Blocked LU Factorization in
Engineering Applications on a
Minisupercomputer

A. Gaber Mohamed
Geoffrey Fox

CRPC-TR91131
April 1991

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

SCCS - 94

CRPC-TR91131
"Note:
Blocked LU Factorization in Engineering Applications on a
Minisupercomputer"

A. Gabor Mohamed and Geoffrey C. Fox

Sumbitted to:

Microcomputers in Civil Engineering,
An International Journal
Elsevier Applied Science

for:

ASCE 1991 Engineering Mechanics Conference
Mechanics Computing in the 1990's and Beyond

April 1991

Syracuse Center for Computational Science
Syracuse University
111 College Place
Syracuse, New York 13244-4100
<sccs@npac.syr.edu>
(315) 443-1723

Note
Blocked LU Factorization
in Engineering Applications
on a Minisupercomputer

A. Gaber Mohamed ! and Geoffrey C. Fox !

1 Abstract

This note discusses methods of implementing the Level 3 BLAS in LU fac-
torization used in engineering applications on the Alliant FX/80 minisuper-
computer. Three ways of expressing the LU factorization in terms of blocked
algorithms using Level 3 BLAS are considered. We also compare the perfor-
mance of the parallelism within the computational kernels using a noblock
algorithm that employs Level 1 and Level 2 BLAS with that obtained over
the kernels when using blocked LU with the Level 3 BLAS.

2 Introduction

The importance of parabolic, elliptic partial differential equations and or-
dinary differential equations in engineering problems is well known. Most
physical phenomena are modeled either by a system of PDEs or ODEs. Us-
ing a discretization technique like finite differences or finite elements, we end
up with a system of linear algebraic equations. Even in nonlinear phenom-
ena, one might solve a nonlinear system by iterating over the solution of a
sequence of linear systems [1,2,3,4].
Consider the solution of the dense system of linear equations,

Az = b, (1)

where A is an n-by-n matrix and b is a vector of dimension n.

1Syracuse Center for Computational Science, Syracuse University, Syracuse, NY 13244

One method of solving this problem is to proceed by first factorizing A
into lower and upper triangular matrices L and U , L.e.,

A= LU, (2)
then solving for'y and z in substitution steps:
Ly=b and Uz =y. (3)

In programs for applications of this type, more than 50% of CPU time
is usually spent in matrix factorization. This occurs because most stan-
dard programming practices in Fortran result in more memory accesses than
floating point operations. Our previous numerical experiments showed that
traditional linear algebra-type codes do not achieve high performance on
shared-memory multiprocessors because of lack of data locality [5]. Data
locality is the fundamental problem in parallel computing and has great in-
fluence on the performance of such machines. Use of block-based algorithms
is one of the most efficient ways to improve the performance of shared mem-
ory machines.

Dongarra, Gustavson, and Karp [6] discussed six ways of implementing
the LU factorization obtained by ordering the three nested loops that con-
stitute the algorithm. The following generic Gaussian elimination algorithm
explains the nomenclature:

a(i,j) = a(d,j) - a(i,k)*a(k,j)/a(k,K)
end do
end do
end do

Since Fortran is column-oriented, only three of the six forms called JI K -
SDOT (also known as Crout’s algorithm), JKI -GAXPY, and KJI-SAXPY,
are suitable for Fortran applications. LAPACK [7,8] is a portable public lin-
ear algebra library based on the use of parallelized BLAS kernels, supplied
by the vendors of different global shared-memory machines. The LAPACK
factorization module is called DGETRF and uses the JIK-SDOT algorithm

o

if the block size NB is > 1, and the parallelized Level 3 BLAS kernels-
GEMM for multiplying two matrices, and TRSM for solving a set of trian-
gular systems. If the block size is one, it uses an unblocked factorization
with the parallelized Level 1 BLAS and Level 2 BLAS kernels- GEMV for
multiplying a matrix by a vector, and TRSV for solving a triangular system.
The amount of arithmetic is exactly the same; however, the data access and
updating patterns are quite different.

Our early testing of a preliminary version of LAPACK showed that per-
formance of the noblock algorithm (DGETF2) is superior to the blocked
algorithm coded in DGETRF. This motivated us to study the implementa-
tion of the JIK-SDOT from LAPACK on the Alliant FX/80 and to develop
different blocked algorithms like JKI-GAXP and KJI-SAXPY (a noblock
version of it has been used for years in LINPACK). Here, we compare their
performance with LAPACK’s block and noblock routines.

