On-the-fly Detection of
Data Races for Programs with
Nested Fork-Join Parallelism

John Mellor-Crummey

CRPC-TR91133
1991

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

On-the-fly Detection of Data Races for Programs with Nested
Fork-Join Parallelism*

John M. Mellor-Crummey!
(johnmcQrice.edu)
Center for Research on Parallel Computation
Rice University, P.O. Box 1892
Houston, TX 77251-1892

August 1991

Abstract

Detecting data races in shared-memory parallel programs is an important debugging prob-
lem. This paper presents a new protocol for run-time detection of data races in executions of
shared-memory programs with nested fork-join parallelism and no other inter-thread synchro-
nization. This protocol has significantly smaller worst-case run-time overhead than previous
techniques. The worst-case space required by our protocol when monitoring an execution of a
program P is O(V N), where V is the number of shared variables in P, and N is the maximum
dynamic nesting of parallel constructs in P’s execution. The worst-case time required to perform
any monitoring operation is O(N). We formally prove that our new protocol always reports a
non-empty subset of the data races in a monitored program execution and describe how this
property leads to an effective debugging strategy.

1 Introduction

Parallel programs for shared-memory multiprocessors can exhibit schedule-dependent bugs, which
cause erroneous behavior on some, but not all, execution schedules. The principal cause of such
errors is unsafe or inadvertent communication through shared variables. If one thread of execution
updates a shared variable concurrently with another thread’s access to that variable, the program’s
behavior may depend on the temporal order of the accesses. Such concurrent accesses are known
as “data races” or “access anomalies”.

Pinpointing data races is difficult since adding diagnostic statements to a program can alter the
relative timing of operations and change the set of execution schedules likely to occur. The act of
trying to isolate a data race responsible for a schedule dependent error can cause the error to vanish.
Thus, the technique used to debug sequential programs — re-executing them with instrumentation
to provide information about program variable values — is likely to be ineffective for pinpointing
data races in parallel program executions.

Three principal strategies have been proposed for isolating data races in parallel programs:
static analysis, post-mortem analysis, and on-the-fly analysis.

Static analysis relies on classical dependence analysis of a program’s text to determine when two
references may refer to the same shared variable. Static techniques conservatively report depen-
dences that include all potential data races that could occur during parallel execution. Strategies

*To appear in Proc. of Supercomputing 91, Albuquerque, NM, November 1991.
tThis work was supported in part by National Science Foundation Cooperative Agreement CCR-9045252.

range from those that consider loop parallelism [1, 4], to those that consider more general tasking
models [3, 14]. The conservative nature of static techniques, however, often leads to reports of data
races that could never occur during execution. Experience with static analysis tools has shown
that the number of false positives reported using these techniques is too high for programmers to
rely exclusively on static methods for isolating data races. Combining static analysis with symbolic
execution offers hope for reducing reports of infeasible races [15].

Post-mortem techniques for detecting data races involve collecting a log of events that occur
during a program’s execution and post-processing the log to look for evidence of data races [2, 5, 10].
If exhaustive logs are recorded, post-mortem techniques will report only feasible races. The primary
drawback with post-mortem techniques is that execution logs can be enormous for parallel programs
that execute for more than a trivial amount of time.

On-the-fly techniques involve augmenting a program to detect and report data races as they
occur during its execution [6, 7, 9, 11, 12, 13]. These techniques maintain additional informa-
tion at run-time to determine when conflicting accesses to a shared variable have occurred. Like
post-mortem techniques based on exhaustive logging, on-the-fly techniques report only feasible
races. In general, on-the-fly techniques require less space than post-mortem techniques since much
information can be discarded as an execution progresses.

On-the-fly techniques for detecting data races fall into two classes: summary methods [9, 12, 13]
that report the presence of a data race with incomplete information about the references that caused
it, and access history methods [7, 11] that can precisely identify each of a pair of accesses involved
in a data race. From a programmer’s standpoint, the precision of the information possible using
access history methods is desirable for debugging. In the remainder of this paper, we focus on
access history methods.

To pinpoint accesses involved in data races, access history methods maintain two types of
information at run time: the threads (along with annotations identifying the source code statements
involved) that have accessed each shared variable, and information that enables determination of
whether any two threads are logically concurrent. When a thread ¢ accesses a shared variable, the
thread

1. determines if any thread in the history list performed an access that conflicts with ¢’s current
access,

2. reports a data race if a thread that made a conflicting access is logically concurrent with ¢,

3. removes from the history list the names of any threads that sequentially precede ¢ in the
execution and adds ¢ to the list.

A drawback of previous access history protocols (i.e., those used by Dinning & Schonberg’s
Task Recycling [6, 7] and Nudler & Rudolph’s English Hebrew Labeling [11]) is that in the worst
case, each shared variable’s access history must contain names for as many as T threads — where T'
is the maximum amount of logical concurrency in the program — to guarantee that these protocols
will never certify a program execution as race free when it actually contains a data race. The space
requirements for maintaining such long access histories limit the usefulness of these techniques.
In practice, approximations to these protocols have been implemented that maintain abbreviated
access histories of length one or two [6, 7]; however, using abbreviated histories, these protocols
can erroneously certify program executions as being free of data races.

In this paper we present a new access history protocol for detecting data races on the fly in
executions of programs with nested fork-join parallelism. In contrast to previous access history
protocols, our protocol bounds the length of each variable’s history list by by a small constant that

is program independent, yet our protocol ensures that if any data races exist in an execution, at
least one will be reported. With this condition, an execution will never be erroneously certified as
race free.

Bounding the length of history lists has two advantages. First, it reduces the worst-case space
requirements. Second, it reduces the worst-case number of operations necessary to determine
whether a thread’s access is logically concurrent with any prior conflicting accesses.

