Compiling Fortran90 Programs for
Distributed Memory MIMD Parallel
Computers

Min-You Wu and Geoffrey Fox

CRPC-TR91126
January, 1991

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892






Compiling Fortran90 Programs for Distributed Memory
MIMD Parallel Computers

Min-You Wu and Geoffrey Fox
Syracuse Center for Computational Science
Syracuse University
111 College Place

Syracuse, NY 13244-4100

Abstract — This paper describes the design and motivation for a Fortran90 compiler,
a source-to-source parallelizing compiler, for distributed memory systems. We discuss the
methodology of parallelizing Fortran programs and the principle of compiler design. Then
we describe compiler directives, data partitioning and sequentialization, communication
insertion, and implementation of intrinsic functions. Some basic optimization techniques
are also presented. We use an introductory example of Gaussian elimination to explain
the compiling techniques. Other sample programs in our test suite, such as FFT and the

N-body problem, are briefly discussed with their performance.



1. Introduction

Current commercial parallel supercomputers are clearly the next generation of high
performance machines [1, 2]. However, although parallel computers have been commer-
cially available for some time, their use has been mostly limited to academic and research
institutions. This is mainly due to the lack of software tools to convert old sequential
programs and to develop new parallel programs. Writing programs for parallel machines
is a complicated, time-consuming, and error-prone task [3]. Karp and Babb [4, 5] selected
a simple program and rewrote it to run on nine commercially available paralle machines.

They report being surprised to see how complicated some of these programs had become.

Fortran has been used as the language for developing most of the industrial (and prac-
tical) software in the past few decades. There has been significant research in developing
parallelizing compilers that take a sequential Fortran77 program as input and produce a
parallelized version for the target machine. Most notable examples include Parafrase at
the University of Illinois [6] and PFC at Rice university [7]. In this approach, the compiler
takes a sequential program, applies a set of transformation rules, and produces a paral-
lelized code for the target machine. New transformation rules are added to the compiler
as they are learned. This approach has been successful in vectorizing loops. However, it is
not clear if this type of automatic parallelization will work in general, especially for large
codes, for several reasons:

e It can be very difficult in some cases to detect available parallelism because it is
obscured by the way a sequential program is written.

e It is hard to know and incorporate rules for all peculiarities of sequential programs.

o It takes a long time to develop sophisticated compilers that provide reasonably good
performance.



A sequential language, such as Fortran77, presents parallel parts of a problem as se-
quential loops and other sequential constructs. Compiling a sequential program into a
parallel program is not a natural approach; people write a program even the parallel parts
of a program are written sequentially. Usually, programmers also optimize a program to
reduce memory usage and computation time. This makes the potentially parallel parts
of the program more difficult to detect by a parallelizing compiler. Parallelization of a
sequential program is limited by extracted parallelism. An alternative approach is to use
a programming language that can naturally represent an application without losing the
application’s original parallelism. Fortran90 (possibly with some extensions) is such a lan-
guage. From our point of view, Fortran90 is not regarded as the natural portable language
for SIMD computers [8, 9], but as a natural language for parallelism of a class of what
we have called synchronous problems [10]. In Fortran90, parallelism is represented with
parallel constructs, such as array operations, forall loops (not a standard construct in For-
tran90), and intrinsic functions. We do not attempt to parallelize other constructs, such as
do loops and while loops, since they are sequential in natural. It becomes much easier if

we develop a parallelizing compiler that deals only with parallel constructs.

Different approaches to parallelizing Fortran programs are shown in Figure 1. In our
collaboration with Rice, we propose to combine all three steps shown here. Parallelizing
compilers can convert some Fortran77 programs directly into Fortran+MP. This may in-
clude applications that cannot easely be written in Fortran90, but may exclude programs
where Fortran77 coding practices have obscured the parallelism. Fortran90 is portable
between SIMD and MIMD, and the migration step from Fortran77 to Fortran90 may be
important for migrating existing codes to this portable standard. Note that Fortran+MP
has been shown to work for a large set of applications on MIMD machines, but is not fully
portable. Further, the Fortran+MP code varies for each MIMD machine depending on

granularity, communication performance, and other system characteristics.
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Figure 1: Approaches to parallelizing Fortran programs.

Intensive research has been done with shared memory systems [11, 12]. Compiling For-
tran77 programs for distributed memory systems has been addressed by [13]. Sarkar com-
piled SISAL for multiprocessors with different partitioning and scheduling approaches [14].
SUPERB is an interactive source-to-source parallelizer. It compiles a Fortran77 program
into a semantically equivalent parallel SUPRENUM Fortran program for the SUPRENUM
machine [15]. BLAZE is a high-level language designed for program portability. It can be
compiled for different ; .rallel systems [16, 17]. Koelbel extended the feature of BLAZE
into a Kali language and compiled it for nonshared memory machines [18]. Crystal is an-
other high-level language based on mathematical notations and lambda calculus. A Crystal
compiler generates C code for hypercube multicomputers [19, 20]. There has been some

work on data parallel program development by Hatcher and Quinn. This work converts



C* — an extension of C that incorporates features of a data parallel SIMD programming
model — into C plus message passing for MIMD distributed memory parallel computers

[21, 22]. Our approach uses many techniques that are similar to this work on C*.

In this paper, we will discuss the essential issues of a Fortran90 compiler. The Fortran90
compiler is a source-to-source parallelizing compiler, which compiles a Fortran90 program
into a Fortran+MP program. The system diagram is described in Section 2. Data par-
tioning, computation assignment, and sequentialization are discussed in Sections 3 and 4.
In Section 4, we also discuss techniques to handle active areas. Different methods for data
communication are discussed in Section 5. We focus largely on the source-side decision
problem, since in a distributed memory system, the decision in the source side is more
difficult than the decision in the destination side. In section 6, we present methodology to
translate the intrinsic functions in Fortran90 into library routines in Fortran+MP. Some
optimization techniques are given in Section 7. We use Gaussian elimination as an intro-
ductory example to illustrate the application of these compiling techniques in Section 8,

and in Section 9, we present some experimental results.

