Express versus iPSC/2 Primitives:
A Performance Comparison

Ishfag Ahmad
Min-You Wu

CRPC-TR91147
April 1991

Center for Research on Parallel Comput:
Rice University

P.O. Box 1892

Houston, TX 77251-1892

SCCS-77
CRPC-TR91-147

Express versus iPSC/2 Primitives:
A Performance Comparison

(Draft)

Ishfaq Ahmad and Min-You Wu

April 1991

Syracuse anter for Computational Science
Syracuse University
111 College Place
Syracuse, New York 13244-4100
<sccs@npac.syr.edu >

(315) 443-1723

Table of Contents

1 IntrOduction © 0 0000000000000 0000000000000 000000000000000000

2 The EXPRESS Programming Models..... ceccecescccctccacans

3 The EXPRESS Utilitiesccccveeeeneeecnnns covecsccns

4 The Performance of Some EXPRESS and Equivalent
iPSC/zPl'imitives.0...l‘...Q..C.O.'Q'.‘.........Q.Q...Q

4.1. Send/Recv. between Host and Node ceccececcsceas o

4.2. Send/Recv. between NOdeS ¢« veeeevecceccnssns cecssecesecscs

4.3. Measuring Communication Time between Nodes vceeeeeecceces

4.4. Host to Node Exchange Operation «eeesecececescscsccscscces

4.5.N0det0N0deoperati0ﬂ © 0000000000000 0 0000000000000 00

4.6. Broadcast from Host to NOdeS «eeceeveeecacccnsoccaccanns ..
4.7. Broadcast from One Node to All NOdeS «vceeeeeececccacanann
4.8. Global Reduction Operations «........ cececcesscssasacccae
4.9. Global Concatenation Operation ««.seeeeeecesscecccccscanes
4.10. Vector Send/Recv. Operation «.eeeeeececcscececcacenes
4.11. Vector Exchange Operation «..ceceeeeseeceeeccecceccccens

S The Performance of Gaussian Elimination by using EXPRESS and

iPSC/2 Primitivesc.oviutenmeeneeeennnnnnn.

6 ConcluSionSotiiitintnneeeeennnenennaanaaai,

Acknowledgements ittt i

References

oo

© Q' s

10
11
12
14
16
20
22

24

29

30

30

1. Introduction

EXPRESS, developed by Parasoft [1],isa software programming environment

for writing parallel programs for homogeneous MIMD multiprocessors. It provides a
communication system for communicating processes, mechanisms for data sharing,
reading files, debugging tools, and performance analyzing tools. Animportant feature
of EXPRESS is that these functionalities are carried out in a user transparent manner.
The flexibility of EXPRESS makes it an attractive tool set for developing parallel pro-
grams. In addition, it has nice features which allow an application to use appropriate
utilities. One of such features is automatic domain decomposition library which can
map physical domain of the problem to the underlying topology of the parallel com-
puting system. The performance evaluation tools, using text and graphics, can be effec-
tively used to analyze the run time performance of the program.

The most important feature of EXPRESS is that it is portable. This leads to two
advantages. The first advantage is that it can be implemented on a variety of machines
such as NCUBE-1, NCUBE-2, Symult, and Intel iPSC/2 and iPSC/860 hypercubes,
transputer arrays and shared memory BBN Butterfly syStem. In addition, it can be
implemented on various types of workstation networks. The second advantage of por-
tability is that programs written under EXPRESS for one machine can be run on
another machine and the user does not have to worry about the hardware. The lan-
guages supported by EXPRESS are C and FORTRAN.

The communication primitives for message passing under EXPRESS make use
of asynchronous communication which include exwrite and exread functions at the
source and destination nodes, respectively. The EXPRESS kernel provides interme-
diate buffering and routing. A subset of Express environment is CrOS III which pro-
vides synchronous communication system [4]. The third subset of EXPRESS is CU-
BIX system which allows nodes to perform concurrent I/O.

Asdepicted in Figure 1, the EXPRESS environment consists of three layers. The
lowest level consists of utilities for controlling the hardware. The medium level pro-

vides support for problem partitioning and communication between the nodes, and

-1-

between the node and control processor. The highest level contains the facilities for

node programs to perform I/0 to the host operating system.

Highest Level

Medium Level|

Lowest Level

Figure 1: Three layers of EXPRESS

2. The EXPRESS Programming Models

EXPRESS allows parallel programs to develop in the following four different
styles.
(1) The conventional Host-Node Style in which the control part of the program

appears in the host program and the computation intensive part appears in node pro-
grams.

(2) The Cubix environment in which only node program is written and it inter-
faces to the outside world through graphics and text server.

(3) The Profile environment which can be added to both Host-Node and Cubix
programming models.

(4) The Plotix environment which provides extra graphics features to analyze
program profiling.

3. The EXPRESS Utilities

EXPRESS provides a number of utilities which can be classified as follows.
1 r mands: o
® Profiling Tools
L. ctool (Analyze communication profile data).
II. xtool (Analyze execution profile data).
II. etool (Analyze events profile data).
® System administration such as configuration, reboot and reload.
® User’s usage of system resources.
® Source level debugger (communication, execution and events).
(2) Compilers;
C and Fortran Compilers for hypercubes.
C and Fortran Compilers for transputers.
® Starting up EXPRESS system.
(4) Processor Control;
e Allocation and de-allocation of processors.
® Loading program into all nodes.
® Loading program into selected nodes.
® Blocking communication among nodes e.g read and write a message, read and write
a vector.

® Global communication.

e.g broadcast, synchronous data exchange, global concatenation,
global reduction operations, synchronization, etc.
e Asynchronous communication.
e.g non-blocking read and write.
e Hardware dependent communication.
e.g reading and writing data on a channel.
e Initializing decomposition system.
® Map user domain coordinates to processor number.
e Distributing data to processors.
e Distribute processors on user domain.
e Distributing data to processors.
e Determining run-time environment.
(1) 1/O Routines
(8) Multi-tasking
(9) Multi-Hosting
(10) Graphics

4. The Performance of Some EXPRESS and Equivalent iPSC/2 Routines

An important issue associated with programming tools is the execution speed of
the basic primitives which are frequently used in programs. Examples of such primi-
tivesinclude communication between nodes, communication between host and nodes,
global reduction operations, data broadcast, concatenation etc. We have evaluated
the performance of some of the basic primitives of EXPRESS, running on iPSC/2. To
make comparison with iPSC/2, we also benchmarked equivalent iPSC/2 primitives. In
those cases where equivalent primitives did not exist, we wrote routines that can per-
form the same function.

Our benchmark model consists of two host programs - one for EXPRESS and
one for iPSC/2, and one node program for each primitive. Separate node programs

—4-

are written for EXPRESS and iPSC/2. A host program consists of a menu through
which a selection can be made to test one particular primitive. After the selection has
been made, additional information such as the number of nodes, source and destina-
tion for communication, the choice of host-node communication or node-node com-
munication, the message size, must be provided. The host program selects the appro-
priate node program and loads it into the nodes. It passes the additional information
to the node program and sets the appropriate environment. Each tested primitive is
timed with a loop which repeats the same test up to 200 times. At the end of each loop
step, all timing information is recorded and appropriate parameters are reset where
necessary. Synchronization is done where it is deemed necessary. At the end of the
loop, the timing of each test step is sent back to the host which performs statistical
analysis on it by calculating the mean value and variance. If the variance is very high,
the same test is repeated with a higher number of repetitions. The timing results, in-
cluding the mean and variance, for the host and node operations are stored in two dif-

ferent files.

Since the message passing protocols on iPSC/2 are different for iarge and small
messages, our tests included both small and large messages. The size of large mes-
sages was varied from 128 to 8192 words and the size of small messages was kept fixed
as 10 words. The data type of message objects is real type for all tests, which consists of
4 bytes. The actual message size, therefore, is message size multiplied by 4. All timing
values are given in milli-seconds. To compare EXPRESS with iPSC/2 primitives, a
timing ratio of EXPRESS primitive versus iPSC/2 primitive is calculated and provided
in the corresponding table.

4._1 Send/Recv. between Host and Node

The communication between host and node is an important routine that is most-
ly used for sending initial data and other information from host to nodes and getting
the results from nodes to host. It is also used for I/O between nodes and the file sys-
tem, through the host. The communication can be blocking as well as non-blocking.
We considered only the blocking type. The same routines can be used for communica-
tion between nodes and between nodes and host. Following are the EXPRESS and

-5—

iPSC/2 routines for blocking communication.
EXPRESS routines :
INTEGER FUNCTION KXREAD(BUF, LENGTH, SRC, TYPE)
INTEGER FUNCTION KXWRITE(BUF, LENGTH, DEST, TYPE)
Equivalent iPSC/2
SUBROUTINE CRECV(TYPE, BUF, LENGTH)
SUBROUTINE CSEND(TYPE, BUF, LENGTH, DEST, PID)

Timing results :

Table 1 contains the execution time of EXPRESS KXREAD and KXWRITE
and iPSC/2 CSEND and CRECYV for host to node communication, for various mes-
sage sizes. We measured timing for both way communication, that is, sending data
from host to node and measuring node time and receiving data from node to host and

measuring node’s sending time.