Section 2 presents a graph model of fork-join program executions. This model serves as a
framework for proving the correctness of our access history protocol. Section 3 presents Offset-
Span Labeling, an on-line method for assigning names to threads in executions of programs with
nested fork-join parallelism. Using Offset-Span Labeling, the concurrency relationship between any
pair of threads can be inferred by comparing their names. Although similar to English-Hebrew
Labeling [11], in the worst-case, Offset-Span Labeling assigns asymptotically shorter thread names,
which lead to improved space and time bounds for access history protocols that use them. Section 4
presents our new protocol that uses bounded access histories to detect data races. Using properties
of fork-join graphs and their respective Offset-Span labelings, we prove that if any data races
exist in an execution of a program with nested fork-join parallelism but no other inter-thread
synchronization, our protocol will report at least one data race for each shared variable involved in
a race. Section 5 compares the time and space overhead of using our access history protocol and
Offset-Span labels against the overhead with incurred using other access history methods. Section
6 describes the current status of this work and directions for future work.

2 A Model of Concurrency in Fork-Join Program Executions

This section defines fork-join graphs that model the run-time concurrency structure possible using
closed, nestable fork-join constructs. Parallel Fortran programs that use nested parallel loops and
sections are an instance of this programming model.

A fork operation terminates a thread and spawns a set of logically concurrent threads. Each
fork operation has a corresponding join operation; when all of the threads descended from a fork
terminate, the corresponding join succeeds and spawns a single thread. A thread participates in
no synchronization operations other than the fork that spawned it and the join that terminates it.
Each vertex in a fork-join graph represents a unique thread executing a (possibly empty) sequence
of instructions. Each edge in a fork-join graph is induced by synchronization implied by a fork
or join construct. A directed edge from vertex t; to vertex t; indicates that thread ¢; terminates
execution before thread t; begins execution. Figure 1 shows a fragment of parallel Fortran and a
fork-join graph that models the concurrency present during an execution of the code. Entering a
parallel loop corresponds to a fork; exiting a parallel loop corresponds to a join. Each vertex in the
fork-join graph is labeled with the sequence of code blocks whose execution it represents.

Before formally defining fork-join graphs, we define some useful notation for directed acyclic
graphs (DAGs). In a DAG G = (V, E), the path relation z ~¢ y is true for z,y € V iff there is a
path from z to y along edges in E; similarly z + ¢ y is true iff there exists no directed path from
z to y along edges in E. The path star relation z ~g y is true for z,y € V iff s ~mgyVz =y,
namely there is a path from z to y along edges in E, or = and y are the same vertex.

Definition 1 constructively defines fork-join graphs which represent the concurrency relationships
among threads in an execution of a fork-join program. Fork-join graphs are a subset of series-parallel
graphs. The rules for constructing fork-join graphs ensure that no vertex has a singleton predecessor
with outdegree 1. Such a pair of vertices would represent a pair of threads that execute sequentially.
The rules for composing fork-join graphs collapse such pairs since their concurrency relationship is

[code block Al
PARALLEL DO I=2,4
[code block B]
IF (I.EQ.2) THEN
PARALLEL DO J = 1,2
[code block C]
ENDDO
ENDIF
[code block D]
PARALLEL DO J=1,I
[code block E]
ENDDO
[code block F]
ENDDO
[code block G]

Figure 1: A fragment of parallel Fortran and its corresponding fork-join graph.
trivial.
Definition 1 A fork-join graph G = (V, E, Vsrc, Usnk) is @ DAG that
o has a designated source vertezr vsy. such that vy, ~G v, forallve V.
o has a designated sink verter Veni such that v ~7 Venk, for allv e V.
e can be constructed using the following rules:

1. A singleton vertez v denotes a trivial fork-join graph G = ({v},0,v,v).
2. A compound fork-join graph can be formed in two ways:
parallel composition

A set S = {Gi = (Vi, Eiy Varciy Vsnki)|t = 1,1} of n > 2 disjoint fork-join graphs can
be linked in parallel to form a new fork-join graph G = (V, E, vsrc, Vsnk) where

V = {vsrca vsnk} + U£=l,n ‘/i
E U;=1’n (Ei + {(vsrm 'Usrci)} + {(vsnki’ vsnk)})

series composition
A pair of disjoint fork-join graphs, Gi1 = (V1,FE1,Vsrc1,Vsnk1) and Gy =
(V2, E2, Vsrca, Vsnk2), can be linked in series by merging vertices vsnky1 and vsreo to
form a new fork-join graph G = (V, E, Vsrcy, Vsnk2), where

|4
E

Vl + ‘/2 - {'vsrc2}
Ey+ E; — {('Uarcm v)l('”arc'h 'v) € E2} + {(vsnkla 'v)l(varc% ’U) € E2}

The parallel composition rule describes how to link a set § of arbitrary fork-join graphs in
parallel by nesting them inside a new, closed fork-join construct. The parallel composition rule adds
two new threads vs,., the thread before a new fork, and vsnk, the thread after the corresponding
new join, as well a synchronization edge from v,,. to the source node of each fork-join graph in §,
and a synchronization edge from the sink node of each fork-join graph in S to vspk. In figure 1, the

4

fork-join graph for each parallel loop is formed by parallel composition of the fork-join graph for
each loop interation.

The series composition rule describes how to link a pair of arbitrary fork-join graphs in sequence
by merging the sink vertex of the first graph with the source vertex of the second graph and retaining
all of the edges. In figure 1, each node labeled “B,D” is the result of series composition of trivial
fork-join graphs representing code blocks B and D respectively. Similarly, the fork-join graph that
represents iteration I=2 of the outermost parallel loop is the series composition of the fork-join
graphs for the two loops nested inside.