2. Compiler System Diagram

The system diagram of the Fortran90 compiler is shown in Figure 2. Given a syntacti-
cally correct Fortran90 program, the first step of compilation is to parse the program and
generate a parse tree. The partitioning module partitions data into tasks and allocates
the tasks to processor elements (PEs) according to compiler directives — partitioning di-
rectives and alignment directives. There are three ways to generate these directives: 1.
users can insert them; 2. programming tools can help users to insert them; or 3. auto-
matic compilers can generate them. In the first approach, users partition programs with

partitioning and alignment directives. A programming tool can generate useful analysis to



help users decide partitioning styles, and give information to help users in improving their
program partitioning interactively [23]. The directives can also be generated automatically
by compilers. There has been promising work along these lines [24, 25]. However, these
ideas have not yet been implemented in a practical general system, so we do not consider

automatic partitioning in this paper.
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“igure 2: Diagram of the compiler.



Dependency analysis is carried out to obtain dependency information among partitions.
This information will be used for insertion of communication primitives. Standard tech-

niques of data dependency analysis for Fortran programs can be applied here [26, 27].

After partitioning, a program becomes a set of tasks. Each task must be sequentialized,
since it will be executed on a single processor. This is performed by the sequentia.lizé.tion
module. Parallel constructs in the original program will be transferred into loops or nested
loops. This module also performs optimization, such as extracting the common expres-
sion out of loops, integrating condition statements into loop boundaries, and reordering

statements.

The dependencies between tasks introduce interprocessor communication. Whenever
the data required for executing a statement are not in the local memory, communication
primitives are to be inserted. We need to apply optimizations to minimize synchronization,
eliminate unnecessary or redundant data transfers, and to combine communication where
possible. One important optimization is overlapping computation and communication to
overcome communication latency. Analysis and optimization may be performed at compile
time if the problem is statically defined, and all required information is available at that
time. Otherwise, based on partial information, we do compile time analysis to generate
runtime tests. At runtime, based on the test results, communication can be optimized.
Library routines are written to translate certain parallel constructs, such as reduction,

broadcasting, etc. Finally, the code generator produces the Fortran+MP code for target

message-passing systems.

3. Data Partitioning and Index Conversion

We provide users with some annotation facilities for data partitioning. The annotation

takes the form of compiler directives, including partitioning directives and alignment di-



rectives. We term Fortran90 with these compiler directives as Fortran90D. This language
has been developed in collaboration with our colleagues at Rice [28]. There is an analogous

version of Fortran77 with user directives, namely Fortran77D.

A partitioning directive provides some control over the partitioning of an array with
specification of block partitioning, scatter partitioning, block-scatter partitioning, or no
partitioning. The relative partitioning weight along each axis indicates the partitioning

ratio among axes.

A partitioning-directive is:

CDISTRIBUTE partitioning-spec-list

A partitioning-spec is:

array-name ( azis-descriptor-list )

An azis-descriptor is one of:

e BLOCK|(weight)]

o CYCLIC[(weight)]

e BLOCK_CYCLIC(size [,weight] )
e [NOP]

A weight is:

scalar-integer- constant

A sizelis:

scalar-integer- constant

The number of azis-descriptors in a partitioning-spec must equal the rank of the array
specified by array-name in the partitioning-spec. Note that an azis-descriptor may be

empty, but the commas separating each azis-descriptor must be present.

Each partitioning-spec specifies partitioning information for the array given by array-
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name. The array is partitioned with the attributes specified by the azis-descriptorlist
of that partitioning-spec. Each azis-descriptor defines the attributes of the corresponding

dimension that is to be partitioned. The keywords BLOCK, CYCLIC, BLOCK_CYCLIC,
and NOP control the partitioning style. For each azis-descriptor in the list:

e BLOCK indicates that the corresponding dimension is to be block-partitioned (con-
tiguous).

e CYCLIC indicates that the corresponding dimension is to be scatter-partitioned (in-
terleaving).

e BLOCK_CYCLIC(size) indicates that the corresponding dimension is to be block-
scatter-partitioned; that is, blocks of size size are scattered.

e NOP indicates that the corresponding dimension will not be partitioned.

The weight specifies the partitioning weight for an axis. As an example, if the ratio of
weights for two axes is 4, the partitioning ratio of the corresponding dimensions is roughly
4. When 64 PEs are used to run the program, the first dimension is partitioned into 16,
and the second into 4. If 32 PEs are used, the first dimension is partitioned into 8, and the

second into 4. The default weight is 1.

An alignment directive aligns an array to another array. The alignment directive spec-
ifies which elements of two arrays are to be allocated to the same place by aligning each

axis of a source array with a given target array.

An alignment-directive is:

CALIGN source-spec WITH target-spec

A source-spec is:

source-array-name (index-name:-list )

A target-spec is:

target-array-name (target-azis-spec-list )

A target-azis-spec is one of:



e index-name
e index-name + offset-value

e indez-value

An offset-value is:

integer-constant

An indez-value is:

[-] integer-constant

The number of indez-names in a source-spec musi equal the rank of the array source-
array-name. The number of target-azis-specs in a target-spec must equal the rank of the
array target-array-name. Note that a given index-name must not be referenced by more

than one target-azis-spec.