Table 1: Node Time to receive and send data to host (ms)

EXPRESS iPSC/2 Timing Ratio

Message Size [recv. send recv. send recv. send
10 1.93 0.36 1.46 0.34 1.32 1.06

128 3.16 9.98 291 5.91 1.04 1.69

256 3.30 10.91 329 5.97 1.00 1.83

512 3.86 11.26 3.54 6.31 1.09 1.78
1024 4.93 11.93 4.18 7.24 1.18 1.65
2048 6.82 13.51 5.83 8.84 1.17 1.53
4096 11.16 1697 [[9.08 12.01 1.23 1.41
8192 19.34 [23.33 15.60 18.48 1.24 1.26

The results indicate that for both EXPRESS and iPSC/2, the time to send data
from node to host is greater than the time to receive data from host to node. We also
observe that iPSC/2 performs better by a maximum factor of 1.322 for receiving the
data and by a factor of 1.827 for sending data.

4.2 Send/Recv. between Nodes

We used the same routines for node to node communication that were used for
host to node communication.

Timing Results ;

Again, we measured two way timing, that is, the sending time at the sending node
and receiving time at the receiving node. Table 2 summarizes these results along with
timing ratios for both receive and send. To present these results pictorially, plots of

these values for receive and send are given in Figure 2 and Figure 3. -

Table 2.1: Timing results (ms) for the node to node communication
(One to one communication)

EXPRESS iPSC/2 Timing Ratio

Message Size [recv. send recv. send recv. send
10 0.39 1.05 0.35 0.40 1.11 2.63

128 0.77 1.81 0.77 0.95 1.00 1.91

256 0.95 2.10 0.94 1.14 1.06 1.84
512 130 [2.69 125 1.47 1.04 1.83
1024 2.01 3.89 1.96 2.30 1.03 1.69
2048 3.53 6.25 3.44 3.75 1.03 1.67
4096 6.50 10.92 6.33 6.76 1.03 1.62
8192 1238 [21.94 1225 [12.50 1.01 1.76

From Table 2.1, and Figure 2 and Figure 3, we notice that the performance of both
systems is almost the same for receiving data. However, iPSC/2 outperforms EX-
PRESS for sending data.

Time
(ms) 12
9 EXPRESS B
iPSC/2
6
3

128 256 512 1024 2048 4096 8192
Message size (number of data objects)

Figure 2: EXPRESS and iPSC/2 time for receive operation versus message size

Time
(ms) 20
EXPRESS [
16
iPSC/2
12
8
4

128 256 512 1024 2048 4096 8192
Message size (number of data objects)

Figure 3: EXPRESS and iPSC/2 time for send operation versus message size

4.3 Measuring Communication Time between Nodes

In addition to measuring the execution time of CSEND and CRECV primitives
foriPSC/2, and KWRIT and KXREAD primitives for EXPRESS, we used these primi-
tives to measure the communication time. The communication time is measured by
establishing two way communication between two nodes, that is, one node sends a
message to the other node and waits for the reply. The size of the reply message is also
the same as the send message. Synchronization is done before the start of message
passing. This method has been recommended as a reliable mean of measuring com-
munication time [5]. The communication time is obtained simply by dividing the total

time (time to send and receive) by two.

It is worth mentioning that iPSC/2 uses different communication protocols for
short and long messages. The communication time T for large messages, with L bytes,
can be modeled by the following formula.

T = Ts + TgL

where Ty is the set up time and T; is the transmission time for one byte. The timing
ratio of communication time obtained with EXPRESS to the communication time ob-
tained with iPSC/2 is given by

Ts(express) + Tp(express) x L

Timi Rati =
iming Ratio Ts(ipsc/2) + Tg(ipsc/2) x L

The communication times obtained by both EXPRESS and iPSC/2 primitives as well
as the corresponding timing ratios are shown in Table 3. Itis to be noted that the mes-
sage size used in our experimentation is actually the number of words where each word
consists of 4 bytes. In order to use the message size in the formula shown above, L
should be obtained by multiplying the message size by 4. From the data shown in Table
3, the channel set up times and transmission times for both EXPRESS and iPSC/2, and

the timing ratio can be summarized by as

125 + 047 x L
073 + 037xL

Timing Ratio

Table 3: Communication times for node to node communication (ms)

Message Size || EXPRESS [iPSC/2 Timing Ratio

10 0.720 0.44 1.63
128 1.497 0.92 1.64
256 1.705 1.09 1.57
512 2.213 1.48 1.49

1024 3.115 2.24 139
2048 5.045 3.76 1.34
4096 8.862 6.68 1.33
8192 16.570 12.50 1.33

The results shown in Table 3 indicate that the communication time obtained by using
EXPRESS is greater than the communication time obtained by using iPSC/2 primi-
tives by a factor of 1.636 to 1.326. The time ratio, however, shows a decreasing trend

for larger messages. The communication times show in Table 2.2 are also plotted in

Figure 4.
Time

(ms) 15

EXPRESS
12 iPSC/2

9

6

3

0 ,

128 256 512 1024 2048 4096 8192
Message size (number of data objects)

Figure 4: Communication Time using EXPRESS and iPSC/2 primitives

-10-

4.4 Host to Node Exchange Operations

The function of data exchange operation is to perform send and receive in one
step, that is, the data is first sent and then received. It is also possible for one node to
send and received data from different nodes. However, in our experiment, we consid-
ered send and receive with same one to one communication only. The send and re-
ceive used for exchange operation are of blocking nature and provide synchronization.
An equivalent iPSC/2 primitives also exists for this kind of operation. Both primitives

are described below.
XPR ine

INTEGER FUNCTION KXCHAN(IBUFE, ISRC, ITYPE, OBUF, OLEN,
ODEST, OTYPE)

Equivalent iPSC/2 tine ;
INTEGER FUNCTION CSENDRECV(TYPE, SBUF, SLEN, TONODE,
TOPID, TOTYPE, RBUF, RLEN)

Timing results ¢

Table 4 shows the timing results for exchange operation between host and node 0
for message size ranging from 10 to 8192.

Table 4: Timing results for the host to node exchange operation (ms)

Message Size || EXPRESS |[iPSC/2 Timing Ratio

10 20.93 2.37 8.831

128 22.60 8.75 2.583
256 22.89 8.90 2.572

512 32.70 8.88 3.682

1024 36.13 10.78 3.352
2048 37.00 12.29 3.010
4096 37.79 18.80 2.010
8192 52.24 31.67 1.650

-11-

4.5 Node to Node Exchange Operations

The routines used for node-node exchange operation are the same as those used

for host-node exchange operation.
Timing results :

Table 5 shows the timing results for exchange operation between node 0 and
node 1 for message size ranging from 10 to 8192.

Table 5 : Timing results (ms) for exchange operation with source node 0
and destination node 1

EXPRESS iPSC/2 Timing Ratio

Message Size [|Node 0 [Node1l [[Node (O [Node1l |[[Node0 |[Nodel
10 1.44 1.44 0.86 0.73 1.67 1.97
128 2.75 2.75 1.80 1.53 1.53 1.80
256 321 330 2.17 1.90 1.48 1.74
512 4.09 4.06 2.99 2.57 1.37 1.58
1024 5.09 5.15 4.46 4.06 1.14 1.27
2048 7.06 7.06 7.49 7.08 0.94 0.99
4096 10.89 10.91 13.25 12.96 0.82 0.84
8192 18.60 18.56 25.08 24.72 0.74 0.75

The relative performance of exchange operation clearly depends on the message
size. For small messages, EXPRESS performs slowly as compared to iPSC/2. Howev-
er, for long messages, the performance of EXPRESS is better than iPSC/2.

4.6 Broadcast from Host to Nodes

For data broadcast, EXPRESS provides a special routine, KXBROD, for send-
ing the message from the host to all other nodes, and the host and nodes have to ex-
ecute the same routine by specifying the host as source. On the other hand, iPSC/2
does not provide a special routine, rather CRECV and CSEND are executed by the

receiving node(s) and host node respectively. Both routines are described below.

-12-

EXPRESS routine KXBROAD :
INTEGER FUNCTION KXBROD(BUF, ORIGIN, LENGTH
NNODES, NODEL, TYPE)
iv P,
The equivalent iPSC/2 operation written for this purpose use the following routines:
SUBROUTINE CSEND(TYPE, BUF, LENGTH, -1, PID)
(at the origin node)
SUBROUTINE CRECV(TYPE, BUF, LENGTH)

(at all of the receiving nodes)

Timin

Host to node broadcast was timed for 4, 8, 16 and 32 nodes for message size
varying from 10 to 2048. The results are tabulated in Tables 6.1 - 6.4. These results

show the maximum of all nodes which are receiving the message from the host.

