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Utilities for Building and Optimizing a
Computational Graph for Algorithmic
Decomposition

Christian Bischof
James Hu

Abstract. This document describes a utility to construct and evaluate an optimized execution graph from the tapefile
generated by the ADOL-C automatic differentiation software. It describes the format of the ADOL-C tapefile, the data
structures used in building and storing the graph, and the optimizations performed in transforming the computation
trace stored in the tape into an efficient graph representation. In particular, we eliminate assignments, increase
granularity by “hoisting” chains of unary operations, and remove so-called dead roots - intermediate values that have
no influence on the dependent. Examples show that the optimized graphs contain up to 50% fewer nodes than a
graph that would be an exact analogue of the ADOL-C tape. We also describe an attempt at generating compiled
code for the graph evaluation as an alternative to interpretative approaches to evaluating the graph.

1 ADOL-C and the Tapefile
1.1 ADOL-C

ADOL-C [3] is a collection of utilities that, given a C program for the evaluation of a function
f : R™ — R", can compute ezact derivatives of arbitrary order in a fashion that is transparent
to the user. Automatic differentiation in ADOL-C is based on the numerical use of the chain
rule, in contrast to symbolic differentiation packages like MAPLE or REDUCE, or finite difference
approaches. An explanation of chain-rule based automatic differentiation can be found in [2].

Given a C code for the computation of a function f and an input value z,, ADOL-C uses the
operator overloading of C++ to produce a trace of the elementary operations performed in computing
f(zo). If f(z) = y, we call z the independent variables, and y the dependent variables. The operator
overloading approach has the following advantages and drawbacks.

Advantages:

1. Only minimal modifications are required in the user program. Essentially one has to
identify the dependent variables, the dependent variables, and redeclare the types of all
intermediates.

2. Subprograms are handled without difficulties.



3. The trace produced by ADOL-C be used to compute derivatives d;‘-f(zo) for arbitrary
order i.

4. Both the forward and reverse mode can be employed to compute derivatives. The forward
and reverse mode of automatic differentiation are explained in detail in [2,1], but here
it suffices to say, that in the forward mode we maintain at every intermediate value
its derivative with respect to the independent values, whereas in the reverse mode we
maintain the partial derivatives of the dependent values with respect to every intermediate
value.

Drawbacks:

1. The tape is good only for a set of values in the neighborhood of z,. That is, if loop
bounds change or different branches of a conditional are taken, a new “tape” is needed.

2. The size of the tape is proportional to the number of floating-point operations performed,
so it can be rather large. It should be noted, however, that the ADOL-C utilities access
the tape in a completely sequential fashion and that the RAM storage requirements are
a small multiple of the RAM requirements of the original code [2].

3. Since only elementary arithmetic operations are overloaded, the structure of the user
program is not reflected in the tape. That is, if a subprogram g is called twice in the
course of evaluation f(z,), the arithmetic operations performed in g will be recorded
twice on the tape.

It should be noted that, except for the first point, the “drawbacks” are not an inherent limitation.

1.2 The Tape

ADOL-C introduces the adouble data type for differentiable quantities. Usual C double vari-
ables are treated as constants with respect to differentiation. For the adouble data type, ADOL-C
currently overloads the elementary arithmetic operations +, -, *, /, =, +=, ==, *=, /=; ele-
mentary functions like cos, sin, exp, sqrt, and tan, and variable constructors and destructors
and provides a mechanism to exploit the fact that a user-defined function is defined as an integral
f(z) = [ g(t)dt. Whenever one of the elementary arithmetic operations or functions is executed, it
is recorded on the tape.

To hold the values of the intermediate values arising during the computation, ADOL-C employs
a so-called live variable table which contains the values that are still needed at this point in the
computation. Which intermediate values are needed is determined through the overloading of the
C++ variable constructors and destructors. This should become clear with an example:

adouble f(adouble x,adouble y, double z)
{ adouble t;

t=x+y;

if (2*=¢t>2){
return(x*z)
} else {



return(sqrt(z/x))
33

Thus, for the purposes of differentiation, f computes a function from R? into R (the parameter z is
a constant with respect to differentiation since it is not an adouble). When we compute f£(1,2,3),
the following actions are ‘caught’ by the operator overloading:

x=1; y=2; z=3;

construct(t);

construct(templ); /* allocate a temporary */

templ = x + y; t = templ;

destruct(templ);

construct(temp2);

temp2 = 2 * t;

destruct{temp2};

construct{temp3}

temp3 = z/x;

temp3 = sqrt(temp3); /* temp3 is returned as function value */
destruct(t); /* local variable dies when function exits */

An easy way to allocate space for the recording of the computation would be to give every variable
(whether compiler-allocated or user-declared) a unique index in an array of doubles where one would
store the value of the variable during the course of the computation. For this little example, we
would use eight “slots” corresponding to the eight flops and assignments being performed, and the
tape would look as follows:

Operation Code Result Inputl Input2 Constant
assign.independent 1.0
assign.independent 2.0
assigri_double
plus_adouble_adouble
assign_adouble
mult_adouble_constant
div_constant_adouble
sqrt_op
assign.dependent

3.0

2.0

oo| co] =] D] O] ] O] O} =
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Here x, y, z, templ, t, temp2, and temp3 have been allocated slots 1 — 7 in that order. Tape
record 7,for example, encodes the operation store[7] := store[1]/store[3], when store is the
array allocated for the storage of intermediate variables. The first column lists the operation code
(see the Appendix), the second the entry in the live variable table indicating where to store the
result, the third the index of the first input, and the last the index of the second input or a constant
value.