With alignment directives, arrays aligned to a partitioned target array simply follow the
partitioning patterns of the target array. If the alignment directives appear ahead of the
partitioning directive, the compound array (by the alignment directives) will be partitioned
by the partitioning directive. For example, the following alignment directives align arrays
b and c to array a:

CALIGN b(i) WITH a(1,i)
CALIGN c(i) WITH a(i+4,1)
and the following partitioning directive partitions the compound array of a, b, and ¢:
CDISTRIBUTE a(,BLOCK).
Note that array b and the first dimension of array a are block-partitioned, but array c is not
partitioned. The combination of partitioning and alignment directives can specify various

data partitioning patterns.

According to partitioning directives, data are either distributed or replicated. Data

that are partitioned by directives will be distributed, and others will be replicated. A copy
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of replicated data resides in each PE.

Consider a one-dimensional array a(0 : N — 1), which is partitioned into P tasks of

equal size. The size of a task is:

B=N/P

where N is the array size and MOD(N, P) = 0. Array a can be block-partitioned by
CDISTRIBUTE a(BLOCK),

scatter-partitioned by
CDISTRIBUTE a(CYCLIC),

or block-scatter-partitioned by
CDISTRIBUTE a(BLOCK_CYCLIC(size)).

Data distribution and index conversion (global-to-local and local-to-global) for different
partitioning are shown in Table 1. In the row of “data distribution,” the array sections in
task k are listed. In the row of “location of data,” the ID of the task that holds the data
a(ginz) is given. The next two rows list the rules of index conversion. The method for

one-dimensional partitioning can be generalized to multiple dimensions.

Table 1: Data Distribution and Index Conversion

[ [ Block-partitioning | Scatter-partitioning | Block-sca.ttg_r-pa.rtitioningJ
data a(minLoc : maz Loc) a((k + 1+ P)*size :
distribution where,minLoc = k* B a(k:N-1:P) (k + i * P) x size +size-1),

in task k maz Loc = minLoc+B-1 1=0,N/size — 1
location of
data a(ginz) k = ginz/B k =MOD(ginz, P) k =MOD(ginz/size, P)
global to
local index linz = ginz — minLoc linz = ginz/P lint =MOD(ginz,size)
conversion +ginz/(size * P) * size
local to
global index ginz = linz + minLoc | ginz =linz* P+ k ginz =MOD(linz, size)
conversion +(linz/size * P + k) * size
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Currently, we do not encourage complicated partitioning patterns, since their index

calculation may lead to large overhead.

4. Computation Assignment and Sequentialization

Computation is assigned to each PE based on data partitioning. There are two different
principles to assign computation: majority principle and owner principle. In the majority
principle, a computation is assigned to the PE that holds the most data. Here, we count
both data read and write. In the owner principle, a computation is assigned to the PE on
which the data to be written reside. The former minimizes data communication but requires
more analysis, possibly resulting in more overhead. The latter is simple to implement and

optimal in most cases, so currently we apply this owner principle.

There are two frequently used parallel constructs in Fortran90, array operations and

forall loops. We apply the owner principle to these constructs.

Block-partitioning

For the array operation
a =b + d(c:N-1+c)
PE k is assigned the computation
a(minLoc:maxLoc) = b(minLoc:maxLoc) + d (minLoc+c :maxLoc+c)
It is sequentialized into

do i = minLoc, maxLoc
a(i) = b(i) + d(i+c)

and with the global-to-local index conversion, we have

do i =0, B-1
aLoc(i) = bLoc(i) + dLoc(i+c)

For the forall loop
12



forall (i=0:N-1)
a(i) = b(i+c) + func(i)

PE k is assigned the computation

forall (i=minLoc:maxLoc)
a(i) = b(i+c) + func(i)

where func is a function. It is sequentialized into

do i = minLoc, maxLoc
a(i) = b(i+c) + func(i)

and with the global-to-local index conversion, we have

do i =0, B-1
aLoc(i) = bLoc(i+c) + func(i+minLoc)

Scatter-partitioning

For the array operation
a=Db + d(c:N-1+c)
PE k is assigned the computation
a(k:N-1:P) = b(k:N-1:P) + d(k+c:N-1+c:P)
It is sequentialized into

doi=%k, N-1, P
a(i) = b(i) + d(i+c)

and with the global-to-local index conversion, we have

do i = 0, B-1
aLoc(i) = bLoc(i) + dLoc(i+c)

For the forall loop

forall (i=0:N-1)
a(i) = b(i+c) + func(i)

PE k is assigned the computation
forall (i=k:N-1:P)

a(i) = b(i+c) + func(i)

13



It is sequentialized into

doi=k, N-1, P
a(i) = b(i+c) + func(i)

and with the global-to-local index conversion, we have

do i = 0, B-1
aLoc(i) = bLoc(i+c) + func(i*P+k)

Block-scatter-partitioning

For the array operation
a =b + d(c:N-1+c)
PE k is assigned the computation

forall (i = k*size:N-1:P*size)
a(i:i+size-1) = b(i:i+size-1) + d(i+c:i+size-1+c)

It is sequentialized into

do i = k*size, N-1, P*size
do j = i, i+size-1
a(j) = b(j) + d(j+c)

and with the global-to-local index conversion, we have

do i = 0, B-1
aloc(i) = bLoc(i) + dLoc(i+c)

For the forall loop

forall (i=0:N-1)
a(i) = b(i+c) + func(i)

PE k is assigned the computation

forall (i = k*size:N-1:P*size)
forall (j = i, i+size-1)
a(j) = b(j+c) + func(j)

It is sequentialized into

14



al

do i = kxsize, N-1, P*size
do j = i, itsize-1
a(j) = b(j+c) + func(j)

and with the global-to-local index conversion, we have

do i =0, B-1
aLoc(i) = bLoc(i+c) + func(MOD(i,size)+(i/size*P+k)*size)

We have assumed so far that all data items in an array are active. In many cases, not
every array element is active. Here we only consider block partitioning for simplicity, but

the technique can be applied to other partitioning styles.

