Adaptive Parallel Meshes
with Complex Geometry

Roy Williams

CRPC-TR91135
February 1991

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892












CRPC-91-2 February 14, 1991

Adaptive Parallel Meshes
with Complex Geometry

Roy Williams

206-49 Caltech, Pasadena, CA 91125
roy@ccsf.caltech.edu






Adaptive Parallel Meshes with Complex Geometry

Roy Williams

Concurrent Supercomputing Facilities, California Institute of Technology, Pasadena CA 91125

Abstract

We discuss the automatic creation and adaptive refinement of an unstructured mesh within
a complex geometry such as the space surrounding an airplane. This may be formulated as
two distinct parts; a non-parallel part requiring global knowledge which automatically creates
a coarse compatible mesh, and a parallel local refinement algorithm, which refines the mesh
until simulation can begin, then adaptively refines it according to the progress of the
simulation.

Background-mesh methods, sequential and parallel, offer some promise if good numerical
algorithms are available. Sequential advancing front methods combined with the parallel
Rivara refinement algorithm are a good choice.

Introduction

The computer solution of a complex set of spatial partial differential equations such as
those of fluid dynamics requires a definition of the domain in which the problem is to be
solved, together with a set of boundary conditions to be applied at the boundaries of this
domain. The interface between such a domain specification and a numerical simulation is
usually accomplished with a computational mesh [1-4].

The purpose of the mesh is to provide a framework in the problem domain for the storage
and manipulation of physical data. There are two distinct phases to creating a mesh, these
being global/sequential and local/parallel respectively.

The global part of the mesh creation involves resolving the topology of the problem
domain by splitting it into a small number of domains, each of simple topology and geometry,
such as hexahedra or tetrahedra. This procedure requires global knowledge of the geometry, is
logic intensive, and deals with a small amount of data, and is thus suitable for a sequential
machine.

Having split the problem domain into a connected set of simple shapes, these may
themselves be split into smaller shapes, thereby refining the mesh to a scale suitable to begin
the numerical simulation, and incidentally providing a local adaptive refinement procedure.
This refinement is local, requiring data only from a mesh entity and its immediate neighbors,
and thus eminently parallelizable.

Mesh Requirements

A computational mesh is, for the purposes of this paper, a collection of closed polyhedral
sets covering the problem domain, called elements; the intersections of these are faces, edges
and nodes, of dimensionalities 2, 1 and 0, respectively. We may refer to these collectively as
mesh entities. The mesh is proper if the intersection of any pair of distinct mesh entities of the
same dimensionality is a mesh entity of lower dimensionality or is empty.






Introduction

The computer solution of a complex set of spatial partial differential equations such as
those of fluid dynamics requires a definition of the domain in which the problem is to be
solved, together with a set of boundary conditions to be applied at the boundaries of this
domain. The interface between such a domain specification and a numerical simulation is
usually accomplished with a computational mesh [1-4].

The purpose of the mesh is to provide a framework in the problem domain for the storage
and manipulation of physical data. There are two distinct phases to creating a mesh, these
being global/sequential and local/parallel respectively.

The global part of the mesh creation involves resolving the topology of the problem
domain by splitting it into a small number of domains, each of simple topology and geometry,
such as hexahedra or tetrahedra. This procedure requires global knowledge of the geometry, is
logic intensive, and deals with a small amount of data, and is thus suitable for a sequential
machine.

Having split the problem domain into a connected set of simple shapes, these may
themselves be split into smaller shapes, thereby refining the mesh to a scale suitable to begin
the numerical simulation, and incidentally providing a local adaptive refinement procedure.
This refinement is local, requiring data only from a mesh entity and its immediate neighbors,
and thus eminently parallelizable.

Mesh Requirements

A computational mesh is, for the purposes of this paper, a collection of closed polyhedral
sets covering the problem domain, called elements; the intersections of these are faces, edges
and nodes, of dimensionalities 2, 1 and 0, respectively. We may refer to these collectively as
mesh entities. The mesh is proper if the intersection of any pair of distinct mesh entities of the
same dimensionality is a mesh entity of lower dimensionality or is empty.

