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Abstract

A hybrid genetic algorithm is proposed for the task alloca-
tion problem (HGATA) in parallel computing. It includes
elitist ranking selection, variable rates for the genetic oper-
ators, the inversion operator and hill-climbing of individu-
als. Hill-climbing is done by a simple heuristic procedure
tailored to the application. HGATA minimizes the possibil-
ity of premature convergence and finds good solutions in a
reasonable time. It also makes use of problem-specific
knowledge to evade some computational costs and to rein-
force some favorable aspects of the genetic search. The ex-
perimental results on realistic test cases support the HGATA
approach for task allocation.

1 INTRODUCTION

Parallel computers offer a high computational power which
makes them useful for many problems in science, engineer-
ing and other areas. Generally, they are classified as Single
Instruction Multiple Data and Multiple Instruction Multiple
Data (MIMD). Distributed-memory MIMD computers will
-henceforth be called multicomputers. While offering a high
raw computational power, parallel computers can suffer
from low utilization and, hence, show poor performance if
the load is not distributed as equally as possible among the
processors. This crucial issue leads to the task allocation
problem. In multicomputers, task allocation aims at the
minimization of the total execution time of a problem by
balancing the calculations among the processors and mini-
mizing the interprocessor communication. Task allocation
may be based on partitioning the operations in the algorithm
or the data set. In this work, data partitioning is considered.

The task allocation problem is a computationally intractable
combinatorial optimization problem. Several heuristic
methods have been proposed, such as mincut-based heuris-
tics, orthogonal recursive bisection, scattered decomposi-
tion, neural networks and simulated annealing [7, 9, 10, 11,
12, 13, 19]. The deterministic methods are strong methods
with predictable and low execution time. However, they,
naturally, either make restrictive assumptions or tend to be
biased towards particular instances of the problem. The sto-
chastic methods make no assumptions about the problem
considered. However, their execution time is currently un-
predictable and is still an open question. A parallel version
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of the classical genetic algorithm has been suggested in [21]
for the specific case of allocating matrix rows to a hyper-
cube for the Gaussian elimination problem. The work in
[21] is difficult to generalize to other allocation problems
and assumes a computational model that is different from
the one dealt with in this paper. The theory of complex sys-
tems has been suggested as a framework within which con-
currency issues such as task allocation can be studied [14].
It should be emphasized here that all the approaches men-
tioned above, as well as our approach, aim at producing
good sub-optimal solutions, and not necessarily the optimal,
in a reasonable time.

In this work, we propose a hybrid genetic algorithm (HGA-
TA) for the task allocation problem. HGATA enhances the
classical genetic algorithm (GA) with a number of features
in order to alleviate the problem of premature convergence
and to improve the search efficiency. These features include
a combination of design choices for the selection scheme,
the genetic operators and the rates of the operators. The in-
corporation of a problem specific hill-climbing procedure is
also an essential feature and is responsible for the hybrid ad-
jective.

This paper is organized as follows. Section 2 defines the
task allocation problem and presents an objective function.
Section 3 presents HGATA and explains the choices in-
volved. The experimental results are reported and discussed
in section 4. In section 5, conclusions are given.

2 THE TASK ALLOCATION PROBLEM

Task allocation consists of partitioning the problem into
tasks, i.e. subproblems, and allocating these tasks to the pro-
cessors of the multicomputer such that an objective function
is minimized. An objective function associated with the to-
tal execution time required for solving a problem is given
below. The computational model is explained first, then ex-
act and approximate objective functions are presented and
discussed. Some parameters which will be utilized by HGA-
TA are also given.

The model of computation considered here is that of loosely
synchronous parallel algorithms [14], where calculation and
communication do not overlap. Processors run the same
code (algorithm) and repeat a calculatc-communicate cycle,
where each processor performs calculations on its subprob-
lem (task) and then communicates with other processors to






exchange necessary boundary information.