There are different ways to specify the active area. The first is to use array operations
with where statements or forall loops with masks. They can be translated directly into if
statements. In many cases, the if statements can then be transferred into loop boundaries

to reduce overhead.

The where statement:

where (mask)
a(0:N-1) = b(1:N)
elsewhere
a=d
can be translated into:
do i =0, B-1
if (mask(i)) then
aLoc(i) = bLoc(i+l)

else
aLoc(i) = dLoc(i)

The forall loop statement:

forall (i=0:N-1, mask(i))
a(i) = b(i) + func(i)

can be translated into:
15



do i =0, B-1
if (mask(i))
aloc(i) = bLoc(i) + func(i+minLoc)

Array sections or loop boundaries can be also used to specify the active area. The

following statement
a(c:N-1) = b(0:N-1-c) + d(0:N-1-c)
can be translated into:

do i =0, B-1
if (i+minLoc .GE. c)
al.oc(i) = bLoc(i-c) + dLoc(i-c)

and the if statement can be transferred into loop boundary:

1bound= MAX(0, c-minLoc)
do i = lbound, B-1
aLoc(i) = bLoc(i-c) + dLoc(i-c)

The following forall loop

forall (i = 1l:u)
a(i) = b(i-c) + d(i-c)
can be translated into:

1bound= MAX(0, l-minLoc)
ubound= MIN(B-1, u-minLoc)
do i =lbound, ubound
aLoc(i) = bLoc(i-c) + dLoc(i-c)

The active area can also be specified by a linear combination of indices, such as the

following statement:

forall (i=l1:ul, j=12:u2)
a(i+j*r+c) = func(i,j)

where, r > ul — 1, otherwise a will be multiple-assigned; func is a function.

It can be transferred into:

16



forall (s=11+12%r:ul+u2*r)
if ((MoD(s,r) .GE 11) .AND. (MOD(s,r) .LE. ul))
a(s+c) = func(MOD(s,r), s/r)

and

forall (s=11+12*r+c:ul+u2*r+c)
if ((MOD(s-c,r) .GE. 11) .AND. (MOD(s-c,r) .LE. ul))
a(s) = func(MOD(s-c,r), (s=-c)/r)

When I1 = 12 = 0, it is simplified as:

forall (s=c:ul+u2*r+c)
if (MOD(s-c,r) .LE. ul)
a(s) = func(MOD(s-c,r), (s-c)/r)

It can be sequentialized into:

lbound= MAX(0, c-minLoc)
ubound= MIN(B-1, ul+u2*r+c-minLoc)
do s =lbound, ubound
if (MOD(s+minLoc-c,r) .LE. ul)
aLoc(s) = func(MOD(s+minLoc-c,r), (s+minLoc-c)/r)

5. Communication Insertion

After a program is partitioned into tasks, communication primitives must be inserted
when dependencies exist between tasks. Generally, whenever data requested by a statement
are not local, a receive is inserted before the statement, and a send is inserted at the source
PE that holds the data. The send is usually inserted after the statement that generates
the data. Compared to the receive insertion, the send insertion is more difficult, since it

may not know which data element needs to be sent. Information of send may be:

e compile-time available;
e runtime available; or

e runtime not available.
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When information of send is compile-time available, the destination of a data item can be

calculated for the send primitive. The following is an example:

forall (i=0:i-1)
a(i) = a(i*2-1)
A data item a(j) (j is an odd number) will be sent to the location of (j +1)/2 in the range
of 0 to N — 1. In the following statement
forall (i=0:N-1)
a(i) = a(v(i))
when b is a replicated array, the information of send is available at runtime, since each PE
has a copy of array b. If bis a distributed array, information of send is not available at
runtime, because a PE holds only a part of array b and is not able to know where the local

data a should be sent.
Data communication can be done in two ways:

1. by sending local data to the PEs that need them, then receiving the data. This is

called send-receive (SR) communication.

2. by requesting data from a PE, sending data upon the requests, then receiving the

data. This is called request-send-receive (RSR) communication.

The SR communication requires compile-time or runtime information for dependency
analysis. It cannot be used if information is not available at compile-time or runtime.
The RSR communication is more general, but it involves longer communication latency.
Moreover, pooling or interruption techniques must be implemented to receive requests. A
broadcast communication can be used for substitution of the RSR communication. That is,
whenever a data item cou:u be requested by other PEs, it is simply broadcast to all PEs.

However, this method is not scalable and causes heavy network traffic.

18



If all PEs request the same data, a broadcast is inserted in the source PE and a receive
in each PE except the source PE. A broadcast can also be implemented with EXPRESS
routine KXBROD [29] or Crystal router [30]. An example of broadcast pattern is shown
in the following statement:

forall (i=0:N-1)
a(i) = a(0)

When different data items are broadcast to different groups of PEs, it is called multicasting.
For example, the following statement has a multicast pattern:
forall (i=0:N-1)
a(i) = a(i/c)

where c is a constant. A data item a(j) is sent to locations j * ¢+ k,k =0,1,2,...,c — 1,
and j x ¢ + k is in the range of 0 to N — 1. Another example is shown in the following

statement:

forall (i=0:N-1, j=0:N)
a(i,j) = a(0,j)

The multicast is along the first dimension. This kind of multicasting is also called spread.

Data transferring from one PE to another PE will be packed together at the source
PE and unpacked at the destination PE. Packing and unpacking reduces the number of

communications, but introduces extra overhead.

