A Pseudopolynomial Problem
Formulation for Exact Knapsack
Separation

E.A. Boyd

CRPC-TR91145
1991

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892









A Pseudopolynomial Problem Formulation

for Exact Knapsack Separation
E. Andrew Boyd!

TR91-04

1This work was sponsored in part by NSF grant ECS-8809053.



Abstract

The NP-complete separation problem for the knapsack polyhedron P is formulated as a linear
program with a pseudopolynomial number of variables and constraints. Due to the intrinsic difficulty
of the problem this is arguably the most compact formulation achievable. It is demonstrated that the
primal polyhedron associated with this formulation can be projected onto an appropriate subspace
to yield P and that the dual polyhedron can be projected onto an appropriate subspace to yield

the polar of P. Practical consequences of the formulation are discussed.



1 Introduction

It is difficult to overemphasize the impact of cutting planes on the fields of integer programming
and combinatorial optimization. Beyond leading to a wealth of elegant theoretical results, the use of
cutting planes in the solution of integer programs has lead to breakthroughs that would have been

unimaginable only a decade ago.

Fundamental to the application of successful cutting plane techniques is the ability to solve the
separation problem: given a point £ € R" and a polyhedron P € IR", demonstrate that £ € P
or provide a vector d and a scalar do such that dz < dq for all £ € P but dZ > do. If £ is the
solution to a linear programming relaxation of an integer program and P is a polyhedron that
contains all feasible solutions to that integer program then the constraint dz < do is a cutting plane.
While ultimately it would be desirable to solve the separation problem with P equal to the convex
hull of feasible integer solutions to the integer program, in most instances it is necessary to seek
good separation algorithms for relaxations of this convex hull due to the intimate relation between
the complexity of optimizing a linear function on a polyhedron and the separation problem [13].
Cutting planes generated by solving the separation problem for such relaxations have proven to be

remarkably powerful computational tools.

One of the greatest demonstrations of the power of cutting planes generated by solving the sepa-
ration problem for relaxed polyhedra was the Lanchester prize-winning paper of Crowder, Johnson,
and Padberg [11]. In this paper, facets of the knapsack polyhedra defined by individual constraints
of the integer programs they sought to solve were used as cutting planes. Their results were truly
astonishing, as they were able to solve all but one of a collection of integer programs to optimality
in under 15 minutes even though “most [of the problems] were originally considered not amenable
to exact solution in economically feasible computation times” ([11], p. 828). The largest most dif-
ficult problem required only slightly less than an hour to solve. Cutting planes based on knapsack

polyhedra have begun to find their way into publically available general purpose algorithms such as



IBM’s OSL and Georgia Tech’s GT-MIO.

The separation problem for the knapsack polyhedron is known to be NP-complete since the well-
known NP-complete problem of optimizing a linear function on this polyhedron can be solved by
the ellipsoid algorithm with a polynomial number of calls to an algorithm for solving the separation
problem. However, the knapsack optimization problem is also well-known to be solvable in pseu-
dopolynomial time using dynamic programming. In many instances of practical merit this allows
the knapsack optimization problem to be solved in reasonable computation times, and the dynamic
programming formulation for this problem can be found in almost any text on integer programming

(see, for example, [19]).

Crowder, Johnson, and Padberg [11] used the ability to solve the knapsack optimization problem
to develop a pseudopolynomial time algorithm for generating violated minimal cover inequalities for
the knapsack polyhedron; specifically, their algorithm generates from among the class of minimal
cover inequalities an inequality that is most violated in the L! norm or a proof that no such in-
equality exists. While it is possible for a point to satisfy all minimal cover inequalities without being
contained in the knapsack polyhedron, Balas and Zemel [4] showed that all facets of the knapsack
polyhedron could be generated by applying the operations of lifting and complementing to some
minimal cover. Zemel [25] and Zemel and Hartvigsen [26] have presented a number of results re-
garding the complexity of questions related to finding, recognizing, and lifting facets of the knapsack
polyhedron. One result of particular interest is that sequential lifting for the knapsack polyhedron
can be accomplished in polynomial time. Nonetheless, it is not clear that if a violated inequality
for the knapsack polyhedron exists that it can be generated by lifting a minimal cover inequality
generated by Padberg’s algorithm. Further, is it not clear that given a minimal cover from which
a violated facet can be generated by lifting and complementing that such a facet can be generated
in pseudopolynomial time (the polynomial time lifting theorem of Zemel guarantees a facet, not a

violated facet).

