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1. Introduction. The main purpose of this work is to formulate and study fully discrete
Galerkin finite element approximations of solutions of initial-boundary value problems for
linear partial integro-differential equations of parabolic type. The emphasis will be on
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discretization with respect to time.

Let Q be a bounded domain in R? with sufficiently smooth boundary 89, and let

0 < t° < oo. We shall consider equations of the form (u; = du/8t, J = (0,t°])

(1.1)

ui(z,t) + Au(z,t) = /(; B(t, s)u(z,s)ds + f(z,t)

= ﬁu(w,t) + f(z,?), (z,t) € 2 x J,
u(z,t) =0, (z,t) € 0Q x J,
u(z,0) = uo(z), r €.

This work was partially supported by Center for Research on Parallel Computation through NSF Coop-
erative agreement No. CCR-8809615 and by State of Texas Governor’s Energy Office through contract

# 1059 for Geophysical Parallel Computation Project.






Here A is an elliptic operator of the form

A== 2 (as0) L) + ao(e)r
__ij=1a$‘ a”mazj o

d

where the matrix (ai;(z)); ;= s symmetric and uniformly positive definite, and ao(z) is

nonnegative on §2. Further,

d d
0 0 9
B(t,s) = E 67, (bij(x,t’s)_a.’t_j> + jE=1 bj(x’t’s)a—.’t; + bo(.’l),t,S)I

i,j=1

is a partial differential operator of at most second order. We shall assume that the co-
efficients a;j(z), ao(z), bij(z;t,s), bj(z;t,s), bo(z;t,s) and f = f(z,t) are real-valued
functions, sufficiently smooth for our purposes.

Such problems and variants of them arise in various applications, for instance, in models
for heat conduction in materials with memory, the compression of poro-viscoelastic media,
reactor dynamics, the compartment model of a double-porosity system, and epidemic
phenomena in biology. We refer to [12], [13] and [17] for detailed lists of references.

Denote by (-,-) the standard inner product in Ly = L2(Q2) and A(-,-) and B(t,s;-,) the
bilinear forms on H} x H} = H}(Q) x H () corresponding to A and B(t, s), respectively.
We write problem (1.1) in variational form as

() + Aw0) = [ Bltsiu(e)0)ds +(1,0) = Bu(®0) + (f0), ve By, te
u(0) = uo.

We shall now turn to Galerkin finite element approximations of problem (1.1). Let
{S#} be a family of finite dimensional subspaces of H} parametrized by a small positive
parameter h. We first pose the analogue of the problem above on the subspace Si to get
a spatially discrete problem

t
(1 2) (uh,ta X) + A(uh’ X) = / B(t’s;uh(s)’ X) ds + (f7 X)) X € Sh’ te j,
. 0
ur(0) = uon € Sh.

We assume that {S)} possesses the standard approximation property that, for some fixed
integer r > 2, we have

(1.3) inf {lu = xll + hllu = xll1} < CR7Jjulls,  we HyNH® 1<s<r,
XE€on

where || - || and || - ||1 are the usual norms in L, and Hg, and H® = H*(Q) is the standard
L, Sobolev space of order s with norm || - ||,.
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It was shown in Thomée and Zhang [14] that, for the semidiscrete problem (1.2) with
properly chosen approximate initial data uon, we have the error estimate

(1.4) llun(t) —w(@)|| < CAT {IIUoIlr +/0 IIUtIIrdS} ,  ted,

which is formally the same as that for the corresponding purely parabolic problem (B = 0).
The main purpose of this paper is to further discretize equation (1.2) with respect to
time. A natural way to do this is to replace us ¢ by a backward difference quotient and
apply a quadrature rule to the integral term. We consider such a scheme first.
Let k > 0 be the step-size in time and t, = nk. Further, let 8,Uf = (Up —Up"")/k and
let {wp; :0 < j<n, t, € J} be a family of quadrature weights such that, for & = ¢(t;),
we have

n—1 tn
o™($) =) wnid’ & / #(s)ds,  tn € J.
3=0 0
We then obtain what we shall refer to as a backward Euler type scheme:

n—1
5) @UR, x) + AUR, x) = Y wnjB(tn,t;;Ul, x) + (f(tn),X), X € Sy ta € J,
. par
Uy = uon € Sh.

A natural candidate for the quadrature formula is the rectangular rule, whose quadrature
weights are w,; = k. However, to then calculate U}', we must use, and thus store, all the
previous values of the solution, UJ,..., Uy ~1. hence, a vast amount of memory will be
needed. More precisely, to compute U, t, € J, the solution needs to be stored at t°/k
time levels. This becomes a major obstacle in practical calculations. Another disadvantage
of the rectangular rule is that it requires a large amount of computation. Thus the number
of time levels used in the quadrature will be one of our key criteria in choosing quadrature
rules in this work. One way to reduce the storage requirement significantly is to employ
quadrature formulas with high order truncation error, so that a larger step-size, or fewer
quadrature points, may be used, without losing the order of accuracy of the scheme. We
will propose quadrature rules based on the trapezoidal rule and on Simpson’s rule. We
shall therefore focus our attention on a class of quadrature rules whose quadrature weights
{wnj} are dominated by some weights {w;}, i.e., |waj| L wj, 0 < j < n, t, € J, with
E;:OI w; < C, tn, € J. This class contains not only the rectangular rule, but also other
rules with some special features.

A second way to approximate the solution of problem (1.1) is to apply higher order
discretization in time, so that fewer time steps are taken in the calculation for the same
accuracy. As a first example of this, we consider a Crank-Nicolson type scheme

n—1
(EtUl?» X) + A(U—Ir:, X) = E wnjB(tn—l/Z,tj; U}{a X) + (f(tn—1/2)’ X)a
(1.6) 7=0
X € Sk, tn € J,
UI? = Uph € Sha
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where U = (U + Up™')/2 and tp_y/2 = (tn +ta-1)/2.

Keeping these two schemes in mind, we move the discussion to a more general setting,
in which we use time discrete schemes based on Padé approximation of order p. We will
establish a preliminary error estimate

lUR —u(tn)|| € C(u){h" + k? + || global quadrature error||}, tp € J,

where the so called global quadrature error is a term whose order of convergence is deter-
mined by that of the basic quadrature error ¢'(¢) = o*(¢) — [, #(s)ds, i =1, ..., n. For
schemes based on the backward Euler, Crank-Nicolson, and the third order (1,2) Padé ap-
proximations, we choose appropriate quadrature formulas so that the overall error bound

reads
NUR —u(tn)|| < C(u) {h" + kP}, t, € J.

The error estimates we obtain will demand, however, high regularity of the solution of
(1.1), particularly due to the use of rules with high order truncation error. For instance,
Simpson’s rule requires that fot |lutll- ds and fot |D#ul| ds be finite. Since the regularity
of the solution is of such importance for our numerical methods, and since some of the
desired high regularity results with respect to both space and time are not available in the
literature, we devote some effort to showing such regularity under appropriate conditions
on the prescribed data.

The first contribution to the numerical solution of integro-differential equations of
parabolic type known to the author was made by Douglas and Jones [6] in the 1960’s,
using the finite difference method. The analysis of finite element methods for partial
integro-differential equations of parabolic type has become an active research area only
recently. Greenwell-Yanik and Fairweather [17] studied fully discrete Galerkin finite ele-
ment approximations to the solutions of a nonlinear partial integro-differential equation,
whose integral term contains at most first order derivatives in space.

Sloan and Thomée [10] considered the discretization in time of a general integro-diffe-
rential equation in an abstract Hilbert space setting, where A is a self-adjoint positive
definite operator and B(t,s) = «(t,s)B. Here B is an operator satisfying ||A"1B¢|| <
C|éll, ¢ € D(B), independently of time, and k(t,s) is a scalar function. In order to
reduce the memory and computational requirements of these methods, they first proposed
the application of quadrature rules with relatively higher order truncation error. The
backward Euler type scheme with a quadrature formula based on the trapezoidal rule, and
the Crank-Nicolson type scheme based on Simpson’s rule were analyzed in detail.

As we have mentioned before, time continuous spatially semidiscrete Galerkin approxi-
mations to problem (1.1) have been examined by Thomée and Zhang [14]; optimal order
error estimates (1.4) were given. (An alternative proof of this result by means of a non-
conventional projection can also be found in Cannon and Lin [4] and in Lin, Thomée and
Wahlbin [8].)

Comprehensive surveys of the development of this subject are given by Thomée [12],
[13].

The present work is based in an essential way on the ideas of Sloan and Thomée [10],
and may be considered as an attempt to further develop the results obtained there, and to
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carry over the results obtained in [14] for the semidiscrete problem to completely discrete
schemes. The rest of this paper is organized as follows.