We note that in order to perform the reverse mode of automatic differentiation, we have to
store the numerical values of each intermediate quantity. This is easily done when we give each
intermediate quantity a unique index in the table holding intermediate values.



One can, however, reduce the storage requirements for intermediate quantities, by exploiting the
scoping information contained in the constructors and destructors. Loosely speaking, a “construct”
call means that we need a new slot, and a “destruct” call means that we can reuse the slot that was
assigned the variable that is being destructed. Using this information, we can now get by with four
table locations, since temp1, temp2, and temp3 can reuse the same storage location (store[5] in
this case). The tape then stores the following information:

Operation Code Result Inputl Input2 constant
assign.independent 1.0
assign_independent 2.0
assign_double 3.0
plus_adouble_adouble
assign_adouble

death notice
mult_adouble_constant
death_notice
div_constant._adouble
sqrt_op
assign_dependent

ooy ojoo o] o] o] =

A “death notice” indicates that this slot can be reused. In ADOL-C it also has the side effect of
storing the value of this temporary onto an auxiliary tape of “death values” so that we can restore
the value that was stored in a given slot when the corresponding variable died, and perform the
reverse mode of automatic differentiation. Experience has shown that this technique usually reduces
the size of the table for storing intermediate quantities to about 10% of the number of floating-point
operations performed. The length of the tapes storing the operations and the death values is still
proportional to the number of floating-point operations, but the tapes are accessed in a completely
sequential fashion and can hence be stored out of core, whereas the table of variables currently in use
has to be in RAM storage. Let us then introduce the following terminology: A “live” variable (which
is being stored in the live variable table) corresponds to a value that may be an input argument
to another arithmetic operation later on, whereas a “dead” variable (whose slot in the live variable
table can be reused) will not be used any more in any further operations.

1.3 Format of the ADOL-C Tape

The exact format of the operation trace tape is as follows: The first eight fields contain integers
printed in ASCII format in 10 bytes each (see macro LENGTH_TAPEHEAD _ENTRY in macros.h)
denoting the following information:

1. the number of times the internal tape buffer was dumped to file,
2. the number of independent variables,

3. the number of dependent variables,
4

. the size of the internal buffer used for writing to the file,



5. the maximum number of live variables,

6. the length of the tape in bytes,

7. the total number of operations recorded (not counting death notices), and
8. the number of nodes destroyed (while building the live variable table).

When generating the tape, ADOL-C buffers output to the file to speed up 1/0 handling.
To save space, the rest of the tape is stored in binary format and hence is readable only on the
machine that generated it. Each tape entry consists of three parts:

1. An opcode. The C type for this entry is optype.

2. A variable length record, containing the information needed for this opcode. The C type for
this entry is union type t_type_record, defined in readtape.h.

3. The length of the variable length record. The type for this entry is rlentype.
For example, the record for an immediate operator (i.e., x +=y) involving another adouble is

struct a_same_arg {
locint result,loc_1;
};

containing the index of x and y in the live variable table. A special type locint (usually defined to
be a short int) is used to identify locations in the live variable table. All the various structures
corresponding to the various operations are defined in template.h. The Appendix lists which
opcodes correspond to which tape entry types. Some types that are not obvious are as follows:

Death Notices: struct death_not_rec {
locint loc.1,l0c.2;

};

To avoid cluttering up the tape with death notices whenever a variable goes out of scope, a
death notice is only generated when a certain number of variables in contiguous life variable
locations (from location loc_1 up to including loc.2, where 1oc_2 is the highest currently
used slot) have died. Thus, the live variable table behaves like a stack, in that we add and
delete live variables only on the top.

Quadrature Functions: struct quadrature {
locint result;
double r_val;
locint old_loc;
locint deriv_loc;
};
As mentioned before, the derivative of a function f(z) = /. : g(t)dt is easy to compute: it is
simply g(z). For example, arctan(z) = 5 137, and So £ arctan(z)ls=c, = 1357~ The fields
in the quadrature record have the following meaning: °
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Figure 1: Graph Representation of x+=y

result: live variable slot where f(z,) is stored.

rval: f(z,). We have to store f(z,) with the record, because f(z,) will be computed with
some numerical quadrature routine and when we read the tape in the forward mode, we
have to be able to restore the value at an intermediate quantity (but we may not have
access to the quadrature routine any more).

oldloc: slot where z, is stored.

deriv.loc: deriv.loc is the live variable slot where g(z,) is stored. In computing the deriva-
tives, we have to evaluate 9(z,), so there will be records on the tape to do Jjust that.