To formulate an objective function representing the cost of
task allocation, both the problem domain and the multicom-
puter are represented by graphs. The vertices of the problem
graph are the data elements and the edges refer to the calcu-
lation dependency. The vertices of the multicomputer graph
are the processors and the edges are given by the intercon-
nections. Task allocation becomes a mapping of subsets of
the vertices of the problem graph to vertices in the multi-
computer graph. Let W(p) and C(p) denote the amount of
calculation and communication for processor p, respective-
ly. W(p) is proportional to the number of data elements al-
located to p. C(p) is a function of the amount of information
communicated by p and the distance it travels. The total ex-
ecution time, T, for a parallel program is determined by the
processor with the greatest load of calculation and commu-
nication, that is

T = max, {W(p) +C ()} e (1)

Equation (1) represents the exact objective function to be
minimized in task allocation and is the basis for evaluating
the results of HGATA. However, the use of this minimax
criterion is computationally expensive because the calcula-
tion of a new T caused by any change in the mapping of el-
ements to processors requires the recalculation of the load
of all processors.To avoid this complexity, a quadratic ob-
jective function has been proposed [9, 12] to approximate
the cost of task allocation. It can be expressed as

PYN (p) +v(E2T) Y d (2, q) )
p p.q

where r is the amount of calculation per data element, N(p)
is the number of elements allocated to processor p, (tcomm/
tcalc) is a machine dependent communication to calculation
time ratio, v is a constant scaling factor expressing the rela-
tive importance of communication with respect to calcula-
tion, and d(p,q) is the Hamming distance between
processors p and q. The main advantage of using this qua-
dratic cost function is that it enjoys the locality property. Lo-
cality means that a change in the cost due to a change in the
allocation of elements to processors is determined by the re-
allocated elements only. Since HGATA employs a hill-
climbing scheme based on incremental reallocation of ele-
ments, the locality property becomes very important for

keeping hill-climbing as fast as possible. Another important -

consideration in using the objective function in (2) is the
choice of the weight v. In this work, values for v are chosen
in harmony with the behavior of HGATA for the purpose of
generating better quality solutions. This is elaborated in the
next section within the HGATA context.

Two parameters which can be derived from the objective -

function in (2) are utilized by HGATA. The first is the de-
gree of clustering (DOC) of the data elements in a task allo-
cation instance. The maximum DOC, DOC(max),
corresponds to an optimal allocation. The second parameter

is an estimate of the value of the optimal objective function.
This estimate involves the problem size, the multicomputer
size, and the scaling factor v. It is henceforth referred to as
OBJ(opt). The derivation for both parameters is omitted
here. However, we note that DOC and OBJ(opt) are em-
ployed by HGATA for evading some computational costs
and reinforcing some aspects of the search.

3 HYBRID GENETIC ALGORITHM

Genetic algorithms represent powerful weak methods for
solving optimization problems, such as task allocation.
However, the implementation of an efficient GA often en-
counters the problem of premature convergence to local op-
tima, otherwise a long time may be required for the GA
search to reach an optimal or a good suboptimal solution.
Methods for overcoming the two problems of premature -
convergence and inefficiency would be conflicting and a
compromise is usually required. The incorporation of prob-
lem specific knowledge has been proposed to direct the
blind GA search to the fruitful regions of the search space
for improving the efficiency [15, 16]. The resulting schemes
are referred to as hybrid schemes. To address the problem of
premature convergence, a number of techniques have been
suggested. Some selection schemes have been proposed for
reducing the stochastic sampling errors [2, 15]. Other tech-
niques have been incorporated into the reproduction scheme
in order to control the level of competition among individu-
als and to maintain diversity. Examples of these are prescal-
ing, ranking and the use of sharing functions or crowding
factors (1, S, 6, 15]. Reduced-surrogate crossover and two-
point crossover operators have been suggested for enhanc-
ing exploration and improving the search [3]. Adaptive rates
for crossover and mutation have been found useful [3, 4].
The variation in these rates is usually inversely proportional
to the level of diversity in the population.

The advantages of the techniques mentioned above have
been demonstrated by comparing the resulting performance
with that of the classical GA [17]. Often, the performance
verification is carried out for DeJong’s testbed of functions
[6] or for other specific applications, such as the traveling
salesperson problem. In this work, a number of techniques
dealing with selection and genetic operators have been com-
bined for improving the quality of the solutions for the task
allocation problem. Also, a simple problem specific hill-
climbing procedure is added for improving the efficiency of
the search. The techniques and the procedure comprise
HGATA which is outlined in Figure 1. Four objectives guide
the design of HGATA. These are the minimization of the
likelihood of premature convergence, increasing the search
efficiency, keeping computational costs low, and utilizing
domain knowledge wherever possible for satisfying the first
three objectives. In the remainder of this section, HGATA is
explained. An illustration of the stages of the genetic search
is given first as a prelude to the description of some design
choices in the following subsections.