In the following, we show how to insert communication primitives by using an example

of simple shift communication.
Shift communication (i —c) or (i +¢)

In this simple shift pattern, a destination PE may receive messages from, at most, two

source PEs, and accordingly, a source PE may send messages to, at most, two destination
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PFEs. In the source PE, we need to find out destination PEs and whether data are requested

there. In the destination PE, we check to determine if there are any data requested by

other PEs, and if so, the source PEs are determined. If data are in the same PE, there is

no message to be transferred. If two source PEs or two destination PEs are the same, only

one message is transferred.

The source and destination PEs are calculated as follows:

For (i — c):

Send:
desPE1 = (minLoc+c)/B
The index range:
1b1 = MoD(c, B)
ub2 = B-1

desPE2 = (maxLoc+c)/B
The index range:

1b2 = 0

ub2 = MOD(c-1, B)

Test if desPE1l is thisPE and if so, do not send message.
Test if desPE2 is thisPE and if desPE2 is desPE1, if so, do not

send message.

Test whether any data request is in the range on desPE and if so, send

the array block.

Receive:
srcPE1 = (minLoc-c)/B
The index range:
1b1 =0
ub2 = MOD(c-1, B)

srcPE2 = (maxLoc-c)/B
The index range:

1b2 = MOD(c, B)

ub2 = B-1

Test if desPEl is thisPE and if so, do not receive message.
Test if desPE2 is thisPE and if desPE2 is desPE1, if so, do not

receive message.

Test whether any data request is in the ranges on thisPE and if so,
receive the corresponding array blocks.
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For (z + ¢):

Send:
desPE1 = (minLoc-c)/B desPE2 = (maxLoc-c)/B
The index range: The index range:
1bi = MOD(N-c, B) 1b2 = 0
ub2 = B-1 ub2 = MOD(N-c-1, B)
Receive:
srcPE1 = (minLoc+c)/B srcPE2 = (maxLoc+c)/B
The index range: The index range:
1bl1 = 0 1b2 = MOD(N-c, B)
ub2 = MOD(N-c-1, B) ub2 = B-1

The sending and receiving tests are the same as above.

The data items to be sent to the other PE are packed into an array. When an array a
in task i is transferred to array tmp in task j, the reference to a(linz) becomes the reference

to tmp(linz+offset), where offset = (j — 1) * B.

6. Intrinsic Functions

In Fortran90, there are many intrinsic functions. The intrinsic functions that may cause

communication can be divided into five categories as shown in Table 2.

We will build a subroutine library to translate the corresponding functions. Each in-
trinsic function may be compiled into different subroutines for different partition styles.
On general principles, intrinsic functions can be implemented with the Crystal_router or
Crystal_accumulator [30]. However, some of the intrinsic functions can be directly mapped
into EXPRESS routines [29]. These are the commercially supported versions of software
originally developed at Caltech [30]. Express runs on a network of UNIX workstations, as
well as on multicomputers, such as those from INTEL and NCUBE.
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Table 2: Fortran90 Intrinsic Functions

1. Sending 2. Reduction 3. Multicasting | 4. Irregular 5. Special
& receiving operations routines
CSHIFT DOTPRODUCT SPREAD PACK MATMUL
EOSHIFT ALL, ANY REPLICATE UNPACK
DIAGONAL COUNT RESHAPE
Fortran90 PROJECT MAXVAL, MINVAL TRANSPOSE
PRODUCT
SUM
FIRSTLOC, LASTLOC
MAXLOC, MINLOC
KXCHAN KXCOMB KXBROD KXREAD
EXPRESS/ | Specific KXREAD KXWRIT
CrOS III KXWRIT
General || Crystal_router Crystal_accumulator Crystal_router | Crystal_router

For intrinsic functions in the first category, data are transferred with send and receive
primitives. However, several data items can be packed together to reduce the number of
communications. CSHIFT and EOSHIFT can be implemented with the EXPRESS routine
KXCHAN, and DIAGONAL and PROJECT with the EXPRESS routines KXWRIT and
KXREAD. DIAGONAL can also be implemented with the subroutine fold [30]. In the
second category, data are processed with a reduction tree [31]. These intrinsic functions
can be implemented with the EXPRESS routine KX COMB or the subroutine combine
[30]. They can also be implemented with Crystal_accumulator. The third category uses
multiple broadcast trees to spread data. They can be implemented with the EXPRESS
routine KXBROD or Crystal_router. The fourth category is difficult to implement due to its
irregular operations. We must discover the individual data elements to be transferred, and
pack the data that will be sent to the same PE. These intrinsic functions cau be implemented
with the EXPRESS routines KX WRIT and KXREAD, but a more efficient implementation
can be obtained with Crystal_router. The fifth category will be implemented using existing

research o1 parallel matrix algorithms.
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Although it will be nontrivial to implement these intrinsics, it is critical for our project

that the essential primitives have already been developed for MIMD machines.
7. Optimization

Performance can be improved with optimization. A knowledge-based approach can be
used for optimization. The knowledge base can be built in an incremental fashion. First,
optimization rules for most frequently used structures are collected. As more rules are

added to the knowledge base, more different codes can be optimized.

Optimization for the computation components include:

e applying an STM (single assignment to multiple assignment) transformation, which
condenses some arrays to reduce memory usage, and to avoid unnecessary copying;

e extracting common expressions and conditions out of loops;
e integrating some conditions into loop boundaries; and

e reordering statements and combining loops to increase granularity between commu-
nications.

Next is an example of extracting common expressions out of loops. Two expressions

minLoc-incrm and incrm-offset can be pulled out of the loop.