2 Building the Execution Graph

In the execution graph, each node corresponds to some intermediate value computed during the
execution of the program to compute f(zo). A graph node represents both an operation and the
value that is the result of performing that operation with the given input values. We say that node
c is a “child” of node p, if the value computed at c is an input value to the operation performed
at p; p is called the “parent” of c. Since all operations are at most binary, each node has at most
two children, but may have many parents. The computational graph is acyclic, with the leaves
representing the independent variables and the roots representing the dependent variables.

It is important to understand that a node in the computational graph represents a value, not
a storage location. For example, the operation x+=y will be translated into the graph shown in
Figure 1. The child node labeled r represents the value in storage location z before the addition;
the parent node labeled z represents the value in storage location z after the addition has been
performed.

We can draw an analogy between ADOL-C’s live variables and our graph nodes as follows: An
ADOL-C store location is alive if its value may still be read as an input to another operation; this
corresponds to the graph node that may still acquire parents. When a store location dies, its value
will not be used any more; this corresponds to a graph node who will not acquire any more parents.

2.1 Overall Framework

The overall framework for building and representing the computational graph is shown in Fig-
ure 2. We have three main components:

Live Node Table: Each entry in this table points to a “live” graph node, that is, a node that may
still acquire parents as nodes still to be constructed use its value as input. Further, each entry

6
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Figure 3: Situation before Inserting a New Node in Location 2

points to a linked list of (opcode,constant) pairs. While on the ADOL-C tape each tape entry
corresponds exactly to one operation, we will perform an operation called “hoisting” (see §2.3)
which may associate a chain of operations with an opcode.

Node, Opcode, and Parent Pointer Blocks: In order to minimize memory requirements and
memory fragmentation, the graph structure is stored in three separate arrays. The node
storage blocks store the core node structure t_node, described in more detail below. The
opcode block stores (opcode,constant) pairs, and the parent pointer blocks store pointers to
parents. Both opcode structures and parent addresses are stored consecutively for maximum
memory usage.

Node Freelist: Nodes identified as dead roots (i.e, they have no influence on the values of the
dependent variables, see §2.4) are removed from the graph by hoisting them into other nodes
(see §2.3). As a result, the corresponding slot in a node storage block can be reused, and its
address will be put on the freelist. The freelist is a stack implemented as a doubly-linked list
of fixed-sized arrays. All stack operations can be performed in constant time, and the stack
can grow as needed.

The rationale for this setup was both to minimize memory fragmentation and to exploit the
locality that the creation of graph nodes is likely to exhibit. In other words, we wished to store the
information pertaining to neighboring nodes close together in memory.

When we read a new record from the tape, we write out the graph node corresponding to the live
variable slot that is being reused, and construct a new graph node that will be hooked up to that
slot. For example, when we read the record corresponding to store[2] := storel[6] + storel[7],
we know that the value represented by the node (@, say) hanging off location 2 in the live node
table (call this location 1ive[2]), will not be used any more. This situation is shown in Figure 3.
We copy the opcode list of node a into the opcode storage array (the opcode fields in the opcode
list hanging off 1ive[2] are set to UNUSED, indicated by NOP in the figure, so that they can be
reused). (At this point we could try to perform some optimizations on node a; We return to this



t = a+b;
z = a*t;
y = t/b;

Figure 5: Sample Code Fragment and its Representation with and without Assignment Nodes

message, but allows the construction of the graph to continue.

2.2 Graph Data Structure

The data structure representing a graph node is as follows:

typedef struct node_type {
unsigned int visited:1;
unsigned int id;
struct node_type *left;
struct node_type *right;
unsigned int num_parents;
unsigned int num_opcodes;
unsigned int height;
union {
unsigned int blink;
unsigned int slot;

} b;

union {
unsigned int aliascount;
unsigned int depth;

} a;

union {

/*
/*
/*
/e
/e
/*
/*

/*
/*

/*
/*

flag to mark during a traversal #/
unique identifier ¢/

pointer to left child s/

pointer to right child »/

number of parents */

number of opcodes s/

max distance from a leaf #*/

back link to table entry s/

index in array of intermediate values during
serial evaluation */

number of aliases to a node %/
max distance from a root &/

10
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subject later.) We then allocate a new graph node (d, say), hook it up to 1ive[2], copy its opcode
into the opcode list off 1ive[2], and make the nodes b and ¢ pointed to by 1ive[6] and 1ive[7]
the children of the new node. This is shown in Figure 4. Assignments between adoubles (as recorded
with the assign_a opcode) are a special case, in that there is no reason to explicitly represent them
in our graph. For example, an assignment of the form store[4] := store[7] can be represented
by having store[4] point to the same node as store[7]. While this saves us storage, it creates
complications when we wish to remove superfluous nodes. For example, if the value in store[7]
on the ADOL-C tape had no influence on the dependent variables, we would assume that we can
remove the node off 1ive[7] at the point when store[7] is reused. But this is the case only when
there is no live node entry pointing to the node currently pointed to by store[7]. Otherwise the
removal of this node will create a dangling pointer. To avoid this problem, we associate a reference
counter with every node, and we remove a node only when the reference counter indicates that there
is only one live node still pointing to this node. Removing assignments does reduce the size of the
graph that ultimately has to be represented. An example is shown in Figure 5.