Two vertices v; and v, in a fork-join graph G represent logically concurrent threads in an
execution of a fork-join program iff v1 6§ v2 A v2 6% v1. The only ways this formula can be
falsified is if v; and vy are not distinct, or if v; ~g v2 V v2 ~»g v;. If the vertices are not distinct,
the threads are the same and thus not concurrent. In the second case, the vertices are related by
a path of directed edges. The interpretation of a directed edge (as described earlier) as temporal
precedence and the transitivity of this precedence relation for paths of edges means that v; and v,
could not in fact be concurrent if they are connected by a path of directed edges.

To facilitate inductive proofs about fork-join graphs, we define rule(G) to be the minimum
number of applications of the series and parallel composition rules needed to construct a fork-join
graph G from a set of trivial fork-join graphs. (It is important to define rule(G) to be the minimum
number of rule applications since applying series composition to a pair of trivial fork-join graphs
results in another trivial fork-join graph.)

3 Offset-Span Labeling

Offset-Span labeling is an on-line scheme for labeling each thread in a fork-join program execution.
Each thread’s label contains information that identifies its position in a corresponding fork-join
graph. By comparing the labels of two threads, their concurrency relationship can be deduced.
Offset-Span labeling is similar to Nudler and Rudolph’s English-Hebrew labeling [11]. In both
Offset-Span (OS) and English-Hebrew (EH) labeling, a thread in an execution of a fork-join pro-
gram computes its own unique label using only local information — specifically, the label(s) of its
immediate predecessor(s) in a fork-join graph. (In contrast, the Task Recycling technique [6, 7]
requires a centralized data structure to maintain information about free task descriptors. It is
preferable to avoid use of centralized data structures in parallel programs since they tend to in-
- troduce serial bottlenecks.) In both EH and OS labeling, the length of a thread’s label increases
along with the nesting depth of fork-join constructs. Also, both schemes use a lexicographic-style
comparison of labels to determine if the threads they represent are concurrent.

An advantage of OS labeling is that its definition guarantees that the length of a thread’s
OS label is always proportional to the current nesting depth of the fork-join pair surrounding the
thread. The length of the OS label for a thread following a join is always equal to the length of the
OS label for the thread that executed the matching fork. Using EH labeling (as described in [7]),
the length of a thread’s label can grow in proportion to the number of fork operations encountered
along the execution path leading to the creation of the thread; the length of an EH label following
a join is greater than the length of the EH label for the thread that executed the matching fork.
Dinning and Schonberg mention the existence of a heuristic [7, p. 4] that reportedly limits the
length of EH labels to the level of nesting. It is important to minimize the length of labels used
by these methods since shorter labels reduce the space required to store them at execution time as
well as the time spent comparing them.

Definition 2 An Offset-Span labeling of a fork-join graph G assigns a label consisting of a non-
null sequence of ordered pairs to each of the vertices of G. Each ordered pair [0, 8] consists of two
components: the offset and the span. The span indicates the number of threads spawned by an s-
way fork from which this label pair is descended. The offset distinguishes among relatives descended
from the same parent. An OS labeling of a fork-join graph G = (V, E, Vsrc, Vsnk) is computed as
follows given an initial OS label for vy, that consists of a non-null sequence of offset-span pairs:

1. For a vertez v € V of outdegree n > 1 (v is the source node of some fork-join subgraph of
G) that has an OS label of L, where L is some non-empty sequence of label pairs (hereafter,
we use the notation OSL(v) = L): let v; denote the ith child of v, 0 < i < n (the ordering
of the children is insignificant). Assign OSL(v;) = Ll[i, n], where juztaposition of L and [i,n]
implies concatenation.

2. For a vertez v of indegree n > 1 (v is the sink node of some fork-join subgraph of G) that
has some labeled vertez v' as a predecessor: 3L ywzyOSL(V') = Llu,w)[z,y], where L is a
(possibly null) sequence of label pairs. (In a fork-join graph, OSL(v') must be of this form.
Any node in G other than v or Vsni has an OS label consisting of at least two label pairs.
By the definition of fork-join graphs, v,y cannot be the predecessor of any vertez of indegree
> 1 and vy cannot be the predecessor of any verter.) Assign OSL(v) = L{u + w,w].!

The labeling is complete since by the composition rules no vertex in a fork-join graph can
have a predecessor of outdegree 1 and itself be of indegree 1. The labeling is consistent since the
composition rules guarantee that any vertex that is a successor of a vertex with outdegree > 1 has
indegree 1. Comparisons between two labels are made by comparing the corresponding ordered
pairs in the label sequences from left to right. Each thread’s OS label in an execution of a program
with closed, nestable fork-join parallelism can be computed on line efficiently from the label of its
predecessor. Figure 2 shows an OS labeling of the fork-join graph shown in figure 1.

The following lemma shows the relationship between the labels assigned to the source and sink
of a fork-join graph. Note that this lemma also implies that the length of each thread’s OS label
assigned using the rules of definition 2 is directly proportional to the nesting depth of fork-join
constructs surrounding the thread.

Lemma 1 In an OS labeling of a fork-join graph G = (V, E,Vsrc, Vsnk), if Vsrc has a label Plo, s,
where P is an arbitrary (possibly null) sequence of ordered label pairs and o and s are arbitrary
constants, then vs,i has label P[0, s], for some o' such that o mod s = o’ mod s.

Proof Induction on the size of G as measured using rule(G).

Base Case. For any trivial graph G (rule(G) = 0), the lemma is satisfied with o’ = o.