3 Impact of the Alliant FX /80 Architecture

The FX/80 is a shared memory parallel computer with six interactive pro-
cessors (IPs) and eight pipelined advanced computational elements (ACEs).
Each ACE contains eight 64-bit floating-point registers 32 elements long. A
concurrency control bus connects the eight ACEs and acts as a synchroniza-
tion facility. The ACEs share a 512k byte write-back cache. The cache is
connected to memory by a memory bus [9].

All the arithmetic computations are performed at the top of this hierarchy
(in vector registers). Therefore, the key to efficiency is to keep active data
as close as possible to the top of the hierarchy.

The Alliant Scientific Library offers assembly-coded computational ker-
nels for the basic operations in linear algebra. These kernels are known as
the BLAS (Basic Linear Algebra Subprograms). Different levels of BLAS are
available. For example, if the vectors and matrices involved are of order N,
the Level 1 BLAS provides vector computations of order O(N), the Level
2 BLAS provides matrix-vector computations of order O(N?), and Level 3
BLAS provides matrix-matrix computations with O(N?3) operations. There-
fore, the Level 1 BLAS and Level 2 BLAS do not possess as good a ratio of
operations to data movement as the Level 3 BLAS to achieve high perfor-
mance when exploiting concurrency and vectorization.

4 Block Factorization using BLAS Kernels

Of the six ways of implementing LU factorization, using partial pivoting with
row interchanges, that were discussed by Dongarra, Gustavson, and Karp [6],
we describe the three column-oriented variants using their nomenclature. We
consider the block implementation of the three algorithms.

In all cases work is done on blocks with NB columns using a matrix-
vector based elimination scheme to reduce each block column in turn. Thus,
we consider the three block-column variants and, in each case, all pivoting
is performed only within a noblock algorithm. Any permutation resulting
from this pivoting must be applied to the remainder of the matrix. The
noblock algorithms JK I-noblock and JIK-noblock are considered. A JK I-
noblock is developed based on a pseudo-code described by Dayde and Duff
[10]. The JIK-noblock or DGETF2 from LAPACK [7,8] is used. .Our numer-
ical experiments show that the JIK-noblock’s performance is superior to the

J K I-noblock’s performance. Therefore, in all cases, we use the JI K-noblock
or DGETREF subroutine from LAPACK.

4.1 Block JIK-SDOT (Crout’s Algorithm)

In the JIK-SDOT algorithm, at the kth step of the elimination process, one
block column of L and one block row of U are computed. These computa-
tions require the following operations:

¢ updating of the diagonal and subdiagonal blocks of the k-th block col-
umn (GEMM);

e factorizing the kth block column into LU factors, performing numerical
pivoting and using Level 2 BLAS (GEMV and TRSV);

e updating the kth block row of U (GEMM); and
e computing the k-th block row of U (TRSM).

4.2 _Block JKI-GAXPY

In the JKI-GAXPY algorithm, at the kth step of the elimination, a block
column of both matrices L and U is computed. These computations require

4

the following operations:

e computing the kth superdiagonal block of U (TRSM);
e updating the kth diagonal and subdiagonal blocks (GEMM); and

e factorizing the kth block column into LU factors, performing numerical
pivoting and using Level 2 BLAS (GEMV and TRSV). ’

4.3 _Block KJI-SAXPY

At the kth step of the elimination a block column of L and a block row of
U are computed and the corresponding transformations are applied to the
remaining reduced matrix. This algorithm requires the following operations:

e factorizing the kth block column into LU factors, performing numerical

pivoting and using Level 2 BLAS (GEMV and TRSV);
e computing the kth block row of U (TRSM); and
e updating the remaining matrix using a block outer product (GEMM).

To obtain a copy of all the software used in this study, send a one-line
e-mail message “send index” to allus@netlib.npac.syr.edu. Allus is a free
software distribution electronic service. The index lists information on how to
access all the programs used in this study. Users who have problems accessing
these programs should send e-mail to the authors at agm@nova.npac.syr.edu.