In transforming the ADOL-C tape into a computational graph, we also exploit simple mathe-
matical facts to reduce the number of opcodes that we will have to deal with later. For example, we
have no div_a_d opcode denoting a division of an adouble by a constant. Since we store constants
directly with the opcodes, we can represent this operation as a mult_a_d opcode (multiplication of
an adouble with a constant) and store the reciprocal of the constant. These transformations reduces
the number of opcodes from 40 to 19 and greatly simplifies the further system design.

Currently we also do not take into account the special structure of quadrature opcodes. We
simply store them as unary operations, with live[result] being the parent of live[old_loc].
The subtree for the computation of the integrand that is hanging off 1ive [deriv_loc] will later be
removed as a spurious root.

Uninitialized variables create problems with building the graph, in the sense that if store[2] is
an uninitialized variable, then 1ive[2] does not point to any node, but nonetheless it can happen
that in the user program this value is used as input for a later operation. If such a situation occurs,
we call the routine bogus_node, which allocates a node, its value initialized to 0, and prints an error



struct node_type ssupptr; /* pointer to array of parents */
struct node_type *parent; /+ pointer to last referenced parent */

}ps
union {
t_op opdef; /+ a single operation ¢/
t_op sopptr; /+ an array of operations */
} o;
} t_node;

The fields have the following significance:
visited: A Boolean flag used during graph traversals.

id: A unique integer number identifying this node in the range from 0 to (total number of nodes -
1); used in debugging.

left, right: Pointer to left and right child, UNUSED if no such child exists. By convention, a unary
operator has right==UNUSED.

num _parents: The number of parents.
num_opcodes: The number of arithmetic operations represented by this node.
height: The maximal distance from a root.

Union structures are used to allow for space sharing between variables that will never be used at
the same time. Fields used in ‘live’ nodes (i.e. nodes that are still hanging off the 1ive table) are

blink: If this node is pointed to by 1ive[il, then blink == i. If this graph node is completed,
blink == UNUSED.

aliascount: If this node is pointed to from k entries, then aliascount == k-1.

parent: This is a pointer to the last parent of this node. In particular, this will be THE parent if
the node had only one parent (this is important for hoisting).

Fields used in completed nodes are

slot: The slot in the storage area that this node will be evaluated in; defined in live_analysis
(see §3.1).

depth: The maximal distance from a root.

upptr, parent: If a node has only one parent, its address is stored directly in parent. If a node
has more parents, upptr points to the address in a parent storage block where the parents are
stored in consecutive order.

opdef, opptr : If a node represents only one operation, it is stored directly in opdef. Other-
wise, opptr points to the address in an opcode storage block where the opcodes are stored in
consecutive order.

11



The core data structure representing the graph is as follows:

typedef struct graph_type {
/%%s#+ core structure ssss/

t_nodelist sroots; /* linked list of nodes that are roots /
t._nodelist srootcur; /* root list cursor (points to the end of the list) =/
t_nodelist *leaves; /* linked 1list of nodes that are leaves #/
t_nodelist sleafcur; v /* leaf list cursor (points to the end of the list) =/
unsigned int max_live; /* max number of live variables */
unsigned int slot; /+ storage slot in our storage allocation scheme */
unsigned int num_roots; /* number of dependent variables =/
unsigned int num_leaves; /* number of independent variables »/
unsigned int num_nodes; /* number of nodes in the graph */
/eese for statistics sses/
unsigned int num_opcodes; /* total number of opcodes encountered */
/* (not counting assignments) =/
unsigned int num_assign; /* number of assignments encountered =/
unsigned int num_hoisted; /* number of nodes that have been hoisted */
unsigned int num_deleted; /* number of nodes that were dead roots s/
struct {

int shoists;
int sparents;
int schildren;

} histogras;
unsigned int n_size; /* memory (in bytes) used by node_blocks */
unsigned int o_size; /* memory (in bytes) used by op_blocks */
unsigned int p_size; /+ memory (in bytes) used by parent blocks s/
/sses for debugging sess/
t_node sslookup; /% lookup array for the nodes =/

} t_graph;

In the histogram structure, and the lookup pointer. hoists[i] contains the number of nodes
that represent i+1 operations, parents[i] contains the number of nodes having i parents, and
children[i] contains the number of nodes having i children. lookup points to a table that, given
the identifier number of a node, returns its address.

