoist
dynamic data decompositions out of loops.

3.5 Run-time Support for Irregular
Computations

Many advanced algorithms for scientific applica-
tions are not amenable to the techniques described
in the previous section. Adaptive meshes, for ex-
ample, often have poor load balance or high com-
munication cost if static regular data distributions
are used. These algorithms require dynamic irreg-
ular data distributions. Other algorithms, such as
fast multipole algorithms, make heavy use of in-
dex arrays that the compiler cannot analyze. In
these cases, the communications analysis must be
performed at run-time.

The Fortran D project supports dynamic irreg-
ular distributions. The inspector/ezecutor strat-
egy to generate efficient communications has been
adapted from KALI [22] and PARTI [25]. The in-
spector is a transformation of the original For-
tran D loop that builds a list of nonlocal elements,
known as the IN set, that will be received during
the execution of the loop. A global transpose oper-
ation is performed using collective communications
to calculate the set of data elements that must be
sent by a processor, known as the OuT set. The
executor uses the computed sets to control the ac-
tual communication. Performance results using the
PARTI primitives indicate that the inspector can
be implemented with acceptable overhead, partic-
ularly if the results are saved for future executions
of the original loop [33].

3.6 Storage Management

Once guards and communication have been cal-
culated, the Fortran D compiler must select and
manage storage for all nonlocal array references
received from other processors. There are several
different storage schemes, described below:

e Overlaps, developed by Gerndt, are expan-
sions of local array sections to accommodate
neighboring nonlocal elements [10]. They are
useful for programs with high locality of ref-
erence, but may waste storage when nonlocal
accesses are distant.

e Buffers are designed to overcome the contigu-
ous nature of overlaps. They are useful when
the nonlocal area is bounded in size, but not
near the local array section.
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o Hash tables are used when the set of accessed
nonlocal elements is sparse. This is the case
in many irregular computations. Hash tables
provide a quick lookup mechanism for arbi-
trary sets of nonlocal values [16].

Once the storage type for all nonlocal data is de-
termined, the compiler needs to analyze the space
required by the various storage structures and gen-
erate code so that nonlocal data is accessed from its
correct location. Storage management and other
parts of the Fortran D compiler are described in
more detail elsewhere [14, 15].

4 Fortran D Programming
Environment

Choosing a decomposition for the fundamental
data structures used in the program is a pivotal
step in developing data-parallel applications. Once
selected, the data decomposition usually com-
pletely determines the parallelism and data move-
ment in the resulting program. Unfortunately,
there are no existing tools to advise the program-
mer in making this important decision. To evaluate
a decomposition, the programmer must first insert
the decomposition in the program text, then com-
pile and run the resulting program to determine its
effectiveness. Comparing two data decompositions
thus requires implementing and running both ver-
sions of the program, a tedious task at best. The

process is prohibitively difficult without the assis-
tance of a compiler to automatically generate node
programs based on the data decomposition.

Several researchers have proposed techniques to
automatically derive data decompositions based on
simple machine models [17, 28, 30]. However, these
techniques are insufficient because the efficiency of
a given data decomposition is highly dependent on
both the actual node program generated by the
compiler and its performance on the parallel ma-
chine. “Optimal” data decompositions may prove
inferior because the compiler generates node pro-
grams with suboptimal communications or poor
load balance. Similarly, marginal data decompo-
sitions may perform well because the compiler is
able to utilize collective communication primitives
to exploit special hardware on the parallel machine.

What we need is a programming environment
that helps the user to understand the effect of a
given data decomposition and program structure
on the efficiency of the compiler-generated code
running on a given target machine. The Fortran D
programming system, shown in Figure 3, provides
such an environment. The main components of
the environment are a static performance estima-
tor and an automatic data partitioner [2, 3].

Since the Fortran D programming system is built
on top of ParaScope, it also provides program anal-
ysis, transformation, and editing capabilities that



allow users to restructure their programs accord-
ing to a data-parallel programming style. Zima
and others at Vienna are working on a similar
tool to support data decomposition decisions us-
ing automatic techniques [7]. Gupta and Banerjee
propose automatic data decomposition techniques
based on assumptions about a proposed Parafrase-
2 distributed-memory compiler [11].

4.1 Static Performance Estimator

It is clearly impractical to use dynamic perfor-
mance information to choose between data decom-
positions in our programming environment. In-
stead, a static performance estimator is needed
that can accurately predict the performance of a
Fortran D program on the target machine. Also
required is a scheme that allows the compiler to as-
sess the costs of communication routines and com-
putations. The static performance estimator in
the Fortran D programming system caters to both
needs.