Before common expression extraction:

do s = 1bl, ubl
if (MOD(s+minLoc-incrm,incrm2) .LT. incrm) then
if ((s-incrm) .GE. 0) then

x(s) = x(s-incrm) - term2(s)
else
x(s) = xbuf(s-incrm+offset) - term2(s)
endif
endif
end do
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After common expression extraction:

minLoc-incrm

tmpl
tmp2 = incrm-offset
do s = 1bil, ubl
if (MOD(s+tmpl,incrm2) .LT. incrm) then
if ((s-incrm) .GE. 0) then
x(s) = x(s-incrm) - term2(s)
else
x(s) = xbuf(s-tmp2) - term2(s)
endif
endif
end do

There are two extreme approaches for communication, the accurate approach and the

broadcast approach. The accurate approach does sophisticated analysis and transfers only

data needed by other PEs. The broadcast approach does little analysis and simply broad-

casts data to all PEs, whether or not they are useful. A realistic approach falls in between.

It devotes a reasonable amount of effort for analysis and reduces most unnecessary com-

munication. The analysis and optimizations may include:

e eliminating unnecessary communications;

o identifying the PEs that really need the data and sending the data to them instead

of broadcasting;

e identifying the data request and sending only the segments of data instead of the

whole array; and

e combining communications that can be sent at the same time.

We use a simple example in the Gaussian elimination program for communication com-

bination:

call csend(gtype+2¥k+1,indxRow,intSize, allNode,npid)
call csend(gtype+2*k,fac,realSize*N,allNode ,npid)
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These two communication calls can be combined after packing two messages. Note that
integer “indxRow” must be converted into a real number before packing and converted back
into an integer after unpacking at the destination PE. The variable “fac” will be declared

as an array with size of “N + 1”7 instead of “N” to pack “indxRow”.

fac(N) = REAL(indxRow)
call csend(gtype+k,fac,realSize*(N+1),allNode,npid)

8. An Introductory Example: Gaussian Elimination

We use Gaussian elimination as an example for translating a Fortran90 program into a
Fortran+MP program. The Fortran90 code is shown in Figure 3, and the hand-compiled
Fortran+MP code is shown in Figure 4. The hand-compiled code implements rules stated
above. Note that the size of the Fortran90 code is much smaller than that of the For-
tran+MP code. The former has 19 lines, and the latter has 68 lines.

Arrays a and row are partitioned by compiler directives. The second dimension of
a is block-partitioned, while the first dimension is not partitioned. Array row is block-
partitioned too. Each partition may include many array elements. Since they execute on
a single PE, the parallel constructs must be sequentialized. An array operation in the
Fortran90 program is sequentialized into a do loop. Loop boundaries are defined by the
array declaration. When a replicated array is computed from replicated data, the operation

is performed on each PE. For example, the array operation
indx = -1

is translated into

do i =0, N-1
indx (i) = -1
end do
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integer, array(0:N-1) :: indx
integer, array(1) :: iTmp
real, array(0:N-1,0:NN-1) :: a
real, array(0:N-1) :: fac
real, array(0:NN-1) :: row
real :: maxNum

CDISTRIBUTE a(,BLOCK)
CDISTRIBUTE row(BLOCK)

indx = -1
do k 0, N-1
iTmp = MAXLOC(ABS(a(:,k)), MASK = indx .EQ. -1)
indxRow = iTmp(1)
maxNum = a(indxRow,k)
indx(indxRow) = k
fac = a(:,k) / maxNum

row = a(indxRow,:)
forall (i = 0:N-1, j = k:NN-1, indx(i) .EQ. -1)
& ' a(i,j) = a(i,j) - fac(@) * row(j)
end do

Figure 3: Fortran90 code for Gaussian elimination.
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thisNode = mynode()
numNode = numnodes ()
B = NN/numNode
minCol = thisNode*B
maxCol = minCol + B - 1
logical mask(0:N-1)
real tmp(0:N-1)
integer, array(0:N-1) :: indx
integer, array(1) :: iTmp
real, array(O:N-1,0:NN-1) :: a
real, array(0:N-1) :: fac
real, array(0:NN-1) :: row
real :: maxNum
CDISTRIBUTE a(,BLOCK)
CDISTRIBUTE row(BLOCK)

integer indx(0:N-1)

real alLoc(0:N-1,0:B-1)

real fac(0:N-1)

real rowLoc(0:B-1)

real maxNum

a0

c indx = -1
doi=0, N-1
indx(i) = -1
end do
(¢ do k = 0, N-1

iTmp = MAXLOC(ABS(a(:,k)), MASK = indx .EQ. -1)
C indxRow = iTmp(1)
do k = 0, N-1
if (k/B .EQ. thisPE) then
do i=0, N-1
mask(i) = indx(i) .EQ. -1
end do
doi=0, N-1
tmp(i) = ABS(aLloc(i,k-minLoc))
end do
indxRow = MaxLoc(tmp, N, mask)
end if
c maxNum = a(indxRow,k)
if (k/B .EQ. thisPE) maxNum = aLoc(indxRow,k-minLoc)
c indx(indxRow) = k
if (k/B .EQ. thisPE) then
call csend(gtype+2*k+1,indeow,intSize,allNode,npid)
else
call crecv(gtype+2*k+1,indeow,intSize)
endif
indx(indxRow) = k

Q

Figure 4: Hand-compiled Fortran77+MP code for Gaussian elimination.
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Q

fac = a(:,k) / maxNum
if (k/B .EQ. thisPE) then
doi= 0, N-1
fac(i) = aLoc(i,k-minLoc) / maxNum
end do
end if

row = a(indxRow,:)
do j = 0, B-1

rowLoc(j) = aLoc(indxRow,j)
end do

forall (i = 0:N-1, j = k:NN-1, indx(i) .EQ. -1)
& a(i,j) = a(i,j) - fac(i) * row(j)
end do
if (x/B .EQ. thisPE) then
call csend(gtype+2*k,1ac,realSize*N,allNode,npid)
else
call crecv(gtype+2*k,tac,realSize*N)
endif
lbound = MAX(0, k-minLoc)
doi=0, N-1
do j = lbound, B-1
if (indx(i) .EQ. -1) aloc(i,j) = aLoc (i,j)-fac(i)*rowLoc(j)
end do
end do
end do

integer function MaxLoc (x,n,mask)
integer n

real x(0:n-1)

logical mask(0:n-1)

real t

t = -MAXINT
doi=0, n-1
if ((mask(i)) .AND. (t .LT. x(i))) then
t = x(i)
MaxLoc = 1
endif
end do
return
end

