The Chain Rule Revisited
in Scientific Computing

Andreas Griewank

CRPC-TR91143
1991

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

The Chain Rule Revisited in Scientific Computing!

by

Andreas Griewank
Argonne National Laboratory

One of the few subjects many academics teach successfully to most of their undergrad-
uates is differential calculus. So why would the research offices of the Army and Air Force
fund a STAM-sponsored workshop on Automatic Differentiation of Algorithms: Theory, Im-
plementation, and Application? Moreover, why would more than sixty academics, scientists
and engineers from all over the world trek in early January to Breckenridge, Colorado, even
though most of them showed remarkably little interest in skiing? We can only guess, but by
most accounts automatic differentiation proved to be a worthwhile and surprisingly diverse
field of scientific research and application.

The bottom-up, or forward, mode of automatic differentiation has been used for at least
thirty years, and the mathematically slightly more intriguing top-down, or reverse, mode
has attracted steadily increasing interest over the past two decades. In terms of operations
counts the reverse mode yields gradient vectors for essentially the same effort that it takes
to evaluate the underlying scalar function, no matter how many variables there are. The
application of the reverse mode to large problems has been hampered by the potentially
huge memory requirement of current implementations, but that obstacle can be removed,
as we will explain later.

So — are you computing derivatives symbolically or by taking divided differences? This
frequently posed question leaves many proponents of automatic differentiation gasping for
air (a largely symbolic gesture at Breckenridge with an elevation of more than 9,000 feet).
How can people ask such questions, right after one’s lucid exposition of how variations on
the good old chain rule will yield any derivative value humans or computers may desire,
without any truncation error and practically free of charge? While none of the participants
was brave enough to defend the virtues of divided differences, there were several represen-
tatives from the computer algebra community. Prof. Char (Drexel University) discussed
various techniques for representing and manipulating evaluation procedures in computer al-
gebra packages. Dr. Goldman (University of Twente) showed that on certain test problems
of moderate size, an automated search for common terms in the expression trees of gradient
components can reduce the evaluation effort to the level achieved by the reverse mode of
automatic differentiation. It was generally hoped that for the particular task of differenti-
ation, the flexibility and convenience of symbolic manipulation packages can eventually be
combined with the numerical efficiency of automatic differentiation.

Getting Down to Basics

Like computer algebra, automatic differentiation is based on the fact that most functions of
practical interest are compositions of basic functions, mostly binary arithmetic operations

!This work was supported by the Applied Mathematical Sciences subprogram of the Office of Energy
Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

and univariate transcendentals. This applies in particular to all functions that are entered
symbolically as closed formulas or evaluated by programs written in a high-level computer
language (e.g., Fortran or C). The analytic differentiation of these elementary functions is
usually no problem at all, and their derivatives can be built into the software. For example,
the scalar assignments z = y -z and v = sin(u) can be augmented by the statements
2 =y-z'+y -z and v = cos(u) - v/, respectively. Here the superscript prime denotes
differentiation with respect to some or all independent variables. Moreover, the user can
enter other special functions (e.g., quadratures) into the library of elementary functions. He
or she merely has to supply formulas or routines for the evaluation of the new elementary
function and its derivative(s). For simplicity we will assume in the following discussion that
all elementary functions are scalar-valued and have a small number of arguments. The result
values of most elementary functions are themselves used as arguments to other elementaries,
and we will refer to them as intermediate variables. In general one would expect that the
numbers N and M of independent and dependent variables of the composite function being
evaluated is much smaller than the number T of intermediate variables. Consequently, the
time for evaluating the composite function on a given serial computer is roughly proportional
to T, which may thus serve as a measure of computational complexity.

Programs, Graphs, Trees, and Formulas

The independent, intermediate, and dependent variables form the vertices of a directed
acyclic graph — a representation apparently first considered by Kantorovitch. An arc runs
from one variable to another exactly if the value of the latter depends directly on the
value of the former. In other words, for each elementary function all argument variables
are connected to the vertex corresponding to its result variable. This computational graph
was extensively used by F. L. Bauer [1] and others (See e.g. [10]) in the context of error
estimation, a task that is closely related to the reverse mode, as Prof. Iri (University of
Tokyo) explained at the workshop. For lack of space we will not here discuss this important
side benefit of automatic differentiation [8]. Numbering the variables in the order that
they are computed by the underlying serial computer program, one obtains a topological
ordering of the directed graph. Any computation that traverses the vertices according to
this original ordering will be called a forward (or bottom-up) sweep, and any computation
that traverses the vertices in the opposite order will be called a reverse (or top-down) sweep.