Table 6.1 : Node Time (ms) to receive data from host with broadcast (4 NODES)

Message Size || EXPRESS [iPSC/2 Timing Ratio
10 2.00 2.10 0.95
128 3.52 3.24 1.09
256 437 3.50 1.25
512 4.80 4.61 1.04
1024 7.04 6.66 1.06
2048 13.04 9.94 131

Table 6.2 : Node Time (ms) to receive data from host with broadcast (8 NODES)

Message Size || EXPRESS [iPSC/2 Timing Ratio
10 2.05 1.92 1.07
128 4.09 3.34 1.23
256 4.55 3.87 1.18
512 5.98 4.73 1.26
1024 8.91 7.17 1.24
2048 16.89 12.42 1.36

-13-

Table 6.3 : Node Time (ms) to receive data from host with broadcast (16 NODES)

Message Size | EXPRESS |iPSC/2 Timing Ratio
10 2.02 1.90 1.06
128 4.82 3.44 1.40
256 5.07 3.70 1.37
512 7.16 5.67 1.26
1024 10.81 7.87 137
2048 20.31 14.14 1.44

Table 6.4 : Node Time (ms) to receive data from host with broadcast (32 NODES)

Message Size ||EXPRESS |iPSC/2 Timing Ratio
10 2.03 1.91 1.06
128 5.26 3.78 1.39
256 591 3.92 1.51
512 8.41 5.98 1.41
1024 12.75 8.95 1.43
2048 23.95 16.79 1.43

From the tables shown above, we notice that the performance of both systems
shows consistent patterns. EXPRESS performs as good as iPSC/2 for smaller number
of nodes but iPSC/2 performs better for larger number of nodes.

4.7 Broadcast From One Node to All Other Nodes
The same EXPRESS and iPSC/2 routines were used for one node to all node
data broadcast which were used for host to nodes broadcast. The sending times at the

single source node and the maximum of the receiving times at all of the receiving

nodes were measured for various message sizes.

Timing results:

The timing results for both sending and receiving nodes are summarized in
Tables 7.1, Table 7.2 and Table 7.3 for 4, 8 and 16 nodes, respectively.

~14-

Table 7.1 : Timing results (ms) for the node to nodes broadcast operation (4 NODES)

EXPRESS iPSC/2 Timing Ratio
Message Size || send recv.(max) [| send recv.(max) [[send recv.
10 0.67 1.58 0.42 0.63 1.60 2.51
128 1.54 2.94 1.22 1.64 1.26 1.79
256 1.89 3.45 1.57 |2.01 1.20 1.72
512 2.56 4.39 2.25 2.75 1.14 1.60
1024 4.00 6.19 3.72 421 1.10 1.47
2048 6.96 10.10 6.62 7.14 1.06 1.42
4096 12.95]17.68 12.63 13.00 1.03 1.36
8192 2478 (3325 2426 2474 1.02 1.34

Table 7.2 : Timing results (ms) for the node to nodes broadcast operation (8 NODES)

EXPRESS iPSC/2 " Timing Ratio
Message Size [|send recv.(max) |[send recv.(max) [| send recv.
10 0.94 2.17 047 [0.72 2.00 3.13
128 2.18 424 1.62 2.28 1.35 1.86
256 2.73 5.02 2.17 2.82 1.26 1.78
512 378 [6.47 329 3.90 1.15 1.66
1024 5.86 9.24 5.42 6.09 1.10 1.52
2048 10.35 1497 9.83 10.56 1.11 1.42
4096 19.35 26.48 18.67 19.29 1.04 137
8192 37.02 49.85 36.24 36.89 1.02 135

Table 7.3 : Timing results (ms) for the node to nodes broadcast operation (16 NODES)

EXPRESS iPSC/2 Timing Ratio
Message Size [send recv.(max) || send recv.(max) || send recv.
10 1.18 2.74 0.59 0.86 2.00 3.19
128 2.86 5.58 2.10 291 1.36 1.92
256 3.58 6.66 2.82 3.64 1.27 1.83
512 5.02 8.56 429 5.13 1.17 1.67
1024 7.78 12.29 7.14 7.99 1.09 1.54
2048 13.78 [19.95 13.01 13.87 1.06 1.44
4096 2578 [35.19 2479 [25.59 1.04 1.38
8192 49.76 | 66.37 4877 [49.01 1.01 1.35

-15-

Table 7.4 : Timing results (ms) for the node to nodes broadcast operation (32 NODES)

EXPRESS iPSC/2 Timing Ratio
Message Size |[send recv.(max) f| send recv.(max) [send recv.
10 1.53 339 0.63 0.98 2.000 3.19
128 3.57 6.93 2.55 3.51 1.400 1.97
256 4.46 8.17 3.49 439 1.270 1.83
512 6.22 10.73 5.32 6.28 1.170 1.67
1024 9.71 15.34 8.91 9.90 1.090 1.54
2048 17.15 [24.90 1625 [17.30 1.060 1.44
4096 32.15 [44.19 3092 |31.87 1.040 1.38
8192 61.55 [83.49 60.25 |61.14 1.014 135

The timing values for node to nodes broadcast indicate that EXPRESS and
iPSC/2 perform almost identically for the sending node whereas receiving time with
EXPRESS is higher. The difference in receiving time of both systems is higher for
small messages but becomes less for larger messages. The same observation holds
when broadcast is done to 4, 8, 16 or 32 nodes.

4.8 Global Reduction Operations

Global operations for producing reduction across all or a set of processors are
frequently used in parallel programs. EXPRESS provides only one routine to perform
any kind of global reduction operation and the user has to write its own function which
is given as argument FUNC to the reduction routine. On the other hand, iPSC/2 pro-
vides separate routines for each operation. The global routines provided by iPSC/2
include global OR, AND, EXCLUSIVE OR , sum, maximum, minimum, etc. Howev-
er, in our study, only global sum, global product and global maximum were tested.
EXPRESS has extra facility of specifying the number of nodes and node id’s which
need to participate in global operation. The format of these routines is as follows.
EXPRE, lobal i rations:

INTEGER FUNCTION KXCOMB(BUF, FUNC, SIZE, ITEMS
NNODES, NODEL, TYPE)
Equivalent {PSC/ ine:
SUBROUTINE GxSUM(BUF, LENGTH, WORK)
SUBROUTINE GxPROD(BUF, LENGTH, WORK).

—16-

SUBROUTINE GxHIGH(BUF, LENGTH, WORK)
Note: xin GXOP stands for the type of data which can be I, S or D, for integer, real and

double precision, respectively. It has already been mentioned that all of our tests were
carried out with real data type.

Timing results;

We obtained timing results for global addition, global multiplication and global
maximum. For EXPRESS, these three operations had to be written separately. For all

three operations, data type used was 4 bytes floating point and the array size in each
process was varied from 10 to 256.

Note: Tests for global operations for array size greater than 256 (in each node)
cannot be carried out under EXPRESS.
imin fi 1

The results for global sum are shown in Table 8.1 to Table 8.4, for 4, 8, 16 and 32
nodes, respectively.

Table 8.1 : Timing results (ms) for the global sum operation (4 NODES)

Message Size || EXPRESS |iPSC/2 Timing Ratio
10 1.077 0.967 1.11
64 1.219 1.092 1.12
128 1.281 1.153 1.11
256 1378 1.239 1.11

Table 8.2 : Timing results (ms) for the global sum operation (8 NODES)

Message Size || EXPRESS |iPSC/2 Timing Ratio
10 1.151 1.016 1.13
64 1.291 1.168 1.10
128 1.361 1.235 1.10
256 1.442 1.323 1.09

-17-

Table 8.3 : Timing results (ms) for the global sum operation (16 NODES)

Message Size | EXPRESS |iPSC/2 Timing Ratio
10 1.206 1.062 1.14
64 1.347 1.234 1.09
128 1.410 1.292 1.09
256 1.506 1.384 1.08

Table 8.4 : Timing results (ms) for the global sum operation (32 NODES)

Message Size | EXPRESS |[iPSC/2 Timing Ratio
10 1.249 1.107 1.13
64 1.393 1.279 1.09
128 1.453 1.342 1.08
256 1.540 1.429 1.08

imin

The results for global multiplication are summarized in Table 8.5 to Table 8.8,
for 4, 8, 16 and 32 nodes, respectively.

Table 8.5 : Timing results (ms) for the global multiplication operation (4 NODES)

Message Size || EXPRESS |iPSC/2 Timing Ratio
10 1.076 0.970 1.11
64 1.222 1.131 1.08
128 1.284 1.192 1.08
256 1.380 1.283 1.08

Table 8.6 : Timing results (ms) for the global multiplication operation (8 NODES)

Message Size [|EXPRESS |iPSC/2 Timing Ratio
10 1.158 1.033 1.12
64 1.293 1.198 1.08
128 1.365 1.269 1.08
256 1.448 1.372 1.07

-18-

Table 8.7 : Timing results (ms) for the global multiplication operation (16 NODES)

Message Size | EXPRESS |iPSC/2 Timing Ratio
10 1.223 1.084 1.13 -
64 1.352 1.266 1.07
128 1.413 1.336 1.06
256 1.508 1.422 1.06

Table 8.8 : Timing results (ms) for the global multiplication operation (32 NODES)

Message Size | EXPRESS |iPSC/2 Timing Ratio
10 1.252 1.131 1.11
64 1.395 1315 1.07
128 1.461 1.391 1.05
256 1.546 1.471 1.05

Timing r i :

The results for global maximum are summarized in Table 8.9 to Table 8. 12, for 4,
8, 16 and 32 nodes, respectively.