Induction Hypothesis. Assume that the lemma holds for every fork-join graph G with rule(G) < k.
Induction Step. Show that the lemma holds for each fork-join graph G with rule(G) = k. We
consider applying each of the composition rules to a collection of G;,i = 1,n (n > 2) fork-join
graphs with Y7, rule(G;) = k — 1.

series An application of the series composition rule to form G = (V, E, s, Vsnke) from 2
disjoint fork-join graphs Gy = (V4, E1,Vsrc1, Usnk1) and Ga = (Vz, E2, Vsrc2, Usnk2), Where
rule(G1) + rule(G2) = k — 1. By the induction hypothesis, the lemma holds for both G,
and G, separately. Let v,,.; have OS label Plo,s]. By the induction hypothesis, vsnk; has
label P[oy,s], where o mod s = 0; mod s. Let v,c, have OS label P[oy,s], by the induction
hypothesis vsnk2 has label P[og, s], where 0 mod s = 02 mod s. The series composition rule

1This label is the same regardless of the predecessor v’ chosen. The label of a sink node for a fork-join subgraph
is determined by the label of the corresponding source node. (See Lemma 1.)

6

(10,1][0,3]

o'o [0,1][0,3][1,2]

[0,1](3,3]% [0,1][1,3][0,3]

[0,1][0,3][0,2]

Olo,1](2,3][0,4] [Q[0,1]2,3][2,4]
0,1](2,3][1,4]Qf [0,1][2,3](3,4O

Figure 2: An Offset-Span Labeling of a fork-join graph.

merges Vsnky With vgercp. After the merge, the labeling remains consistent. Since vsrc7 has no
incoming edges in G2, the label of the merged node is completely determined by the labels

- of the ancestors of vsnk; in Gyp; thus, the label of the merged node remains P[oy,s]. Since
Vsnk1 has no outgoing edges in G1, the outdegree of the merged node in G remains the same
as that of v,s.c in G2. Therefore, the labels of the descendants of v,,., remain the same. By
transitivity, o mod s = 0, mod s and the lemma is satisfied for graph G.

parallel An application of the parallel composition rule to form G = (V, E,vsrc, Vsnk) from a
set S = {G; = (Vi, EiyVsrcirVsnki)lt = 1,n} of n > 2 disjoint fork-join graphs, where
* .rule(G;) = k — 1. By the induction hypothesis, the lemma holds for both each G;
separately. Let vy..; have OS label P'[i — 1,n]. By the induction hypothesis v ni; has label
P'[o;,n], where (i — 1) mod n = o0; mod n. The parallel composition rule links v,-. to each
Vsrei, © = 1,n and links vsnk;, ¢ = 1,1 t0 venk. Let the OS label of v,,. be Plo,s]. Letting
P' = P[o,s] makes the all of the labels of nodes in subgraphs G;, i« = 1,n consistent with
the labeling rules. By labeling rule 2, v, is assigned label P[o + s, s] since its ancestors
Vsnki, ¢ = 1,n have OS labels P’[0;,n] = PJo, s][0;, n] respectively. The lemma is satisfied for

G since o mod s = (0 + s) mod s.

The lemma follows by the principle of induction. o

In the following lemma, we show that by comparing the OS labels for a pair of threads in an
execution, it is straight-forward to determine if one thread has finished before a second thread begins
(i.e., the vertices representing the threads are related by ~»¢ in the fork-join graph G representing
the execution).

Lemma 2 Given the OS labeling of a fork-join graph G = (V, E, Vs, Vsnk), T ~>G ¥, 15 true for

x,y € V iff one of the following properties holds for their respective OS labels, OSL(z) and OSL(y)

case 1 3ps(OSL(z) = P)A(OSL(y) = PS) where both P and S are any non-null sequence of
ordered label pairs.

case 2 3ps,,5,.00.04,8(0SL(z) = Ploz,s]Sz) A (OSL(y) = Ploy,s]Sy) A (0z < 0oy) A (0 mod s =
oy mod s) where P, S, and S, are (possibly null) sequences of ordered pairs.

Proof Any fork-join graph that contains more than one vertex must have been constructed through
some sequence of applications of the parallel and series composition rules. Let G5 = (Vs, Es, Usrcss Vsnks)
be the smallest fork-join subgraph of G that contains both z and y. Case 1 holds iff G, was con-
structed from a set of disjoint fork-join graphs using the parallel composition rule, £ = v,,.s, and
Y € Vs—{Vsrcs, Vsnks}. Case 2 holds iff (a) G, was constructed from a set of disjoint fork-join graphs
using parallel composition, € Vs — {Usnks}, and y = Vsnks, or (b) G, was constructed by linking
some pair of disjoint fork-join graphs using series composition. In case 2, P is null iff G, = G,
Sz is null iff £ = Vspcq, and Sy is null iff y = venk,. The enumeration of ancestor relationships
covered by these cases is complete. Case 1 and 2a cover all ancestor relationships if the last rule
applied to form G, was the parallel composition rule. In these cases has to be v,,., or y has to be
Vsnks, Otherwise G, would not be the smallest subgraph that contains both z and y with z ~¢g y.
Case 2b covers all possible ancestor relationships if the last rule applied to form G, was the series
composition rule. a

Below, we define a left of relation that defines a partial ordering of vertices in a fork-join graph
that are not related by the ~7 relation (i.e., vertices that represent concurrent threads). The
access history protocol described in section 4 requires a labeling scheme for which a left-of relation
can be defined. English-Hebrew labels contain sufficient information to compute a left-of relation,
but labels assigned by the Task Recycling technique do not. Here we define a left-of relation for
OS labels.