One may associate with each arc the partial derivative of its destination with respect
to its origin as an arc-value. The left part of Fig. 1 depicts the computational graph for
the program of six assignments listed in the little box on top. If one is interested only
in first derivatives, the elementary partials can be evaluated immediately at the current
point, so that one obtains a linearized computational graph. When a function is defined
ezplicitly, the computational graph reduces to the more familiar expression tree. In fact,
by replicating intermediate vertices, any computational graph can be expanded to a forest
(i.e., a collection of M disjoint trees). The result of this transformation is depicted in the
right half of Fig. 1 with M = 1, as there is only one dependent variable f. Below the
tree in Fig. 1 we see the corresponding algebraic formula. The tree has 18 nodes compared
with the 8 nodes of the graph. The problem is that the number of replicas needed for a
given intermediate vertex equals the number of distinct directed paths that connect it to
dependent variables. Therefore, the attempt to express the dependent variables directly in

a=x/y

b =exp(y) |

¢ =sin(a)

d=a-b

e=c+d

f= de /@ () \
) ’

® © ® @ © ® ®

f(x,y)-= (sin(x/y)+x/y-exp(y))*(x/y-exp(y))

Figure 1: Representations of an evaluation algorithm with one dependent and two indepen-
dent variables

terms of the independent variables often fails because of exponential growth of the memory
requirement. Computer algebra systems such as Maple systematically avoid the replication
of common subexpressions until asked to output a given function ezplicitly.

Philosophically, one might argue that the customary identification of the notion of an
explicit representation with that of a formula (i.e., a linear string of algebraic operators) is
outdated. If we had been brought up to represent and manipulate functional relations in the
form of two-dimensional formulas, we would probably find the graph in Fig. 1 much more
readable than the corresponding one-dimensional representation as a conventional algebraic
expression. One needs only to enlarge the computational graph of Fig. 1 slightly to make
the corresponding formula run over several lines, if not pages. It is a common experience
that such symbolic output rarely provides analytic insights, and usually represents a poor
procedure for evaluating the function numerically. Certainly, modern computer graphics
and printing technology allow us to enter and retrieve two-dimensional data, so why don’t
we think — and possibly even program — that way? '

Differentiation as Arithmetic

Possibly as a result-of our training in calculus classes, we mostly think of differentiation as a
tedious but straightforward process to obtain algebraic expressions for derivatives from the
formula of the original undifferentiated function. In this effort the chain rule plays a key

* role, typically doubling the length of each nonlinear term to which it is applied. Everybody
_knows that the resulting formula collection tends to contain many common expressions.
Consequently, the joint evaluation of a function and all its partials of interest (in a more
or less ingenious fashion) is usually a lot cheaper than the sum of the costs for evaluating
the function and each partial separately. As we will see, this effect is typical and can be
exploited in a systematic fashion.

The computational graph of a function can be extended to a graph for a particular
partial by appending a few auxiliary nodes to each original vertex. The size of the resulting
computational graph is only a small multiple of the original, but it contains many diamonds
created by the chain rule. Consequently, the corresponding expression tree is likely to be,
by orders of magnitude, larger than the undifferentiated original. For example, the (T+1)-
fold application of a nonlinear elementary function such as sine yields a univariate function,
whose computational graph is simply a tree with T'+1 nodes stacked on top of each other.
This situation is depicted for T = 3 in Fig. 2. From each original vertex we may spawn a
node for the cosine and one for the partial of the intermediate variable with respect to the
only independent variable. The resulting graph for the overall partial has 3(T + 1) nodes
and can thus also be evaluated in O(T) time. However, if this graph is expanded into a
tree, there are O(T?) vertices, which make the formula pretty much unreadable.