Table 8.9 : Timing results (ms) for the global maximum operation (4 NODES)

Message Size | EXPRESS |iPSC/2 Timing Ratio
10 1.076 0.968 1.11
64 1.242 1.097 1.12
128 1278 1.153 1.10
256 1.366 1.248 1.10

Table 8.10 : Timing results (ms) for the global maximum operation (8 NODES)

Message Size || EXPRESS |iPSC/2 Timing Ratio
10 1.150 1.013 1.13
64 1.285 1.175 1.10
128 1.351 1.250 1.08
256 1.433 1.321 1.08

-19-

Table 8.11 : Timing results (ms) for the global maximum operation (16 NODES)

Message Size || EXPRESS [iPSC/2 Timing Ratio
10 1.209 1.068 1.13
64 1.344 1.244 1.08
128 1.405 1.303 1.08
256 1.497 1.389 1.08

Table 8.12 : Timing results (ms) for the global maximum operation (32 NODES)

Message Size || EXPRESS |iPSC/2 Timing Ratio
10 1.298 1.125 1.15
64 1.389 1.296 1.08
128 1.446 1.353 1.07
256 1.531 1.428 1.07

Timing results for global reduction operation, addition, multiplication and maxi-
mum, indicate that for all three global operations, EXPRESS performs 5 to 10 percent
slower than iPSC/2 for large message sizes. For small array sizes, such as 10 words,
EXPRESS performs 10 to 15 percenet slower than iPSC/2.

4.9 Global Concatenation Operations

Global concatenation performs packing chunks of arrays from the participating
nodes into one array. Each participating processor receives the resultant array. This
primitive can also be used for all-to-all broadcasting.

EXPRESS provides the option to perform concatenation across all or a set of
processors whereas with iPSC/2 all nodes have to call the concatenation routine. EX-
PRESS has extra facility of specifying the number of nodes and node id’s which need to
participate in global operation. This primitive also leaves into an array SIZES’ the
contribution made by each processor in term of array size. The format of these rou-

tines is as follows.

EXPRE nation i

INTEGER FUNCTION KXCONC(MYBUF, MYBYTE, RESBUF, RESIZE,
SIZES, NNODES, NODEL, TYPE)

-20-

Equivalent i /2
SUBROUTINE GCOLX(X, XLENGTHS, RES)
Timing results ;
Table 9.1 to Table 9.4 show the timing results for global concatenation operation
for 4,8, 16 and 32 nodes for array size 10 to 2048. Note that maximum array size used

in our experiments is 2048 words. Since this is the array size in each node, the maxi-

mum size of the resultant array is thus 64k, when 32 processors are used.

Table 9.1: Timing results (ms) for the concatenation operation (4 NODES)

Message Size | EXPRESS |iPSC/2 Timing Ratio
10 232 132 1.76
64 4.68 2.93 1.60
128 5.11 3.77 1.36
256 6.22 5.56 1.06
512 9.25 8.73 1.06
1024 16.85 12.96 1.30
2048 32.23 21.86 1.47

Table 9.2: Timing results (ms) for the concatenation operation (8 NODES)

Message Size | EXPRESS |iPSC/2 Timing Ratio
10 5.28 2.39 2.21
64 11.57 4.32 2.68
128 12.56 5.66 2.22
256 15.36 18.77 1.75
512 21.32 14.96 1.43
1024 33.82 28.17 1.20
2048 61.28 55.82 1.10

Table 9.3: Timing results (ms) for the concatenation operation (16 NODES)

Message Size || EXPRESS |iPSC/2 Timing Ratio
10 11.35 3.67 3.09
64 253 6.27 4.04
200 27.60 9.00 3.07
256 33.19 14.61 227
512 46.79 27.35 1.71

-21-

1024 74.25 54.95 1.35
2048 130.40 113.52 1.24

Table 9.4: Timing results (ms) for the concatenation operation (32 NODES)

Message Size | EXPRESS |iPSC/2 Timing Ratio
10 23.10 5.06 457
100 53.16 9.69 4.30
200 59.56 15.61 3.09
256 70.80 28.17 2.51
512 98.54 53.78 1.78
1024 158.04 111.14 1.42
2048 278.04 223.20 1.25

4.10 Vector Send/Recv. Operations

Vector read and vector write routines are used to reading and writing vectors
with an additional facility of transmitting non—contiguous blocks of data. These rou-
tine can be called from host and node processors. At the sendingnode, ITEMS objects
each of size SIZE bytes separated by OFFSET are transmitted. On the receiving end,
the received data is read into memory blocks separated by OFFSET. However, the
basic functionality of vector read and vector write is same as KXREAD and KXWRIT.
iPSC/2 does not provide such primitives. To make a fair comparison, we performed
array packing with CSEND and array unpacking with CRECV at the sending and re-
ceiving nodes, respectively. The implementation includes the option of packing and

unpacking at either ends.

EXPRESS Vector Send/Recv routine :

INTEGER FUNCTION KXVREAD(IBUF, SIZE, OFFSET, ITEMS, SRC, TYPE)
INTEGER FUNCTION KXVWRI(IBUF, SIZE, OFFSET, ITEMS, DEST, TYPE)

ivalent iPSC/ i
The equivalent iPSC/2 operation written for this purpose uses the following routines along
with extra array packing and unpacking.
SUBROUTINE CRECV(TYPE, BUF, LENGTH)
SUBROUTINE CSEND(TYPE, BUF, LENGTH, -1, PID)

—22-

Table 10 shows the timing results for send/receive operatidn between node 0 and
node 1 for message size ranging from 10 to 8192. The value of the offset at both the

sending and receiving end was selected as 2.

Table 10 : Timing results(ms) for the vector send/receive operation

(offset = 2 at source and destination)
EXPRESS iPSC/2 Timing Ratio
Message Size | send recv. send Tecv. send recv.
10 1370 3.120 0.390 0.720 3.51 4.33
128 3.210 6.370 1.500 2.600 2.14 2.45
256 5.200 9.840 2.440 4.220 2.13 2.33
512 9.810 14.780 [/4.250 7.430 231 1.99
1024 19.130 [24.600 |[/7.870 13.910 [[2.43 177
2048 37.610 [44250 [15.190 [26.680 [2.48 1.66
4096 75340 |83.600 [29.890 [52.340 |[{2.52 1.60
8192 150.730 |162.330 |59.230 |103.760 [[2.56 1.56

From Table 10, we observe that the performance of EXPRESS primitive for vec-
tor exchange is very poor. Inspite of the fact that the execution time for iPSC/2 primi-
tive includes the array packing and unpacking time, it is still less than the execution
time of EXPRESS primitive.

4.11 Vector Exchange Operation

The vector operation for send/receive between any two nodes, as described
above in section 4.10, can be accomplished in a bidirectional manner. This way two
nodes can exchange vectors by using a single routine. For EXPRESS, this can be done
using EXPRESS primitive described below. For iPSC/2,no such primitive exists and,
therefore, CSENDRECYV is used for two way data exchange and array packing is done
at both ends to make comparison with the equivalent EXPRESS routine.

EXPRESS Exchange routine :

INTEGER FUNCTION KXVCHAN(IBUF, ISRC, ITYPE, OBUF, OLEN,
ODEST, OTYPE)

-23-

Equivalent iPSC/2 ion ;
The equivalent iPSC/2 operation written for this purpose uses the following routine

along with extra array packing and unpacking option.
INTEGER FUNCTION CSENDRECV(TYPE, SBUE, SLEN, TONODE,

TOPID, TOTYPE, RBUF, RLEN)
Timing results :

Timing results for two way vector exchange operation between node 0 and node

1 for message size ranging from 10 to 512, are given in Table 11.

Table 11: Timing results for the vector exchange operation
(no offset at source and destination)

EXPRESS iPSC/2 Timing Ratio
Message Size [[send recv. send recv. send recv.
10 413 4.15 1.01 0.94 4.09 442
64 3934 |39.46 [2.35 2.18 16.79 18.10
128 136.79 |136.77 |3.315 3.025 41.26 45.21
256 509.20 [509.23 |5.14 4.84 99.07 105.21
512 1958.00 |1957.50 ||8.85 8.53 229.54 229.48

The EXPRESS routine KXVCHAN is extremely slow, asshown in Table 10. The

use of this routine is not recommended.
5. The Performance Comparison of Gaussian Elimination by using

EXPRESS and iPSC/2

In order to compare the performance of the two programming model with real
applications, we wrote and implemented a Gaussian Elimination algorithm with par-
tial pivoting. The algorithm is based on row partitioning of the coefficient matrix. The
algorithm was implemented with two prdgrams written under iPSC/2 primitives and
EXPRESS primitives. The main difference between two programs lies in the use of
communication primitives like broadcast and global reduction operations such as per-
forming the global addition and finding the global maximum. The execution time of

both programs versus various matrix sizes using 8 nodes are shown in Figure 5. Figure

24—

6 and Figure 7 show the execution time of Gaussian Elimination for 16 and 32 nodes,
respectively.