The performance estimator is not based on a
general theoretical model of distributed-memory
computers. Instead, it employs the notion of a
training set of kernel routines that measures the
cost of various computation and communication
patterns on the target machine. The results of
executing the training set on a parallel machine
are summarized and used to train the performance
estimator for that machine. By utilizing training
sets, the performance estimator achieves both ac-
curacy and portability across different machine ar-
chitectures. The resulting information may also be
used by the Fortran D compiler to guide commu-
nication optimizations.

The static performance estimator is divided into
two parts, a machine module and a compiler mod-
ule. The machine module predicts the performance
of a node program containing explicit communica-
tions. It uses a machine-level training set written
in message-passing Fortran. The training set con-
tains individual computation and communication
patterns that are timed on the target machine for
different numbers of processors and data sizes. To
estir:ate the performance of a node program, the
machine module can simply look up results for each
computation and communication pattern encoun-
tered.

The compiler module forms the second part of

the static performance estimator. It assists the
user in selecting data decompositions by statically
predicting the performance of a program for a
set of data decompositions. The compiler mod-
ule employs a compiler-level training set written in
Fortran D that consists of program kernels such
as stencil computations and matrix multiplication.
The training set is converted into message-passing
Fortran using the Fortran D compiler and executed
on the target machine for different data decompo-
sitions, numbers of processors, and array sizes. Es-
timating the performance of a Fortran D program
then requires matching computations in the pro-
gram with kernels from the training set.

The compiler-level training set also provides a
natural way to respond to changes in the Fortran D
compiler as well as the machine. We simply recom-
pile the training set with the new compiler and
execute the resulting programs to reinitialize the
compiler module for the performance estimator.

Since it is not possible to incorporate all possible
computation patterns in the compiler-level train-
ing set, the performance estimator will encounter
code fragments that cannot be matched with ex-
isting kernels. To estimate the performance of
these codes, the compiler module must rely on the
machine-level training set. We plan to incorporate
clements of the Fortran D compiler in the perfor-
mance estimator so that it can mimic the com-
pilation process. The compiler module can thus
convert any unrecognized Fortran D program frag-
ment into an equivalent node program, and invoke
the machine module to estimate its performance.

Note that even though it is desirable, to assist
automatic data decomposition the static perfor-
mance estimator does not need to predict the ab-
solute performance of a given data decomposition.
Instead, the it only needs to accurately predict
the performance relative to other data decompo-
sitions. A prototype of the machine module has
been implemented for a common class of loosely
synchronous scientific problems(9]. It predicts the
performance of a node program using EXPRESS
communication routines for different numbers of
processors and data sizes [27]). The prototype per-
formance estimator has proved quite precise, es-
pecially in predicting the relative performances of
different data decompositions [3].

A screen snapshot during a typical performance
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Figure 4: Static Performance Estimator

estimation session is shown in Figure 4. The user
can select a program segment such as a do loop
and invoke the performance estimator by clicking
on the [Estimate Performance|button. The pro-
totype responds with an execution time estimate of
the selected segment on the target machine, as well
as an estimate of the communication time repre-
sented as a percentage of the total execution time.
This allows the effectiveness of a data partitioning
strategy to be evaluated on any part of the node
program.

4.2 Automatic Data Partitioner

The goal of the automatic data partitioner is to
assist the user in choosing a good data decompo-
sition. It utilizes training sets and the static per-

formance estimator to select data partitions that
are efficient for both the compiler and parallel ma-
chine.

The automatic data partitioner may be applied
to an entire program or on specific program frag-
ments. When invoked on an entire program, it
automatically selects data decompositions without
further user interaction. We believe that for regu-
lar loosely synchronous problems written in a data-
parallel programming style, the automatic data
partitioner can determine an efficient partitioning
scheme without user interaction.

Alternatively, the automatic data partitioner
may be used as a starting point for choosing a
good data decomposition. When invoked interac-



tively for specific program segments, it responds
with a list of the best decomposition schemes, to-
gether with their static performance estimates. If
the user is not satisfied with the predicted overall
performance, he or she can use the performance es-
timator to locate communication and computation
intensive program segments. The Fortran D envi-
ronment can then advise the user about the effects
of program changes on the choice of a good data
decomposition.

The analysis performed by the automatic data
partitioner divides the program into separate com-
putation phases. The intra-phase decomposition
problem consists of determining a set of good data
decompositions and their performance for each in-
dividual phase. The data partitioner first tries to
match the phase or parts of the phase with com-
putation patterns in the compiler training set. Ifa
match is found, it returns the set of decompositions
with the best measured performance as recorded in
the compiler training set. If no match is found, the
data partitioner must perform alignment and dis-
tribution analysis on the phase. The resulting so-
lution may be less accurate since the effects of the
Fortran D compiler and target machine can only
be estimated.