Figure 4. Hand-compiled Fortran77+MP code for Gaussian elimination (cont.)
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that is executed on each PE. If the replicated array is computed from distributed data, the
operation is performed on one PE, and the result may be broadcast to other PEs later.
A test is inserted to determine which PE will execute the statement. For example, the

statement
tmp = ABS(a(:,k))
is translated into
if (k/B .EQ. thisPE) then
do 1 =0, N-1
tmp(i) = ABS(aloc(i,k-minLoc))
end do
end if

where, index k has been translated into k —min Loc by the local-to-global index conversion.

When it is a distributed array, the operations are distributed to PEs. For example, the

statement
row = a(indxRow,:)
is translated into
do j = 0, B-1
rowLoc(j) = aloc(indxRow,j)
end do

The following statement is to be duplicated:
indx(indxRow) = k

However, the value of indzRow is not available at every PE. Therefore, a pair of communi-

cation calls, csend and crecv, are inserted to broadcast indzRow to all the PEs.
if (k/B .EQ. thisPE) then
call csend(gtype+2+k+1,indxRow,intSize,allNode,npid)
else
call crecv(gtype+2*k+1,indxRow, intSize)
endif
indx(indxRow) = k
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The forall loop
forall (i = O:N-1, j = k:NN-1, indx (i) .EQ. -1)
a(i,j) = a(i,j) - fac(i) * row(j)
is to be translated into a nested loop. A pair of communication calls are inserted before

the loop to broadcast fac:

if (k/B .EQ. thisPE) then
call csend (gtype+2*k ,fac,realSize*N, allNode ,npid)

else
call crecv(gtype+2*k,fac,realSize*N)
endif
1bound = MAX(0, k-minLoc)
do i =0, N-1
do j = lbound, B-1
if (indx(i) .EQ. -1) then
aloc(i,j) = aloc(i,j) - fac(i) * rowLoc(j)
endif
end do
end do

where, lbound is used to specify the active area, and the mask is translated into an if

statement.

The code in Figure 4 has been translated directly from the Fortran90 code. We can
optimize this code for better performance. The optimized code is shown in Figure 5. We

have performed three kinds of optimizations:

1. Common expression extraction

The expressions that were executed many times have been extracted. For example, we

have extracted kLoc = k — minLoc. Also, an if statement has been pulled out of the inner

loop.
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thisNode = mynode()
numNode = numnodes()

B = NN/numNode

minCol = thisNode*B
maxCol = minCol + B - 1

logical mask(0:N-1)
real tmp(0:N-1)

integer, array(0:N-1) :: indx
integer, array(1) :: iTmp
real, array(0:N-1,0:NN-1) :: a
real, array(0:N-1) :: fac
real, array(0:NN-1) :: row
real :: maxNum

CDISTRIBUTE a(,BLOCK)

CDISTRIBUTE row(BLOCK)

integer indx(0:N-1)

real alLoc(0:N-1,0:B-1)

real fac(0:N)

real rowLoc(0:B-1)

real maxNum

a0 a

C indx = -1
doi=0, N-1
indx(i) = -1
end do
C do k = 0, N-1

iTmp = MAXLOC(ABS(a(:,k)), MASK = indx .EQ. -1)
c indxRow = iTmp(1)
do k = 0, N-1
kLoc = k - minLoc
if (k/B .EQ. thisPE) then
doi=0, N-1
mask(i) = indx(i) .EQ. -1
tmp(i) = ABS(aLoc(i,kLoc))
end do
indxRow = MaxLoc (tmp, N, mask)

Q

C maxNum = a(indxRow,k)
maxNum = aLoc(indxRow,kLoc)

Figure 5: Optimized Fortran77+MP code for Gaussian elimination.
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Q

&

fac = a(:,k) / maxNum
doi=0, N-1
fac(i) = aloc(i,kLoc) / maxNum
end do
indx(indxRow) = k
fac(N) = REAL(indxRow)
call csend(gtype+k,tac,realSize*(N+1),allNode,npid)
else
call crecv(gtype+k,1ac,realsize*n)
indxRow = INT(fac(N))
endif
indx(indxRow) = k
row = a(indxRow,:)
do j = 0, B-1
rowLoc(j) = aLoc (indxRow,j)
end do

forall (i = 0:N-1, j = k:NN-1, indx(i) .EQ. -1)

a(i,j) = a(i,j) - fac(i) * row(j)
end do
lbound = MAX(0, kLoc)
doi=0, N-1
if (indx(i) .EQ. -1) themn
do j = lbound, B-1
aLloc(i,j) = aLoc(i,j) - fac(i) * rowLoc(j)
end do
end if
end do
end do

integer function MaxLoc (x,n,mask)
integer n
real x(0:n-1)
logical mask(0:n-1)
real t
t = -MAXINT
do i =0, n-1
if ((mask(i)) .AND. (¢t .LT. x(i))) then
t = x(1)
MaxLoc = i
endif
end do
return
end

Figure 5. Optimized Fortran77+MP code for Gaussian elimination (cont.)
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2. Loop fusion

We have put several loops and if statements together to reduce overhead.

3. Reordering

We have reordered statements without changing the results of the program. More loop

and if statement fusions can be performed with reordering.