Read (problem graph and multicomputer graph);
Random Generation of initial population P(0) of size POP;
Evaluate fitness of individuals in P(0);
For (gen = 1 to maxgen) OR until convergence do
Set (v, operator rates, flags);
Rank individuals in P(gen-1), and
allocate r ction trials stored in MATES([];
/* produce new generation P(gen) */
For (i = 1 to POP step 2) do
Randomly select 2 parents from MATES (J;
Apply genetic operators (2-pt xover,mutation,inversion);
Hill-climbing by new individuals;
endfor
Evaluate fitness of individuals in P(gen);
gfetain the better of (fittest(gen) , fittest(gen-1)};
endfor

Figure 1: An Outline of HGATA.

3.1 THREE STAGES OF HGATA SEARCH

In the beginning of the search, the allocation of data ele-
ments to processors is almost random and, thus, the commu-
nication among processors would be heavy and very far
from optimal regardless of the distribution of the number of
elements. In the successive generations, clusters of elements
are expected to be gradually grown and allocated to proces-
sors such that the interprocessor communication is constant-
ly reduced, at least in the fitter individuals in the population.
Then, at some point in the search, the balancing of the cal-
culational load becomes more significant for increasing the
fitness. Therefore, two stages of the search can be distin-
guished. The first stage is the clustering stage which lays
down the foundation of the basic pattern of the interproces-
sor communication. The second stage will be referred to as
the calculation-balancing stage. Obviously, the two succes-
sive stages overlap.

A third stage in the search can also be identified when the
population is near convergence. In this advanced stage, the
average DOC of the population approaches DOC(max) and
the clusters of elements crystallize. If these clusters are bro-
ken, the fitness of the respective individual would drop sig-
nificantly and its survival becomes less likely. At this point,
crossover becomes less useful for introducing new building
blocks, mutation of elements in the middle of the clusters is
useless and a fruitful search is that which concentrates on
the adjustment of the boundaries of the clusters in the pro-
cessors. This stage will henceforth be referred to as the tun-
ing stage. Boundary adjustment can be accomplished
mainly by the hillclimbing of individuals, which is ex-
plained below, aided by the probabilistic mutation of the
boundary elements. The main responsibility of crossover
becomes the propagation and the inheritance of high-perfor-
mance building blocks and the maintenance of the drive to-
wards convergence for the sake of search efficiency. For
hillclimbing and boundary mutation to take on their role in
this stage, it is necessary to increase the relative weight of
the calculation term in the fitness function. This is elaborat-

ed below with the description of hill-climbing. It is worth
noting here that the tuning stage constitutes a relatively
small number of generations in comparison with the first
two stages.

3.2 CHROMOSOMAL REPRESENTATION

An instance of task allocation is encoded by a chromosome
whose length is equal to the number of data elements (ver-
tices) in the problem graph. The value of an allele is an in-
teger representing the processor to which a data element is
allocated. The element is, therefore, the index (locus) of the
processor (gene) to which it is assigned. For example, if we
have a graph of four data elements and two processors, the
genotype (1,1,2,1) indicates that elements 1,2 and 4 are al-
located to processor 1 and element 3 to processor 2.

3.3 FITNESS EVALUATION

The fitness of an individual is evaluated as the reciprocal of
the objective function in expression (2). As pointed out in
section 2, the choice of v is of particular interest. Its value
should be chosen in accordance with the properties of the
HGATA search illustrated above. v should be so large that
the communication term in the fitness function acquires suf-
ficient importance in the clustering stage. But, v should not
be too large, otherwise it will swamp the effect of the calcu-
lational term in the later stages. In other words, v is chosen
to favor the fitness of the individuals whose structure in-
volves nearest-neighbor interprocessor communication in
the clustering stage. In the later phases of the search, the val-
ue of v should allow the emphasis to shift to the calculation
term in the fitness. A value which satisfies these require-
ments can be determined from the ratio of the calculation
and communication terms of OBJ(opt), which is defined in
section 2. In subsection 3.7, it will be argued that v has to be
decreased in the tuning stage.