For 8 processors, the difference in execution times of EXPRESS and iPSC/2is 1
to 2 seconds. However, EXPRESS gets relatively slower for larger number of proces-
sors. The execution time, with larger number of processorsis higher for the EXPRESS
version. This difference becomes 2 to 3 seconds if 16 processors are used. For 32
processors, the difference becomes up to 10 seconds for a matrix size of 512. The EX-
PRESS primitives used in this program include KXCOMB, KXREAD and KXWRIT
which are substituted for equivalent iPSC/2 primitives, GSSUM, CSEND and
CRECV. The timing results indicate that these primitives of EXPRESS and iPSC/2
perform almost identical, with the exception of send operation where CSEND is faster
than KCXWRIT. However, the increased execution time of EXPRESS version of Gaus-
sian Elimination program is due to the fact that this program uses broadcast communi-
cation in such a way that the origin of communication is not known to the receiving
processors. This can be easily implemented with iPSC/2 primitive, CSEND and
CRECV, by calling these routines only once. The EXPRESS broadcast primitive,
KXBROD could not be used in this case because the format of the routine requires
the receiving processors to know the id of the sending processor. As a result,
KXREAD and KXWRIT have been used. Broadcast was carried out by making a call

to these routines for each processor. As a results, the execution time increases if this

technique is used for large number of processors.

-25-

EXPRESS — iPSC/2

100
time .
seconds 90

80

70

60

50

40

30

" 256 320 384 448 512

matrix size

Figure 5: Performance of Gaussian Elimination on 8 Node Hypercube

—26-

EXPRESS [iPSC/2

time
seconds 60

50

40

30

256 84 448 512

matrix size

Figure 6: Performance of Gaussian Elimination on 16 Node Hypercube

-27-

iPSC/2

EXPRESS g

g

time 45
seconds .

40

35

" 256 320 384 448

matrix size

Figure 7: Performance of Gaussian Elimination on 32 Node Hypercube

-28-

6. Conclusions

In this report, we have presented a comparison of EXPRESS and iPSC/2 pro-
gramming models. We have done this comparison by benchmarking various EX-
PRESS primitives as well as their equivalent iPSC/2 primitives. We have considered
various environments, such as host-to—node and node-to-node communication, for
testing the performance of these primitives and have analyzed the effect of data size
on overall timing. For making a fair comparison, by writing new programs, we also
implemented some of the equivalent operations of EXPRESS, which are not provided
by iPSC/2. We considered both short and long messages.

Vector functions are useful EXPRESS facilities which are not provideci .By
iPSC/2. On the other hand, EXPRESS has not implemented non-blocking send and
receive primitives on the hypercube system so far. The EXPRESS broadcast primitive
KXBROD requires the receiving processors to know the id of the sending processor,
whereas iPSC/2 primitive CRECV does not. In some cases, such as in the Gaussian
Elimination program, the receiving processors do not know the source of broadcast-
ing, and KXBROD cannot be used.

The benchmark comparison of two programming models reveals many insights
which can be summarized as follows. ,
e The iPSC/2 primitives clearly outperform EXPRESS primitives in most of the cases.
A few exceptions include the node to node exchange for large messages.
e However, in many cases, the performance of EXPRESS primitives is comparable
with iPSC/2 primitives.
e The most important performance measure is the node to node communication time.
The comparison shows EXPRESS primitives are 30% to 70% slower than iPSC/2
primitives.
e The receiving time of two models is comparable but the sending time of EXPRESS
is higher.

EXPRESS provides a portable environment for parallel programming on differ-
ent parallel machines with a rich set of utility functions. The cost of using EXPRESS is
larger overhead. Larger overhead leads to worse performance, or it requires larger

granularity. With the exception of a few cases, the timing ratio of EXPRESS and

-29-

iPSC/2 primitives is in the range of 1 to 2.5 (The EXPRESS vector exchange is ex-
tremely slow). However, we believe that is an implementation error). Assume com-
munication time is 10% of total execution time, it causes less than 10% performance

degradation. Considering its functionality, the overhead of EXPRESS appears not

too large and affordable.

Acknowledgements

We thankfully acknowledge the support of Center for Research on Parallel Computation.
This work was supported by a grant from National Science Foundation under Cooperative

Agreement No. CCR-8809165.

References

[1] Express Fortran User’s Guide, Parasoft Corporation, 1990.
[2] Express Fortran Reference Guide, Parasoft Corporation, 1990.
[3] iPSC/2 Fortran Language Reference Manual, Intel Corporation, 1989.

[4] I. Angus, G. Fox, J. Kim, D. Walker, Solving Problems on Concurrent Processors,
Volume II, Prentice Hall, Englewood Cliffs, New Jersey, 1990.

[5] David Bradley, "First and Second Generation Hypercube Performance,” Report No.
UTUCDCS-R-88-1455, Department of Computer Science, University of Ilinois at
Urbana-Champaign, Sept. 1988.

-30-

s for

joft[1],isa software programming environment

.ogeneous MIMD multiprocessors. It provides a
icating processes, mechanisms for data sharing,
srformance analyzing tools. An important feature
lities are carried out in a user transparent manner.
itan attractive tool set for developing parallel pro-
;ures which allow an application to use appropriate
wtomatic domain decomposition library which can
lem to the underlying topology of the parallel com-
:valuation tools, using text and graphics, can be effec-
me performance of the program.

cetw re of EXPRESS is that it is portable. This leads to two
advantages. The first auvantage is that it can be implemented on a variety of machines
such as NCUBE-1, NCUBE-2, Symult, and Intel iPSC/2}and iPSC/860 hypercubes,
transputer arrays and shared memory BBN Butterfly system. In addition, it can be
implemented on various types of workstation networks. The second advantage of por-
tability is that programs written under EXPRESS for one machine can be run on
another machine and the user does not have to worry about the hardware. The lan-
guages supported by EXPRESS are C and FORTRAN.

The communication primitives for message passing under EXPRESS make use
of asynchronous communication which include exwrite and exread functions at the
source and destination nodes, respectively. The EXPRESS kernel provides interme-
diate buffering and routing. A subset of Express environment is CrOS I which pro-
vides synchronous communication system [4]. The third subset of EXPRESS is CU-
BIX system which allows nodes to perform concurrent I/0.

Asdepicted in Figure 1, the EXPRESS environment consists of three layers. The
lowest level consists of utilities for controlling the hardware. The medium level pro-

vides support for problem partitioning and communication between the nodes, and

-1-

between the node and control processor. The highest level contains the facilities for

node programs to perform I/0 to the host operating system.

Highest Level

Medium Level

Lowest Level

Figure 1: Three layers of EXPRESS

2. The EXPRESS Programming Models

EXPRESS allows parallel programs to develop in the following four different
styles.

(1) The conventional Host-Node Style in which the control part of the program

appears in the host program and the computation intensive part appears in node pro-
grams.

—2-

(2) The Cubix environment in which only node program is written and it inter-
faces to the outside world through graphics and text server.

(3) The Profile environment which can be added to both Host-Node and Cubix

programming models.

(4) The Plotix environment which provides extra graphics features to analyze
program profiling.

3. The EXPRESS Ultilities

EXPRESS provides a number of utilities which can be classified as follows.
(1) User Commands:
e Profiling Tools
L. ctool (Analyze communication profile data).
II. xtool (Analyze execution profile data).
II. etool (Analyze events profile data).
e System administration such as configuration, reboot and reload.
7 User’s usage of system resources.
® Source level debugger (communication, execution and events).
(2) Compilers:
C and Fortran Compilers for hypercubes.
C and Fortran Compilers for transputers.
e Starting up EXPRESS system.
4) Processor Control:
e Allocation and de-allocation of processors.
® Loading program into all nodes.
® L oading program into selected nodes.
® Blocking communication among nodes e.g read and write a message, read and write
a vector.

e Global communication.

e.g broadcast, synchronous data exchange, global concatenation,
global reduction operations, synchronization, etc.

e Asynchronous communication.
e.g non-blocking read and write.

e Hardware dependent communication.

e.g reading and writing data on a channel.

(6) Decomposition Tool:

e Initializing decomposition system.

e Map user domain coordinates to processor number.
e Distributing data to processors.

e Distribute processors on user domain.
® Distributing data to processors.

e Determining run-time environment.
(1) 1/O Routines

(8) Multi-tasking

(9) Multi-Hosting

(10) Graphics

4. The Performance of Some EXPRESS and Equivalent iPSC/2 Routines

An important issue associated with programming tools is the execution speed of
the basic primitives which are frequently used in programs. Examples of such primi-
tives include communication between nodes, communication between host and nodes,
global reduction operations, data broadcast, concatenation etc. We have evaluated
the performance of some of the basic primitives of EXPRESS, running on iPSC/2. To
make comparison with iPSC/2, we also benchmarked equivalent iPSC/2 primitives. In
those cases where equivalent primitives did not exist, we wrote routines that can per-

form the same function.

Our benchmark model consists of two host programs - one for EXPRESS and

one for iPSC/2, and one node program for each primitive. Separate node programs

—4-

are written for EXPRESS and iPSC/2. A host program consists of a menu through
which a selection can be made to test one particular primitive. After the selection has
been made, additional information such as the number of nodes, source and destina-
tion for communication, the choice of host-node communication or node-node com-
munication, the message size, must be provided. The host program selects the appro-
priate node program and loads it into the nodes. It passes the additional information
to the node program and sets the appropriate environment. Each tested primitive is
timed with a loop which repeats the same test up to 200 times. At the end of each loop
step, all timing information is recorded and appropriate parameters are reset where
necessary. Synchronization is done where it is deemed necessary. At the end of the
loop, the timing of each test step is sent back to the host which performs statistical
analysis on it by calculating the mean value and variance. If the variance is very high,
“1e same test is repeated with a higher number of repetitions. The timing results, in-
ling the mean and variance, for the host and node operations are stored in two dif-

.ent files.