While combinatorial approaches extending from the work of Padberg, Balas, Zemel, and many



other important contributors do not lead to a pseudopolynomial time separation algorithm for the
knapsack polyhedron, the existence of a pseudopolynomial time separation algorithm for the knap-
sack polyhedron is guaranteed by the complexity equivalence of separation and optimization as
described in [13]. However, while theoretically satisfying, the algorithm described in these mono-
graphs is is based on the ellipsoid algorithm and as such is not a practical algorithm. Specifically,
the algorithm solves the separation problem by using the ellipsoid algorithm to optimize over the
polar of the knapsack polyhedron and invoking a knapsack optimization algorithm as a separation
oracle. Further, with its facets implicitly defined by the extreme points of the knapsack polyhedron,
the knapsack polar can have a number of facets exponential in the number of variables of the knap-
sack problem. Thus, practically efficient procedures such as the simplex algorithm or interior point
methods that require an explicit description of a polyhedron cannot be used in place of the ellipsoid
algorithm without modification. In [9] and [10] the author demonstrated how practically efficient
nonellipsoid algorithms could be used to optimize a linear function on a polyhedron closely related
to the polar polyhedron, thus allowing the exact knapsack separation problem to be solved efficiently
in practice. However, the results in these papers were achieved by dealing intelligently with the large
number of implicit constraints and not through reformulating the problem to overcome difficulties

encountered with such a large number of constraints.

In this paper we present a linear program to solve the separation problem for the knapsack
polyhedron that has a pseudopolynomial number of variables and constraints in the size of the
knapsack problem instance. With knapsack separation an NP-complete problem and with the best
known algorithm for the knapsack optimization problem having pseudopolynomial complexity this
pseudopolynomial problem formulation is the most compact that can be expected. One practical
implication of this result is that polynomial time linear programming algorithms that require an
explicit formulation of a linear program — which includes most interior point algorithms — can
be used to solve the knapsack separation problem in pseudopolynomial time. Further important

practical implications are discussed in the conclusions section.



We also demonstrate two results related to the projection of the primal and dual polyhedra of the
compact problem formulation. Specifically, it is demonstrated that the knapsack polyhedron can be
obtained by projecting the primal polyhedron of the formulation onto an appropriate subspace and
that the polar of the knapsack polyhedron can be obtained by projecting the dual polyhedron onto an
appropriate subspace. These results are in keeping with a number of recent projection results such as
those found in Balas and Pulleyblank [2] [3], Ball, Liu, and Pulleyblank [5], Barahona [6] (7], Barany,
Van Roy, and Wolsey [8], Eppen and Martin [12], Jeroslow and Lowe [14], Liu (15}, Maculan [16],
Martin [17], Martin, Rardin, and Campbell [18], Pochet and Wolsey [20], Rardin and Wolsey [22],
and Yannakakis [24]. Two excellent concise surveys of recent work on projection can be found in

sections of Pulleyblank [21] and Wolsey [23].

2 The Problem Reformulation

Formally stated as an integer program, the knapsack problem is the following.

max 3 7., ¢j%;
(K) st. Xi_,ajz; <b
z; € {0,1}
In this definition b and all ¢; and a; are assumed to be positive integers. We let P denote the convex
hull of feasible integer solutions for this problem. Throughout this paper we let # > 0 denote the

point for which a separating hyperplane from P is sought.