3.4 REPRODUCTION SCHEME

The reproduction scheme adopted in HGATA is elitist rank-
ing followed by random selection of mates from the list of
reproduction trials, or copies, allocated to the ranked indi-
viduals. In ranking [1], the individuals are sorted by their fit-
ness values and are allocated a number of copies according
to a predetermined scale of equidistant values for the popu-
lation, and not according to their relative fitness. In HGATA,
the ranks assigned to the fittest and the least fit individuals
are 1.2 and 0.8, respectively. Individuals with ranks bigger
than 1 are first assigned single copies. Then, the fractional
part of their ranks and the ranks of the lower half of individ-
uals are treated as probabilities for assignment of copies.
This scheme has been found to produce a percent involve-
ment value of 92% to 98% in different generations. It offers
a suitable way for controlling the selective pressure and,
hence, the inversely related population diversity [23]. This
results in the control of premature convergence, which is the
main reason for using ranking-based reproduction in HGA-






TA. The control of premature convergence by ranking out-
weighs the loss due to ignoring knowledge about the
relative fitness, especially that the expression used for the
fitness in our application is only an approximation to the ex-
act one anyway. Furthermore, ranking dispenses with pres-
caling which is usually necessary for fitness proportionate
reproduction schemes. From efficiency point of view, rank-
ing provides a computationally cheap method for control-
ling the population diversity in comparison with expensive
methods needed with fitness proportionate selection, such
as sharing functions or DeJong’s crowding schemes [5, 6,
15].

Elitism in the reproduction scheme refers to the preserva-
tion of the fittest individual. In HGATA, the preceding fittest
individual is passed unscathed to the new generation, but it
is forced to compete with the new fittest and only the better
of the two is retained. The purpose of elitism and its current
implementation is the exploitation of good building blocks
and ensuring that good candidate solutions are saved if the
search is to be truncated at any point.To patch up a part of
the loophole created by the use of the approximate objective
function, the criterion for choosing between the current fit-
test and the preceding fittest individuals is changed in the
tuning stage. The exact expression for fitness is used and has
been found beneficial.

3.5 GENETIC OPERATORS

The Genetic operators employed in HGATA are crossover,
mutation and inversion. The two-point ring-like crossover is
used because it offers less positional bias than the one-point
standard crossover without introducing any distributional
bias [8]. Other more complex and presumably higher-per-
formance crossover operators, such as shuffle crossover [8],
are not used in this work in order to avoid excessive compu-
tations.

The standard mutation operator is employed throughout the
search. In the tuning stage of the search, for the reason ex-
plained in subsection 3.1, mutation is restricted to elements
at the boundaries of the clusters

Inversion is used in the standard biological way, where a
contiguous section of the chromosome is inverted. In HGA-
TA, the chromosome is considered as a ring. Inversion at a
low rate helps in introducing new building blocks, into the
population for an application such as task allocation.

3.6 OPERATOR RATES

It has become widely recognized that variable operator rates
are useful for maintaining diversity in the population and,
hence, for alleviating the premature convergence problem
(3, 4]. Rates are varied in the direction that counteracts the
drop in diversity. Several Measures have been suggested for
the detection of diversity, such as lost alleles, entropy, per-
cent involvement, and others (1, 4, 15, 16]. The evaluation
of these measures invariably requires considerable compu-

tations. In HGATA, the cost of computing measures of di-
versity is not incurred. Instead, the degree of clustering of
clements is used to guide the variation of the rates. This de-
sign decision is based upon the observation that diversity is
reduced in the population as the DOC increases. The current
implementation uses a simple stepwise change in the rates.
The smallest and largest rates are associated with the DOC
of the first generation and the DOC (max) estimate, respec-
tively.

3.7 HILL CLIMBING

Knowledge about the application can direct the blind genet-
ic search to more profitable regions in the adaptive space. In
HGATA, individuals carry out a simple problem-specific
hillclimbing procedure that can increase their fitness. The
procedure is greedy and its inclusion improves the efficien-
cy of the search significantly.