Alignment analysis is used to prune the search
space of possible arrays alignments by selecting
only those alignments that minimize data move-
ment. Alignment analysis is largely machine-
independent; it is performed by analyzing the array
access patterns of computations in the phase. We
intend to build on the inter-dimensional and intra-
dimensional alignment techniques of Li and Chen
[23] and Knobe et al. [21].

Distribution analysis follows alignment analysis.
It applies heuristics to prune unprofitable choices
in the search space of possible distributions. The
efficiency of a data distribution is determined by
machine-dependent aspects such as topology, num-
ber of processors, and communication costs. The
automatic data partitioner uses the final set of
alignments and distributions to generate a set of
reasonable data decomposition schemes. In the
worst case, the set of decompositions is the cross
product of the alignment and distribution sets. Fi-
nally, the static performance estimator is invoked
to select the set of data decompositions with the
best predicted performance.
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After computing data decompositions for each
phase, the automatic data partitioner must solve
the inter-phase decomposition problem of merging
individual data decompositions. It also determines
the profitability of realigning or redistributing ar-
rays between computational phases. Interprocedu-
ral analysis will be used to merge the decomposi-
tion schemes of computation phases across proce-
dure boundaries. The resulting decompositions for
the entire program and their performance are then
presented to the user.

5 Validation Strategy

We plan to establish whether our compilation and
automatic data partitioning schemes for Fortran D
can achieve acceptable performance on a variety of
parallel architectures. We will use a benchmark
suite being developed by Geoffrey Fox at Syracuse
that consists of a collection of Fortran programs.
Each program in the suite will have five versions:

(v1) the original Fortran 77 program,

(v2) the best hand-coded message-passing version
of the Fortran program,

(v3) a “nearby” Fortran 77 program,

(v4) a Fortran D version of the nearby program,
and

(v5) a Fortran 90 version of the program.

The “nearby” version of the program will utilize
the same basic algorithm as the message-passing

‘program, except that all explicit message-passing

and blocking of loops in the program are removed.
The Fortran D version of the program consists of
the nearby version plus appropriate data decom-
position specifications.

To validate the Fortran D compiler, we will
compare the running time of the best hand-coded
message-passing version of the program (v2) with
the output of the Fortran D compiler for the For-
tran D version of the nearby program (v4). To val-
idate the automatic data partitioner, we will use it
to generate a Fortran D program from the nearby
Fortran program (v3). The result will be compiled
by the Fortran D compiler and its running time
compared with that of the compiled version of the
hand-generated Fortran D program (v4).

The purpose of the validation program suite is
to provide a fair test of the prototype compiler and



data partitioner. We do not expect these tools to
perform high-level algorithm changes. However, we
will test their ability to analyze and optimize whole
programs based on both machine-independent is-
sues such as the structure of the computation, as
well as machine-dependent issues such as the num-
ber and interconnection of processors in the paral-
lel machine. Our validation strategy will test three
key parts of the Fortran D programming system:
the limits of our machine-independent Fortran D
programming model, the efficiency and ability of
our compiler technology, and the effectiveness of
our automatic data partitioning and performance
estimation techniques.

6 Conclusions

Scientific programmers need a simple, machine-
independent programming model that can be ef-
ficiently mapped to large-scale parallel machines.
We believe that Fortran D, a version of Fortran
enhanced with data decompositions, provides such
a portable data-parallel programming model. Its
success will depend on the compiler and environ-
ment support provided by the Fortran D program-
ming system.

The Fortran D compiler includes sophisticated
intraprocedural and interprocedural analyses, dy-
namic data decomposition, program transforma-
tion, communication optimization, and support for
both regular and irregular problems. Though sig-
nificant work remains to implement the optimiza-
tions presented in this paper, based on preliminary
experiments we expect the Fortran D compiler to
generate efficient code for a large class of data-
parallel programs with only minimal user effort.

The Fortran D environment is distinguished by
its ability to accurately estimate the performance
of programs using collective communication on real
parallel machines, as well automatically choose
data partitions that account for the characteristics
of both the compiler-generated code and underly-
ing machine. It will assist the user in developing
sfficient Fortran D programs. Overall, we believe

hat the Fortran D programming system is a pow-
2rful and useful tool that will significantly ease the
task of writing portable data-parallel programs.
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