The knapsack problem is well-known to be NP-complete but is one of a relatively small class of
problems for which a pseudopolynomial time algorithm exists. While this algorithm and its inter-
pretation as a shortest path problem are well-known, we take a moment to outline it in preparation
for results to follow. The algorithm is based on dynamic programming with the recursive relation

given by



if g(j — 1,k) > g(j — 1,k —a;) +¢c; then
9(4, k) = 9(G — L, k)
pr(j, k) = (G — 1,k)

else
g k) =9(i -1, k—aj)+¢;

pr(j, k) = (J - Lk— aj)

with g(0, k) defined to be 0 so that g(j, k) conceptually represents the optimal solution to the problem

Jj
max Yo, ceze

s.t. ';=1 agTe S k
0 _<_ Tt S 1

z; integer.

The predecessor array pr(j, k) implicitly defines the z; values by

z; =0if pr(j, k) = (j — 1, k)

z; =1ifpr(j, k) =G -1,k - a;).
The value g(n,b) is thus the optimal solution value of the knapsack problem. In general, each
stage j of the dynamic program can have as many as b states k and thus this dynamic programming
formulation is only pseudopolynomial in the size of the problem it seeks to solve. Specifically, the
complexity of the algorithm is O(nb), however in practice the actual number of calculations can be

far smaller.

The recursive relation can be viewed as defining a graph G = (V, E) which we will find need
to reference. Let each vertex {(j,k): 5 =0,...,n; £ =0,.. ., b} of this graph correspond to one
possible stage/state pair in the dynamic program, and let the directed edge set correspond to the
pairs defined by the recursive relation; specifically, let the edge set consist of the edges (4, k)-(7—1,k)
and (j,k)-(j—1,k—gj)forj=1,...,n and k = 0,...,b, disallowing edges in this definition that

are not contained in a path emanating from vertex (n, b) or that are incident to nonexistent vertices.



With G defined in this way there is a natural one-to-one correspondence between directed paths
in G and feasible solutions to the knapsack problem (K). Conceptually, the optimal solution to the
knapsack problem can be found by determining a longest path in this graph from (n, b) to any vertex

(0, k) where the edge weights are 0 for edges (j, k)-(j — 1, k) and c; for edges (4, k)-(j — 1,k — a;).

At the heart of the linear program to be described is a close formal relation to the following
linear program which seeks to express Z as a convex combination of the N extreme points z? of the

knapsack polyhedron P.

min Z;=1 s} + Z;-'=1 s?
(C) s.t. Zﬁ;l Ly, + s} - s} = % j=1,...,n
Z;w:1 Yp =1
¥ 20 s1>0 s220

The fact that (C) solves the knapsack separation problem can be seen by looking at its dual.

max pzZ+o
(D) st. pzP+0<0 p=1,....M
-1<pu; <1 j=1,...,n
If 2 ¢ P then the optimal value of (C) and therefore (D) is strictly positive in which case pz > —o
while pzP < —o for all p = 1,..., M and thus for P. The difficulty with solving (C), of course,
is that it will in general have an exponential number of columns. We proceed to develop a linear

program that solves (C) that has a pseudopolynomial number of rows and columns.

To the graph G defined above we add an additional “sink” vertex (—1,0) and edges (0,k)-
(~1,0) for all relevant k to G and call the augmented graph G = (V,E). Treating vertex (n,b) as
a “source” vertex we seek to send one unit of flow from the source to the sink while attempting to
force the flow through the “1” edges (j, k)—(j — 1,k — a;) in each layer j of the graph to Z;. Let
fl(j) = {(G, k)-(j - 1,k —a;)}, E = Ui=1 fl(j), and E' = El\fl. Further, let u. denote the flow
through edge e € E and let Nu = b=(-1,0,...,0,1) denote the network constraints restricting the

net flow into the source to -1, the net flow into the sink to 1, and the net flow into each remaining



vertex to 0. The linear program we seek to solve is the following.