Definition 3 For an OS labeling of a fork-join graph G = (V, E, Vspc, Vsnk), the “left of” relation,
denoted z <G v, is true for z,y € V iff the following property holds for their OS labels OSL(z) and
OSL(y)

3ps.,s,(0SL(z) = Plos,s]Sz) A (OSL(y) = Ploy,s]Sy) A (0 mod s < o, mod s), P is
a non-null sequence of ordered label pairs, S; and S, are (possibly null) sequences of
ordered label pairs.

The left-of relation establishes a canonical ordering of relatives with respect to their lowest
common ancestor.

4 A Protocol for Detecting Data Races

Two accesses to the same variable are conflicting if at least one of them is a write. A data race in
the execution of a fork-join program exists when two or more concurrent threads perform conflicting
accesses to the same shared variable. In terms of the fork-join graph model, a data race exists in an
execution if two threads represented by vertices v; and v; in a fork-join graph @ perform conflicting
accesses to the same shared variable and v; 24§ v; A vj %45 v (the threads are unordered by
synchronization, and thus their executions are logically concurrent).

To detect data races on the fly, each potentially unsafe access to a shared variable during
a parallel program execution must be monitored. A program transformer must allocate access
history storage for each shared variable with a reference that is the endpoint of a dependence

8

carried by a parallel construct (i.e., static analysis was unable to prove that some reference by a
logically concurrent thread does not result in a conflicting access to the variable). At each variable
reference that is an endpoint of a dependence carried by a parallel construct, the transformer must
add a call to a monitoring protocol that inspects and updates the variable’s access history. The
transformer must also insert statements that enable each thread to compute a label that reflects
its concurrency relationship to other threads. At execution time, the monitoring protocol reports
any logically concurrent, conflicting accesses to a shared variable.

For an execution of a fork-join program, the existence of a data race involving a shared variable
is solely a function of which threads access it and the concurrency relationship between the threads
that is implied by the fork and join constructs in the program. Therefore, we can consider data
races for each shared variable independently.

We define an access interleaving to model a set of accesses to a shared variable by threads in a
fork-join program.

Definition 4 An access interleaving for a shared variable X by threads whose run-time concurrency
relationship is modeled by a fork-join graph G = (V, E,Vsrc, Vsnk) is denoted IZ. IX consists of
a totally ordered sequence of accesses Ay,...,A,. Each access is performed by some thread; let
vg(A) € V be the vertex in G that represents the thread that performed the access A. An access
A; € Ig marks verter vg(A;) with either an X,ead or an Xyrite token. Multiple accesses in Ig may
mark the same vertez, and a vertex can be marked with both X eqq and Xyrite tokens. No access
Aj € Ig may mark a vertez vy € V if some A; € IX, i < j previously marked a vertez v, € V such
that vy ~g v;.

The definition of an access interleaving assumes sequentially consistent [8] shared memory. We refer
to an access in Ig;‘ as a read if it marks a vertex with an X,..q token, or as a write if it marks a
vertex with an X, token.

In the remainder of this section, we present protocols for detecting data races caused by con-
flicting accesses to a single shared variable and prove their correctness. We formulate the problem
of on-the-fly detection of data races as detecting conflicting, logically concurrent accesses in an
access interleaving for a shared variable. An access interleaving IZ for a variable X and a fork-join
graph G = (V, E, vsr¢, Vsnk) is checked if for each access A € Ig

e if A is a read the checkread protocol (figure 3) is called with a pointer to X’s access history
and the label for thread vg(A) (the thread performing the access), and

o if A is a write the checkwrite protocol (figure 4) is called with a pointer to X’s access history
and the thread label for vg(A).

The checkread and checkwrite protocols determine whether an access by the current thread is
involved in a data race with any access earlier in the interleaving. Any thread labeling scheme is
suitable for use with this protocol as long as the ~q, ~¢, and <g relations can be determined
using label comparisions.

If checkread is invoked when any thread reads a shared variable X, the protocol guarantees
that the R1y component of X’s access history contains the label for the “lowest”, “rightmost” thread,
and Ryj, the label for the “lowest”, “leftmost” thread. The concepts of “lowest”, “rightmost”, and
“leftmost” are well-defined for threads in an execution modeled by a fork-join graph G in terms
of the ~g, ~%, and < relations. If checkwrite is invoked when any thread writes to X, the
protocol guarantees that the W1ast component of X’s access history contains the label for the thread
that last performed a write to that variable.

The theorems that follow in this section show that the checkread and checkwrite protocols
guarantee that if an access interleaving contains one or more data races, at least one of these races

checkread(access_history, thread_label)
if access history”.Wiast 7 thread label then
report a WRITE-READ data race
endif
if thread_label <G access_history”.Rj; or
access_history”.Rjj) ~g thread_label then
access_history .R;j := thread_label
endif
if access history”.Rjy <g thread_label or
access_history .Rjr ~g thread_label then
access_history”.Rjr := thread_label
endif
end checkread

Figure 3: Monitoring protocol for a read.

checkwrite(access history, thread label)
if access_history” .Wiast 7> thread label then
report a WRITE-WRITE data race
endif
if access_history".R11 7%, thread_label or
access_history”.Riy 74 thread_label then
report a READ-WRITE data race
endif
access_history”.Wjast := thread_label
end checkwrite

Figure 4: Monitoring protocol for a write.

will be detected and reported. Thus, using these protocols, an execution will be reported free of
races iff no data races are present.

Theorem 1 In a checked access interleaving Ig for a variable X and a fork-join graph G =
(V, E,Vsrc, Vsnk), checkwrite will report a data race for a write in IZ if it is logically concurrent
with some earlier read in Ic);(.