Section 2 is devoted to the existence, uniqueness, and regularity of solutions of integro-
differential equations of parabolic type, with emphasis on results needed in our analysis of
numerical schemes. We show that the solution of the initial-boundary problem (1.1) has
any desired degree of regularity in both space and time, if the prescibed data satisfy the
appropriate regularity and compatibility conditions.

In Section 3, as a preparation, we first introduce a concept called Ej-stability and present
two sufficient conditions for this. We then give a preliminary error estimate for the fully
discrete Galerkin approximation. Finally, we present a bound for the global quadrature
error which appears in this estimate and will be recall frequently afterwards.

Based on these results, we study in the last three sections some concrete quadrature
formulas. In Section 4 we analyze backward Euler type schemes. We concentrate on
quadrature rules with dominated weights. Several quadrature formulas are presented and
analyzed, with emphasis on how to reduce the storage requirement. Section 5 contains our
discussion of Crank-Nicolson type schemes. This time a class of quadrature rules using
so called persistent dominated weights is considered. Two quadrature rules are given as
examples. Section 6 discusses the third order subdiagonal Padé discretization. An overall
error estimate with a third order convergence rate in time is obtained for a scheme that
employs a modified Simpson’s rule to approximate the integral term and uses a starting
procedure to calculate the first two time steps of the solution.

Acknowledgement. This paper is partly based on my Ph.D. dissertation [18]. I thank
Professor Vidar Thomée for all of the guidance and support that he gave to me during
my studies at Goteborg. Also I am grateful to Dr. Stig Larsson for numerous stimulating
discussions on this work.

2. Existence, uniqueness and regularity. The purpose of this section is to show
existence, uniqueness and regularity of the solutions of integro-differential equations of
parabolic type, primarily as groundwork for our analysis of numerical methods. A review
of the references considering problem (1.1) can be found in [1].

2.1. Existence and uniqueness. Let us first define some notations and recall some
results for the purely parabolic case (B = 0) of (1.1) (cf., e.g., Pazy [9]).

Let X be a Banach space. We introduce the Banach space C(X) = {u: J — X, u is
continuous} with norm ||u||¢(x) = supse s ||lu(t)||x. For § € (0,1), we let
C%X) = {u:J — X, u is Holder continuous with exponent é} with norm

u(t) — u(s)||x
lullcs(xy = llullexy + sup [lu(t) (6)“ .
t#s, s, teJ |t — s|

We also let C1(X) = {u : J — X : u is differentiable and u; € C(X)} with norm
lullerx) = lullecx) + lludlecx)-






In addition to H?®, we shall use the space He = H’(Q) ={v € H*: Alv =0 on 0N for
j < s/2} with norm |v|, = ||4*/?v||. We recall the fact that |- |, and || - ||s are equivalent
on H°.

We know that the homogeneous (f = 0) purely parabolic (B = 0) case of (1.1) has a
unique solution u(t) = E(t)uo for ug € Lj. Furthermore, given s > 0, we know that, for
all ug € H*, we have E(t)ug € C(H*®) and

(2.1) |E(t)uols < Cluols, > 0.

The following lemma gives a standard existence and regularity result for the purely
parabolic case of (1.1).

Lemma 2.1. Let 0< 8§ < 1. If f € C%(L3) and up € H?, then the initial-boundary value
problem (1.1) with B = 0 has a unique solution

u(t) = E(t)uo + /0 E(t — s)f(s)ds = E(t)uo + Ef(t),

such that u € C*(Ly) N C(H?) and

(2:2) lue@®ll + lu(®)l2 < C(luolz + Ifllcszn),  t€J.

The proof follows Section 4.3 of Pazy [9].

We now carry the above result over to the integro-differential equation (1.1). For problem
(1.1), by the well-known regularity result for elliptic problems that

(2.3) Igllz2 < CllAdll, V¢ € H?,
we have
|B(t,s)o|| + || B*(t,s)d|| < C||Ad||, Vée H?, 0<s <t <t

where B* is the adjoint of B with respect to Lz. A direct consequence is |B(t,s)A™!|| < C
and ||[A71B(t,s)¢|| < C||ll, V¢ € H?, 0 < s <t < t° The above is also true if we replace
B(t, s) by its time derivatives.

Theorem 2.2. If uo € H? and f € C*(L;) for some 6§ € (0,1), then the problem (1.1)
has a unique solution u € C*(Ly) N C(H?). Furthermore,

(2.4) lue@Il + [u(®)lz < C(luolz + I fllcs(zy),  te€J.

PROOF: By Duhamel’s principle, we may write (1.1) formally as

(2.5) u(t) = /0 E(t — s)Bu(s)ds + (E(t)uo + /0 E(t—3s)f(s) ds)
= Ku(t) + F(¢).



.



If we can prove that (2.5) has a solution u € C(H?), then Bu + f € C%(L,), and hence,
by Lemma 2.1, u is the unique solution of a purely parabolic equation that has Bu+ f as
the right- hand side and u € C1(L2) N C(H?). Hence u is also the unique solution of (1.1).
Thus we shall prove that (2.5) has a unique solution u € C(H?)) and that (2.4) holds.
This will be verified by showing that (2.5) is a well-posed Volterra type equation in the
Banach space C(H?).

First we notice that, by Lemma 2.1, we have F € C(L;) N C(H?) and

(2.6) IF(t)l2 < C(luolz + Ifllcsa)),  tE€J

Next we quote from Thomée and Zhang [14] that the operator K is bounded in C(H?)
and

| Ku(t)]z < C/o lu(s)|2 ds, ted.

Therefore, by the standard argument for the existence of a unique solution of a Volterra
integral equation, we conclude that (2.5) has a unique solution u € C(H?) and, in view of
(2.6), that

lu(t)lz < ClIFllgeisy < Clluolz + Ifllceray), t€J

Using the integro-differential equation (1.1) we obtain also that, for t € J,

lue@®Il < I Au@ |+ IBu@ll + IO < Cllullggrsy + Ifllczay < Clluolz+fllosczy)- B

. Higher order regularity. Later in the numerical analysis, we will need higher order
regula.rlty results for the solution. If we assume that, for some m > 2, B(t,s) : Hi+2 —
Hi 0 <i<m-—2,is bounded together with a certain number of its derivatives, then
by mod1fy1ng the techmque used in the proof of Theorem 2.2, we can conclude that u €
C (H i+2) provided that the data uo and f possess certain regula,nty properties. However,
this condition is unnatural, since these spaces involve boundary conditions. In general, we
can only expect B(t,s) : H i+2 — H'. Therefore, we shall derive a higher order regularity
result, which basically only requires the boundedness of B(%,s) in Sobolev spaces without
boundary conditions associated with A.

Theorem 2.3. Let u be the solution of the initial-boundary value problem of (1.1) and
letn>1,0< 6§ <1. Assume that

(2.72) Diu(0) e H*NnH*™) 0<j<n-1,
and

(2.7b) Dif e C¥(Ly)NnCH*"I7D) 0<j<n-—1
Then

Diue C(H*" ) 0<j<n
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and

Diuve C(H?), 0<j<n-1

Furthermore,
n ) n—1 )
(2.8) S IDiulloaam-iny < € Y I DFu(Oll gacn-5
j=0 3=0
n—1 . n-—1 )
+C Y IDi flicsws) + € D IDi flloaan-i-vy-
J=0 =0

PROOF: We shall prove this by induction on n. By Theorem 2.2, we know that the theorem
holds for n = 1. We now assume that it holds for n = m, m > 1. We shall prove that the
theorem is true for n = m + 1. Thus we assume that

(2.9a) Diu(0) e HXnHXm™H1-1)  0<j<m,
and
(2.9b) Dif e C¥(L)NnCHY ™), 0<j<m.

Differentiating equation (1.1) formally, we obtain
(2.10) (ue)e + Aue = B(t,t)u + Beu + fi.

We shall write this in the same form as equation (1.1), so that we may use the induction
hypothesis.
We easily obtain

t
B(t,t)u(t) = / B(t,t)us(s)ds + B(t,t)uo.
0
Similarly, after changing the order of integration, we obtain
— t s t
Bu(t) = / Bt(t,s)/ uy(T)drds + / By(t, s)ug ds
ot t 0 ot
=/ / By(t,7)dT us(s)ds +/ By(t, s)up ds.
0 Js 0
Using the above facts, we find
t t t
(ut)e + Aug = / (B(t,t) + / By(t,T) dr) u¢(s)ds + (B(t,t) +/ Bq(t,s) ds) uo + fi
0 s 0

EEut+Bzuo+ft EEUt-FF-

8



‘“t



Let us thus consider the integro-differential equation

ve + Av = Biv + F, ted,

(2-11) v(0) = us(0).