min Tiath + Xiait]
(B) st T,pte T 4 -t = & j=1,..,n
Nu=b
u>0 >0 t2>0

By the construction of C there are a maximum of nb network constraints and 2nb variables u., so
that the problem formulation (E) is pseudopolynomial in the size of the original knapsack separation

problem. We will also find need for the dual of (E).

max E?-_-,;‘i’jl‘j - Wnp + wW-1,0
(F) s.t. - Wik + wi-1k <0 (j:k)'(j"l,k)efo
g - wix + Wiitkes; € 0 GR-Gi-Lk-a)€E
1<y <1

For notational convenience let F(X) denote the set of feasible points for linear program (X).
Further, let E(z?) denote the path in G corresponding to the extreme point zP of P. Formally,
E(z?) is the set of n edges {(j,b— iz, @izh)-(j — L,b — 31 aiz})}. Letting E(z?) end at
vertex (0, k) we let E(z?) = E(zP) U {(0, k)~(-1,0)}.

To understand the relationship between the problems (C) and (E) we define a function v :
F(C) — F(E). Conceptually, v is most easily interpreted as assigning a flow of y, to the path
E(zP). Letting 8,(e) = 1 if ¢ € E(z?) and 0 otherwise, the edge flows defined by the function v are
given by

Ue = Z:l=1yp5p(e)
with the values t} and ¢ uniquely defined to satisfy Teem) ) — 1 = #;, with t1>0,t2>0,

and either t} =0 or t;‘? =0.

Theorem 1 The function v maps F(C) onto F(E), and a vector (¥, 8) is optimal for (C) if and only

if 7(y, s) is optimal for (E). Further, there ezists a pseudopolynomial time algorithm for calculating

(v,5) € v~'(u,t) for any (u,t) € F(E).



Proof . We first show that ¥ maps F(C) into F/(E). Using the path flow interpretation of 7 it
is easy to see that the net flow through each vertex is 0 for all vertices in G other than (n,b) and
(-1,0), and since 2:21 yp = 1 it follows that the net flow out of (n,b) and into (—1,0) is 1. Thus,

u as defined by v satisfies the network flow constraints in (E). Further, note that

M
Egeﬁl(j) Ue = Zee'ﬁl(j) Ep:l ypép(e)
Zﬁil Yp Z,efl(j) bp(e) (1)

M
= Ep:l ypzf

Thus, setting t! = s! and t? = s° it is clear that ¥ maps F(C) into F(E) and that 7 preserves
g

objective function value.

The fact that ¥ maps F(C) onto F(E) (and that v is many-to-one) is demonstrated by the
following procedure for generating a solution (y,s) € ¥~(u,t). Given any (u,t) € F(E) it is easily
demonstrated that it can be decomposed into a collection of flows y, on at most |E| paths E(z?) in
time polynomial in |V| and |E| and therefore in time polynomial in n and b (see, for example, [1]
pp. 236-238). Due to the specific form of the network flow constraints in (E) such a decomposition
has the property that E;w:l yp = 1. Further, as a path decomposition of edge flows in G,yand u
are related by (1) so that letting s! = ¢! and s? = 2 the constructed solution (y,s) € F(C). It is
clear that ¥(y, s) = (u,t), and since objective function value is preserved under vy and y~! the proof

is complete. a

The previous theorem demonstrates how the problem formulation (E) solves the knapsack sep-
aration problem. Since # € P if and only if the optimal value to (C) is 0 and since the mapping
4 provides a correspondence between solutions to (C) and (E) which preserves objective function
value it follows that # € P if and only if the optimal value to (E) is 0. If Z € P the values y,
constructed as outlined in .the above theorem give a representation of Z as a convex combination
of a pseudopolynomial number of extreme points of P. If Z ¢ P an optimal solution to (D) can
be constructed in turn and, as mentioned earlier, defines a plane separating Z from P. Thus, an

optimal solution to (E) represents an optimal solution to the knapsack separation problem.