9. Experimental Results

We are building a test suite including a set of test programs. For each of the programs,
we have the following versions:

e original Fortran77 code

e sequential Fortran77 code modified with a parallel algorithm, if necessary

e Fortran90 (CMFortran) code

e hand-written Fortran77+MP code (initially run on iPSC/2)

e hand-compiled Fortran774+MP code from Fortran90 code (iPSC/2)

Now, we have three test programs in our test suite: Gaussian elimination, FFT, and the
N-body problem. Performance on iPSC/2 is shown in Tables 3, 4, and 5, respectively. The
“Hand” programs are hand-written codes and the “Comp” programs are hand-compiled

codes.

For the Gaussian elimination with partial pivoting shown in Table 3, the program has
been block-partitioned in columns. Essentially, the Fortran90 code produced a code with
performance equal to that of direct Fortran+MP code. Moreover, we found that “Compl”

had better performance than “Hand1”. By comparing the two codes, we discovered that
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Table 3: Performance for Gaussian Elimination 255*256 (time in sec.)

Number of PEs

1] 2] 4] 8] 16
Handl || 854 | 58.1 | 31.1[ 16.0 [ 8.42
Hand?2 || 73.4 | 50.1 | 26.9 | 13.8 | 7.53
Compl || 80.0 | 50.2 | 26.6 | 13.8 | 7.72

the difference was the index calculation. We optimized “Hand1”

the following code segment:

From

to:

do i = 0, N-1
do j = start, numCol-1
a(i,j) = a(i,j) - fac(i) * y(maxRow,j)
end do
end do

do j =0, B-1
row(j) = y(maxRow,j)
end do
do i =0, N-1
do j = start, numCol-1
a(i,j) = a(i,j) - fac(i) * row(j)
end do
end do

into “Hand2”, changing

This reduced the duplicated index calculation in the inner loop. Indeed, the “automatic”

Fortran90 code revealed a possible improvement that we could apply to our hand-written

code.

In Table 4, we used the FFT algorithm in [30] with modification. We applied vector

communication and reduced repeated computation. There was a 50% degradation in per-
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Table 4: Performance for FFT 16384 Points (time in sec.)

Number of PEs
1] 2] 4] 8] 16
Handl || 13.0 | 6.67 | 3.42 [ 1.75 | 0.91
Compl || 18.8 | 10.1 [ 5.36 | 2.84 | 1.50

formance for the “Compl” code, since it tested for possible communication patterns and
involved larger overhead. These tests were eliminated in the hand-written code, since the

user knew they were not necessary.

Table 5: Performance for N-body 1024 Particles (time in sec.)

Number of PEs
1| 2] 4| 8| 16
Hand1 71.7 135.9|17.9 | 8.98 | 4.83
Hand2 || 66.5 | 33.3 | 16.7 | 8.38 | 4.26
Compl || 139.6 | 69.1 | 35.5 | 18.1 | 9.40
Comp2 || 66.6 | 33.5 | 16.8 | 8.45 | 4.32

Table 5 is for the N-body problem using the algorithm in [30]. Note that the example
is the simple O(N?) algorithm and not the more challenging O(N (log N)) approach [32].
“Compl” was not optimized, and communication was inserted in each iteration. “Comp2”
grouped possible communications together. It reduced the number of communications
and increased granularity. The performance of “Comp2” was better than “Handl,” since
“Hand1” exchanged the order of array indices to avoid copying for communication. How-
ever, index calculation in this order consumed even more time than copying. Therefore, in

“Hand2”, we did not exchange the index order.

Finally, in Table 6, we come to a “real”, although small in term of code size, problem.

The original climate modeling code has been used in production on CRAY and SUN com-
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Table 6: Climate Modeling Code [33]

Implementation Size Machine - Performance
(lines) (megaflops)
Original C Code 1500 | CRAY X-MP (1 CPU) ~ 1
Fortran90 600 CM-2 66
Fortran77 by Hand 1500 | CRAY Y-MP (1 CPU) 20
from Fortran90
Fortran+MP by Hand | 1650 | NCUBE-1 (16 nodes) 3.3
from Fortran90
NCUBE-2 (16 nodes) 20
INTEL i860 (16 nodes) 80

puters [34]. This project contained an interesting division of labor. An application expert
first rewrote the C code in Fortran90. Computer scientists without in-depth knowledge of
the application performed further conversions into Fortran77 and Fortran+MP [33]. In this
case, we believed that no automatic method could have parallelized the original C code, but
that our planned automatic approach would be able to perform the MIMD parallelization
from Fortran90. This project result in a portable code running well on the CRAY, the
Connection Machine, and hypercubes. N e that we even improved the sequential perfor-
mance (line 1 vs. line 3 of Table 6) by an order of magnitude. The original C code made
extensive use of pointers, which had several repercussions. It made vectorization difficult
on the CRAY; it made the code impossible to parallelize automatically as the “structure
of problem” had been expressed in dynamic pointer values; and it made the code difficult

to port except by the application expert.

Our initial experiments are sufficiently encouraging. We believe that a language like
Fortran90 will become an efficient vehicle for applications with regular structures. We also

hope that it can be extended with higher level data structures to accommodate the more
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complex problem architectures.

10. Conclusion

Fortran90 is a language that can naturally represent the parallelism of many appli-
cations, especially that with static and regular array structures. This language can be

extended to represent applications with irregular and dynamic structures.

Fortran90 can be compiled for both SIMD and MIMD parallel machines. It unifies the
programming environments of different parallel computers. We have discussed the essential
issues of building a Fortran90 compiler for distributed memory parallel computers. With
this compiler, a program written in Fortran90 can be compiled into fairly efficient target

codes for many regular applications.
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