Proof Suppose r € Igf marks R € V with an X,..q token, w € Ié{ marks W € V with an Xrize
token, r precedes w in Ig;{ , and R and W are logically concurrent, but checkwrite fails to report
a data race for w.

Without loss of generality, assume that vertices in V are named by their thread labels. If
checkwrite reports no race for w, then it must be the case that Ryy ~& W A R11 ~5 W when
checkwrite is called for w (i.e., W is not logically concurrent with previous readers Ry or Ry
saved by the checkread protocol).

Since checkread has been executed for each read preceding w in the interleaving (including),
we are guaranteed that

Ri1 %¢ RAR11 ¢ RA R 2 Rir ARir ¢ R AR11 4G Rir AR1r g R (1)

10

It must be the case that R +4¢ Rir A R %45 Ri11; otherwise, by transitivity of the ~% relation,
R ~g W, which violates the supposition that R and W are logically concurrent. This implies
R # R11 A R # Ryr. Using this to refine (1) we can conclude that if such an R exists,

R11 <¢ RAR <g Rir (2)

If Rir = R11, then (2) is not satisfiable and there can be no R concurrent with W; therefore, if such
an R exists

Rir # Rua (3)

Let G5 = (V;, Es, Vsrcss Vsnks) be the smallest fork-join subgraph of G that contains both R
and Ryy. By (1) and (3), R11 %% Rir AR1r %6 R11; therefore, vgres # R11 AUsrcs # Rir. A corollary
of this is that |V,| > 1 which implies rule(G,) > 0. The composition rule last applied to construct
G, could not have been the series composition rule. The condition that G, is the smallest fork-join
graph containing both Rj; and Ry, would imply that one vertex must be in each of the components
linked in series; this contradicts (1) since Ry and Riy would be related by ~»g. Therefore, G,
must have been formed from some set S of disjoint fork-join graphs using the parallel composition
rule. Both Rj; and Ry, cannot belong to the same element of 5, otherwise G, would not be the
smallest fork-join graph containing them both. Therefore, vy,.s is the closest common ancestor of
R11 and Ryy, and vsnk, is their closest common descendant. Since Rjy ~g W and Ry; ~g W, then
Vsnks ~& W. As justified below, v,,.; must be an ancestor of R (i.e., Vgrcs ~G R):

o If R ~+3 Ugres, then R ~5g R11 A R ~>g Riy. By transitivity of the path relation, R ~g W,
contradicting the supposition that R and W are logically concurrent.

o If R is to the left of v,,c,, then by definition of <g, R <g R11, contradicting (1).
o If vyc, is to the left of R, then by definition of <g, R1r <G R, contradicting (1).

Also, vsnks %G R, otherwise, by transitivity Rir ~g R A R11 ~g R, contradicting (1). By
the definition of closed, nestable fork-join graphs, every descendant of a source vertex that is not a
descendant of the corresponding sink vertex must be an ancestor of the sink vertex. Therefore, since
Vsrcs ~*G B A Vsnks G R, then R ~>G vgni,. But then by transitivity, R ~»g W, contradicting the
supposition that R and W are logically concurrent.

By showing a contradiction in every case to the supposition that there can exist some read r
that precedes a write w in Ig such that they mark logically concurrent vertices but checkwrite
fails to report a data race for w, the theorem is proven. m]

Theorem 2 In a checked access interleaving Ig for a variable X and a fork-join graph G =
(V, E, Vsre, Vsnk), if any two writes in IZ are logically concurrent,then checkwrite will report a
data race.

Proof Suppose vertices V,, C V are marked with X,,,;;. tokens by accesses in Ig and at least one
pair of vertices in V,, is concurrent. Two writes in an access interleaving are adjacent if there is no
other write between them in the sequence. If the vertices marked by each pair of adjacent writes in
Ig are related by the path star relation ~+¢,, by transitivity of ~ no pair of writes in V,, would be
concurrent. By the original supposition, at least two of the vertices in V,, are concurrent; therefore,
some pair of vertices vy, v2 € V,, that are marked by a pair of adjacent writes in Ié‘ must not be
related by ~»¢,. Without loss of generality, let v; be the vertex marked by the first of the adjacent
writes; thus, v; 76§ v. Since the writes by v; and v; are adjacent, Wias¢ Will contain the thread
label for v; when checkwrite is called for the following write by v2; checkwrite will report a data
race since vy % v2. We have shown that if write accesses in Ig;(mark any two concurrent vertices
in G, then a data race will be reported, thus proving the theorem. mi

11

Theorem 3 In a checked access interleaving IZ for a variable X and a fork-join graph G =
(V, E,vspcy Vsnk), a data race will be reported if a read in Ié‘ is logically concurrent with some
earlier write in I .

Proof Suppose w € Ié" marks W € V with an X, token, r € Ié‘ marks R € V with an X,eqq
token, W precedes R in I, and W and R are logically concurrent, but no data race is reported.

Without loss of generality, assume that vertices in V are named by their thread labels. If there
is no intervening write between w and r in Ié‘ , when checkread executes for 7, Wiaat = W and
checkread will report a data race since by supposition W and R are concurrent.

If there is some sequence of writes w;,...,w, between w and r in Ié then it cannot be the
case that W ~¢ ve(wi), va(w;) ~& vg(wiy1) for 1 < 7 < n, and ve(w,) ~§ R; otherwise
by transitivity of the ~»7; relation W ~¢ R, contradicting our original supposition that they are
concurrent. If W ~¢ vg(wy), then vg(wy) 4§ R, otherwise W and R could not be concurrent.
In this case, at vertex R, Wiagt Would contain the label for vg(w,) and checkread would report a
data race between vg(wy) and R. Otherwise, if W 448 vg(wy), then w is concurrent with w,, and
by theorem 2 checkwrite will report at least one data race for some pair of adjacent writes in the
subsequence of IZ beginning with w and ending with w,,. o

Theorem 4 In a checked access interleaving Ié‘ for a variable X and a fork-join graph G =
(V, E, Vgrc, Vsnk), at least one data race will be reported if there are any conflicting, logically con-
current accesses in IX.