£ v@* .
. 1 PR
' G}
. 1
! PR (0}
L ' ’/
SN 9
bl PR
! 1
: @cos @
/,’ '
sin) .
! ~
© e -
1 ~

sin (¢)

_- ' ! sin@
769’003 |
sin @) ’cos sin (a) @ !

sin

/,/” A sin@
of ® ©® ® ©

Figure 2: Graph and tree for derivative g’ of g = sin(sin(sin(sin(z))))

Even the extension of the graph is not really a good idea, because it has to be done
repeatedly for each partial of interest — usually at least the N gradient components. In-
stead, one should interpret the graph as a program for performing elementary operations
on a set of truncated Taylor series, which form a ring in the algebraic sense. For example,
one may replace the original argument z by a linear function z + tv, where ¢ is a scalar
parameter and z,v are both fixed N-vectors. Then one can propagate, through the com-
putational graph, pairs of real numbers (z, z’) representing the value of each intermediate
variable and its first partial derivative with respect to ¢t evaluated at ¢ = 0. The resulting
second component at dependent variable nodes represents their directional derivative along
the tangent v in the domain of the function. Algebraically, these pairs form a normed ring
to which the elementary arithmetic operations and standard univariate functions are easily
extended. The same is true if we replace the original scalar variables by higher-order and/or
multivariate Taylor series, for example, triplets consisting of the value, gradient, and Hes-
sian of an intermediate variable with respect to all or some of the independent variables.

4

Again, all elementary operations and functions can be extended to these finite-dimensional
real algebras by using the familiar rules of differentiation and power series manipulation.
Obviously, the computational effort per node grows with the order of the highest Taylor
coefficients and the number of independent variables.

In some way the manipulation of truncated Taylor series leads us back to the field of
computer algebra, where efficient methods for combining and simplifying polynomials have
been thoroughly investigated. In particular, we may utilize special methods for multiplying
and composing polynomials, which at least asymptotically are significantly faster than the
naive approach [6]. The relative efficiency of the various methods depends on the particular
computing environment, the form of the truncated Taylor series, and the question of whether
its coefficients are propagated all at once or recursively, as in the ODE case. It should be
noted that, in contrast to the fully symbolic case, higher-order terms occurring during the
combination of Taylor series are immediately truncated so that the complexity of their data
representation does not increase. The key difference between fully symbolic differentiation
and differential arithmetic is that the latter technique applies the chain rule to numbers
rather than to formulas. In this way any embellishment or complication of the original
computational graph can be avoided.

Applications of Differential Arithmetic

Differential arithmetic or algebra, as sketched above, has been implemented and used in
many contexts during the past three decades (see e.g., [11]). Univariate Taylor series of
orders up to a hundred have been used extensively for the numerical solution of ordinary
differential equations with guaranteed error bounds [5]. Gradients and Hessians with respect
to all independents are automatically calculated by using differentiation arithmetic in several
integrated packages for optimization and nonlinear equation solving. Taylor series of orders
up to ten and with up to seven variables have been used for beam tracing in optical systems
and magnetic fields [3]. In all these applications, derivative values are obtained without
any truncation errors, inaccuracies that always affect divided-difference approximations
and render them practically useless for third and higher derivatives. The following list
contains some of the applications for which participants at the Breckenridge workshop used
automatic differentiation techniques:

e Exploratory orbit analysis for satellites.

e Simulation of the Superconducting Supercollider.
o Sensitivity analysis in economics.

e Nuclear reactor analysis and design.

e Environmental impact studies.

Chemical process optimization.

e Low-level radioactive waste disposal.

Most of these applications were quite large, so that their numerical solution required
substantial resources. No matter how the truncated Taylor arithmetic is implemented, its

5

cost grows rapidly with the number of independent variables. In particular, the calculation
of a full gradient typically requires IV times as many operations and N times as much storage
as the evaluation of the underlying scalar function. For dense Hessians, both computational
costs grow by a factor of N2. Since these cost increases are similar to those for approximating
gradients and Hessians by differencing, they may seem a fair price to pay. However, in the
alternative reverse mode of automatic differentiation, one can obtain gradients and Hessiaus
for an N-th of the cost, though using a possibly larger memory.

Vertex Elimination on Linearized Graphs

When the linearized computational graph contains no intermediate vertices at all, its arcs
represent exactly the nonzero entries of the Jacobian matrix. Otherwise it can be seen that
the partial derivative of one dependent variable with respect to a particular independent
variable is given by the sum of the values of all paths that connect the latter to the former
[10]. Here, the value of a directed path is the product over the values of its arcs. The
naive evaluation of these determinant-like sums of products would be grossly inefficient
even if the graph were a tree. Instead one may use the following version of the chain rule
to successively eliminate each intermediate vertex, which we will call the pivot node, in any

particular order. A similar technique of successive graph modifications was proposed by T.
Yoshida [17].