Since the operator B; = B(t,t) + |, : By(t,7)dr is a second-order partial differential oper-
ator, and since, by our assumption, u;(0) € H? and F € C%(L,), we conclude by Theorem
2.2 that (2.11) has a unique solution v € C(H?) N C'(L;). Let U(t) = fot v(s)ds — ug.
We find by integrating (2.11) that U is the unique solution of (1.1). Thus we obtain
immediately that U = u and v = u¢, and hence, by (2.9), we have

Div(0) = Dit'u(0) e H*Nn H¥ ™) 0<j<m-—1.
Moreover, by the definition of F' and (2.9), we have,

D3 Fllcs(ryy < |DiBawollos(zy) + 1D3H flics(ry
< Clluollg= + ||Df+1f||cﬁ(L,), 0<;<m-1,

and
ID} Fllg(macm-s-1y < Clluollgaem-is + CIDI* fllo(maem-i-1y,  0<j<m—1.
Now by using the induction hypothesis, we obtain
Dive C(H*™D) 0<j<m, and Dive C(H?), 0<j<m-1,

and further

(2.12)
m m
- .

> DI ulloemaem-ny = Y I1Divllocracm-i)

7=0 7=0
m—1 m—1 m-—1

< C Y IDiv(0)llgzim-5 + C Y IDiFlicsrsy + C Y I1DiFllo(aam-i-n)
J= J—-O J—O

< C D IID{u(0)| gracm-s) + C’Z 1D} fllcs(z,) +C z 1D} fllc(rraem-y-
Jj= j=1 j=1

It remains to show that u € C(H2(™*)) and to estimate ||ullc(za(m+1y. We shall
accomplish this by showing that u is the solution of a Volterra equation that is well-posed
on C(H*(m+1)), We write the original equation as
(2.13) u=A"'Bu+ A7(f — uy).
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By the regularity result for elliptic problems, we know that A~! : H?™ — H2(m+1) jg
bounded. Thus A~!B(t,s) is an operator bounded in H2(™+1) uniformly for 0 < s <t <
#°. Hence the operator A~'B defined by A~!Bu(t) = fot A™1B(t,s)u(s)ds is a Volterra
operator in C(H(m+1),

By (2.12), we have u, € C(H?>™) and by (2.9), f € C(H?™), and hence A™'u; €
C(H*™+1)) and A-'f € C(H*™+D). Therefore (2.13) is a Volterra equation in
C(H?(m+1)) and hence

lulloarameny < CIIA™ (ue — Hlloam+ryy < Clludlcazmy + Clifllcazm-

In view of (2.12) this implies that (2.8) holds forn =m + 1. 1

From equation (1.1) we obtain D,u(0) = —Aug + f(0). Differentiating (1.1), we obtain
(2.10) and hence

D?u(0) = —ADu(0) + B(0,0)uo + f:(0) = A%ug — Af(0) + B(0,0)uo + f+(0).

Repeating this process, we can express D{ u(0) in terms of the prescribed data. In doing
so, we see that the conditions required by Theorem 2.3 also implicitely contain certain
compatibility conditions for the given data at t = 0.

3. Time discretization, stability and a preliminary error estimate. This section
is devoted to time discretization of integro-differential equations of parabolic type. Since
we are primarily interested in the discretization of the time variable, we first discuss an
abstract parabolic integro-differential equation in a Hilbert space, and then turn to the

concrete situation of a partial integro-differential equation of parabolic type in space and
time.

3.1. Discretization in time. Let A;, and By(t,s) : Sip — Sj be defined by
(Anp,x) = A(p,x), and  (Bn(t,s)p,x) = B(t,s; 1, x), Ky X € Sh.

We can thus rewrite the spatially discrete problem (1.2) as

t
1y et Avun = [ Buttsun(s)ds + fu = Buua(®) + fo, 1€,
. 0
up(0) = uon,

where fr, = Ppf with Py : Ly — S), being the L-projector.
In regard to both (1.1) and (3.1), we shall thus consider the time discretization of the
following problem on a Hilbert space H:
t ~
ur + Au = / B(t,s)u(s)ds + f(t) = Bu(t) + f(t), teJ,
0
u(O) = Uo,

(3.2)
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where A is a self-adjoint, positive definite linear (unbounded) operator in H with dense
domain D(A) C H. We shall assume that A has a compact inverse. It follows that —A4
generates an analytic semigroup E(t) = e~4%.

For our later discussion, it is convenient to introduce the following concept: we say
that the doubly parameterized operator B(t,s) i3 dominated by the operator A if D(A) C
D(B(t,s)) = D(B*(t,s)) C H, forall 0 < s <t <t and if there exists a constant C
such that

(3.3) IB(t, )l + 1 B*(¢,8)ll < CllA¢ll, V¢ € D(A), forall 0<s <t <t°,

where B*(t, s) is the adjoint operator of B(t, s) with respect to the inner product of H. If
B(t, s) is dominated by A, one can easily show that

|B(t,s)A™Y|| < C, 0<s<t<t

and

|IAT1B(t,s)¢|| < Cll¢ll, V¢ € D(B(t,s)), 0<s<t<t.

We shall assume that B(t, s) in (3.2) is dominated by A, together with its certain derivatives
with respect to t and s.

For problem (1.1), we have already shown that the partial differential operator B(t,s)
and its derivatives with respect to ¢ and s are dominated by A. For the spatially discrete
equation (3.1), we have families of operators {A,} and {Bx(¢,s)}. We thus say that a fam-
ily of operators { Bx(t,s)} is dominated by {A,} if there exists a constant C independent
of h such that

1Ba(t, s)xIl + I Bi(t, s)x|l < CllAnxll,  Vx € Sh, 0 < s <t <,
and similarly for time derivatives of Bj. This implies
|Br(t,s)A7'|| < C and ||A;'Ba(t,s)]| <C, 0<s<t<to
When B(t,s) = ~(t,s)A, where ¥(t,s) is a bounded scalar function, we have that

Bi(t,s) = (t,s)As; trivially {B} is dominated by A,. Further, when B = B(t,s) is a
first order partial differential operator, then since

IxlI3 < C A(x, x) = C (Arx, x) < CllArx|l x|z,

we have
(Brx; ) = B(x, 1) < Clixlla lell < CllAnx]l el
and hence
|Brxll < CllArxll, X € Sh.
Similarly,
|Bix|l < CllAwxll,  x € Sh.
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It is now obvious that a family of operators of the form
By(t,s) = v(t,s)An + a discrete first order operator

is dominated by {A}.

When B is a general second order partial differential operator, it is more difficult to
verify that {Bj} is dominated by {As}. However, we claim that this is so as long as the
standard inverse inequality

(34) lxlla < CR7 x|, X € Sh,

holds for the finite element space S,. To show this, we first recall a lemma of Thomée and
Zhang [14; Lemma 2.1.]

Lemma 3.1. Let B(t,s;-,-) be a bilinear form on H} x H} corresponding to a second
order partial differential operator B(t,s). Then

IB(t, 559, A5 HIl < Cllgll + Rllgll}NIfll,  for0<s<¢<J, VfelL, geH.
With u, x € Sh, the above lemma and (3.4) yield

(Brx, 1) = B(x, 1) < C(llpll + Allpll)IArx|l < CllullllAnxll-

Since the same argument works for B}, we conclude that {B} is dominated by {4}.
Let us recall a time discretization procedure for the corresponding purely parabolic

problem of (3.2), i.e., with B = 0. More details can be found in [2], [3] and [11]. Let r(2)

be a rational function approximating the exponential e~* to order p > 1, i.e., such that

(3.5) r(z) = e7* + O(2P*1) for z — 0,
and such that
(3.6) r(2)] <1 for z > 0.

Let 7; = 7o, € [0,t,], ¢ = 1,...,m, be distinct real numbers, and let {9i(z)}2, =
{gn,i(2)}, be rational functions which are bounded on z > 0. We consider a scheme of
the form

U =r(kA)U" " + kY gi(kA)f(ta — k),  ta €,

i=1

(3.7)
UO = Up.

By defining Ex = r(kA) and Gif(tn) = Y.ir, 9i(kA)f(tn — Tik), we write (3.7) in short
form as

U™ = ExU™ ! 4+ kGif(t,), tn € J,

3.8
( ) UO = Up.
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We shall apply the above time discretization to the integro-differential equation and use
various quadrature formulas to approximate the integral term. Let t! = ¢, — 7;k and

let ™™ be a quadrature rule with weights {wfl'])} such that, for ¢ € C([0,t°]) and with
¢j = ¢(tj),

t,—T1ik
(3.9) c™Ti($) = o™ (¢) = ZJ%J ~ / é(s) ds.