In general there may be simulation data associated with each mesh entity, and also
pointers to neighboring mesh entities. For example a face may have pointers to the edges
surrounding it, or an element to the elements with which it shares faces.

The software which manages such a mesh must try to satisfy the perhaps conflicting
requirements from four distinct sources:

« The Investigator,

would like a numerical code which is fast and accurate. The meshing software should be
capable of automatically meshing a complex geometry, and adaptive so that computational
resources may be concentrated where necessary within the domain. In addition, it should be
reasonably easy to make changes to the solution algorithm, and the code should be portable to
different parallel machines.

» The Machine

on which the code is to run will in general have multiple processors. The machine will also
have a hierarchical memory structure, consisting of cache, main memory, the memory of other
processors and external devices such as disks. The goal here is to minimize the
communication rate and latency costs associated with data transfer between the processors
and the memory units.







 The Numerical Algorithm

is easiest to formulate and code when the elements of the mesh are all the same type of
polyhedron, for example tetrahedra or hexahedra. Also the algorithm should be able to feed
back its requirements for element shape: in special parts of the mesh, such as a boundary
layer, it may be desirable to have flat elements whose short dimension is normal to the
boundary layer.

» The Geometry

of the domain may place requirements on the mesh simply from its specification, whether
it is described as a set of surfaces or a set of volumes. The domain may have multiple holes of
spherical or cylindrical topology, periodic or reflective boundaries, sharp edges and corners,
and a multiplicity of boundary conditions.

In this paper we shall consider how these considerations affect the design of a three-
dimensional, unstructured parallel mesh manager, so that a solver may be coded for a complex
set of equations such as the Euler or Navier-Stokes equations.

We shall assume that a mesh is constructed by first automatically making a coarse mesh
which is compatible with the topology of the problem domain. This meshing takes place on a
sequential machine. The coarse mesh may then be loaded into the processors of a parallel
machine, dynamically adapted and load-balanced among the processors of the machine.

In the following when discussing parallelism we shall assume that mesh entities
communicate by message-passing, which is an implicit assumption that each mesh entity is
managed by a separate processor. Of course for an actual implementation, a processor would
own many mesh entities, and ‘message-passing’ to an entity in the same processor would
reduce to a memory access.

Structured and Unstructured Meshes

Meshes may be logically structured, partially structured or unstructured. A logically
structured mesh is a regular array of mesh entities, with each type of mesh entity having the
same connectivity to corresponding mesh entities. The mesh may in addition be crystalline,
such that the mesh entities are laid out like a crystal in a geometrically regular way.

A partially structured or macro-unstructured mesh is one consisting of many small
structured meshes connected in an unstructured way. We may think of each of these structured
meshes as a “super-element”, so that a partially structured mesh is equivalent to an
unstructured mesh of super-elements.

If these super-clements are large, then we may take advantage of vector machines which
work especially well with structured data, as well as reducing latency costs associated with
message-passing, because inter-element messages are longer. The partial structuring also
means that less memory need be taken with connective and geometric data in exchange for
more simulation data.

On the other hand, large structured super-elements mean less definition of the boundaries
of the problem domain, greater distortion of the element shape, and a more difficult job for the
software making the initial mesh. Thus there is an optimum size of these super-elements.
From now on we shall implicitly assume that an unstructured mesh is actually a mesh of
partially structured super-elements.






Multiblock

The multiblock method [5-7] uses a partially structured mesh, but the assumption is that
there is a small number of very large, structured, usually hexahedral elements. The elements
have been carefully placed in the problem domain by a human operator with a graphics
workstation, and the internal curvilinear meshing of each block fitted to its requirements. Such
meshes may effectively use flexible and trusted finite-difference algorithms, which are
eminently parallelizable.

Unfortunately the creation of a multiblock mesh requires expensive human resources,
whereas meshes with a larger number of smaller elements are more easily created
automatically. Furthermore, it is difficult to locally adapt the multiblock mesh to the emerging
solution of the physical problem. Quadtree methods [8] have been used for this, but at the
expense of complicating the algorithm structure.