Proof There are three cases of conflicting accesses to consider,
1. aread is concurrent with a write, and the read precedes the write in IZ,
2. two writes are concurrent,
3. aread is concurrent with a write, and the write precedes the read in Ig .

By theorem 1, a data race will be reported for any concurrent accesses in case 1. By theorem 2 a
data race will be reported for any concurrent accesses in case 2. Finally, by theorem 3, a data race
will be reported for any concurrent accesses in case 3. a

Theorem 4 shows that if any data races are present in an access interleaving for a shared variable,
at least one will be reported using our checkread and checkwrite access history protocols. By
applying the solution to detect any races for an individual shared variable to each of the shared
variables in a program, we can guarantee that if a program execution exhibits any data races given
a particular input, then the checkread and checkwrite protocols will report at least one data
race for each shared variable that is actually involved in a race during that execution.

Using the monitoring protocol described in this section leads to an effective debugging strategy
for eliminating data races from a program execution for a given input. Run the program on the
given input with the monitoring protocol in place. Each time a data race is reported (the access
history protocol precisely reports both endpoints of the race), fix the cause of the data race, and
re-execute the program with the same input. Since the access history procotols given in this section
will report data races (if any exist) regardless of the interleaving order, the protocol can be used to
check for races in a program that is executed in a canonical serial order. Executing programs in a
canonical serial order while debugging is often convenient as it provides the user with deterministic
behavior that simplifies the task of determining the origin of variable values that indirectly caused
a data race to occur.

If no race is detected in an execution, then no race will occur in any execution of the program
for that particular input and the program is guaranteed to be deterministic for that input. The key
insight behind this observation is that the only thing that could cause an execution for the given

12

Time
Algorithm Space Thread Creation & | Per Access
Termination
Task Recycling O(VT +T?) o(T) o(T)
EH Labeling | O(VT + min(BN,VTN)) O(N) O(NT)
OS Labeling O(V + min(BN,VN)) O(N) O(N)

Table 1: Comparison of Worst Case Time and Space Requirements.

input to behave differently would be if there were some form of non-determinism present. Data
races are the sole source of non-determinism in programs that have nested fork-join parallelism but
no other inter-thread synchronization. Therefore, if no data race is detected in one execution of
such a program for a given input, then no data race can exist in any execution for that input.

Practical implementations of the checkread and checkwrite protocols described in this sec-
tion must respect the underlying assumptions upon which the correctness proofs are based. In
particular, all updates and inspections of an access history by the checkread and checkwrite
protocols must be coordinated. Without coordinating updates to a variable’s access history, the
checkread protocol could not correctly maintain the invariants with respect to Ry and Ry3. The
simplest coordination strategy is enforcing mutually exclusive access. Such coordination could
cause bottlenecks if there is pervasive read sharing of a variable among concurrent threads. By
using dependence analysis to limit monitoring instrumentation to only the cases in which read-
write conflicts seem imminent, hopefully such bottlenecks could be avoided. Other less restrictive
coordination strategies appear possible, but it would be necessary to relax some of the invariants
maintained by the protocols and show that data races are guaranteed to be detected even with
relaxed invariants.

5 Analysis

In this section we examine the space and time complexity of using our access history protocol with
Offset-Span labels and compare it to the complexity of the protocols described in the literature
for English-Hebrew Labeling [11] and Task Recycling [6, 7]. To be consistent with the notation of
Dinning and Schonberg [6], we present our analysis in terms of the following parameters:

— maximum logical concurrency

— number of monitored shared variables
maximum level of fork-join nesting

— total number of threads in an execution

W= <H
|

Table 1 compares the worst case time and space complexity of the earlier access history methods,
English-Hebrew Labeling and Task Recycling, with the worst case time and space complexity of
our access history protocol using Offset-Span labels.

For the EH Labeling and Task Recycling access history protocols described in the literature,
each monitored variable has an access history that may contain as many as T thread names if the
variable is accessed by each thread that is active when the program attains its maximum logical
concurrency; this leads to the VT term in the their space complexities. The second term in the
space complexity of Task Recycling arises because each thread has an associated “parent vector” of
length T that is used to summarize the concurrency relationships between a thread and its ancestors.

13

Since T threads may be active simultaneously, 7% space may be needed. In EH Labeling, the size
of an EH label for a thread is proportional to the nesting depth of fork-join constructs which is
bounded by N. (This analysis assumes the existence of an effective heuristic alluded to by Dinning
and Schonberg [7, p. 4] that limits the length of labels to O(N). Without the heuristic, labels can
grow arbitrarily long. A description of the heuristic was unavailable to the author of this paper at
the time of this publication.) If access histories store pointers to EH labels, each label is at most of
length N, and there can be at most VT distinct pointers to labels. If reference counting garbage
collection is used, the maximum space used to store EH labels is bounded by O(VTN). If the
number of threads in a program execution B is less than VT, then this places a tighter bound on
the space to store the labels of O(BN) since at most one label per thread needs to be stored.

In the expression for the worst-case space complexity for our new access history protocol using
Offset-Span labels, the first term accounts for the constant size access history for each monitored
variable. The second term reflects the space needed to store OS labels. If access histories store
pointers to OS labels, each label is at most of length N, and there can be at most O(V') distinct
pointers to OS labels. If reference counting garbage collection is used, the maximum space used to
store OS labels is bounded by O(V N). If the number of threads in a program execution B is less
than V, then this places a tighter bound on the space to store the labels of O(BN) since at most
one label per thread needs to be stored.