Consider all arcs connecting a predecessor of the pivot node to one of its successors.
Increment the value of the arc by the value of the path running from the predecessor
through the pivot to the successor. If a predecessor/successor pair was previously not
directly connected, introduce an arc and initialize its value to that of the path through the
pivot node. The elimination of the central node in Fig. 3 generates four new (dashed) arcs,
increments two, and eliminates six. The arcs are annotated by letters representing their
values, which are all immediately calculated as real numbers.

-
e —-—-

Figure 3: Elimination of an intermediate vertex

Topologically, this vertex elimination rule is exactly the same as the one used in Gaus-
sian elimination with symmetric pivoting [12]. Here, however, there are no divisions, and
the pivot node may be chosen with the sole aim of limiting fill-in (i.e., the total number
of newly created arcs). The number of arithmetic operations needed to eliminate a certain
node is equal the product of the number of its in-degree and out-degree, which count the
number of its predecessors and successors, respectively. This so-called Markowitz degree
is easy to compute and represents a bound on the local fill-in. For an optimal operations
count, one would wish to eliminate the intermediate vertices in an order that minimizes
the sum of all Markowitz counts at the pivot nodes. As is the case for the closely related
sparse Gaussian elimination problem [12], it is conjectured that the combinatorial task of
finding such a minimum ordering is in general NP-hard. However, heuristics like the local
Markowitz rule may be quite efficient, and in special cases minimum orderings are easily
characterized.

Retreat into the Forest

Suppose the computational graph is in fact a forest. Since vertex elimination as described
above can never join disconnected subgraphs, we may then consider one particular tree,
whose root represents a single dependent variable. In other words, we are trying to com-
pute the gradient of a scalar component function with respect to all independent variables.
Since the root is the only successor of all its immediate neighbors, each of them can be
eliminated at a cost proportional to its in-degree. It can be seen that the in-degree of all
other intermediate vertices remains unaffected; hence, eliminating the nodes opposite to
their original ordering yields the gradient at a cost proportional to the sum of all original
in-degrees, which is bounded by a small multiple of T. Thus we see that the time complexity
of calculating the gradient in this top-down, or reverse, fashion is proportional to the cost of
evaluating the underlying component function by itself. Because the computational graph
was assumed to be a forest, this proportionality carries over to the whole vector function,
whose Jacobian can thus be obtained by the reverse mode for little more than the cost of
evaluating the function itself.

Unfortunately, the differentiation procedures of most computer algebra systems do just
the opposite: they accumulate derivatives in the forward mode. Moreover, rather than
calculating their numerical values at the current argument, the derivatives are formed as
algebraic expressions of usually rapidly growing complexity. If the intermediate vertices
in a tree are eliminated numerically in their original topological ordering, all out-degrees
remain the same, but some in-degrees must be greater than one to begin with, and all are
likely to increase further as a result fill-in. Consequently, the total number of arithmetic
operations is likely to be much larger than the sum o f the original out-degrees, which is
also proportional to T'. The same may apply for the reverse mode if the computational
graph is not a tree, because several component functions are computed by using common
expressions. By reversing all arcs in a linearized computational graph, one obtains another
(linear) computational graph for which the reverse elimination is equivalent to the forward
mode on the original graph.

As an example, let us consider the function that is the multiplicative product of its N
independent variables. The i-th component of the gradient is simply the product of the
first ¢ — 1 variables and the last N — ¢ variables. If these initial and terminal subproducts
are computed recursively, the product function and its full gradient are evaluated at the

-=---% forward fill

........ (- reverse ﬁu

Figure 4: Elimination-fill on unbalanced and balanced tree for product function

total expense of 3N — 1 multiplications. As was already demonstrated by Speelpenning
[13], this seemingly ingenious scheme for differentiating the product amounts to reverse
elimination on the computational graph. In contrast, the forward mode involves exactly
N(N — 1)/2 multiplications. Here we have tacitly assumed that the product is evaluated
by a simple loop, so that the graph has T = N —2 linearly ordered intermediate vertices, as
depicted in the left half of Fig. 4 for the case N = 5. Because of their commutativity, the
multiplications can be arranged differently for example, in a binary tree of height log, N as
depicted in the right half of Fig. 4. In both halves the thick solid arcs represent original
dependencies, whereas the dashed and dotted arcs indicate the fill-in generated by forward
and reverse elimination, respectively. The thin solid arcs connecting the independents to
the single dependent variable represent the gradient components and must therefore be
generated by either method. Whereas the reverse mode generates at most one fill-in arc
per node, the forward mode creates many more, especially on the unbalanced tree depicted
on the left. For general N, balancing the product tree to minimize its height improves
the complexity of the forward mode to N log,, which is still slightly worse than the O(/V)
complexity of the reverse mode. Finally, it should be noted that any attempt to create a
separate expression or procedure for each gradient component must result in an evaluation
cost of order N (N —1), as each independent variable enters into all but one of the gradient
components.