Henceforth we shall consider methods for automatic creation and adaptation of the mesh;
we shall assume that there is a preparatory sequential program which creates a coarse mesh
that is compatible with the problem geometry, followed by a parallel program which alternates
between simulating the physical problem and adapting the mesh.

Before describing methods of creating this coarse mesh in a complex geometry, we must
define what is to be produced and the geometry from which it comes.

Geometry Specification

Analogously to the different dimensionalities of mesh entity which constitute the mesh,
the geometry of the domain to be meshed consists of a volume, some curved surfaces
bounding the volume, some curves bounding the surfaces and some vertices at the ends of the
curves. We may refer to these collectively as model entities.

As well as simulation data, mesh entities should also keep information about their status
with respect to boundaries; so that nodes may be classified as belonging to a volume, surface,
curve or vertex. Similarly edges may belong to a curve, surface or volume and faces may
belong to a surface or a volume.

The difficulty of mesh-making is the creation of a topologically compatible mesh [9, 10],
defined as follows:

« Let E4 be a model entity of dimension d with dE its boundary model entity of dimension
d-1. Let M; be the set of mesh entities classified on E; and dM; the set of boundary
entities of M. Then the mesh is compatible with E if for all x € dM, either:

x € E and exactly 2 mesh entities in M share x, or

x € 0E and exactly 1 mesh entity in M shares x.

This is illustrated in Figure 1 for the case d = 2, so that Ey is a surface and dEy its
surrounding curves, M is a set of faces and dM; a set of edges.

We discuss below two methods of specifying domain geometry, where the geometry is
considered either to be a collection of surface patches, or as a combination of volumes.

Atlas of Charts

An atlas of charts is a collection of differentiable mappings from sub-manifolds €; of two-
dimensional space R2 to three-dimensional space R3. This is analogous to making a football






Figure 1: In a compatible mesh, for each edge, either A: the edge is part of the surface and has
two neighboring faces, or B: the edge is part of the boundary of the surface and has one
neighboring face.

by patching together a number of patches of leather, each of which is brought from a fiat state
into three dimensions.

In addition to this set of surfaces, we would like a decision function which decides if a
given point in %3 is inside or outside the simulation domain. It may be possible to decide this
automatically by finding the number of intersections between the set of surfaces and a line
extending to infinity, though such a procedure is difficult to make robust.

In CFD applications, we would like our problem domain to be a volume, rather than just a
set of surface patches in space. To define a surface which is the boundary of a volume, we
must also require in the above definition that for each point on 9; there is another point on
some 0X2; which maps to the same point in %3, or in other words, the edges of each patch
must be joined to the edges of a patch (which may be the same one) so that our football does
not have holes. A major difficulty with this method of geometry specification is that it is
difficult to decide whether a geometry specification is even valid; even if the surface definition
is valid, finite precision arithmetic may render it apparently invalid, causing difficulty for an
automatic mesh maker.

Combinatorial Solid Geometry (CSG)

The CSG approach to geometry definition begins with a set of primitive volumes and
allows these to be combined by the Boolean operations intersection and union to create further
volumes. Each primitive volume is associated with a function which maps %3 to R, and the
volume is defined to be the set of points which the function maps to a positive quantity.

The atlas-of-charts definition of a domain is an explicit statement of the set of points at the
surface of the domain, but it is difficult to decide whether a given point is inside or outside the
domain. On the other hand, such a decision is easily made for the CSG definition, but we have
no example of a point which actually lies in the domain or on its surface. Thus to be useful the
CSG description should be supplemented with a set of seed points, such that no pair of these
may be connected without crossing a surface. Without these, the mesh maker may never be






sure that it has found all the surfaces; finding a domain where the function is greater than zero
is much easier given a seed point in the domain.

Mesh Creation

There seem to be three classes of methods for converting a geometry specification into a
compatible mesh, these being based on the Delaunay triangulation, advancing front methods,
and background-mesh methods.