2.3 Hoisting

We already mentioned that assignments are not represented as nodes in our computational graph.
Another optimization we perform is that we collapse chains of unary operations into one node, an
operation that we call hoisting. As is depicted in Figure 6, hoisting allows us to represent a chain
of unary operations much more succinctly. Instead of using five graph nodes with one opcode each,
we represent this chain of operations in one graph node with five opcodes. Apart from saving
memory, this operation increases the granularity of the graph in that more floating-point operations
are associated with the evaluation of that particular graph node.

We can hoist a particular node n when its location in the 1ive table is to be overwritten and
the following conditions are all true:

12
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Figure 6: Sample Code Fragment and its Graph Representation before and after Hoisting

n has ezactly one parent.

We still have the address of the parent of n. This may not be the case for the following reason:
Assume that n had two parents, pl and p2, and that p2 was the last parent added to n. So
p.parent in n contains the address of p2. Then we remove p2 because it is a spurious root,
decrementing n’s parent counter, and setting p.parent to NULL in n, since this parent was
removed. We would have to traverse the graph in order to find out that pl is the remaining
parent of n, since we store only child pointers when we build the graph, and we considered the
potential payoff not worth the effort. As a result we may not perform some hoists that would
have been made possible through a dead root removal.

The parent of n does not represent a dependent variable. These nodes represent the output
values of the graph, and we wished to keep them uniform.

n’s reference count indicates that only one link is pointing to this node. If more than one
pointer is pointing to n, it could still be used as an input value later on, and removing it would
create a dangling pointer.

n is not a leaf. Most leaves represent independent variables (the other alternative is constant
initializations) and are pointed to from the leaf list. Hoisting them would create dangling
pointers (unless we would update the leaf list, which we chose not to do).

n’s parent has only one child. We cannot hoist into a binary operation.

13
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e The parent is still alive. Live nodes have their opcodes in a linked list that hangs off the
live node table, and so it is no problem inserting new opcodes. Completed nodes have their
opcodes stored either in the node (if they only have one opcode), or in an array of fixed size,
so we cannot easily insert a new opcode. If we wished to hoist into that node, we would have
to find more space for the expanded opcode list, which we could do by copying it to the end,
but again we considered this an unnecessary complication.

The mechanism is easiest to understand with an example as shown in Figure 7. Assume that
the operation we read off the tape is a binary operation, e.g., store[3] = store[8] - store[10].
We then generate a new node new to represent this operation and have its children pointers point
to the nodes off 1ive[8] and 1ive[10]. For the nodes off 1ive[8] and 1ive[10], we make their
parent pointer point to new.

Before having 1ive[3] point to new, we check node n (which is about to be unlinked from
live[3]) for hoistability. Now assume that the node n currently pointed to by 1ive[3] is hoistable
into node p as is shown in the left half of Figure 7. Hoisting involves updating p’s children pointers,
updating the number of children p has, splicing n’s opcode list in at the beginning of p’s opcode list,
increasing p’s opcode count, and updating the parent pointer for n’s children (since they now have
p instead of n as a parent). Thereafter n can be removed; that is, its address in a node storage area
will be put on the free list. Lastly, we connect new to 1ive[3]. The resulting situation is shown on
the right side of Figure 7.

The situation may be more complicated with unary operators since the new node that is being
generated can be the parent of the node to be hoisted (this cannot happen for binary operators since
we will never hoist into a binary node). For example, assume that we read store[3] = store[3]
* 2.0 off the ADOL-C tape. We create a new node new to represent the new operation, and make
its left child pointer point to the node pointed to by 1ive[3] (call it n, say), and set n’s parent

14
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Figure 8: Special Case in Hoisting Unary Nodes

pointer to new. This situation is shown on the left side of Figure 8. Now we want to hoist n into
new. Since new is not installed in the live node table yet, it does not have an opcode list yet, so in
this case we insert the opcode corresponding to new at the end of n’s opcode list, and then proceed
as in the case for the hoisting of a binary node. The resulting situation is shown on the right half of
Figure 8.

2.4 Dead Root Removal

Another optimization that we perform is the removal of “dead roots”, which are nodes whose
value has no influence on the dependent variables. Most commonly, those nodes arise as a by-product
of the evaluation of some control flow condition. As with hoisting, this optimization is tried when a
node is about to be unhooked from the live node table.

A node can be removed from the graph with impunity if the following conditions are met:

o It does not have any parents.

Only one live variable entry is pointing to it.

o It does not represent a dependent variable.

It is not a leaf. The last condition ensures that we do not remove independent variables that
are not used in the course of the computation (a more common occurrence than one would

think).