Going Back in Time

The remarkable fact that the ratio between the time-complexity of gradients and the un-
derlying functions does not depend at all on the number of independent variables N has
been known — though not widely understood — for quite some time. As explained by
Prof. Prof. Iri and Prof. George Cybenko (CSRD University of Dlinois), the top-down, or
reverse, mode of automatic differentiation was already being used in the early seventies: by
Seppo Linnainmaa [9] for the estimation of rounding errors and by Paul Werbos [16] for
training neural networks by backpropagation. In 1980 B. Speelpenning (a Ph.D. student of
W. Gear) wrote a Fortran precompiler that implements the reverse mode quite efficiently
[13]. In 1983 a paper of W. Baur and V. Strassen [2] appeared in Theoretical Computer
Science that established for rational functions a complexity bound of 3 in terms of mul-

tiplications. Since then, several groups of researchers have contributed to the theory and
developed various software implementations.

An even older, closely related tradition is that of adjoint differential equations in opti-
mal control. Whenever a state vector evolves according to an ordinary differential equation,
one may simultaneously integrate its partial with respect to a particular input parameter
as a solution to an auxiliary linear differential equation. As explained by Prof. Evtushenko
(Soviet Academy of Sciences, Moscow), the simultaneous integration of this impulse equa-
tion in time corresponds to the forward mode of automatic differentiation. On the other
hand, if one is interested in the gradient of some final performance measure with respect to
many input parameters, the integration of the adjoint equation backward in time is much
more efficient. The reverse mode discussed above is simply a discrete analog of this well-
established costate approach. The two methods share an obvious disadvantage, namely, the
apparent need to store the trace of the forward integration or evaluation. Also, as explained
at the workshop by Prof. Burns (Virginia Polytechnic Institute and State University), dis-
cretizations of control problems must satisfy additional consistency requirements in order
to yield convergent costates. As reported by Prof. Talagrand (Laboratoire de Météorologie
Dynamique, Paris), and Prof. Navon (Florida State University), handcoded adjoints have
been used extensively in four-dimensional data assimilation for short- and medium-term
weather modeling. P.C. Shah (Schlumberger Well-Services) described the application of
adjoint equations for distributed parameter estimation in models of building structures and
petroleum reservoirs. W. C. Thacker (Atlantic Oceanographic and Meteorological Labora-
tory), discussed the task of automating the coding of adjoints without sacrificing too much
computational efficiency. [14].

Checking the Memory

So far, we have considered only the temporal complexity in comparing the forward and
reverse mode. The memory requirement of the forward mode is relatively easy to predict.
Suppose we wish to calculate an M x N Jacobian, whose rows contain at most n < N
nonzero elements. If we exclude the possibility of exact cancellations, it follows that none
of the vertices can ever have an in-degree greater than n during the forward elimination
process. As a consequence, the forward Jacobian accumulation requires no more than n
times the storage and operations count of the underlying function evaluation. Similarly
m < M, the maximal number of nonzeros in any column of the Jacobian, bounds the
operations count for the reverse accumulation relative to the function evaluation. However,
whereas the forward mode can be propagated simultaneously with the function evaluation,
the reverse elimination can begin only after the function has been fully evaluated. Moreover,
all intermediate variable values enter into the reverse accumulation and must therefore be
kept in memory, unless they can be calculated. Speelpenning was apparently the first to
notice that the data representing the computational graph can be generated and accessed
in exactly the opposite order. Hence this potentially very large data set can be manually
or automatically paged out to disk without unreasonable run-time penalties. On the other
hand, the randomly accessed memory requirement for the reverse mode can be limited
to m times that of the function evaluation itself. Speelpenning’s precompiler and some
more recent implementations split the storage requirement accordingly into sequentially
and randomly accessed memory, abbreviated as RAM and SAM in Table 1. Nevertheless,
there is reason for concern, because these systems typically generate some 15-25 bytes of

SAM for each elementary operation during the function evaluation.