Delaunay triangulation uses a set of points chosen from the boundaries and interior of the
problem domain, makes a high-quality mesh, then checks to make sure that this mesh is
compatible. Advancing-front methods increment the dimension of the mesh; we make a 3D
mesh from the 2D surface mesh by ‘growing’ elements from it. The background-mesh
methods start with a space-filling regular mesh, then distort and enrich it to accommodate the
boundaries.

Delaunay Triangulation

The Delaunay triangulation [1, 11-16] in its simplest form takes a set of nodes in %3 and
produces an almost unique mesh of tetrahedra filling the convex hull of the nodes. An
algorithm for this is presented in a later section. Two properties of the triangulation are:

« the circumsphere of the four nodes of any element does not properly contain any other
node,

« if each node is associated with a number, and f{x) is the linear finite-element interpolation
function derived from these numbers and the triangulation, then the Delaunay
triangulation minimizes

I1=](V?

This latter property [17] implies a certain optimality in solving elliptic systems with the
mesh: if we solve Laplaces’ equation with linear finite elements, we are minimizing I with
respect to the field-values at the nodes, and the use of the Delaunay rather than another
triangulation additionally minimizes / with respect to the triangulation.

The general approach to mesh making is to choose a set of nodes, each classified
according to model entity, make the Delaunay triangulation and then classify the edges, faces
and elements. If there are elements of poor shape, we may incrementally add nodes at well-
chosen places [18] to produce more but better-shaped elements. Jameson et al.[11] use the
vertices derived from separate structured meshes about the various components of the
geometry.

Although the Delaunay triangulation suffers from poor efficiency in parallel, as discussed
below, the sequential implementation takes time of order N3 (or NlogN with additional
software and memory overhead). However if we use the Delaunay triangulation only for the
creation of an initial mesh with a sequential machine, this is not a problem.

The Delaunay triangulation is just a mesh, not necessarily a compatible mesh, as shown in
Figure 2, where the model curve surrounding the shaded area with closed-loop topology is
different from the open-loop topology of the set of edges classified to lie on the curve.






Figure 2: A non-compatible mesh produced by the Delaunay triangulation.

One way to avoid this non-compatibility is to either override the Delaunay property [14],
or put a sufficient density of nodes on the surfaces and curves of the model, and make sure that
no volume node is too close to the surfaces and curves [11]. We can try a given set of nodes,
and if the mesh is not compatible enrich the set of nodes until the mesh is so.

Advancing Front Methods

Advancing front methods [1,19-21] ‘grow’ the mesh around the surfaces of the problem
domain. We start with a geometry specification based on the atlas of charts, and triangulate all
the surface patches in %2 before mapping them to R3. to provide the seed surfaces for the
method. When these surfaces are mapped, we have a set of nodes, edges and faces with their
proper classification to the model entities, but no elements. These model entities constitute the
surface of a polyhedron, and advancing front methods incrementally place elements at the
inside surface of this polyhedron, thereby making a smaller polyhedron with fewer faces. The
computational effort comes from deciding where to put the next element, and from checking
that the new element lies entirely within the polyhedron.

It may not be possible to add an element and thereby reduce the number of faces of the
polyhedron; it may be necessary to add several elements which in aggregate reduce the
number of faces. Also the polyhedron may have regions where two surfaces are much closer
together than the desired mesh spacing which are thus difficult to fill with elements of
reasonable shape.

An advancing-front mesh maker may rely on sophisticated heuristics to decide on where
to put the next element [19,20], or we may use a more deterministic method [21], derived
from the Deluanay triangulation, as follows.

We search through all the faces; for each face we search through the nodes looking for the
minimum circumradius of the sphere passing through the node and the vertices of the
triangular face. As long as this tetrahedron has no intersections with any boundary faces, and
lies inside the problem domain, it is added to the mesh. Eventually the domain is filled with a
compatible mesh, and we may improve the mesh by adding volume nodes, so long as they do
not make the mesh incompatible.