If a node is a dead root, then we recursively descend to the nodes that are reachable from it,
and remove all those completed children that have become dead roots themselves. If children are
not completed yet (i.e., they are still pointed to from the live table), we quit, since they may still

15
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Figure 9: Removal of dead roots
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acquire parents. If a node n is removed, we also set the parent pointer in its children to NULL if it
had pointed to n before. An example is given in Figure 9, where the removal of dead root a triggers
the removal of node b. Note that dead root removal is oblivious to the number of opcodes associated
with a node; that is, supernodes are removed in the same fashion as normal nodes.

3 Related Utilities

In addition, we provided some utilities for evaluating the function defined by the computational
graph, generate C code for evaluating the function, and to print out the graph structure for debugging
purposes.

3.1 A Storage Allocation Scheme

To evaluate the function represented by the graph, we must allocate storage slots to the values
represented by the graph nodes. The simplest procedure, of course, is to allocate a storage slot for
every graph node, but we tried to do better. Our goal was to divide the graph into several levels,
such that for all nodes the level of a child was less than the level of a parent. If all nodes on a
level have different storage slots assigned to them, the following schedule will compute the function
correctly:

for i = 1 to maz_ level do
evaluate all nodes on level i (in any order)
end for

The live_analysis routine implements an attempt to reuse storage slots while assigning them

in such a way that the level scheme above works. Our approach is implemented using a double stack
scheme:

put leaves on stackl
for current_level = 0 to maxlevel do
while (stackl is not empty) do
pop a node n from the stackl
if (level(n) == currentlevel) then
assign a storage slot to n
push all unvisited children of n on stack2
and mark them as visited
else
push n on stack2
end if
end while
stackl « stack 2
end for

To determine when we can reuse storage slot k (say) that was assigned to a node n (say), we
keep track of how many of n’s parents have been assigned a slot. Once the last parent of n has been
assigned a slot, we can reuse n’s slot since its value will not be needed any more. It should be noted
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that we can reuse n’s slot only at the nezt level, since we do not want to assume any particular order
in the evaluation of the nodes on the same level.

There are several possibilities to define the “level” of a node in a fashion that is consistent with
the child-parent partial ordering of the nodes. In the absence of any superior alternative, we chose
the height of a node to define its level. The height of a node is defined in the routine node_height,
so one could easily try out new numbering schemes.

3.2 A Code Building Utility

To test the validity of our storage allocation scheme and to get a feeling for how much overhead
we encur when evaluating the tape in an interpretative fashion, we implemented a routine called
buildcode which prints out C code to compute f(z,). Code for statements is written out by levels,
with the storage locations determined by the live variable analysis described above. An example is
given in Figure 10. The code in (a) yields the graph shown in (b). The generated code in (c) then
results when the node levels are defined by heights.

We then used this code to develop a parallel execution schedule by placing the statements at
each level into a parallel do-loop and putting a barrier synchronization point between each level.

3.3 Debugging Utilities

To help in debugging our codes, we implemented a utility that, given the unique number node->id
that we assigned a graph node, prints out the subgraph that has this node as root. It also allows one
to print information stored in subnodes. Another useful utility is the eval_graph routine, which
evaluates the graph serially, using the storage locations determined by the scheme described in §3.1.
If eval_graph computes the same function value f(z,) as ADOL-C, then we have a rather high
degree of confidence that our graph structure and storage allocation scheme are correct.

4 Experimental Results

In this section we report on experimental results that we obtained by applying our graph gen-
eration, transformation, and evaluation utilities to ADOL-C tapes generated for the following three
application codes:

Shallow: This code solves the shallow-water equation to simulate the development of the atmo-
sphere in a rectangular region. We had 243 independent variables, corresponding to an initial
state defined by a 9 x 9 grid with 3 variables at each node. Starting from this initial state, we
integrated over 31 time steps. There is only one dependent variable, corresponding to the sum
of squares between the measured and computationally predicted values.

Bratu: Bratu is a PDE model of the exothermic reaction in a section of a cylindrical combustion
chamber. The code assumes radial symmetry and converts the problem to a two-dimensional
grid with mixed boundary conditions. These results were obtained with a 40 x 80 grid of the
chamber section, yielding 3,200 independent variables and 3,200 dependent variables.
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/* code generated by readtape

$include <math.h>

*/

#include <stdio.h>

#define r_plus(x, ¥) ((x) + (y))
#define r_minus(x, y) ((x) - (y))
#define r_times(x, y) ((x) * (y))
#define r_divide(x, y) ((x) / (y))

double t[3]):
double root([1l]:;

int main() {

do_level 0():

do_level _1():

do_level 2():

do_level _3();

printf ("root (%d) = %e;\n", 1, root[0]);
}

void do_level 0() {
t[0] = 1.5;
}

void do_level 1() {

t(1] = r_plus(1.0, t{0]);
t[2] = cos(t[0]):

}

void do_level 2() {

t[0] = exp(r_plus(t(l], t(2])):
}

void do_level_3() {

root [0] = t[0];

}

(c)

Figure 10: A Code Generation Example

19



Cavity: This problem is a discretization of an incompressible Navier-Stokes equation in a rectangle
with constant fluid flow over one end of the rectangle. The rectangle is represented as a 31 x
31 grid, yielding 961 independent variables and 961 dependent variables.