7=0
We shall consider the time discrete scheme

U™ = ExU™Y + kGro™(BU) + kG f(tn),  tn € J,

3.10
(3.10) U° = w,

where
Gro™(BU) = Gro™(B(tn, )U) = Z gi(kA) Ew(')B(t U7
J=0

Note that (3.10) is explicit with respect to the quadrature term.

Now we finally turn to our main consideration, the full discretization of problem (1.1).
Applying discretization (3.10) to the semidiscrete equation (3.1), we obtain the following
fully discrete Galerkin scheme:

Up = ExpUp ™" + kGrno™(BrU) + kGinPrf(tn),  tn € J,

(3.11)
U,? = Uoh,

where Exn and G are defined by replacing A by Ap in the definitions of E; and Gy,
respectively, and o™(BrU) is defined by replacing B by B}, in o™(BU).

In this paper, we shall assume that g;(z), ¢ = 1,...,m, are real fractions. The backward
Euler discretization (1.5) is of this form with

m=1, T =0, r(z) =

and g9(z) =

which has order p = 1. If we choose

1-2/2 1

m =1, T=1/2, r(z)=ﬁz_/2, and 9(z) = 1+ /27

we obtain the Crank-Nicolson discretization (1.6), for which p = 2.

3.2. Stability and Ej-stability. To study the stability of (3.11), we introduce a concept
which we will call Ej-stability. Let {V7}% ]—0 , tn € J be a sequence in D(A) and define
W = F2(V) iteratively by

W" =E W™ 4+ kGro™(BV), tn € J,
we =o0.
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A quadrature formula is called E}-stable if there exist nonnegative {wj};-‘;ol, t, € J, such

that 27;01 w; < C and, for any {V?} C D(4),

n-—1
IFFEI<CY willVill,  taeld.

=0

Moreover, we define F, and Ejp-stability, respectively, when problem (3.11) is under con-
sideration, with constant C' independent of k. The following theorem shows the importance
of Ej-stability.

Theorem 3.2. If the quadrature formula defined by (3.9) is Ej-stable, then scheme
(3.10) is stable; that is,

U™ < Cllwoll + CE YD NFEN,  ta € J.
=1 j=1

In the proof we need the known discrete version of Gronwall’s Lemma.

Lemma 3.3. Let {n,} be a sequence of nonnegative real numbers satisfying
n—1

(3.12) M < Bn + Z‘*’j’?j for n >0,
=0

where w; > 0 and {f,} is a nondecreasing sequence of nonnegative numbers. Then

n—1
Nn < Bn exp ij forn > 1.
Jj=0

We give a proof here for readers’ convenience.
PROOF: Let S, = 2::01 w;n;. It is sufficient to show that

n—1
(3.13) Sn < Bn (exp(z wi) — 1) , n > 1.
=0
We shall use induction to prove this. For n = 1, we have, since 19 < f, that
S1 =wono Swobo < Po(e° — 1) < Bi(e*° —1).

Assume now that (3.13) holds for S;, 1 < ¢ < n. To complete the proof we shall prove
that it holds for S,4;. By definition of S, and (3.12), we have

Sn+1 —Sn = WnNn < wn(,Bn + Sn)’
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and hence
Sn+1 < wn,Bn + (1 + wn)sn-

By our induction assumption and the monotonicity of 8, we then obtain

Snir < o {wn +(1+wn) (exp(i wi) - 1) } = B {(1 un)exp(3 wi) - 1}

=0 =0
n—1 n
< Bn {e“’" exp(z w;) — 1} < Brt1 <exp(2w,~) - 1) )
and hence the proof is complete. [

PROOF OF THEOREM 3.2: The proof is quite straightforward. Let U™ = U}* + U', where
we define UL, U} € D(A) by

Ul = ExUl! + kGro™(BU), t, € J, subject to UY =0,
and
U} = ExUr™' + kGrf(tn), t, € J, subject to Uj = U°.

By (3.6) and some spectral analysis, we have ||Ex|| = ||r(kA)|| = supxso |r(kA)| < 1, and
similarly, [[Ga f(ta)]l  C S, [I£(25)]; hence,

IS S WU+ CRIFEN S - S ol + CR YD FEDIL  ta €T,

i=1 j=1

Therefore, by U* = F*(U) and the Eg-stability of this scheme, we obtain

m n n—1
U™ < NOFN+ TSI < WUl + CED D IFEN +C > willUill,  ta€J,

=1 j=1 J=0

which leads to the conclusion by using Lemma 3.3. §

3.3. Some sufficient conditions for Ej-stability. The FEj-stability of a scheme is
important not only to prove the stability of the time discretization but also to obtain
error estimates. We now give some sufficient conditions for a quadrature formula to be
FE-stable.
We say that a quadrature rule has dominated quadrature weights {wj;} if there are
weights {w;} such that
wiil Swi,  0<t <t <t

and

n—1
Zw; S C, tn E J.
1=0
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If the time-stepping is based on the subdiagonal Padé approximation, i.e.,

_ )
T(Z) - q(z),

where both p(z) and ¢(z) are real polynomials with degp < deg g, our first theorem shows
that the domination of the quadrature weights is sufficient for Ej-stability.

Theorem 3.4. Let the time-stepping be based on the subdiagonal Padé approximation
and accurate of order p = 1. Assume that B(t,s) is an operator such that DB, i = 0,1,
are dominated by A. If the quadrature rule defined by (3.9) has dominated weights {wn;},
then the quadrature rule is Ex-stable.

A fact we shall use in the proof is that, in this case, it is known that the generated
time-stepping procedure has the smoothing property [11], i.e.,

(3.14) |AER|| < Ct;°, tn € J.

PrOOF OF THEOREM 3.4: Without the loss of generality, we assume m = 1. Denote
g(kA) by Gi and t; — 7k by t; for short. To estimate Fy*(V'), we split it as

n i1
Ff =kY E;y77Gr ) w;ji(B(t),t:) — B(th, t:)V"

=1 i=0
n ] Jj—1 .
+kY EpTIGLAY wiiAT'B(t, )V =T+ 11
Since B, is dominated by A, we have
A7 (B(t),ti) = B(tn, t:))8ll < C(ta —t)ll8ll, ¢ € D(A),
and hence, by the smoothing property (3.14) of Ej, we obtain

n Jj-1
III)| S CkY (ta — ;)71 Y wil A7H(B(t), t:) — B(t,,, t:)VY||
=1

=0
n Jj—1 ' n—1 .
SCkY (tn 1) (tn =) Y_wil Vi S C Y will V¥
i=1 =0 =0
It remains to estimate II. Changing the order of summation, we have

n—1 n
(3.15) =Yy (k > wj,iZ;‘kEg—iA) AT'B(t,,t:)V?
i=1

j=i+1

= Z Gm'A—lB(t:.‘, t,')Vi.

i=1
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By spectral analysis, we obtain

- —j Alg(Ml
Grill < Cw;su EXr(kXN)|" 77 |g(kX)| < Cw; sup ————.
16l < Cusgup S BRI lg )] < Cunsup 25705
Set s(A) = Alg(A)]/(1 = |r(X)]). Since |r(A)] < 1 for A > 0, we need only bound s(\)
as A — 0 and A — +oo. Easily by (3.5), [s(A\)] £ C as A — +oo. Furthermore, since
deg(p) < deg(q) and |Ag(})| is bounded, we obtain |s(A)] < C as A — 0. Altogether we
obtain |Gri|| £ Cw;, and so

n—1 n—1
11T < C > wil A7 B(ta, )V < C > wil V|- ]

Besides what has been discussed above, there are other time-stepping procedures that
do not have the smoothing property, for instance, the Crank-Nicolson discretization. Let
us consider the class of time discretizations of strictly accurate of order p =1, i.e.,

(3.16) r(z)— 1= -z Zgi(z).

For more discussion on this, we refer to Thomée [11; Chapter 7 and Chapter 8] and
the references therein. For simplicity, we shall restrict to the case of m = 1.
For a quadrature formula with dominated weights {w;} , if the dominated weights satisfy

n—1
(3.17) Z ij+1,,' - wj,'l < Cuw;, 0<i1<n-1, t, € J,
j=it1

we say that the quadrature rule has persistent dominated quadrature weights.

Theorem 3.5. Let the time discretization be strictly accurate of orderp =1 and m = 1.
Assume that B and B; are dominated by A. If the quadrature rule defined by (3.9) has
persistent dominated weights {wn;}, then the quadrature rule is Ex-stable.