On a weather-related PDE problem, a comparison of three automatic differentiation
packages with a handcoded adjoint program showed that they used nearly a hundred times
more memory than was really needed. The handcoded program stored only the trace of
the time-dependent solution function itself and recalculated all the other intermediates
during the reverse sweep. In contrast, the automatic packages stored the large number
of intermediate quantities that were generated during each time step: thus their SAM
requirement was proportional to T. Theoretically one can see quite easily that by using
multilevel differentiation as proposed by Volin and Ostrovskii [15], the storage requirement
of the reverse mode can be restricted to grow like a root or even the logarithm of T. To
this end, slices of the graph need to be recalculated from suitably chosen checkpoints at
which a snapshot of all variable values has been taken during a previous forward evaluation.
Most operating systems utilize such checkpointing to allow restarts after an exception and
to swap user programs in and out on a timesharing system. Unfortunately, this approach
has not yet been implemented for automatic differentiation, but its existence should make
the reverse mode eventually a viable proposition even for very large problems.

Complexity of Jacobians

Basic complexity bounds for accumulating Jacobians by various methods are listed in Table
1. The first row serves the purpose of defining the quantities T, R, and S, which represent
the run-time, core, and disk space needed by the original function evaluation program.
Similarly, the first entry in the second row may be viewed as defining the integer n < N.
This bound represents a suitable number of groups into which the columns of the Jacobian
can be partitioned for the purpose of differencing. The columns in each group must be
pairwise structurally orthogonal, which can be ensured by the graph coloring approach of
Coleman and Moré [4]. The same algorithm can be applied to the sparsity pattern of the
transposed Jacobian yielding a corresponding number m < M of row groups. The usually
somewhat smaller effective dimensions n < i, m < 7, still denote the maximal number of
nonzero entries in the columns and rows of the Jacobian, respectively.

The prefixes S and M of the three procedures Forward, Reverse, and Reverse* specify
whether the variant calculates the whole Jacobian in one single sweep or in groups of columns
or rows using multiple sweeps over the computational graph. As we see, the multiple forward
sweep has exactly the same complexity as the Coleman-Moré [4] differencing scheme, where
small factors that depend on the computing system but not the particular problem are
ignored. The single forward method may save some computing time, but does require
substantially more storage, since all scalars in the original variable space are replaced by
N-vectors with up to n nonzero entries. The multiple and single reverse methods may be
interpreted as the corresponding forward methods applied to the reversed graph, that is,
the graph obtained by reorienting all arcs without changing thei r values. By turning the
graph upside down in this way, one interchanges the role of the independent and dependent
variable vertices. By reevaluating the original function, one can recreate the graph from
the independent variables during each forward sweep, but this procedure is not possible
during reverse sweeps. Therefore the sequential-access memory requirement for the two
simple reverse schemes is larger by T (i.e., the space needed for storing the linearized
computational graph at the current argument). This severe limitation is avoided by the
as yet only theoretically conceived procedures denoted by Reverse* with k > 1. If one

10

Table 1: Complexity of Jacobian evaluation,n < 72 < N and m < <M

Mode OPS | RAM SAM
Function T R S
Differencing | a T R S
M-Forward aT R S
S-Forward nT | nR S
M-Reverse mT R S+T
S-Reverse mT | mR S+T
M-Reverse* |mTk| R |S+ REk(T/R*
S-Reverse* |mTk| mR |S+Rk(T/R)*

accepts an increase in the number of operations by a fixed factor k, the corresponding
SAM requirement is limited essentially by the k-th root of the original run-time 7. For the
particular choice k = In(T'/R), total storage and computing time both grow logarithmically
in the ratio T'/R.

As we mentioned above, the vertices in the linearized graph can be eliminated in any
order, and one can easily construct examples for which all forward and reverse modes are
much less efficient than orderings that begin the elimination in the middle of the graph
rather than at one end. An experimental implementation of the Markowitz criterion has
produced promising results on some test problems, but the pivot search over the whole graph
is quite costly, in terms of both logical operations and core memory. Further investigations
should yield relaxations of the Markowitz-rule that limit fill-in as much as possible without
randomly accessing the whole graph structure.