4.1 ADOL-C Tape Statistics

Table 1 contains some statistics on the tapefiles as they were produced by ADOL-C, version 1.0.
For each problem, we show how many instances of an operation were on the tape, what percentage
of the total number of operations this corresponded to, how much storage (in bytes) operations of
this type consumed, and what percentage of the total storage required for the tape this corresponds
to. “Death notices” are not shown in this statistic. For “Shallow”, we had 29,131 death notices; for
“Bratu”, 25459; and for “Cavity”,12628; each death notice required 10 bytes on the tape. Together
with the storage for the opcodes, shown in the “Totals” row of Table 1, the total storage required
for “Shallow” is 4.1 Mbytes; for “Bratu”, 3.4 Mbytes, and for “Cavity”, 1.8 Mbytes. In contrast,
the RAM requirements, determined by the maximum number of live variable, were rather modest.
The maximum number of live variables was 18,365 for “Shallow”; 6,413 for “Bratu”; and 2,355 for
“Cavity”. These results correspond to 6.5%, 2.6%, and 1.6% of the numbers of operations performed.

4.2 Effect of the Graph Optimizations

In transforming the ADOL-C tape into a computational graph, we performed the three types of
optimization previously described:

Assignment Removal: We deleted nodes containing the assign_a opcode by aliasing nodes through
pointers and keeping reference counts.

Hoisting: We collapsed chains of operations into supernodes.
Dead Root Removal: We eliminated nodes whose values had no influence on the final results.

In Table 2 we show the effect of those optimizations. We display the total number of operations
stored in the original ADOL-C tape, the number of assignments removed, the number of opcodes
deleted as a result of dead root removal, the number of opcodes remaining in the final graph that
have been amalgamated into a supernode as a result of our hoisting operation, and the remaining
number of nodes in the optimized graph. We show both absolute and relative values. We should
also note that the dead root elimination process did remove quite a few supernodes as well. For
example, in “Cavity”, we deleted 3,850 nodes, but eliminated 13,732 opcodes. We see that our
optimizations have quite a noticeable effect. Between removing assign_a opcodes and dead roots,
we eliminate 35.0%, 13.8%, and 45.9% of the operations to be performed. For emphasis these data
are listed again in Table 3, where we show the number of opcodes in the optimized graph, the
number of bytes that would be required to encode the optimized graph as an ADOL-C tape, and
the percentage savings that this represents compared to the original ADOL-C operation count and
storage requirements. Since the graph-building optimizations are applied on the fly, and employ
ADOL-C’s live variable analysis, these results suggest the use of on-the-fly assignment elimination
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Table 1: Statistics of Original ADOL-C Tape

| Shallow ]
opcode # operations % operations # bytes % bytes
assign_ind 3483 1.2 20898 0.5
assign_dep 1 0.0 6 0.0
assign.a 61236 21.7 612360 15.9
assign.d 7955 2.8 143190 3.7
eq_plus_a 24984 8.9 249840 6.5
plus.aa u 43062 15.3 602868 15.7
plus.ad 10890 3.9 196020 5.1
min.a_a 30537 10.8 427518 11.1
mult_aa 50823 18.0 711522 18.5
mult.a_d 48834 17.3 879012 22.9
[ Totals 281805 100.0 3843234 100.0
| _ Bratu
opcode # o;erations_-*% ope;tions _T-# bytes % bytes
assign.ind 3200 14 19200 0.6
assign.dep 3200 14 19200 0.6
assign.a 30578 13.8 305780 9.6
eqplusa 24178 10.9 241780 7.6
plusaa || 36267 16.4 507738 16.0
plus.a_d 12089 5.5 217602 6.8
mult_a_a 12089 75.5 169246 5.3
mult_a_d 75734 34.1 1363212 42.8
divd.a 12089 5.5 217602 6.8
exp-op 12089 5.5 120890 3.8
Totals u 246972 100.0 3182250 100.0
| Cavity |
opcode " # operations % operations # bytes % bytes
assign.ind || 961 0.7 5766 0.3
assign_dep u 961 0.7 5766 0.3
assign._a 49139 35.9 491390 27.9
assign.d 6284 46 87976 5.0
plus.aa 19220 14.0 269080 15.3
plus.a_d 4933 3.6 88794 5.0
min.a.a 34976 25.5 489664 27.8
min.d.a 961 0.7 17298 1.0
mult_a_a 11532 8.4 161448 9.2
multad | 8072 5.9 145296 8.2
Totals | 149667 100.0 1762478 100.0
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Table 2: Effect of Graph Optimizations