Hill-climbing for an individual is performed by considering
only the boundary data elements allocated to the processors;
one at a time. A boundary element ¢ is an element that is al-
located to a processor pl1 and has at least one neighboring el-
ement (in the problem graph) allocated to a different
processor p2. Such an element is transferred from p1 to p2
if and only if the transfer causes the objective function to
drop or stay the same. It can be shown that the Change in
Objective Function, COF, due to a transfer of element e is
given by

2r2[1+N (p2) =N (p1)] +2vR (CCD)

where N(x) is the number of elements allocated to processor
x before the transfer, R is the (tcomm/tcalc) ratio, and CCD
is the change in communication cost (sum of distances) for
element e. From this expression, it can easily be seen that a
transfer of an element can only take place from overloaded
processors to underloaded processors. It should be empha-
sized here that the formulation of COF, which leads to a
simple implementation of hill-climbing, is a direct result of
the locality property of the approximate objective function;
as mentioned in section 2.

In the tuning stage of the evolution, a procedure for remov-
ing isolated elements is invoked as a part of hill-climbing.
This amounts to eliminating noise components, which man-
ifest themselves as artificial additions to both the calculation
and communication loads of processors in a task allocation
instance.

Hill-climbing plays a distinctive role in the tuning stage,
where it fine-tunes the structures by adjusting the bound-
aries of the sizeable clusters assigned to the processors. In
this advanced stage, the basic pattern of interprocessor com-
munication can not be significantly changed and the search
ceases to offer significant gains. For these reasons, the em-
phasis upon balancing the calculational load should be arti-
ficially increased for the purpose of facilitating the
boundary adjustment. This is achieved by decreasing the
value of the weight v in the objective function gradually






Figure 2: 551-Element Mesh1.

from the fixed value used throughout the search to a small
suitable value determined by the COF expression. The
smallest useful value for v is that which makes COF nega-
tive or zero when the following conditions coexist. The first
condition is that an overloaded processor has two elements
more than the underloaded processor. The second condition
is that the transfer of an element e does not increase the sum
of communication distances of e by more than one.

4 EXPERIMENTAL RESULTS

The experiments describe the solutions that can be obtained
by HGATA for realistic problems. They also illustrate the
design choices and parameters of HGATA. The experimen-
tal set-up is presented first, then the results are given and
discussed.

4.1 EXPERIMENTAL DESIGN

A genetic algorithm is considered to be a 6-tuple of vari-
ables GA = (REP, XOV, INV, OPRATE, POP, MRANK),
where REP and XOV refer to the reproduction scheme and
the crossover operator, respectively, INV indicates whether
inversion is included, OPRATE indicates either variable or
fixed rates for the genetic operators, POP is the population
size, and MRANK is the maximum rank for the ranking-
based reproduction scheme. Other parameters are assumed
to be the same as in the classical GA. POP has been empir-
ically determined by extrapolation from small test cases. It
has been found that a population size approximately equal
to the size of the problem graph is adequate for HGATA as
long as the multicomputer graph is much smaller. Fixed
rates for the genetic operators are 0.6 for crossover, 0.002
for mutation and 0.02 for inversion. Variable rates vary in a
stepwise fashion as follows. Crossover rate increases from
0.5 to 1.0, mutation rate increases form 0.002 to 0.004, and
inversion rate decreases from 0.03 to 0.0.

Several test cases have been used. For small and regular
problems, HGATA has always found an optimal task alloca-
tion efficiently. These results are not be presented here. In-
stead, two irregular problems with realistic sizes are
considered. These are shown in Figures 2 and 3 and are
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Figure 3: 301-Element Mesh2.

henceforth referred to as Mesh1 and Mesh2, respectively.
Most of the results presented below are the averages of three
runs. This small number of runs is satisfactory to illustrate
HGATA's features, except for paragraph (iii) where 20 runs
have been carried out.