The worst case time to verify whether an individual access to a variable is involved in a data race
is O(TN) for the EH Labeling protocol since an access may need to be compared against T entries
in the variable’s access history and each comparison may take O(N) time. For Task Recycling, the
worst case time to verify whether an individual access to a variable is involved in a data race is
O(T); the parent vector representation in Task Recycling enables access comparisons in constant
time, but a comparison may be needed for each of T entries in a variable’s access history. For our
new access history protocol with Offset-Span labels, the corresponding time is only O(N) since the
label for the current access need only be compared with a constant number of other labels.

The worst-case time overhead at thread creation for EH and OS labeling is O(N) for assignment
of a label of size O(N) to a thread. Task Recycling incurs worst-case overhead of O(T') at thread
creation and termination since a parent vector of size O(T') may need to be created for a new
thread, and when theads meet at a join, their parent vectors of size O(T) must be merged.

Since T is typically greater than 2V, using our new access protocol represents a significant
worst-case savings in both space and time over earlier protocols for on-the-fly detection of data
races.

6 Status and Future Work

A prototype system for dependence-based instrumentation of potential data races in parallel For-
TRAN programs has been developed as part of the debugging system in the ParaScope Programming
Environment [4]. The instrumentation system inserts calls to a run-time library that uses Offset-
Span Labeling and the access history protocol described in section 4. The prototype instrumenta-
tion system currently handles simple programs with loop based parallelism. Currently, procedure
calls from within parallel loops are not handled. Ongoing implementation efforts are focused on
extending interprocedural analysis in ParaScope so that the dependence-based instrumentation can
interprocedurally propagate requirements for instrumentation into procedures called from within
parallel constructs. Once the interprocedural instrumentation system is complete, the on-the-fly
debugging system will be useful for more than toy programs.

Future work includes extending the access history protocol and proofs to handle regular patterns

14

of synchronization such as sections in DOACROSS loops and the PCr FORTRAN generalization of
this construct: ordered sequence synchronization. Preliminary indications are that the protocols
will extend naturally to accommodate this larger class of programs.

Acknowledgments

I thank the referees for the improvements they suggested and I am indepted to the referee who
pointed out several erratta. Robert Hood and Seema Hiranandani participated in early discussions
of these ideas. Robert Hood implemented the prototype dependence-based instrumentation system.

15

References

[1] R. Allen, D. Baumgartner, K. Kennedy, and A. Porterfield. PTOOL: A semi-automatic parallel
programming assistant. In Proc. of the 1986 International Conference on Parallel Processing,
pages 164-170, Aug. 1986.

[2] T. R. Allen and D. A. Padua. Debugging fortran on a shared memory machine. In Proc. of
the 1987 International Conference on Parallel Processing, pages 721-727, Aug. 1987.

[3] W. F. Appelbe and C. E. McDowell. Anomaly reporting — a tool for debugging and developing
parallel numerical applications. In Proc. First International Conference on Supercomputers,
FL, Dec. 1985.

[4] V. Balasundaram, K. Kennedy, U. Kremer, K. McKinley, and J. Sublok. The ParaScope editor:
An interactive parallel programming tool. In Proc. Supercomputing ’89, pages 540-550, Reno,
NV, Nov. 1989.

[5] J.-D. Choi, B. P. Miller, and R. H. B. Netzer. Techniques for debugging parallel programs
with flowback analysis. ACM Transactions on Programming Languages and Systems, 1991.

[6] A. Dinning and E. Schonberg. An evaluation of monitoring algorithms for access anomaly
detection. Ultracomputer Note 163, Courant Institute, New York University, July 1989.

[7] A. Dinning and E. Schonberg. An empirical comparison of monitoring algorithms for access
anomaly detection. In Second ACM SIGPLAN Symposium on Principles & Practice of Parallel
Programming (PPOPP), pages 1-10, Mar. 1990.

[8] L. Lamport. How to make a multiprocessor that correctly executes multiprocess programs.
IEEE Transactions on Computers, C-28(9), Sept. 1979.

[9] S. L. Min and J.-D. Choi. An efficient cache-based access anomaly detection scheme. In Proc.
of the {th International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 235-244, Palo Alto, CA, Apr. 1991.

[10] R. H. B. Netzer and B. P. Miller. Detecting data races in parallel program executions. In
D. Gelernter, T. Gross, A. Nicolau, and D. Padua, editors, Languages and Compilers for
Parallel Computing. MIT Press, 1991. Also in Proc. of the 8rd Workshop on Prog. Langs. and
Compilers for Parallel Computing, Irvine, CA, (Aug. 1990).

[11] I. Nudler and L. Rudolph. Tools for efficient development of efficient parallel programs. In
First Israeli Conference on Computer Systems Engineering, 1988. Cited in [7].

[12] E. Schonberg. On-the-fly detection of access anomalies. In Proc. ACM SIGPLAN ’89 Confer-
ence on Programming Language Design and Implementation, pages 285-297, June 1989.

[13] G. L. Steele, Jr. Making asynchronous parallelism safe for the world. In Proc. of the 1990
Symposium on the Principles of Programming Languages, pages 218-231, Jan. 1990.

[14] R. N. Taylor. A general-purpose algorithm for analyzing concurrent programs. Communica-
tions of the ACM, 26(5):362-376, May 1983.

[15] M. Young and R. N. Taylor. Combining static concurrency analysis with symbolic execution.
IEEFE Transactions on Software Engineering, 14(10):1499-1511, Oct. 1988.

16