Background Mesh Methods

These methods [9, 22-24] are based on the idea of surrounding the problem domain with
an enclosing crystalline or octree mesh, and using this structure as the mesh, except near the
boundaries.

We should note that the mesh far from the domain boundaries is either crystalline or
octree, and this is presumably the majority of the mesh; we might hope to find an algorithm
that can use this regularity effectively for algorithmic efficiency, yet also work with the






unstructured part of the mesh near the boundaries where the mesh has been distorted to fit. In
the crystalline case this efficiency could come from vector processing hardware, and in the
octree case that there is a natural multigrid structure available for an algorithm that can use it.

To fit the mesh to the boundaries, we may move nodes from the regular mesh to the
domain vertices, curves and surfaces, presumably moving sufficiently close nodes to the point
on the surface closest to the node.

Alternatively or in addition we may add extra nodes to the mesh where
» a model surface intersects a mesh edge,
« a model curve intersects a mesh face,
» a model vertex.

A mesh created by addition of surface nodes is shown in Figure 3.

\/\ / \/\/ Figure 3: A mesh surrounding an
airfoil derived from a triangular
/\/\/\ /\/ \ /\ quadtree.

NN/
VAVAVAVAVAVAVA AV
/AVAVAVA

B v &‘VL‘VL“

The problem with this approach to mesh creation is that in many applications, such as
CFD, the quality of the solution depends critically on the correct treatment of boundaries,
which is where the mesh of Figure 3 has particularly badly shaped elements. While there are
curative methods to improve the mesh, the essential problem is that the mesh is distorted to fit
the boundaries, rather than first laying out the boundaries and creating the mesh to
accommodate them.

Once the coarse mesh is made by a sequential machine, it may be loaded into a single
processor of the parallel machine, then split into pieces and distributed among the processors.
We now alternately run the simulation and adapt the mesh, based either on automatic or
manual decisions. Thus we need to be able to do two things: adapting, discussed below, and
load-balancing [25].

Adapting the Mesh

There are two distinct reasons for which the mesh may be adapted; either to obtain better
resolution of a particular solution of the physical equations, the steady case; or to better
resolve transient phenomena such as shocks in a time-varying solution, the unsteady case.
Consider the density of simulation data, which is the quantity of data in a unit geometrical






volume. The adaptation may be loosely characterized by the extent to which a particular
adaptation strategy may change this data density.

For unsteady adaptation, both increase and decrease in the density of simulation data are
necessary, since there will be previously adapted regions of the problem domain which no
longer contain the transient phenomena. The data density will not vary by more than an order
of magnitude or so; and the adaptation should cause minimal numerical error to appear in the
solution because such error is propagated and retained during the rest of the simulation.

Steady adaptation has opposite requirements. There may be many orders of magnitude
difference in data density both from one area of the mesh to another; no mesh coarsening is
necessary; and we may allow the adaptation may introduce some numerical diffusion, because
the simulation will presumably converge to the correct steady solution even if error is
introduced on the way.

Another desirable feature for an adaptation method would be the ability to do directional
refinement [15, 191, as illustrated in Figure 4. Many physical systems, such as the Navier-

Figure 4: A mesh which is directionally
refined at a boundary layer and also at a shock.

Stokes equations, exhibit boundary layers, where simulation data changes rapidly across the
layer but slowly along the layer; so we would like adequate resolution in one direction without
wasting resources in the other directions.

There are essentially three methods for adapting the mesh, either to change the geometric
structure (mesh movement), to change the data and algorithm executed by a mesh entity (p-
refinement), or to change the topological structure of the mesh (4-refinement).

Mesh movement

Mesh movement is an easy way to produce moderate changes in data density, and is
suitable for unsteady adaptation. But when we try to make large changes, the elements tend to
get highly distorted. The software overhead is low because decisions are made by solving an
elliptic system, and the software for this may be included in the simulation code, rather than
by software-intensive logic and communication.

p-refinement

p-refinement may be thought of as increasing the amount of data associated with an
element without changing the mesh. A global adaptation may be achieved by, for example,
increasing the order of the finite-elements employed, or by increasing the size of each
structured mesh associated with each element.