In all experiments, a solution obtained at a certain point in
the search refers to the fittest individual in the respective
generation. The performance measures are the (exact) mul-
ticomputer’s efficiency and the average fitness of the popu-
lation. The efficiency is defined as the ratio of the sequential
execution time to the product of T (equation 1) and the num-
ber of processors in the multicomputer, Both measures are
plotted below with respect to the number of generations,
which, in its tumn, is used to assess the efficiency of the
search. For clarity, the results are given as ratios, where ef-
ficiency is normalized with respect to the (exact) optimum,
and fitness is normalized with respect to the (approximate)
fitness of the optimal solution. It should be understood that
the use of exact efficiency and approximate fitness for ex-
pressing the quality of the solutions will obviously exhibit a
discrepancy in the results for the two measures.

42 RESULTS

The first experiment only refers to Mesh1. All the following
experiments refer to allocating Mesh2 to an 8-processor hy-

percube.

() For Meshl and a 16-processor hypercube, HGATAL =
(ranking, 2-point, yes, var, 500, 1.2) yields the allocation
configuration depicted in Figure 4. The efficiency of this al-
location is 0.93 of the optimum, and its fitness is 0.998 of
the optimal fitness. This solution is obtained after 280 gen-
erations. Each generation takes about 30 seconds on a
SPARC workstation.

(ii) HGATA2 = (ranking, 2-point, yes, var, 300, 1.2) applied
to Mesh2 for a 3-cube finds a solution shown in Figure 5.
The efficiency and fitness are shown in Figure 6, where the
relative average loads of calculation and communication are
also depicted. After generation 118, the search converges to
a solution with efficiency and fitness ratios 0.97 and 0.998,
respectively. Each generation takes about 12 seconds.
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Figure 4: Allocation of Mesh1 to 4-Cube.
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Figure 6: Efficiency and Fitness Ratios for HGATA2.

The three stages of the search can be identified in the fitness
and load curves in Figure 6. Roughly, their overlapping
points are generations 50 and 100. It can be seen that in the
first stage, the communication load drops steadily regard-
less of the calculation load which happens to increase. In the
second stage, both loads decrease and the fitness rises. De-
creasing v in the tuning stage enhances HGATA's tendency
to reduce the calculation load. If v had not been decreased at
this advanced stage, the efficiency would have been trapped
at 89%.

(iii) The averages of 20 runs are shown in Figure 7 for com-
paring HGATA2 with a classical GA1 = (RSIS, 1-point, no,
fixed, 300, -). GA1, however, still includes hill climbing, for
speed, and the problem-specific features in the tuning stage,
for improving the final solution. RSIS is Remainder Sto-
chastic Independent Sampling (2] implemented here with
prescaling. Figure 7 shows that GA1 converges before gen-
eration 80 to a fitness of 0.99% and an efficiency of 89%.
The efficiency is later improved to 92.5% in generation 130;
under the effect of mutation and tuning. HGATA?2 takes 45
more generations to converge to 0.99% fitness and 96% ef-
ficiency in generation 125. The best solutions found in the
20 runs are 94.2% and 97.2% efficiency by GA1 and HGA-
TA2, respectively. The worst is 90.4% and 93.5% for GA1
and HGATAZ2, respectively. The mean square deviation of
the efficiency results are 1.18 for HGATA2 and 1.1 for GAl.
Clearly, GA1 (without expensive sharing functions or

crowding factors) results in a higher selection pressure and
lacks the capability of controlling convergence. This ex-
plains the lower quality solutions produced by the classical
GALl and highlights the advantages of the combination of
choices adopted in HGATA.

(iv) The effect of increasing the selection pressure is ex-
plored by increasing MRANK in HGATA3 = (ranking, 2-
point, yes, var, 300, 2.0). This results in an early conver-
gence as shown in Figure 8. HGATAS finds a good solution
(96% efficiency ratio) in only 66 generations, which in 61%
of the time required by HGATA2 to find a solution of the
same quality. However, the large percentage of individuals
(up to 20%) that die every generation, makes a maximum
rank of 2.0 too high to be reliable in general for producing
good solutions. This highlights the trade-off that exists be-
tween the:solution quality and the search efficiency.

(v) Without hill-climbing, the efficiency of the search dete-
riorates tremendously. HGATA2, for example, becomes
more than a hundred times slower.