5 Numerical Results

In all cases, the assembly-coded BLAS routines Level 1, Level 2, and Level 3
from the Alliant scientific library are used, as well as some routines from LA-
PACK. The specific BLAS routines used are DGEMM, DTRSM, DGEMV,
DSCALL, IDAMAX, and DSWAP. LAPACK routines include: JIK-noblock
(DGETF?2) for partial pivoting with row interchanges; DLASWP to perform
a series of row interchanges on blocks of the matrix A using the DSWAP rou-
tine from the Alliant library; and DGETRS for solving the system Ax = b

5

after the matrix A is LU factorized by any of the three block-LU factor-
ization routines considered in this study. Also, from the LAPACK library,
the routines XERBLA for error handling and the LSAME auxiliary function
are used. The performance is measured in MFLOPS (Million Floating-point
Operations Per Second) for solving the whole system Az = b, i.e., factor-
ization by any of the three blocked algorithms and solution by DGETRS.
The performance is measured on a stand-alone basis for a matrix of size
N = 100,200,........ ;1000 on 8 ACEs. The compiler options and flags used
in all cases are “-O -DAS -lmath.”

Our numerical experiments of Crout’s method from LAPACK, after nec-
essary modifications to use the FX/BLAS, show that the performance for
NB =1 is higher than that for NB = 32 if the matrix size is N < 500,
as shown in Figure 1. The code is written to use the noblock algorithm if
NB =1 and the blocked version if NB > 1. The noblock algorithm is built
around the use of Level 2 BLAS (GEMV and TRSV). Level 2 BLAS does not
possess a good enough computational intensity (ratio of operations to data
movement) to achieve high performance when exploiting concurrency and
vectorization. However, parallelization at this level can provide a reasonable
performance improvement when efficient parallelization tools for fine gran-
ularity (especially low-cost synchronizations) are available. The hardware-
controlled microtasking provided by the Alliant is a good example of this. It
is the hardware concurrency control in the Alliant FX/80 that explains why
the assembly-coded Level 2 BLAS can provide a reasonable performance on
this machine.

On the other hand, Dayde and Duff [10] reported that their numerical
experiments, on the CRAY-2, Cyber 205, and IBM 3090-200/VF showed
that the JIK-SDOT version was uniformly the worst. This is because much
of the updating is done on a block row of U where the vector lengths are
the same as that of the block size. Qur results also show that JIK-SDOT
is penalized by the short vector length inherent in this algorithm. This is
confirmed by our results shown in Figure 1. It is clear from Figure 1 that the
performance improves as the block size increases. The best performance is
obtained for the block size equivalent to the total number of computational
elements in the complex multiplied by 32 (256 in our case) since the number
of ACEs used is 8.

Figures 2-5 show the performance comparison for the three column-oriented

algorithms JIK-SDOT, JKI-GAXPY, and K JI-SAXPY for a block size of

6

32, 64, 128, and 256 on a complex size of 8 and stand-alone timing with the
performance of the JIK-noblock algorithm (NB =1 and using Level 1 and
2 BLAS from the Alliant library). KJI-SAXPY achieves the best perfor-
mance for all block sizes. The highest performance is obtained for a block
size of 64, and this is in agreement with the experimental results reported by
Gallivan, Jalby, Meier, and Sameh [11]. Although Dongarra, Gustavson, and
Karp [6] stressed the different access patterns of these three algorithms; for
example, K JI-SAXPY requires about twice as many transfers to memory
as JIK-SDOT and JKI-GAXPY, we do not see the effect of this in our
results. This is because memory and cache management mechanisms mask
such differences.

6 Conclusion

We have described the Fortran-oriented methods for block LU factorization
on a shared memory parallel vector minisupercomputer. These methods are
also ready for portable implementations on other shared memory parallel
vector computers. Our numerical experiments and performance comparisons
showed the following:

e The block JIK-SDOT algorithm is very poor when block size is small
due to the fact that most vector lengths in this algorithm are the same
size as the block.

e The block KJI-SAXPY algorithm’s performance is superior to all other
blocked algorithms for any block size.

.

e The noblock JIK-SDOT algorithm’s performance is superior to all
.blocked algorithms for a matrix of size N < 500. This is due to the
built-in hardware concurrency control in the Alliant FX/80.

We recommend blocked LU factorization parallelism over the assembly-
coded Level 3 BLAS for sufficiently large problems. Efficient utilization of
the hardware and assembly-coded BLAS Level 1 and Level 2 should be used

for small problems.