PROOF: In this proof, let us denote o7" by aj', and t; — 7k by t; for short. Since the
time discretization is strictly of order 1, we have Gy = g(kA) = —(Ex — I)A~'/k, and
therefore, by summation by parts, we obtain

FrV)=k Xn: EiGyo? (BV) = — zn: (E,;"f“ - E,';‘f) A~167'(BV)
j=1 J=1
=— Xn: EPI (af+1’ - af') (A"'BV) + (E,’;a"'(A—lBV) - a—l’(A-lBV))

vt
=I+1I1
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By the stability of Ef, since B is dominated by A, and since the quadrature formula has
dominated weights, we obtain immediately

n—1 n-—1
172 < ) will AT Bt t) Vi < € Y wil VA
1=0 =0

It remains to estimate I. We split I into three terms as follows:

n-—1 7 J-1
— Z E,?_JA-1 <Z wj+1,,-B(t;-+1,t,-)Vi — ij,'B(t;,ti)Vi>

1=0 =0

n—1 j—-1
== By AT wjh1,iB(t 4, 1)V - Z EgiA™ (Z(wj+1,.- —sz)B(t;-H,t,-)V')

J=1 =1 =0
n—1 ) ‘
- Z Ep~iA~? (z wji(B(ty4y,t:) — B(t t,-))V') =hL+5L+ 1.
=0

In a manner similar to the estimate of II, we obtain
n—1 )
1Ll < C Y w;lvi).
Jj=1
Since By is also dominated by A, we have, for ¢ € D(A), that

ti+1'
/ lBt(T ti)dr¢
tl

J

IA™! (B(tj41,t:) — B(t), 1) ¢l =

S CEgll, thar €7, ti€ J,

and hence .
I I3]| < Ck E E w,||V' |<C :}: w,||V’||
J=1 1=0 1=0

Changing the order of summation, and using our assumption that the quadrature rule has
persistent dominated weights, and that B is dominated by A, we have

n—-2 n-1

1L =1 > Ef 7 (wit1,i —wji) AT B(thyq, t)V'||
1=0 j=i+1
n—2 n—1 ' n—2 .

<Cy ( D lwit,i _‘*’jil) IV <CD will V).
=0 \j=i+1 1=0
These estimates lead to .
) < CzwiIIVill- |

1=0

Clearly, the above results hold also for Ejj-stability.
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3.4. A preliminary error estimate. This subsection will prepare us for our later
discussion of the error estimate for fully discrete Galerkin approximations. Let us introduce
an auxiliary approximate solution U}’ € S}, obtained by applying the discretization method

(3.8) to a purely parabolic equation with right-hand side (Eu + f) (1), i.e.,
U = ExaUp~! + kGrnPr (B’u -+ f) (tn), tn € J,
ﬁg = UQh-

We shall call

(3.18) e" =UP — u(ty)

the basic time-stepping error which has been well studied in the literature, see Thomée
[11] and the references therein.
Denote by ¢™(¢) the basic quadrature error, i.e.,

(8) = ¢ (8) = ¢7() = o™TH(S) / " §(s)ds.

We define the local quadrature error

"(Brd) = ¢ (Brg) = o™ (Bug) — / " Ba(th, s)d(s) ds

and the global quadrature error

(3.19) Qin(8) =k Y Ep Cund’(Bud) =k Ep’ Y~ gi(kA)g"™ (Brg).
j=1 j=l i=1

We shall frequently make use of the elliptic projector R, : Hj — S), defined by

A(Rh¢’ X) = A(¢’ X)’ ¢ € H(}, X € Sh,

which has the wellknown approximation property
(3.20) I(Ba — Iyull + bl(R = Dulls < Ch*llufls,  1<s<r.

For {¢7}7_,, we write |||¢"]|| = maxo<;<n [|47|l.
We shall now give a preliminary error estimate, in which only the basic time-stepping
error and the global quadrature error remain to be specified.
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Theorem 3.6. Let u be the solution of the initial-boundary value problem in (1.1)
and U} the approximate solution given by scheme (3.11) using a time-stepping strictly
accurate of order p = 1 and a quadrature formula defined by (3.9). Let é™ be the basic
time-stepping error and QF}, the global quadrature error defined by (3.18) and (3.19),
respectively. Assume Bj and B}, are dominated by Ay. If the quadrature rule is Egp-
stable, and if

lluon — uoll < Ch[|uol|,

then, for t, € J,

tn
IUR —u(ta)ll < CAT {IIUoIIr +/0 "ut(s)”rds} + Cll1e"Il + Cll1Qxa(Rau)l|-

PROOF: We write
(3.21) " = UL -U2)+ (UF —u(ty)) = 2" + &,

where Z™ € S}, is the only term that needs to be estimated. Following Wheeler [16], let
6" = Uy — Rpu(tn). Then by definition, we have

Z" = EkhZ"_l + kahO’"(BhU) — kahPh.éu(tn)
= EkhZ"‘l + kahU"(Bhe) + kG (a"(Bthu) — E,Rhu(tn))

3
+ kGin (B,,R,,u(t,,) - P,.Bu(t,,)) =EwZ" ' +> I, tael,
J=1
Z°=o.
We now split Z™ further into Z" = Z7 + Z} + Z}', where

Z! = Exn 2P + I, tn € J,
Z? =0.
By the Ejp-stability of the quadrature rule, we have
n—1 )
(3.22) 1271l = IFG@)l < C D will6'll,  ta €l
=0
By the definition of the global quadrature error, we have
Z3 = Q¢n(Rpu), tn € J.

Assuming for a moment that

tn
(3.23) uz;nsw{nuour+ i nutnrds}, toe ),
0
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we obtain that

n—1

tn .
12"l < ChT {Huollr +/0 ||ut||rd3} + Q5 (Raw)ll +C Y w;llé’ll,

i=0
and hence, for t,, € J,

tn n-1 .
1671 < Ch” {uuonr + [ ||ut(s)ur} F I+ QR Rl + C 3 w1971
0

j=
The proof will be completed by applying the discrete Gronwall Lemma 3.3.

It remains to prove (3.23). Denote 3 iv, gi(kAr) by Gikn. We further split Z} into
2y =73 + Z3, such that

25, = B 23" + kGun (BuRuu(ta) — PaBu(tn))
Z3y = EnZ35 + K(Gin — Grn) (BaRau(ta) — PaBu(ta))
Zgl = Z:?z = 0.

To simplify the notation, henceforth in the proof a prime will indicate the corresponding
summations for the index replaced by it from 1 to m, when it is clear according to the
context. Let us first estimate ZJ,. By iteration we have

23 = kY Efy G (BrRiu(t;) - PaBu(ty)) .
Jj=1
Let B(¢(t),v) = fot B(t,s; ¢(s),¢)ds. For x € Sp, we have then

(Z31,x) = kY_(BaRuu(ty) — Bu(t)), Egy "Gax) = kY B(p(t}), Efy "Grnx)-
i=1

Jj=1

Since the discretization is strictly accurate of order p = 1, we have G = l<:_1A;1 (Exn—1I);
hence, summation by parts yields

(Z3,%) = 3 B(o(t), (Bgy ™' — Egy ) AR %)
J=1

n—1
= —B(p(th), Ay x) + B(p(t), Ay Efnx) + D B(p(t41) — p(), A Ex 77x).
=2

By Lemma 3.1 and (3.20), we obtain
tn
1B(p(tn), Ay )1 + [B(p(t1), Ay Efax) < C A (llell + Rliolly) dsll x|

tn
< cm{uuour + / nutnrds} ™
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Similarly, we obtain

B (), AT ELT ) d
ds (p(S), h kh X) s
tl

J

n—1 t",~+1 »
<3| [T Blsiats), 47 B0 ds
= /g

n—1 n—1
S Blo(they) — p(25), AEIE}S{’X)’ <3

=2 j=2

+

T Ba(s), AT BRI d
’ (p(s), r Lrn x)ds
J

}

ti41 e
< { / (el + Bllo(r)lly) dr | EE x|
1 t

t‘li+1 s i
+ [ [ ool + Hlol) dr astg
J

t

tn
<o [ ullodriel < a { - + |
0
Therefore we obtain

(3.24) (231, )] < Ch* {nuonr + [0 nu,u,ds} ™

which leads to the required bound for Z},.
We now bound Z},. By our definitions, we have

nutnrds} ™

(G~ Tu)olt) = = S aikan) [ Dus(s) s,

=1
and hence, since k||Argi(kA)|| < C and denoting T, = A},
— A
I(Gkn — Grn)é(t;)ll < CE™ Z/ T2 Ds¢(s)llds < C max ||TpDaé(s)|-
i=1 7% 0Sest

By the stability of Ejp, using the above inequality with ¢ = E,Rhu — Phﬁu, we obtain

. <
(3.25) ||Z:52” = Cogn%’ﬁ,,

T, D, (E,R,,u(s) - P,,Bu(s)) H

For any x € Sp, we have
(47" Do(BrRuu(s) — PaBu(s)), x) = B(s,s; p(s), Ay * x) + Belp(s), Az X),
which yields, by Lemma 3.1 and (3.20), that

|(Tw Do(BaRau(s) — PaBu(s)),x)| < € {IIP(S)II +hlle(s)lla + /os(llpll + hllplll)dT} x|

<o {luoll + [ el ar bl
This and (3.25) lead to the desired bound for Z3,. 1
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3.5. A bound for the global quadrature error. To estimate the global quadrature
error, we could use the fact that, by the stability of Egp,

QR < D lllg™™ (BaRau)lll,
i=1

|

and then estimate the local quadrature error instead. For instance, for the rectangular
rule ||¢g"(¢)|| £ Ck fot" |Ds¢(s)|| ds. This implies, since R, = A;'A and B, is dominated
by A, that

QI < Ck]o " (lAul| + || Aue])) ds.