Parallelism and and Other Future Challenges

Much remains to be done in all three categories of theory, implementation, and application.
As we indicated above, the accumulation of Jacobians poses a host of combinatorial opti-
mization problems even on a serial machine, and it has only very recently been considered
in a parallel context, as discussed by Dr. Bischof (Argonne National Laboratory) at the
workshop. Moreover, in many applications, Jacobians are used only as a means for calcu-
lating Newton steps, and it has been shown that these vectors can sometimes be computed
more efficiently without accumulating the Jacobian at all [7]. Prof. Dixon demonstrated
that the computational graph of gradients computed in the reverse mode is in some sense
symmetric, a strong property that should certainly be exploited in the evaluation of Hes-
sians and the direct calculation of Newton steps. Since it represents data dependencies on
the scalar level, the computational graph allows (in theory) the determination of optimally
concurrent evaluation schedules for both function and derivatives. For practical purposes,
many implementation issues — for example, appropriate granularity and maintenance of
vectorizability — need to be resolved. The numerical analysis of nonlinear bifurcations and
the solution of differential algebraic equations would greatly benefit from efficient and accu-

11

rate methods for evaluating derivatives of implicit functions. Except for the contributions
of Dr. Lawson (JPL) and Prof. Flanders (University of Michigan), in the univariate case,
the automatic differentiation community has so far not given much attention to implicit
functions: in particular, no basic complexity estimates have appeared in the literature.
Many participants at the Breckenridge workshop felt that the currently insufficient distri-
bution of efficient, reliable, and user-friendly software is the main obstacle to the wider
application of automatic differentiation. A large variety of implementations does, in fact,
exist, mostly in the form of precompilers for Fortran codes, overloading utilities in Ada
or C++, and integrated optimization packages with symbolic function entry. A survey of
28 such software packages will appear in the Proceedings of the workshop, which are to
be published by SIAM and edited by George Corliss (Marquette University) and Andreas
Griewank (Argonne National Laboratory). A draft version cluding all relevant contacts
can be obtained by e-mail from the survey’s author, David Juedes, at the e-mail address
juedes@atanoff.cs.iastate.edu . For various reasons, none of the current implementations are
entirely satisfactory, and all require a large amount of extra storage in the reverse mode.
As we indicated above, that limitation can be overcome by checkpointing techniques that
are probably best implemented at the compiler level.

References

[1] F. L. Bauer (1974). Computational Graphs and Rounding Errors. SINUM, Vol. 11, no.
1, pp. 87-96.

[2] W. Baur and V. Strassen (1983). "The Complexity of Partial Derivatives”, Theoretical
Computer Science, Vol. 22, pp. 317-330.

[3] M. Berz (1990). Computational Aspects of Design and Simulation: COSY INFINITY.
Nuclear Instruments and Methods, A298:473.

[4] T. F. Coleman and J. J. Moré (1983). Estimation of Sparse Jacobian Matrices and
Graph Coloring Problems . SINUM, Vol. 20, pp. 187-209.

[5] G. F. Corliss and Y. F. Chang (1982). Solving Ordinary Differential Equations using
Taylor Series. ACM TOMS, Vol. 8, pp. 114-144.

[6] R. J. Fateman (1974). Polynomial Multiplication, Powers, and Asymptotic Analysis:
Some Comments. SIAM J. Comput., Vol. 3, pp. 196-213.

[7] A. Griewank (1990). Direct Calculation of Newton Steps without Accumulatfng Jaco-

bians, in "Large-Scale Numerical Optimization”, T. F. Coleman and Yuying Li, eds.,
SIAM, pp. 115-137.

[8] M. Iri, T. Tsuchiya, and M. Hoshi (1988). Automatic Computation of Partial Deriva-
tives and Rounding Error Estimates with Applications to Large-Scale Systems of Non-
linear Equations. Journal of Computational and Applied Mathematics, Vol. 24, pp.
365-392.

[9] S. Linnainmaa (1976). Taylor Ezpansion of the Accumulated Rounding E'rror. BIT, Vol.
16, pp. 146-160.

12

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

W. Miller and C. Wrathall (1980). Software for Roundoff Analysis of Matriz Algo-
rithms. Academic Press, New York.

L. B. Rall (1981). Automatic Differentiation - Techniques and Applications, Springer
Lecture Notes in Computer Science, Vol. 120, Springer-Verlag, Berlin.