References

. Mohamed, A.G., and Valentine, D.T., “Taylor’s Vortex Array: A New
Test Problem for Navier-Stokes Solution Procedures,” A Chapter in
Solution of Superlarge Problems in Computational Mechanics, edited
by Kane, J.H., Carlson, A.D., and Cox, D. L., pp. 167-181, Plenum,
New York, 1989.

. Fox, G., Johnson, M., Lyzenga, G., Otto, S., Salmon, J., and Walker,
D., Solving Problems on Concurrent Processors, Vol. I, Prentice Hall,
New Jersey, 1988.

. Mohamed, A.G., and Valentine, D.T., “Numerical Predictions of Tur-
bulent Flow in an Annular Pipe,” Proceedings of the ASME Interna-

tional Computers in Engineering, Vol. II, pp. 471-479, Boston, MA,
August 1990.

. Mohamed, A.G., Valentine, D.T., and Hessel, R.E., “Numerical Study
of Laminar Separation Over an Annular Backstep,” Accepted for pub-
lication and in press at Computers & Fluids, Jan. 1991.

. Mohamed, A.G., “Block-based Solvers for Engineering Applications,”
Mechanics Computing in the 1990’s and Beyond, Proceedings of the
ASCE Engineering Mechanics Speciality Conference, Columbus, Ohio,
May 19-22, 1991.

. Dongarra, J., Gustavson, F.G., and Karp, A., “Implementing Linear
Algebra Algorithms for Dense Matrices on a Vector Pipeline Machine,”
SIAM Review, Vol. 26, No. 1, pp. 91-112, Jan. 1984.

. Anderson, E., and Dongarra, J., LAPACK Working Note 18: Imple-
mentation Guide for LAPACK, University of Tennessee, CS-90-101,
April 1990.

. Anderson, E., Dongarra, J., Greenbaum, A., McKenney, A., Du Croz,
J., Hammarling, S., Demmel, J., Bischof, C., and Sorensen, D., “ LA-
PACK: A Portable Linear Algebra Library for High-Performance Com-
puters,” Supercomputing 90, pp. 2-11, Dec. 1990.

9.

10.

11.

Alliant Computer Systems Corporation, FX/Series Architecture Man-
ual , Littleton, MA, 1988.

Dayde, M. J., and Duff, I. S., “Level 3 BLAS in LU Factorization
on the CRAY-2, ETA-10P, and IBM 3090-200/VF,” The International
Journal of Supercomputer Applications, Vol. 3, No. 2, pp. 40-70,
Summer 1989.

Gallivan, K., Jalby, W., Meier, U. and Sameh, A., “Impact of Hier-
archical Memory Systems on Linear Algebra Algorithm Design,” The

International Journal of Supercomputer Applications, Volume 2, No.1,
pp.- 12-48, Spring 1988.

4

30

MFLOPS

v . T v T . r v . .
0 200 400 600 800 1000 1200
Matrix Size N

Figure 1 : Performance of blocked JIK-SDOT for different block size NB.

30
Block KJI-SAXPY
JIK-noblock

20 -
® Block JIK-SDOT
9
=5

10

0 v T r : T v r v r v
0 200 400 600 800 1000 1200

Matrix Size N

Figure 2 : Performance of different blocked algorithms for NB = 32 and JIK-noblock.

30
| Block KJI-SAXPY
JIK-noblock Block JIK-SDOT
20 - -
on
o)
o Block JKI-GAXPY
b
10
0 —T T —
) 200 400 600 800 1000 1200

Matrix Size N
Figure 3 : Performance of different blocked algorithms for NB = 64 and JIK-noblock.

30
Block KJI-SAXPY
Block JIK-SDOT
JIK-noblock

20 -
%)
o
g

10 4

0 v T v I . v T v . v
0 200 400 600 800 1000 1200
Matrix Size N

Figure 4 : Performance of different blocked algorithm for NB = 128 and JIK-noblock.

-y

30

Block KJI-SAXPY
JIK-noblock

20 -
) Block JIK-SDOT
% and JKI-GAXPY
™
=

10 -

0 M 1 v 1] 1 1
0 200 400 600 800 1000
Matrix Size N

Figure 5 : Performance of different blocked algorithms for NB = 256 and JIK-noblock.

1200

.

.