However, the regularity of the solution with respect to space required by the above error
bound is unnecessarily high. In the following lemma we present a bound for the global
quadrature error which leads to an error estimate demanding less regularity of the solution.

Let ®,(t,s) = A;lBhPh. If B), is dominated by Ay, then ||®,]| < C. We shall use
frequently the boundedness of this operator and its derivatives.

Lemma 3.7. Let the time-stepping be strictly accurate of order p =1 and m = 1, and
let Q%,(#) be the global quadrature error defined by (3.19). Assume Bj and By are
dominated by Ay. If the quadrature formula is Ex}-stable, then, for t, € J,

n-—1

1@ (Raw)]| < cm{uuo”, + [ el ds} £ 1 (@ = 67 @nw)l,

=0
where ¢’ is the basic quadrature error and ¢%" = 0.

PROOF: By the definition of Q%,(¢#), after changing the order of summation, we obtain
that

(3.26)
n n 1—1
Qin(#) =k Y Epi'Gnd'(Brg) =k D Ef'Gun ) (¢t — ¢”7) (Bro)
=1 =1 Jj=0
n—1 n .— ) .
= Z (k Z E,?,,—'GkhAh> (@7 — ") (21 4),
Jj=0 t=j5+1

where we have defined for convenience that ¢>™ = 0. Since the discretization is strictly
accurate of order 1, we have that

n n
‘ kY Ef'Grads|| = | Y (BRT-EnYH|=I1-ER7I <,
i=j+1 i=j+1
and hence
n—1
(3.27) IQ (AN < C DN (77 = ¢@7) (2ro)]|-

J=0
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It therefore suffices to show

tn
(3.28) ||Q;:h<<Rh—Ph)u>uscw{nuour+ / ||ut||,ds}, toe .
0

Denote (R — Pp)u(t) by €(t); we have

e < O {lualle + [ (ol ds

Note that by our definitions, we have
n . ——~
(3.29) Qin(e) = Fiu(e) —k Y Epy? GraBue(t;)-
i=1
Since the quadrature rule is Egp-stable, we obtain that

n—1

630)  IFREN<C L it < h { ol + [ fuolleds}.

=0

Similarly to the proof of (3.27), denoting t; — Tk by t};, we have

n n—1
(3.31) kY By GunBre(t;)|| S C Y 1 @hetser) — Bae(t))]l
J=1 Jj=0
Since
(3.32)

Eﬂf(tfiﬂ ) — ﬁf(t;)
A

i
= / ’ (Ph(t;-_‘_l, s)e(s)ds + ’ (<I>h(t;~+1, s) — <I>h(t;-, 8))e(s) ds,
t;. 0
we obtain immediately
—~ P —_ ' t.li+1 t;'
[Brettisn) - Eretp)ll < [ o)l ds +Ck [ ecol ds,
and hence, by (3.31) and (3.32),

k Z E,?_ijhEe(tj)

Jj=1

(3.33) ‘

tn tn
<0 [ eolds <o {fuoll+ [ uel- s}
0 0

Taking (3.29), (3.30), and (3.33) together completes the proof. 1
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4. Backward Euler type schemes. The purpose of this section is to analyze the
backward Euler type scheme (1.5) in detail. Various quadrature formulas are presented,
with the emphesis on reducing the memory storage requirement.

Let S(n) be the number of non-zero quadrature weights {wn;}7-4 used in the quadrature
rule o™(¢). For each rule discussed, we shall give an upper bound of S(n) for 0 < ¢, < t°,
denoted by Smax. This is also the upper bound for the number of the levels at which the
solution needs to be stored in calculating the numerical solution U}’ on the whole interval
[0, °].

The backward Euler time discretization is strictly accurate of order p = 1 and the basic
time-stepping error is bounded by (see Thomée [11] )

tn tn
(4.1) ne"nscm{nuonr+ / ||ut(s)||rds}+Ck / luee(s)l|ds,  tn € J.
0 0

In this section, we shall refer to BE-stability when we mean Ej-stability for the backward
Euler type scheme. Thus we have

Theorem 4.1. Let u be the solution of (1.1) and U}} that of the backward Euler type
scheme (1.5). Assume that the quadrature rule is BE-stable. If

llwon — uoll £ CR™||uollr,

then, for t, € J,

tn tn
||U;:—u(tn>||sc*h'{nuour+ / uutn,-ds}wk / lueell ds + CIIQE(Raw)]ll

Since the smoothing property holds, by Theorem 3.4, we shall give quadrature formulas
with dominated weights in order to keep the BE-stability.

4.1. The rectangular rule. The simplest quadrature rule that we shall discuss is the
rectangular rule, i.e.,

n—1
(4.2) o™(¢) =k Z #.
=0

Obviously this rule has dominated weights, and hence is BE-stable.

Theorem 4.2. Let u be the solution of (1.1) and U} that of the backward Euler type

scheme (1.5) using the rectangular rule (4.2). Assume By, Bf,lt) , Bf:g, and Bf’t)s are
dominated by Ay. If
lluon — uoll < CRT|luoll-,

fort, € J,

ty, tn
||U,:'—u<tn)nscm{uuouw / uutnrds}wk{nuolu / (uutu+nuuu)ds}.
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PROOF: By Theorem 4.1 and Lemma 3.7, we need only estimate the quadrature related
term 00 | (7 — ¢7) (24u)]|. We have

(4.3) (7 = ¢7) (®ru) = (@1 — &) (Ba(tjer1, Ju())
+ @ ((Batjs1,-) — Ba(ts, u() = L + L.

Since

@ =0) @) = [t~ )Dus(e) s

and Bj and Bf,l,z are dominated by Aj, we obtain

tj

ti4+1 +1
1L < Ck/ ()l + llue(s)ll) ds < CE?|luoll + Ck/t llue(s)ll ds.
tj

Similarly, since Bgl’z and Bgz,t) , are dominated by A, we obtain

t; tj
|2l < Ck2/0 (lu()I + llue(s)I) ds < C**|luol| +Ck2/o llue(s)|l ds.

Therefore we get

n—1

S - o) @wl < Ok {Juoll + [ fuelas}.n

J=0

4.2. Modified trapezoidal rule. As we have mentioned before, we may reduce the
memory requirement by using a trapezoidal rule based on longer subintervals. We shall
discuss a modified trapezoidal rule which is similar to a quadrature formula introduced by
Sloan and Thomée [10].

Let m; = |k~1/2], where |z| denotes the largest integer less than or equal to z, and
set k1 = mi1k and t; = jk;. We define j, to be the largest integer such that ¢;, < tn.
We apply the trapezoidal rule with stepsize k; on [0,%;,] and then the rectangular rule
with stepsize k on the remaining part [t ,tn]. More precisely, we introduce the following
modified trapezoidal rule I :

@8 o6 =TI ) +E Y 6) =05 (8) + 07(6).

An upper bound of the storage for this rule is given by Smax = t°/mik + m;. Since
my = O(k~1/2), we have Smax = O(k~1/2).
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Let w} = k and

wi =

2 { t_j-{-l _t-j—la .7 = 2'2, i 2> Oa
J

0, otherwise.

We define w; = w? 4+ wj, and find easily that Z;:ol wj <t and

n—1 In
> wl <D (Fi41 —tjo1) < 2,41 < CEO.
7=0 =1

Therefore w; are dominating weights and hence rule I is BE-stable.

We now give an error estimate for the backward Euler type scheme using these trape-
zoidal rules. The regularity requirement of this scheme is the same as that for the purely
parabolic problem.