Since the message passing protocols on iPSC/2 are different for 1arge and small
messages, our tests included both small and large messages. The size of large mes-
sages was varied from 128 to 8192 words and the size of small messages was kept fixed
as 10 words. The data type of message objects is real type for all tests, which consists of
4 bytes. The actual message size, therefore, is message size multiplied by 4. All timing
values are given in milli-seconds. To compare EXPRESS with iPSC/2 primitives, a
timing ratio of EXPRESS primitive versus iPSC/2 primitive is calculated and provided
in the corresponding table.

4.1 Send/Recv. between Host and Node

The communication between host and node is an important routine that is most-
ly used for sending initial data and other information from host to nodes and getting
the results from nodes to host. It is also used for I/O between nodes and the file sys-
tem, through the host. The communication can be blocking as well as non-blocking.
We considered only the blocking type. The same routines can be used for communica-

tion between nodes and between nodes and host. Following are the EXPRESS and

-5—

iPSC/2 routines for blocking communication.
EXPRESS routines :
INTEGER FUNCTION KXREAD(BUF, LENGTH, SRC, TYPE)
INTEGER FUNCTION KXWRITE(BUF, LENGTH, DEST, TYPE)
Equivalent iPSC/2 routines:
SUBROUTINE CRECV(TYPE, BUF, LENGTH)
SUBROUTINE CSEND(TYPE, BUF, LENGTH, DEST, PID)

Timing results :

Table 1 contains the execution time of EXPRESS KXREAD and KXWRITE
and iPSC/2 CSEND and CRECV for host to node communication, for various mes-
sage sizes. We measured timing for both way communication, that is, sending data
from host to node and measuring node time and receiving data from node to host and

measuring node’s sending time.

Table 1: Node Time to receive and send data to host (ms)

EXPRESS iPSC/2 Timing Ratio

Message Size | recv. send recv. send recv. send
10 1.93 0.36 1.46 0.34 132 1.06

128 3.16 9.98 291 591 1.04 1.69
256 3.30 10.91 3.29 5.97 1.00 1.83

512 3.86 11.26 3.54 6.31 1.09 1.78
1024 4.93 11.93 4,18 7.24 1.18 1.65
2048 6.82 13.51 5.83 8.84 1.17 1.53
4096 11.16 16.97 9.08 12.01 1.23 1.41
8192 19.34 23.33 15.60 18.48 1.24 1.26

The results indicate that for both EXPRESS and iPSC/2, the time to send data
from node to host is greater than the time to receive data from host to node. We also
observe that iPSC/2 performs better by a maximum factor of 1.322 for receiving the
data and by a factor of 1.827 for sending data.

4.2 Send/Recv. between Nodes

We used the same routines for node to node communication that were used for

host to node communication.
Timing Results ;

Again, we measured two way timing, that is, the sending time at the sending node
and receiving time at the receiving node. Table 2 summarizes these results along with
timing ratios for both receive and send. To present these results pictorially, plots of

these values for receive and send are given in Figure 2 and Figure 3.

Table 2.1: Timing results (ms) for the node to node communication
(One to one communication)

EXPRESS iPSC/2 Timing Ratio

Message Size | recv. send recv. send recv. send
10 0.39 1.05 0.35 0.40 1.11 2.63

128 0.77 1.81 0.77 0.95 1.00 1.91

256 0.95 2.10 0.94 1.14 1.06 1.84
512 1.30 2.69 1.25 1.47 1.04 1.83
1024 2.01 3.89 1.96 2.30 1.03 1.69
2048 3.53 6.25 3.44 3.75 1.03 1.67
4096 6.50 10.92 6.33 6.76 {1.03 1.62
8192 1238 |21.94 12.25 12.50 1.01 1.76

From Table 2.1, and Figure 2 and Figure 3, we notice that the performance of both
systems is almost the same for receiving data. However, iPSC/2 outperforms EX-
PRESS for sending data.

Time
(ms) 12
9 EXPRESS
iPSC/2
6
3
0

128 256 512 1024 2048 4096 8192
Message size (number of data objects)

Figure 2: EXPRESS and iPSC/2 time for receive operation versus message size

Time
(ms) 20
EXPRESS
16
iPSC/2
12
8
4

512 1024 2048 4096 8192
Message size (number of data objects)

Figure 3: EXPRESS and iPSC/2 time for send operation versus message size

4.3 Measuring Communication Time between Nodes

In addition to measuring the execution time of CSEND and CRECYV primitives
foriPSC/2,and KWRIT and KXREAD primitives for EXPRESS, we used these primi-
tives to measure the communication time. The communication time is measured by
establishing two way communication between two nodes, that is, one node sends a
message to the other node and waits for the reply. The size of the reply message is also
the same as the send message. Synchronization is done before the start of message
passing. This method has been recommended as a reliable mean of measuring com-
munication time [5]. The communication time is obtained simply by dividing the total

time (time to send and receive) by two.

It is worth mentioning that iPSC/2 uses different communication protocols for
short and long messages. The communication time T for large messages, with L bytes,
can be modeled by the following formula.

T = Ts + TgL

where T;is the set up time and T, is the transmission time for one byte. The timing
ratio of communication time obtained with EXPRESS to the communication time ob-
tained with iPSC/2 is given by

Ts(express) + Tp(express) x L
Ts(ipsc/2) + Tg(ipsc/2) x L

Timing Ratio =

The communication times obtained by both EXPRESS and iPSC/2 primitives as well
as the corresponding timing ratios are shown in Table 3. It is to be noted that the mes-
sage size used in our experimentation is actually the number of words where each word
consists of 4 bytes. In order to use the message size in the formula shown above, L
should be obtained by multiplying the message size by 4. From the data shown in Table
3, the channel set up times and transmission times for both EXPRESS and iPSC/2, and
the timing ratio can be summarized by as

125 + 047 x L

Timine R
mng R0 = ey 037 x L

Timing results :

Table 3: Communication times for node to node communication (ms)

Message Size | EXPRESS |[iPSC/2 Timing Ratio

10 0.720 0.44 1.63
128 1.497 0.92 1.64
256 1.705 1.09 1.57
512 2.213 1.48 1.49
1024 3.115 2.24 1.39
2048 5.045 3.76 1.34
4096 8.862 6.68 1.33
8192 16.570 12.50 1.33

The results shown in Table 3 indicate that the communication time obtained by using
EXPRESS is greater than the communication time obtained by using iPSC/2 primi-
tives by a factor of 1.636 to 1.326. The time ratio, however, shows a decreasing trend

for larger messages. The communication times show in Table 2.2 are also plotted in

Figure 4.
Time
(ms) 15
12
9
6
3
0

128 256 512 1024 2048 4096 8192

Message size (number of data objects)

Figure 4: Communication Time using EXPRESS and iPSC/2 primitives

-10-

EXPRESS

4.4 Host to Node Exchange Operations

The function of data exchange operation is to perform send and receive in one
step, that is, the data is first sent and then received. It is also possible for one node to
send and received data from different nodes. However, in our experiment, we consid-
ered send and receive with same one to one communication only. The send and re-
ceive used for exchange operation are of blocking nature and provide synchronization.
An equivalent iPSC/2 primitives also exists for this kind of operation. Both primitives

are described below.

EXPR H h Routine :

INTEGER FUNCTION KXCHAN(IBUF, ISRC, ITYPE, OBUF, OLEN,
ODEST, OTYPE)

Equivalent i ine ;
INTEGER FUNCTION CSENDRECV(TYPE, SBUF, SLEN, TONODE,
TOPID, TOTYPE, RBUF, RLEN)

Timing results :

Table 4 shows the timing results for exchange operation between host and node 0

for message size ranging from 10 to 8192.

Table 4: Timing results for the host to node exchange operation (ms)

Message Size | EXPRESS [iPSC/2 Timing Ratio

10 20.93 237 8.831
128 22.60 8.75 2.583
256 22.89 8.90 2.572
512 32.70 8.88 3.682
1024 36.13 10.78 3.352
2048 37.00 12.29 3.010
4096 37.79 18.80 2.010
8192 52.24 31.67 1.650

-11-

4.5 Node to Node Exchange Operations

The routines used for node-node exchange operation are the same as those used

for host-node exchange operation.
Timing results :

Table 5 shows the timing results for exchange operation between node 0 and

node 1 for message size ranging from 10 to 8192.

Table 5 : Timing results (ms) for exchange operation with source node 0
and destination node 1

EXPRESS iPSC/2 Timing Ratio

Message Size Node 0 [Node1 [[Node 0 [Node1 ||[Node 0 |Node 1
10 1.44 1.44 0.86 0.73 1.67 1.97
128 2.75 2.75 1.80 1.53 1.53 1.80
256 321 3.30 2.17 1.90 1.48 1.74
512 4.09 4.06 2.99 2.57 1.37 1.58
1024 5.09 5.15 4.46 4.06 1.14 1.27
2048 7.06 7.06 7.49 7.08 0.94 0.99
4096 10.89 10.91 13.25 12.96 0.82 0.84
8192 18.60 [18.56 [25.08 [24.72 [[0.74 0.75

The relative performance of exchange operation clearly depends on the message
size. For small messages, EXPRESS performs slowly as compared to iPSC/2. Howev-
er, for long messages, the performance of EXPRESS is better than iPSC/2.