[ Shallow ]
Number Percent
[ADOL-C tape operations 281805 100.0

assign.a opcodes 61236 21.7 |
dead opcodes 37390 13.3
hoisted opcodes 29694 10.5
graph nodes 153485 54.5

| Bratu I
Number Percent
ADOL-C tape operations 221513 100.0
assign._a opcodes 30578 13.8
dead opcodes 0 0.0
hoisted opcodes 48356 21.8
|_graph nodes 142579 64.4

_J

[ Number | Percent |
ADOL-C tape operations 137039 100.0
assign_a opcodes 49139 35.9
dead opcodes 13732 10.0
hoisted opcodes 6144 4.5
|_graph nodes 68024 49.6

Table 3: Statistics of ADOL-C Tape Generated from Optimized Graph

Shallow Bratu Cavity

number of opcodes 183179 190935 74168

% savings compared to ADOL-C opcodes 34.9 14.1 46.0
B tape storage (bytes) 2703106 2876470 1063928

% savings compared to ADOL-C storage 29.7 9.3 39.8




Table 4: Number of Opcodes per Graph Node

# opcodes/node Shallow ~ Bratu Cavity
1 193791 (80.65%) | 118401 (83.04%) | 62008 (91.16%)
2 29694 (19.35%) —{ 5890 ( 3.84%)
3 - 24178 (16.96%) 124 ( 0.08@__
4 - - 2 (<0.01%)

Table 5: Compiled Graph Evaluation Code Scheduled by Height of Nodes

# processors serial 1 2 4 6 8
execution time (secs) 0.80 097 | 057 | 058 | 054 | 0.6

and dead root elimination in the construction of the ADOL-C tapefile itself in order to reduce both
the execution time for evaluating the tape and the storage required to create it.

The storage requirements for our graph and computational granularity are then further improved
by hoisting. The size of the graph nodes is displayed in more detail in Table 4. We see that in the
cases tested our supernodes usually have 2 or 3 opcodes and that the distribution is rather problem-
dependent.

4.3 Generating Compiled Code from the Execution Graph

We tested our code building and parallel execution utility on the “Cavity”problem. For the
purpose of parallel scheduling, we defined the level of a node by its height. All the nodes at a given
height were then assigned to parallel processes in batches of 1000. So if we had 4,500 nodes, we
generated five parallel processes; if we had 500 nodes, we generated only one process. Altogether
we generated 67,924 lines of C-code, and we required 47,727 intermediate storage locations. We
compiled this code on the Sequent Symmetry and obtained the (rather disappointing) results shown
in Table 5. We see that the parallel code hardly does much better than the serial version. The main
reason is that our execution schedule is rather unbalanced, as is shown by Figure 11 which shows the
node-height distribution. As can be seen, the scope for exploiting parallelism within a given height
is rather limited. Most of the time we have fewer than 3,000 nodes for a given level and cannot
sensibly use more than three processes. It also turns out that our code is severely 1/O bound. Each
line of code is executed only once, so it takes rather long to fetch instructions from memory onto
the chip. In particular, there is no locality of reference in the instruction cache.
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Appendix: ADOL-C opcodes

This appendix lists the different opcodes (defined in opcode. h) and the name of the tape structure
(defined in template.h) that is used for this opcode.

Assignment operators:

opcode assign_ind (structure d_assign_rec): Assignment to an independent variable

opcode assign dep (structure dep_assign rec): Assignment to a dependent variable
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opcode assign.a (structure a_assign_rec): adouble := adouble

opcode assign.d (structure d_assign rec): adouble := constant
Elementary Arithmetic Operations:

Immediate Assignment Operators:
Opcodes of the form eq.op_type, where op € {plus, min, mult, div} and type €
{d, a}, corresponding to a constant (double), or adouble argument. The tape struc-
tures used are a_same_arg when the second argument is an adouble, and d_same_arg
when the second argument is a constant.

Binary Operators:
Opcodes of the form op_typel_type2, where op € {plus, min, mult, div} and typel, type? €
{d, a, i}, corresponding to a constant (double, adouble, or integer) argument. The
tape structures used are two.a.rec for a binary operation involving two adoubles, and
args.ia, args ai, args.ad, args.d.a depending on the type of the arguments.
Elementary Functions (structure single_op):
Opcodes exp.op, log.op, sinop, cos.op, tanop, sqrt_op, corresponding toe”, log(z),
sin(z), cos(z), tan(z), and \/z, respectively.

Quadrature Functions (structure quadrature):

Elementary Quadrature Functions: Opcodes atan op, asin.op, acos.op, correspond-
ing to arctan, arcsin, arccos, respectively.

User-supplied Quadrature Functions: Opcode gen_quad denotes a user-supplied quadra-
ture function.

Death Notice (structure death not_rec) Opcode death.not.

Padding: opcode ignore.me corresponds to a record of type padtype. Padding records are needed

to fill up the remaining bytes in the tape buffers before writing them out, and for properly
aligning structures on word boundaries.
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