Theorem 4.3. Let u be the solution of (1.1) and U} that of the backward Euler type

scheme (1.5) using the trapezoidal rule I defined by (4.4). Assume B} ; and Bg’;)s, 0<1<2,
are dominated by Ay. If
lluon — uoll < CR||uol|,

then, for t, € J,

tn tn
nU,?—uun)nscw{nuour+ / uutnrds}+0k{||uo||+ 0 (uut||+uuu||>ds}.

PROOF: We know that rule I is BE-stable. By the preliminary error estimate in Theorem
3.6 and Lemma 3.7, we need only prove that

(4.5) 2_3 (g™ — ¢’) (@ru)l| < Ck {Iluoll + . (el + ||Uttll)d3} :

§=0

We consider (4.3) again. Since the step-length of the trapezoidal part is bounded by Ck,
we obtain easily that

tn
lg"(&)ll < Ck | (D3¢ + 1 Dsp(s)l)ds,  ta € J.
Thus I, of (4.3) is bounded by

IL] < CF? ] Ul + ue(s)]| + uee(s)]]) ds.

We further define

@ =(o30)- | o 615 ) + (o1(8) - 6(5)ds) = () + 47(9)

tin
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Let

¢2(5) _ { (S _{j—l)(s _t_j—%)’ s € [t_j_l,tj__%], ] > ]_’

(s—t_j)(s_{j—%)’ s € [t_j—%at_j]’ J=21,
and
1/)1(3) = _(S - tj+1), s € (tj,tj+1]’ 720
we have .
tin
(8= [ a(o)Dio(s)ds
0
and .
@)= [ 1()Dsd(s) ds.
Since .
(@ =)@ = [ da(s)DEo(e) ds
and - .
@ =)@ = [ n©Debds— [ va()Dds) ds,
tn tin
we obtain

1Ll < Ck / " (lu(s)]) + 1Dsu(s)ll) ds + Ck / " (lu(s)] + 1Dsu(s)] + 1D2u(s)]) ds.

tJn

Now (4.5) is a direct consequence of the bounds for I; and I;. 1§

4.3. A modified Simpson’s rule. In the last subsection, in order to reduce the storage
requirement without the loss of overall accuracy, we used the trapezoidal rule with a larger
mesh-size to approximate the main part of the integral term. Pursuing this idea one step
further, we now propose a quadrature formula based on Simpson’s rule in order to reduce
the number of quadrature nodes even further.

This will be done by first using Simpson’s rule on subintervals of length O(k/4). The
number of such subintervals of [0, t,] is O(k~1/4). The length of the remaining subinterval
is at most O(kll ). On this remainder, we apply the trapezoidal rules with mesh-sizes first
O(k/?) and then O(k%/%). The remaining subinterval is now of length O(k*/*) and here
we use the rectangular rule with mesh-size k. The quadrature error of this combined rule
is then O(k) and the storage requirement is O(k~1/%).

We now make the above precise. Let mg = |k~1/4] and define k; = my k1 <4< 4.
We shall now describe the choice of the quadrature points {,;} in [0,t,]. We shall often
denote these by {Z;} for short since the dependence on n will be clear. First define #; =
jkg, 0 < 7 < pan, where py, is the largest even integer such that tpan < tn. Next, on
the remaining subinterval [tp,,,tn], whose length is at most k4, we use quadrature points
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with mesh-size k3, and thus define t; = tp,, + (J — Pan)k3, Pan < J < P3n, where p3, is
the largest integer such that ?,,, < t,. We then define the remaining quadrature points
in [0,t,] by using mesh-size k2 and k; in turn. In this way, we can write the quadrature
points by

Tk, 0 <7 < p4n,
£ = t:P‘ln + (J — Pan)ks, Pan < J < D3n,

tpan T+ (J — P3n)k2, P3n < J < p2n,

tpan + (J — P2n)k1, P2n < J < Pin,

where ps, and p;, are the largest integers such that i,,, < t, and t,,, < tn,. Thus we
divide [0,t,] as

[0,2n] = (O[Ej-l,{j]) U ( sz [ﬂ—bﬂ]) U ( Lj [t—j—l’fj])

J=pan+1 J=pPsn+1

Pin
U( U [t—j—l,{j])EI‘iUIsUIzUIl.

J=p2n+1

We shall use Simpson’s rule with step-size k4 on I4, the trapezoidal rule with step-size k3
on I3, and with step-size of k2 on I>. On I; we shall use the rectangular rule with step-size
k1 = k. Thus, the modified Simpson’s rule is defined by

(4.6)
Pan—1 k3 P3n

(@)= (9i) F46E) + T} + S {6E) + 6(E))
; ijs=oldd J=pan+1
P2n Pin—1

+’%2 D0 (G- + 4N} +E 3 d(E)

j=pan+1 J=pP2n

= 04(9) +03(8) + 02(¢) + o7(9).

To give an upper bound of the number of the levels that need to be stored, we first
notice that the number of quadrature points in I is bounded by #°/k4. Since the length of
I3 is less than k4, the number of quadrature points in I3 is bounded by k4/k3, etc. Thus,
we have

Smax = 1°/ka + ka/ks + ka/kz + ko /ky = t°/kg + 3mo = O(k~1/4).

The analysis of Simpson’s rule is similar to that of the rectangular and trapezoidal rules.
We first note that this rule is BE-stable by showing that it has dominated quadrature
weights. For 1 < i < 4, we define

i { ki, j =0 (mod m§1),
J 0, otherwise.
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Since we have

and
4 .
jwnjl <) wh = w;j,
i=1
we can choose the w; thus defined as the dominating weights.

Moreover, since the difference of ¢’+1(¢) and ¢’($) occurs only on UL, [Epi;stpij4nl)s We
can obtain that

I - )@ < CkY /t "D g(s))) ds.

=1

On the other hand, we obtain easily that

. t; 4 ,
lle’(#)Il < Ck? /0 > | Diu(s)|| ds.
=1

Therefore, similarly to the proof of Theorem 4.2, we obtain

>l - )@l < Ok [ Y IDiu)lds < O {”uoll + [T Dl ds} .

j=0 1=0

Hence, by Theorem 3.6 and Lemma 3.7, we obtain

Theorem 4.4. Let u be the solution of (1.1) and U} that of the backward Euler type
scheme (1.5) using the modified Simpson’s rule defiend by (4.6). Assume By, ; and B,(:,)s, 0<
1 < 4, are dominated by Ay. If

lluon — uoll < Ch|luollr,

then, for t, € J,

tn tn 4 i
IUR — u(ta)ll < CA” {lluonr +/0 llutllrdS} +Ck {HUOH +/0 > IDsus)| dS} -
i=1

Note that the application of Simpson’s rule requires higher regularity with respect to
time than the last two quadrature formulas.
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5. Crank-Nicolson type schemes. In this section we discuss the fully discrete Crank-

Nicolson type schems of (1.6). By Thomée [11], for ¢, € J, the basic time-stepping error
is bounded by

tn tn
Jenl < Ch{ ol [ s ds}+ 08 [ Ghual + ualh s
0 0

This time, we shall use the term CN-stability to refer to Ej-stability. Since the Crank-
Nicolson time discretization is strictly accurate of order p = 1, we obtain immediately from
Theorem 3.6 the following result.

Theorem 5.1. Let u be the solution of the initial-boundary value problem in (1.1) and
Uy the Crank-Nicolson approximate solution defined by (1.6). Let Q7,(¢) be defined by
(3.19). Assume that By, and By, s are dominated by Ay. If the quadrature rule is CN-stable,
and if

l[uon = uoll < CRT[|uo]|-,

then we have

tn
U7 = u(ta)] < Ch’{ luoll- + / nutnrds}
tn
+CR [ (uceell + [ Ausell) ds + ClIQE BRI, ta € 7
0

We shall give two quadrature formulas below; both of them have persistent dominated
quadrature weights and hence are CN-stable.

5.2. A modified trapezoidal rule. The simplest second order quadrature formula is
the trapezoidal rule. We shall apply the standard trapezoidal rule with mesh-size k on
[0,tn—1] and the rectangular rule on [tn—1,%,_1 /2] to define a modified trapezoidal rule:

(1) 06 = 5 SB) + 6(ti) + (ta) = oF(8) + a7(8).

Obviously, the storage requirement for this rule is Smax < t°/k = O(k™!). In the
previous section we have seen that the storage requirement of the backward Euler type
scheme using the trapezoidal rule is O(k~'/2). We shall prove that the Crank-Nicolson
type scheme using the trapezoidal rule (5.1) is second-order with respect to time, so that
a larger time step-size may be used for the same overall accuracy. Hence, in this respect
the storage requirements for these two schemes are of the same order.