4.6 Broadcast from Host to Nodes

For data broadcast, EXPRESS provides a special routine, KXBROD, for send-
ing the message from the host to all other nodes, and the host and nodes have to ex-
ecute the same routine by specifying the host as source. On the other hand, iPSC/2
does not provide a special routine, rather CRECV and CSEND are executed by the

receiving node(s) and host node respectively. Both routines are described below.

-12-

EXPRESS routine KXBROAD :
INTEGER FUNCTION KXBROD(BUF, ORIGIN, LENGTH
NNODES, NODEL, TYPE)
Equivalent iPSC/2 operation:
The equivalent iPSC/2 operation written for this purpose use the following routines:
SUBROUTINE CSEND(TYPE, BUF, LENGTH, -1, PID)
(at the origin node)
SUBROUTINE CRECV(TYPE, BUF, LENGTH)

(at all of the receiving nodes)

Host to node broadcast was timed for 4, 8, 16 and 32 nodes for message size
varying from 10 to 2048. The results are tabulated in Tables 6.1 - 6.4. These results

show the maximum of all nodes which are receiving the message from the host.

Table 6.1 : Node Time (ms) to receive data from host with broadcast (4 NODES)

Message Size || EXPRESS |iPSC/2 Timing Ratio
10 2.00 2.10 0.95
128 3.52 3.24 1.09
256 437 3.50 1.25
512 4.80 4.61 1.04
1024 7.04 6.66 1.06
2048 13.04 9.94 131

Table 6.2 : Node Time (ms) to receive data from host with broadcast (8 NODES)

Message Size || EXPRESS |iPSC/2 Timing Ratio
10 2.05 1.92 1.07
128 4.09 334 1.23
256 4.55 3.87 1.18
512 5.98 4.73 1.26
1024 8.91 7.17 1.24
2048 16.89 12.42 1.36

-13-

Table 6.3 : Node Time (mé) to receive data from host with broadcast (16 NODES)

Message Size || EXPRESS |iPSC/2 Timing Ratio
10 2.02 1.90 1.06
128 4.82 3.44 1.40
256 5.07 3.70 1.37
512 7.16 5.67 1.26
1024 10.81 7.87 1.37
2048 20.31 14.14 1.44

Table 6.4 : Node Time (ms) to receive data from host with broadcast (32 NODES)

Message Size || EXPRESS [iPSC/2 Timing Ratio
10 2.03 1.91 1.06
128 5.26 3.78 1.39
256 591 3.92 1.51
512 8.41 5.98 1.41
1024 12.75 8.95 1.43
2048 23.95 16.79 1.43

From the tables shown above, we notice that the performance of both systems
shows consistent patterns. EXPRESS performs as good as iPSC/2 for smaller number
of nodes but iPSC/2 performs better for larger number of nodes.

4.7 Broadcast From One Node to All Other Nodes
The same EXPRESS and iPSC/2 routines were used for one node to all node
data broadcast which were used for host to nodes broadcast. The sending times at the

single source node and the maximum of the receiving times at all of the receiving

nodes were measured for various message sizes.

Timing results;

The timing results for both sending and receiving nodes are summarized in
Tables 7.1, Table 7.2 and Table 7.3 for 4, 8 and 16 nodes, respectively.

—14-

Table 7.1 : Timing results (ms) for the node to nodes broadcast operation (4 NODES)

EXPRESS iPSC/2 Timing Ratio
Message Size [send recv.(max) || send recv.(max) |{ send recv.
10 0.67 1.58 0.42 0.63 1.60 2.51
128 154 [2.94 1.22 1.64 1.26 1.79
256 1.89 3.45 1.57 2.01 1.20 1.72
512 2.56 4.39 2.25 2.75 1.14 1.60
1024 4.00 6.19 3.72 421 1.10 1.47
2048 6.96 10.10 6.62 7.14 1.06 1.42
4096 1295 [17.68 12.63 13.00 1.03 1.36
8192 2478 [33.25 2426 |24.74 1.02 1.34

Table 7.2 : Timing results (ms) for the node to nodes broadcast operation (8 NODES)

EXPRESS iPSC/2 " Timing Ratio
Message Size [send recv.(max) | send recv.(max) || send recv.
10 0.94 2.17 0.47 0.72 2.00 3.13
128 2.18 424 1.62 2.28 1.35 1.86
256 2.73 5.02 2.17 2.82 1.26 1.78
512 3.78 6.47 3.29 3.90 1.15 1.66
1024 5.86 9.24 5.42 6.09 1.10 1.52
2048 1035 [14.97 9.83 10.56 1.11 1.42
4096 19.35 26.48 18.67 19.29 1.04 1.37
8192 37.02 49.85 36.24 36.89 1.02 135

Table 7.3 : Timing results (ms) for the node to nodes broadcast operation (16 NODES)

EXPRESS iPSC/2 Timing Ratio
Message Size [send recv.(max) || send recv.(max) | send recv.
10 1.18 2.74 0.59 0.86 2.00 3.19
128 2.86 5.58 2.10 291 1.36 1.92
256 3.58 6.66 2.82 3.64 127 1.83
512 5.02 8.56 4.29 5.13 1.17 1.67
1024 7.78 12.29 7.14 7.99 1.09 1.54
2048 1378 [19.95 1301 [13.87 1.06 1.44
4096 25.78 [35.19 24.79 |25.59 1.04 1.38
8192 49.76 |66.37 48.77 149.01 1.01 1.35

-15-

Table 7.4 : Timing results (ms) for the node to nodes broadcast operation (32 NODES)

EXPRESS iPSC/2 Timing Ratio
Message Size || send recv.(max) || send recv.(max) || send recv.
10 1.53 3.39 0.63 0.98 2.000 3.19
128 3.57 6.93 2.55 3.51 1.400 1.97
256 4.46 8.17 3.49 439 1.270 1.83
512 6.22 10.73 5.32 6.28 1.170 1.67
1024 9.71 15.34 8.91 9.90 1.090 1.54
2048 17.15 [24.90 16.25 17.30 1.060 1.44
4096 32.15 [44.19 30.92 [31.87 1.040 1.38
8192 61.55 [83.49 6025 [61.14 1.014 1.35

The timing values for node to nodes broadcast indicate that EXPRESS and
iPSC/2 perform almost identically for the sending node whereas receiving time with
EXPRESS is higher. The difference in receiving time of both systems is higher for
small messages but becomes less for larger messages. The same observation holds
when broadcast is done to 4, 8, 16 or 32 nodes.

4.8 Global Reduction Operations

Global operations for producing reduction across all or a set of processors are
frequently used in parallel programs. EXPRESS provides only one routine to perform
any kind of global reduction operation and the user has to write its own function which
is given as argument FUNC to the reduction routine. On the other hand, iPSC/2 pro-
vides separate routines for each operation. The global routines provided by iPSC/2
include global OR, AND, EXCLUSIVE OR , sum, maximum, minimum, etc. Howev-
er, in our study, only global sum, global product and global maximum were tested.
EXPRESS has extra facility of specifying the number of nodes and node id’s which
need to participate in global operation. The format of these routines is as follows.

INTEGER FUNCTION KXCOMB(BUF, FUNC, SIZE, ITEMS
NNODES, NODEL, TYPE)

SUBROUTINE GxSUM(BUF, LENGTH, WORK)

SUBROUTINE GxPROD(BUF, LENGTH, WORK)

-16-

SUBROUTINE GxHIGH(BUF, LENGTH, WORK)
Note: x in GxOP stands for the type of data which can be I, S or D, for integer, real and
double precision, respectively. It has already been mentioned that all of our tests were

carried out with real data type.
Timing results:

We obtained timing results for global addition, global multiplication and global
maximum. For EXPRESS, these three operations had to be written separately. For all
three operations, data type used was 4 bytes floating point and the array size in each

process was varied from 10 to 256.

Note: Tests for global operations for array size greater than 256 (in each node)
cannot be carried out under EXPRESS.

Timin 1ts for global

The results for global sum are shown in Table 8.1 to Table 8.4, for 4, 8, 16 and 32
nodes, respectively.

Table 8.1 : Timing results (ms) for the global sum operation (4 NODES)

Message Size || EXPRESS [iPSC/2 Timing Ratio
10 1.077 0.967 1.11
64 1.219 1.092 1.12
128 1.281 1.153 1.11
256 1.378 1.239 1.11

Table 8.2 : Timing results (ms) for the global sum operation (8 NODES)

Message Size | EXPRESS |iPSC/2 Timing Ratio
10 1.151 1.016 1.13
64 1.291 1.168 1.10
128 1.361 1.235 1.10
256 1.442 1.323 1.09

-17-

Table 8.3 : Timing results (ms) for the global sum operation (16 NODES)

Message Size || EXPRESS [iPSC/2 Timing Ratio
10 1.206 1.062 1.14
64 1.347 1.234 1.09
128 1.410 1.292 1.09
256 1.506 1.384 1.08

Table 8.4 : Timing results (ms) for the global sum operation (32 NODES)

Message Size || EXPRESS |iPSC/2 Timing Ratio
10 1.249 1.107 1.13
64 1.393 1.279 1.09
128 1.453 1.342 1.08
256 1.540 1.429 1.08
1 iplication:

The results for global multiplication are summarized in Table 8.5 to Table 8.8,
for 4, 8, 16 and 32 nodes, respectively.