Local adaptation by p-refinement is rather more difficult; if we change some finite
elements from linear to quadratic for example, there must also be several types of transition

9






elements whose faces and edges are partly linear and partly quadratic. This method also
reduces the flexibility of the simulation code, since the numerical algorithm must be stated
and evaluated not just for a single type of element, but for a whole class of elements, plus all
possible transition elements between the members of the class.

We shall henceforth concentrate on topological methods for enriching the mesh, since
these offer the ability to arbitrarily adapt the data density of the mesh. Furthermore, we shall
only consider tetrahedral elements, since these simplest polyhedra reduce software
complexity to a minimum.

h-refinement

One way to enrich the mesh is of course to make a completely new mesh which is adapted
in the correct way, using the old mesh for interpolation of simulation data and as a framework
for defining the space of the problem domain.

Unfortunately the new mesh must be made in parallel, since the mesh and simulation are
distributed when the adaptation occurs. The mesh-creation methods discussed in the previous
section all offer little scope for parallelism, and sending the old mesh then receiving the new
to and from a sequential machine would be most inefficient.

In the following sections, we shall consider some methods for parallel local topological
adaptation of a tetrahedral mesh.

Local Topological Adaptation

Delaunay Triangulation

Bowyer’s algorithm for Delaunay triangulation [12] adds new nodes sequentially to an
existing mesh, and this method has been used successfully for adaptation by a number of
workers, albeit with sequential machines. It seems difficult, however, to efficiently add nodes
in parallel [26] . Figure 5 shows the operation of Bowyer’s algorithm; when a new node is to

Figure 5: Bowyer’s algorithm for Delaunay mesh refinement. Left: The original mesh with a
new node about to be added and the influence domain of the new node. Middle: the structure in
the influence domain replaced by radial elements from the new node, Right: the region where
another node may not be added in parallel.

be added, we first find the element in which the node lies, then all surrounding elements
whose circumsphere contains the new node, which is the influence domain. All structure is

10






removed from the influence domain and replaced by a set of elements each of which has the
new node as a vertex.

If the influence domains of two nodes overlap, then these nodes may not be added in
parallel; indeed the influence domains must be further separated by a guard element, as shown
in Figure 5.

A possible parallel algorithm could work as follows [26]. First we define a tree structure
for communication within the mesh: a parent element communicates to its four neighboring
elements, and each of these four children may either pass the message to its neighbors, then
wait for acknowledgment, or acknowledge to its parent. In this way we can map out the
influence domain of a new node: an element passes on the message about the position of the
new node or simply acknowledges the message depending on whether or not its circumsphere
contains the new node.

But we must make sure the influence domain is not overlapping the influence domain of
some other node being added in parallel. Again the messages pass through the tree and back,
and if there is a conflict, there is an arbitration between the new nodes, and the loser is put into
temporary memory so it may be added to the mesh later.

Elements in the influence domain may now generate new elements to fill the influence
domain, and delete themselves, completing the addition of some of the new nodes. The whole
cycle is repeated, using the nodes that were placed in temporary memory, if any, until all the
new nodes have been integrated into the mesh.

An implementation of this algorithm on an Ncube parallel machine yields speedups of 1.1
to three on 16 processors; this is a speedup compared to the parallel code running on a single
processor. However the best sequential algorithm uses not message-passing but recursion for
the tree-like search operations, and need not do conflict checking. Comparing with this
optimal sequential version, parallel Delaunay triangulation achieves speedups of 0.1 to 0.3 on
16 processors. The problem is that the influence domain of a particular node may extend
arbitrarily far and thus overlap the influence domains of arbitrarily many other new nodes.

Rivara Refinement

We would like to have a local refinement strategy which keeps the changes to the mesh
local, or at least propagates such changes in well-defined loosely synchronous stages; such a
refinement method for tetrahedral meshes was suggested by Rivara [27], and is illustrated for
triangles in Figure 6.

Figure 6: Stages in the Rivara local refinement method.