We find immediately that this rule has dominating weights w; = k and

n—1
Z |w,~+1,,-—w,-,-|=0, 0<:<n-1, t, € J.
j=it1
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Hence the quadrature rule (5.1) has persistent dominated weights, which shows the CN-
stability of this rule by Theorem 3.5.

We now give the error estimate for the fully discrete Crank-Nicolson type scheme using
the modified trapezoidal rule.

Theorem 5.2. Let u be the solution of (1.1) and U that of the Crank-Nicolson type
scheme (1.6), using the modified trapezoidal rule (5.1). Assume that By, B, and
Bg’;, 1 = 1,2, are dominated by A. If

lluon — uoll < Ch™||uo]|,

then, fort, € J,

tn tn
107 (el O {luolo [ Bl e € { ol + [ -+ Al d .
0 0

PROOF: By Theorem 5.1 and Lemma 3.7 we need only prove that

2_3 1(g"/? = ¢*71/%)(@4u)|| < CK? A "+ () + luee( )] ds.

J=0

We shall start from (4.3). Since this time

(qj’1/2 _ qj,—l/z)(¢) — k¢(tj) 3 /tj+1/2 ¢(5) ds,

ti—1/2
we obtain
Bh1/2 _  j,—1/2 < Ck? fit1/2 D? d
ll(q q )OI < | D5 6(s)ll ds,
ti—1/2
and hence

|5l < Ck? / " ()]l + 1Dsu()]| + 1 D2u(s)]) ds.

ti_1/2

Easily, we have

” (le(o)ll + 1 Da(s)]) ds.

ti-1 ti—1/2
121l < Ck3/0 (le()+11Dsu(s)l+ [ DFu(s)ll) ds+ Ck? /

ti—1

These bounds for I; and I, lead to the desired conclusion. |
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5.3. A modified Simpson’srule. The storage requirement for the modified trapezoidal
rule defined by (5.1) is O(k~!). As we did before for the backward Euler type scheme, we
may use a quadrature rule with higher order truncation error on fewer quadrature points
to reduce the memory requirement without sacrificing the accuracy. We now present such
a quadrature formula based on Simpson’s rule.

Let my = |k~/2] and k; = myk. Define j, to be the largest even integer such that
Jnk1 < tn. We introduce the quadrature points

t—_t—_{]kl, OS]S]n’
T Jnki 4+ (G = jn)k, jn < J < ln,

where t;, = t,—;. We now apply Simpson’s rule with step-size k; on [0,;,], the trape-
zoidal rule with step-size k on [t;,,tn—1], and the rectangular rule with step-size k/2 on
[tn—1,tn_1/2], i.e., we set

(5.2) kl jn-l a _ 3 k ln—l _ B k’ _
"(9) =7 Z; {8(Fi-1) +46(5) + 6(E)} + 5 D (8(F) + 8(Fi41)) + 56(h,)
J= I=In
j odd
= a3 (8) + 03 (4) + o7 ().

The storage requirement for this rule is

Smax < t°/k1 + k1 /k <°/mik +my = O(k™'/2).

We now show that this quadrature formula has persistent dominated weights and there-
fore is C'N-stable. It is easy to see that the quadrature rule has dominating weights of the

form
{ Cky, J =0 (mod m,),
wj =
J Ck, otherwise.

We thus need only prove the validity of (3.17). Consider a fixed i = 2Im; + io, where
0 < 20 < 2my. By the definition of w;;, when j # 0 (mod 2m,), we have Wit1,i — Wji =
0, for j > ¢. Now let j = 0 (mod 2m;). If j > 2(I + 1)my, both wjy1,; and wji are
quadrature weights corresponding to the part of 0™(¢) determined by Simpson’s rule and
hence wjt1,; — wj,; = 0. Since the only remaining j > ¢ is j = jo = 2(I+ 1)m,, and since
the quadrature weights are dominated by w;, we obtain that

n—2

D (witt,i — wiil = |wjgur,i = wjo il < 2uwi.

J=i+1

Following the outline of the proof of Theorem 4.3 and Theorem 4.4, we may conclude

that . .
n— tn )
D (g2 = g 712)(Bu)|| < Ck? {uuon + / > IDjul| ds} :
=1

7=0

and therefore, we obtain the following.
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Theorem 5.3. Let u be the solution of (1.1) and U} that of the Crank-Nicolson type

scheme (1.6) using the modified Simpson’s rule (5.2). Assume that By, By ¢, and B;:;)s, 1=
1,...,4, are dominated by Ay. If

llwon — uoll < Ch7||uo]|-,
then, for t,, € J,

IUR — u(ta)ll < Ch'{lluollr + /Otn HutllrdS}
+Ck2{ o] + /0 " (24: | Diu| +|]Autt||> ds}.

i=1
6. A third order Padé approxamation. In this section, we consider higher order Padé

approximations, in particular, a third-order case.

6.1. Higher order Padé type scheme. Following common practice, we shall call a

time discretization accurate of order p if, in addition to (3.5), we have, for I = 0, . .. ,p—1,
m I L (=)
I _ - -1
PIRATCVE (—A)+1 (e - i > +O0(M7),  A-0,
=1 =0
Setting

I VAN
’71(/\)=(TW T(/\)-ZT =Y (),  1=0,...,p—1,

=0 i=1

» .
__»p (=AY
w(A) = =y (T(/\) - Z 1)
J=

we shall say that it is strictly accurate of order p if
71(’\)=0’ l=01"°ap_1,
»N)=0(1), -0
For instance, the backward Euler and Crank-Nicolson discretizations are strictly accurate
of order p = 1 and p = 2, respectively.

Let us consider the subdiagonal Padé discretization of strictly accurate of order p, p>1.

By Brenner, Crouzeix, and Thomée [3], if ||uon — uo|| < Ch"||uo||,, we have the error
estimate

(6.1)

(6.2)

ue"nscw{nuourwn sup nut<s)ur}

0<s<lt,

tn
o {tnnu?”m)uz + 4t [l ds} .

Therefore, for a scheme using an Fj-stable quadrature formula, we have by Theorem 3.6
that
U™ —u(tn)ll < C(u){h" + kP} + C|||QFn(Raw)|||.
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6.2. Third order (1,2) Padé approximation. For simplicity, we shall only give a Padé
type scheme based on the third order (1,2) Padé approximation

r(z) = 22 —6
2= 22 44246
When n < 2, we shall choose 77 =0, 75 = 1/2 and 73 = 1, and further
1 4 A+1
NNz ——m Y T — A)= —m—88M8M8M—,
When n > 3, weset ; =4, 1 <7< 3, and let
A+ 23/2 -8 5/2
A= —— A= ——— A = ———————,
gl( ) )\2+4)\+6, g2( ) /\2+4/\+6, 93( ) A2+4)\+6

Thus we obtain a time-stepping procedure strictly accurate of order 3.

Since the subdiagonal Padé approximation has the smoothing property, quadrature for-
mulas with dominated weights are Ej-stable with respect to the above time discretization.
Now we shall construct a third order quadrature formula by means of Simpson’s rule. More
specifically, denote the largest even integer less than or equal to n by j,. When n < 3, we
use the rectangular rule on [0,t,_-], i.e.,

(6.3a) o™ (¢) = k(n — 7:)$(0).
When n 2> 3, we apply Simpson’s rule on [0, t;,_;] and the trapezoidal rule on [t;, _;, tn—,
ie.,
k Jn—i—2
(635) o™ (8) =5 D° ($lts)+48(t51) + blt542)) + w(n =i = n)(B(E5,) + (tn).
7=0
J even

Since, clearly, the quadrature weights of (6.3) are dominated by Ck, the quadrature formula
is Eg-stable. Furthermore, we have

147 ()] < {

and, by the stability of Ex,, we have
108 (@)l < C max {k max, 477 (Bag)ll + o o] (Bh¢)||}.

1<i<m 1<5L2

C(4)k?, n <2,

C(g)k3, n >3,

By R, = A,TIA and since B}, and its derivatives are dommated by An, we obtain further
Q% (Rau)ll < C(w)E®,  ta € J.
This leads to the following theorem.

Theorem 6.1. Let u be the solution of the initial-boundary value problem in (1.1) and
Uy the approximate solution generated by the third order (1,2) subdiagonal Padé type
scheme described above using the modified Simpson’s rule given by (6.3). Assume that
Bh,t and D By(t,s), 0 < i < 3, are dominated by Ap. If

lluon — uoll < Ch|uo]|r,

then
U —u(ta)ll < C(u){h"+ k%), tan€J
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