3 Projected Polyhedra

In the previous section it was outlined how an optimal solution to the knapsack separation problem
could be constructed in pseudopolynomial time from an optimal solution to (E). In point of fact, an
optimal solution to (D) can be constructed immediately from an optimal solution to (F). However,
this follows from more general results relating the set of feasible solutions to (F) and (D). Specifically,
we proceed to show that the knapsack polyhedron P can be obtained by projecting the set of feasible
solutions to (E) onto an appropriate subspace and that the polyhedron F (D) of valid inequalities for
P can be obtained by projecting the set of feasible solutions to (F) onto an appropriate subspace.
The primal/dual pair of linear programs (E) and (F) — both with a pseudopolynomial dimension and
number of facets — therefore play the role of an intermediary between the knapsack polyhedron P
and its polar F(D), both of which have polynomial dimension but a potentially exponential number

of facets.

The results to be presented can be developed in the context of projecting the polyhedra F(E)
and F(F) onto appropriate non-coordinate subspaces. However, the development is conceptually
simpler if the formulations of F(E) and F(F) are first augmented with a small number of variables
and constraints. For this reason we introduce the following problem (E’) and its corresponding

polyhedron of feasible solutions F(E').

min Tiati + il
st. Leemgye + 4 - t = % j=1,...,n
(E") Nu=b
ZeeEl(j) U — Ij = 0 j=1,..,n
u>0 t1>0 2>0

Note that there is a natural one-to-one correspondence between solutions (u,t) € F(E) and (u,¢,z) €

F(E') determined by including or excluding the variables z.



Theorem 2 The projection Fp(E') of F(E') onto the n-dimensional subspace corresponding to the

variables ¢ is P.

Proof . We begin by showing that P C F,(E’). If T € P it can be expressed as T = Z,I;w:). Py,
for some vector y > 0 satisfying Zﬁu yp = 1. Clearly, s can be chosen appropriately so that (y,s) €
F(C). By (1) the corresponding solution (u,t) € F(E) defined by the mapping ¥ of Theorem 1
satisfies

Zeesl(j)“c = 2;?:1‘4% =Ij.
Thus, (u,t,Z) € F(E' ).is the solution corresponding to (u,t) € F(E), and this point projects onto
T € Fp(E’). Thus, any T € P is the projection of some point in F(E'), or P C Fp(E').
Similarly, consider any (u,t,Z) € F(E'). Let (y,s) € v~ !(u,t) for v as defined in Theorem 1.
By (1) it follows that
E:{:nyp = zeeEi(j)ue =Z;
and since (y, s) € F(C) it follows that y > 0 and Z:;l yp = 1. Thus, T € P implying Fp(E') C P
and therefore F,(E')=P. O
In order to develop a dual projection result it is useful to introduce the following problem (F')

which is nothing more than the problem (F) with one additional constraint.

max 30 Eipi — Wnp + wWo10
s.t. - wix + wiiix <0 (GRG-1,KeE
(F') B — Wik + Wi-lk-a; S 0 GE-(i-Lk—a)€E
-0 — wpp + w-ip0 =0
-1<4; <1

Note that there is a natural one-to-one correspondence between solutions (s, w) € F(F) and (p,w,0) €

F(F') determined by including or excluding o.

Theorem 3 The projection Fy(F') of F(F') onto the n + 1-dimensional subspace corresponding to

the variables p and o is F(D).

10



Proof . We begin by showing that Fp(F’) C F(D). Consider any path E(z?) in G. Adding the

constraints in (F’) corresponding to vertices visited by the path the resultant constraint is

Yjizr=1bi T Wnp —w-10<0.

As this is true for any path E(z?) and recognizing that 3 »_, pj = pz? and wpp —w-1,0 =0, it
J

follows that (u, o) is feasible for (D) and thus Fp(F') € F(D).