D. J. Rose and R. E. Tarjan (1978). Algorithmic Aspects of Vertex Elimination on
Directed Graphs. SIAM J. Appl. Math., Vol. 34, pp. 177-197.

B. Speelpenning (1980). Compiling Fast Partial Derivatives of Functions Given by
Algorithms, Ph.D. dissertation, Department of Computer Science, University of Illinois
at Urbana-Champaign, Urbana, Illinois.

W. C. Thacker (1990). Large Least-Squares Problems and the Need for Automating
the Generation of Adjoint Codes, in Lecture Notes in Mathematics 26, Computational
Solution of Nonlinear Systems of Equations, American Mathematical Society, pp. 645—
677.

Yu. M. Volin and G. M. Ostrovskii (1985). Automatic Computation of Derivatives with
the Use of the Multilevel Differentiating Technique. Computers and Mathematics with
Applications, Vol. 11, pp. 1099-1114.

P. J. Werbos (1974). Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences. Ph.D. dissertation, Department of Statistics, Harvard University,
Cambridge, Massachusetts.

T. Yoshida (1987). Derivation of a Computational Process for Partial Derivatives of
Functions Using Transformations of a Graph. Transactions of IPSJ , Vol. 11, pp. 1112-
1120.

13

Mathematics and Computer Science Division
Building 221

Argonne National Laboratory

Argonne, Illinois 60439-4844

Recent Preprints:

H. G. Kaper and M. K. Kwong, “On Two Conjectures Concerning the Multiplicity of Solutions of a Dirichlet Problem,”
MCS-P211-0191.

Kenneth W. Dritz, “Ada Solutions to the Salishan Problems,” MCS-P212-0291.

L. B. Tjoa and L. T. Biegler, “Simultaneous St.rétegies for Data Reconciliation and Gross Error Detection of Nonlinear Sys-
tems,” MCS-P213-0291.

I-Liang Chern, “A Control Volume Method on an Icosahedral Grid for Numerical Integration of the Shallow-Water Equa-
tions on the Sphere,” MCS-P214-0291.

Ian Foster, William Gropp, and Rick Stevens, *“The Parallel Scalability of the Spectral Transform Method,” MCS-P215-
0291.

Man Kam Kwong, “On the Unboundedness of the Numer of Solutions of a Dirichlet Problem,” MCS-P216-0291.

Xiaolong Yang, Norman J. Zabusky, John F. Hawley, and [-Liang Chern, “Vorticity Generation and Evolution in Shock-
Accclerated Density-Stratified Interfaces,’ MCS-P217-0291.

D. Levine, D. Callahan, and J. Dongarra, “A Comparative Study of Automatic Vectorizing Compilers,” MCS-P218-0391.
W. W. McCune, “Single Axioms for the Left Group and Right Group Calculi,” MCS-P219-0391.

W. W. McCune, “Automated Discovery of New Axiomatizations for the Left Group and Right Group Calculi,” MCS-
P220-0391.

Mark Jones and Paul Plassmann, “Fortran Subroutines to Compute Improved Incomplete Cholesky Factorizations,™
MCS-P221-0391.

Larry Wos, “The Problem of Choosing the Type of Subsumption to Use," MCS-P222-0391.
Larry Wos, “The Problem of Choosing the Represcntation, Inference Rule, and Strategy,” MCS-P223-0391.

Lorenz T. Bicgler and James B. Rawlings, *“Optimization Approaches to Nonlinear Model Predictive Control,” MCS-
P224-0391. v

Christian H. Bischof and Ping Tak Peter Tang, *“Robust Incremental Condition Estimation,” MCS-P225-0391.
Stephen J. Wright, *“Interior Point Methods for Optimal Control of Discrete-Time Systems,” MCS-P226-0491.

Andreas Griewank, “Achieving Logarithmic Growth of Temporal and Spatial Complexity in Reverse Automatic
Differentiation,” MCS-P228-0491.

Stephen Wright, “Stable Parallel Elimination for Boundary Value ODEs,” MCS-P229-0491.
Gui-Qiang Chen, *“Hyperbolic Systems of Coﬁscwation Laws with Symmetry,” MCS-P230-0491.
Larry Wos, “Automated Reasoning and Bledsoe’s Dream for the Ficld,” MCS-P231-0491.

Larry Wos and Robert Veroff, * Automated Reasoning in Relation to Logic,” MCS-P232-0491.