A set of elements are nominated for refinement, shown shaded at the top left of the Figure.
For each of these elements, a new node is created at the midpoint of the longest edge of the
element, so long as a new node has not already been created on that edge by another element.

11






This new node is nonconforming, shown by blobs in the Figure, and other elements (those that
share the refined edge) are now marked for refinement at the next stage (top right panel). The
process continues: refinement of the marked elements along the longest edge, and marking of
elements which share those refined edges. The algorithm eventually finishes, leaving a mesh
of well-shaped elements, assuming the starting mesh has well-shaped elements.

Conclusions

Mesh creation has two distinct functions: global and local. The global, or sequential, part
is the conversion of a geometry specification to a compatible unstructured mesh. This mesh
must contain enough elements to resolve the topology of the problem domain: that is to split
the domain into a set of connected subdomains each with the simple topologies: sphere, disk,
line or point.

The local, or parallel, part of the mesh creation/adaptation process consists of refining
some of these simple mesh entities to enhance the resolution of the physics we are trying to
simulate. This refinement must retain the compatibility of the mesh to the geometry, and
maintain or improve the geometrical quality of the mesh entities.

The initial mesh may be created with expensive human time, with the aid of sophisticated
software and hardware. The resulting high-quality mesh may be used by efficient and parallel
numerical algorithms, but is difficult to adapt locally. We have discussed three methods for
automatic creation of the initial mesh:

+ Delaunay triangulation creates a high-quality mesh, but it is difficult to ensure
compatibility and element quality.

« Background-mesh methods create a mesh which is excellent far from the boundaries, but
element quality may be poor at the boundaries. A regular background mesh offers scope
for vectorization, and an octree implementation offers an easy route to powerful multigrid
algorithms.

« Advancing-front methods require sophisticated heuristics, but can create a compatible
mesh with good element quality at the boundaries.

In CFD applications, the correct treatment of boundaries is crucial for accurate flow
simulation. Either we need a numerical algorithm which is not sensitive to element quality, or
use a mesh creation method which ensures element quality at the boundaries. The latter is
possible with a good selection of nodes for input to the Delaunay method, or by using an
advancing-front method.

Local parallel refinement of a tetrahedral mesh may be achieved by the Rivara refinement
algorithm, which does not improve the quality of the existing mesh and thus relies on the
original mesh being of good quality.

The Delaunay refinement might be used for coarse-grained parallel machines by simply
adding nodes sequentially, though Amdahls’ Law severely limits the extension of this
approach to larger number of processors.

If an algorithm can deal with the poor element quality characteristic of background-mesh
methods [28, 29], it is possible to locally refine an octree version; in addition we might reap
the advantages of multigrid methods.

12






References

1. N.P. Weatherill, Mesh Generation in CFD, in Computational Fluid Dynamics, von
Karman Institute for Fluid Dynamics, Lecture Series 1989-04, March 1989.

2. M. S. Shephard, K. R. Grice, J. A. Lo and W. J. Schroder, Trends in Automatic Three
Dimensional Mesh Generation, Comp. Struct., 30 (1988) 421.

3. T.J. Baker, Developments and Trends in Three Dimensional Automatic Mesh Generation,
Appl. Num. Math., § (1989) 205.

4. R. Lohner, Finite Elements in CFD: What Lies Ahead, Int. J. Num. Meth. Engng., 24
(1987) 1741.

5. P.D. Thomas and J. F. Middlecoff, Direct Control of the Grid Point Distribution in
Meshes Generated by Elliptic Equations, AIAA Journal 18 (1980) 652.

6. J.Hauser, S. Sengupta, P. R. Eiseman and J. F. Thompson, (Eds.), Numerical Grid
Generation in CFD, Pineridge Press, Swansea, U.K., 1988.

7. 1. Hauser, H. G. Paap, D. Eppel and S. Sengupta, Boundary Conformed Coordinate
Systems for Two-dimensional Fluid Flow Problems, I and II, Int. J. Num. Meth. Fluids, 6
(1986) 507.