(vi) The amount of improvement in the solution quality ac-
quired in the tuning stage of the evolution has been found
somewhat sensitive to the parameter that triggers this stage.
If tuning is triggered too early, the time allowed for the first
two stages of the evolution might be insufficient for produc-
ing near-optimal building blocks. If the tuning stage is in-
voked too late, convergence to a local optimum might have






1004 HGATA2 1004 GAl
eff fitness
ratio t ratio 4
HGATA2
80+ 80¢
S0k — £1)) S et
50 100 generation _ 100 generation
Figure 7: Comparison of HGATA2 and GAl.
100¢ HGATA3 .. 10f HOATAS
eff E fitness ci:[ GAT
i 3 ”4:: ratio 4 ,,.':v’x ‘A2
F HGATA2 P
' 804
............. - 50 :5-4 PR S S T S W S SR S S S S
100 generation Ry 100 generation

Figure 8: Comparison of HGATA2 and HGATAS.

already prevailed in the population as a result of the first two
stages.

4.3 DISCUSSION

The results obtained for Mesh1 and Mesh2 are good subop-
timal task allocations. They are considerably better than the
results obtained by other faster task allocation techniques.
For example, recursive bisection [11] produces a solution
for Mesh2 whose efficiency is 87% of the optimum. Scat-
tered decomposition [19] yields an efficiency 61% of the
optimum. The best result of 500 runs of the hill-climbing al-
gorithm, each starting with different initial random configu-
ration, has been found to be 83%.

HGATA is not restricted to the loosely synchronous model
of computation described in section 2. It can be easily adapt-
ed to other models by modifying the objective function
module. Furthermore, most of the constituents of HGATA
can be employed for solving related combinatorial optimi-
zation problems such as graph partitioning and quadratic as-
signment.

The trade-off between the solution quality and the computa-
tional cost is worthwhile emphasizing. The search can be
made less expensive by resorting to measures such as, for
example, increasing the selection pressure by some propor-
tion as in HGATA3. But, in such cases the solution quality
is likely to be sacrificed, although at a smaller proportion.
The determination of a suitable population size is another
important and difficult issue affecting the solution quality
and amount of computations. The use of theoretically de-

rived estimates makes the search time impractical. Since we
are interested in suboptimal results, heuristic estimates
would be adequate. In this work, a population size of the or-
der of the size of the problem graph has been found satisfac-
tory; when the multicomputer size is many times smaller.

The hill-climbing procedure enables qualified individuals to
rapidly climb the adaptive peaks, which speeds up the evo-
lution. This improvement in the efficiency of the search may
seem to cause the exploitation feature to gain an upper hand
over exploration; contributing to premature convergence.
However, although hill-climbing does fuel the exploitation
aspect of the search, the experimental results do not reveal
any negative effects. Hill-climbing enables exploration to
be carried out in the space of genotypes representing local
fitness optima. Further, It seems that it plays a role similar
to that of a knowledgeable mutation operator and does not
lead the search to be trapped in local optima.

5 CONCLUSIONS

The combined constituents of HGATA have been shown to
provide a-good balance between exploratory forces and ex-
ploitation forces for the task allocation problem. HGATA
greatly reduces the causes of premature convergence and
has found near-optimal solutions in a reasonable time, al-
though the objective function used is only an approximation
to the exact one. The use of the degree of clustering of data
elements has obviated expensive diversity detection mech-
anisms. Also, it has been found that setting the weighting
factor v in harmony with the properties of the search in dif-






ferent phases leads to better results.

The performance of HGATA can be improved in several
ways, Firstly, the frequencies of the genetic operators can be
adaptively varied according to a measure of the population
diversity. Secondly, a more fruitful crossover operator, such
as the reduced surrogate operator [3], can be used to enable
the search to concentrate on useful work. However, it should
be clear that additional costs will be incurred for both sug-
gestions. Thirdly, a better heuristic estimate for the popula-
tion size needs to be worked out for our specific application.
Fourthly, the search efficiency is likely to increase and bet-
ter solutions might be produced by starting the hill climbing
procedure at a randomly chosen gene instead of the first
gene in the chromosome. Fifthly, faster execution can be ob-
tained by parallel algorithms based on HGATA [18, 20, 22].
The parallel algorithms can also reduce the sensitivity to de-
sign parameters.
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