To see that F(D) C F,(F'), consider any point (7,%) € F(D). We proceed by constructing
a vector w such that (F,w,?) € F(F'). Let I serve as the objective function for the knapsack
problem (K) and consider the result from applying the dynamic programming algorithm to solve
(K). By virtue of the dynamic programming recursion, g(j, k) Zig( j —1,k) for every edge (j,k)-
(j — 1,k) € E° and g(j, k) > 9(j — 1,k — a;) + B; for every edge (j,k)-(j — 1,k — a;) € E*. Thus,
setting w;x = g(j, k) for all vertices (4, k) € V, setting w-1,0 equal to any non-positive number,
and setting ¢ = —wn 3 + w_1,0 it is easy to see that that (@, w,7) is feasible for (F’). It remains
only to show that w_j,0 can be chosen appropriately so that @ = —wn + w-10. To this end,
note that since (7,7) is feasible for (D) by assumption, #z? +7 < 0forp=1,...,M, and since
g(n,b) = max{pz? :p=1,..., M} it follows that there exists a § > 0 such that g(n,b)+6+7 =0.
Setting w_1,0 = —0 we have —wn 3 +w-1,0 = —g(n,0) -6 = 7. Thus, (%, 7) is the projection of

7i,w,T) as constructed, implying F(D) C F, F') and therefore that (D) = Fp(F'). O
p )

An immediate implication of Theorem 3 is that an optimal solution to the knapsack separation

problem can be read directly from an optimal solution to (F) (or (E)), namely, pz < —wn,p +w-1,0-

4 Conclusions

A linear programming formulation of the knapsack separation problem has been presented which
contains a pseudopolynomial number of variables and constraints. By relating the primal and dual
polyhedra of this formulation to the knapsack polyhedron and its polar it was demonstrated how

an optimal solution to the knapsack separation problem could be constructed immediately from the

11



solution to this formulation.

The potential practical significance of this result is that it provides a way to solve the knapsack
separation problem by solving a linear program that in many instances of practical merit may be quite
small. Very often the knapsack problems which arise as the constraints of larger integer programs
have a small number of variables and this in turn translates into a small number of variables in the
problem formulation (E). Further, it is often possible to further restrict the number of variables over
which to search for a separating hyperplane using observations about the point Z being separated.

A detailed discussion of restrictions on the search space is contained in Boyd [10].

Another important advantage of the formulation (E) is that it is fundamentally a shortest path
problem with a small number of highly structured side constraints. It is therefore possible to devise
fast, combinatorial heuristic procedures for constructing feasible solutions that are near optimality.
An efficient primal linear programming code, available either as a package or designed specifically to
solve problem (E), could then be used to solve (E) to optimality from this nearly optimal starting
solution. Alternatively, it is easy to see that for a fixed u a feasible solution for (F) can be found by
the dynamic programming programming algorithm outlined for solving the knapsack optimization
problem. Thus, if a hyperplane uz + ¢ < 0 that nearly separates P and Z is known, perhaps from
solving (F) at an earlier iteration with a similar £ as would be the case in integer programming
applications, a feasible and nearly optimal solution to (F) can be found using a combinatorial
procedure and (F) solved to optimality from this nearly optimal solution using a linear programming
algorithm. This second approach has the advantage that the linear program need not be solved to
optimality to generate a cutting plane. It is only necessary that a feasible solution with a positive

objective function value be found.

Finally, while a pseudopolynomial time algorithm for the knapsack separation problem exists
by virtue of the existence of linear programming algorithms that are polynomial in the size of
the problem instance, the existence of a pseudopolynomial time combinatorial algorithm for this

problem remains an open question. As just mentioned, apart from complicating side constraints

12



in the case of (E) and additional variables in the case of (F) these problems have fundamentally
combinatorial interpretations. Whether these interpretations can be effectively exploited deserves

further attention.
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