8. J. FE. Dannenhoffer, III, Adaptive Grid Computations for Complex Flows: A
Supercomputing Challenge, vol. 11, p. 206 in Proc. 4th Int. Conf. on Supercomputing, eds
L. P and S. L. Kartashev, Int. Supercomputing Inst., 1989.

9. W.J. Schroder and M. S. Shephard, Geometry-Based Fully Automatic Mesh Generation
and the Delaunay Triangulation, Int. J. Num. Meth. Engng., 26 (1988) 2503.

10. P. M. Finnegan, A. Kela and J. E. Davis, Geometry as a Basis for Finite Element
Automation, Engng. Comput., § (1989) 147.

11. A. Jameson, T. J. Baker and N. P. Weatherill, Calculation of Inviscid Transonic Flow over
a Complete Aircraft, AIAA paper 86-0103.

12. A. Bowyer, Computing Dirichlet Tesselations, Comp. J., 24 (1981) 162.

13. E. P. Preparata and M. 1. Shamos, Computational Geometry, Springer-Verlag, New York,
1985.

14. T. J. Baker, Automatic Mesh Generation for Complex Three-Dimensional Regions Using a
Constrained Delaunay Triangulation, Engng. Comput., 5 (1989) 161.

15. D. J. Mavriplis, Adaptive Mesh Generation for Viscous Flows Using Delaunay
Triangulation, J. Comput. Phys., 90 (1990) 271.

16. T. J. Baker, Three Dimensional Mesh Generation by Triangulation of Arbitrary Point Sets,
ATAA paper 87-1124-CP.

17. S. Rippa, Minimal Roughness Property of the Delaunay Triangulation, PhD thesis, Tel-
Aviv University, 1990.

18. W. H. Frey, Selective Refinement: A New Strategy for Automatic Node Placement in
Graded Triangular Meshes, Int. J. Num. Meth. Engng. 24 (1987) 2183.

13






19. R. Lohner and P. Parikh, Generation of Three Dimensional Meshes by the Advancing Front Method,
Int. J. Num. Meth. Fluids, 8 (1988) 1135.

20. J. Peraire, M. Vahdati, K. Morgan and O. C. Zienkiewicz, Adaptive Remeshing for Compressible
Flow Computations, J. Comput. Phys, 72 (1987) 449.

21. M. M. Merriam, A Fast Robust Algorithm for Delaunay Triangulation, Internal Report, CFD branch,
NASA Ames, 1990.

22. W. C. Thacker, A. Gonzales and G. E. Putland, A Method for Automating the Construction of
Irregular Computational Grids for Storm Surge Forecasts, J. Comp. Phys., 37 (1980) 371.

23. W. J. Schroder and M. S. Shephard, An O(N) Algorithm to Automatically Generate Geometric
Triangulations Satisfying the Delaunay Circumsphere Criteria, Engng. Comput., § (1989) 177.

24. E. K. Buratynski, A Fully Automatic Three-Dimensional Mesh Generator for Complex Geometries,
Int. J. Num. Meth. Engng., 30 (1990) 931.

25. R. D. Williams, Performance of Dynamic Load Balancing Algorithms for Unstructured Mesh
Calculations, Concurrency, to be published.27M.-C. Rivara, Design and Data Structure of Fully
Adaptive, Multigrid, Finite-Element Software, ACM Trans. Math. Soft., 10 (1984) 242.

26. R. D. Williams and E. W. Felten, Distributed Processing of an Irregular Tetrahedral Mesh, Caltech
Report C3P793, 1989.

27. M.-C. Rivara, Design and Data-Structure of Fully Adaptive, Multigrid, Finite-Element Software,
ACM Trans. Math. Soft., 10 (1984) 242.

28. M. Berger and R. J. LeVeque, An Adaptive Cartesian Mesh Algorithm for the Euler Equations in
Arbitrary Geometries, AIA A paper 89-1930.

29. R. J. Leveque, High Resolution Finite Volume Methods on Arbitrary Grids via Wave Propagation, J.
Comput. Phys., 78 (1988) 36.

14