Table 8.5 : Timing results (ms) for the global multiplication operation (4 NODES)

Message Size || EXPRESS |iPSC/2 Timing Ratio
10 1.076 0.970 1.11
64 1.222 1.131 1.08
128 1.284 1.192 1.08
256 1.380 1.283 1.08

Table 8.6 : Timing results (ms) for the global multiplication operation (8 NODES)

Message Size || EXPRESS [iPSC/2 Timing Ratio
10 1.158 1.033 1.12
64 1.293 1.198 1.08
128 1.365 1.269 1.08
256 1.448 1.372 1.07

-18-

Table 8.7 : Timing results (ms) for the global multiplication operation (16 NODES)

Message Size | EXPRESS [iPSC/2 Timing Ratio
10 1.223 1.084 1.13 -
64 1.352 1.266 1.07
128 1.413 1.336 1.06
256 1.508 1.422 1.06

Table 8.8 : Timing results (ms) for the global multiplication operation (32 NODES)

Message Size || EXPRESS |iPSC/2 Timing Ratio
10 1.252 1.131 1.11
64 1395 1315 1.07
128 1.461 1.391 1.05
256 1.546 1.471 1.05

Timing results for global maximum;

The results for global maximum are summarized in Table 8.9 to Table 8.12, for 4,

8, 16 and 32 nodes, respectively.

Table 8.9 : Timing results (ms) for the global maximum operation (4 NODES)

Message Size | EXPRESS |iPSC/2 Timing Ratio
10 1.076 0.968 1.11
64 1.242 1.097 [1.12
128 1278 1.153 1.10
256 1.366 1.248 1.10

Table 8.10 : Timing results (ms) for the global maximum operation (8 NODES)

Message Size | EXPRESS |iPSC/2 Timing Ratio
10 1.150 1.013 1.13
64 1.285 1.175 1.10
128 1.351 1.250 1.08
256 1.433 1.321 1.08

-19-

Table 8.11 : Timing results (ms) for the global maximum operation (16 NODES)

Message Size | EXPRESS [iPSC/2 Timing Ratio
10 1.209 1.068 1.13
64 1.344 1.244 1.08
128 1.405 1.303 1.08
256 1.497 1.389 1.08

Table 8.12 : Timing results (ms) for the global maximum operation (32 NODES)

Message Size || EXPRESS |iPSC/2 Timing Ratio
10 1.298 1.125 1.15
64 1.389 1.296 1.08
128 1.446 1.353 1.07
256 1.531 1.428 1.07

Timing results for global reduction operation, addition, multiplicatién and maxi-
mum, indicate that for all three global operations, EXPRESS performs 5 to 10 percent
slower than iPSC/2 for large message sizes. For small array sizes, such as 10 words,

EXPRESS performs 10 to 15 percenet slower than iPSC/2.
4.9 Global Concatenation Operations

Global concatenation performs packing chunks of arrays from the participating
nodes into one array. Each participating processor receives the resultant array. This
primitive can also be used for all-to-all broadcasting.

EXPRESS provides the option to perform concatenation across all or a set of
processors whereas with iPSC/2 all nodes have to call the concatenation routine. EX-
PRESS has extra facility of specifying the number of nodes and node id’s which need to
participate in global operation. This primitive also leaves into an array 'SIZES’ the

contribution made by each processor in term of array size. The format of these rou-
tines is as follows.

EXP lobal con i i

INTEGER FUNCTION KXCONC(MYBUF, MYBYTE, RESBUF, RESIZE,
SIZES, NNODES, NODEL, TYPE)

-20-

Equivalent iPSC/2 routine :
SUBROUTINE GCOLX(X, XLENGTHS, RES)

Timing results :
Table 9.1 to Table 9.4 show the timing results for global concatenation operation
for 4, 8, 16 and 32 nodes for array size 10 to 2048. Note that maximum array size used

in our experiments is 2048 words. Since this is the array size in each node, the maxi-

mum size of the resultant array is thus 64k, when 32 processors are used.

Table 9.1: Timing results (ms) for the concatenation operation (4 NODES)

Message Size | EXPRESS |iPSC/2 Timing Ratio
10 232 1.32 1.76
64 4.68 293 1.60
128 5.11 3.77 136
256 6.22 5.56 1.06
512 9.25 8.73 1.06
1024 16.85 12.96 1.30
2048 32.23 21.86 1.47

Table 9.2: Timing results (ms) for the concatenation operation (8 NODES)

Message Size | EXPRESS |iPSC/2 Timing Ratio
10 5.28 2.39 221
64 11.57 4.32 2.68
128 12.56 5.66 222
256 15.36 8.77 1.75
512 21.32 14.96 1.43
1024 33.82 28.17 1.20
2048 61.28 55.82 1.10

Table 9.3: Timing results (ms) for the concatenation operation (16 NODES)

Message Size | EXPRESS |iPSC/2 Timing Ratio
10 11.35 3.67 3.09
64 253 6.27 4.04
200 27.60 9.00 3.07
256 33.19 14.61 227
512 46.79 27.35 1.71

-21-

1024 7425 15495 135
3048 130,40 11352 134

Table 9.4: Timing results (ms) for the concatenation operation (32 NODES)

Message Size | EXPRESS |iPSC/2 Timing Ratio
10 23.10 5.06 4.57
100 53.16 9.69 4.30
200 59.56 15.61 3.09
256 70.80 28.17 2.51
512 98.54 53.78 1.78
1024 158.04 111.14 1.42
2048 278.04 223.20 1.25

4.10 Vector Send/Recv. Operations

Vector read and vector write routines are used to reading and writing vectors
with an additional facility of transmitting non-contiguous blocks of data. These rou-
tine can be called from host and node processors. At the sending node, ITEMS objects
each of size SIZE bytes separated by OFFSET are transmitted. On the receiving end,
the received data is read into memory blocks separated by OFFSET. However, the
basic functionality of vector read and vector write is same as KXREAD and KXWRIT.
iPSC/2 does not provide such primitives. To make a fair comparison, we performed
array packing with CSEND and array unpacking with CRECV at the sending and re-
ceiving nodes, respectively. The implementation includes the option of packing and
unpacking at either ends.

RESS Vi nd/Recv routine :

INTEGER FUNCTION KXVREAD(IBUF, SIZE, OFFSET, ITEMS, SRC, TYPE)

INTEGER FUNCTION KXVWRI(IBUF, SIZE, OFFSET, ITEMS, DEST, TYPE)
Equivalent iPSC/2 routine :
The equivalent iPSC/2 operation written for this purpose uses the following routines along
with extra array packing and unpacking.

SUBROUTINE CRECV(TYPE, BUF, LENGTH)

SUBROUTINE CSEND(TYPE, BUF, LENGTH, -1, PID)

—22-

Timing results :

Table 10 shows the timing results for send/receive operation between node 0 and
node 1 for message size ranging from 10 to 8192. The value of the offset at both the

sending and receiving end was selected as 2.

Table 10 : Timing results(ms) for the vector send/receive operation

(offset = 2 at source and destination)
EXPRESS iPSC/2 Timing Ratio
Message Size [send recv. send recv. send recv.
10 1.370 3.120 0.390 0.720 3.51 4.33
128 3.210 6.370 1.500 2.600 2.14 2.45
256 5.200 9.840 2.440 4.220 2.13 2.33
512 9.810 14.780 |/ 4.250 7.430 231 1.99
1024 19.130 [24.600 [7.870 |[13.910 |[2.43 1.77
2048 37.610 [44250 [15.190 [26.680 [2.48 1.66
4096 75340 |83.600 [29.890 [52.340 [2.52 1.60
8192 150.730 [162.330 [[59.230 |103.760 [|2.56 1.56

From Table 10, we observe that the performance of EXPRESS primitive for vec-
tor exchange is very poor. Inspite of the fact that the execution time for iPSC/2 primi-
tive includes the array packing and unpacking time, it is still less than the execution
time of EXPRESS primitive.

4.11 Vector Exchange Operation

The vector operation for send/receive between any two nodes, as described
above in section 4.10, can be accomplished in a bidirectional manner. This way two
nodes can exchange vectors by using a single routine. For EXPRESS, this can be done
using EXPRESS primitive described below. For iPSC/2, no such primitive exists and,
therefore, CSENDRECV is used for two way data exchange and array packing is done
at both ends to make comparison with the equivalent EXPRESS routine.

R nge r

INTEGER FUNCTION KXVCHAN(IBUF, ISRC, ITYPE, OBUE OLEN,
ODEST, OTYPE)

-23-

Equivalent iPSC/2

The equivalent iPSC/2 operation written for this purpose uses the following routine

ration :

along with extra array packing and unpacking option.
INTEGER FUNCTION CSENDRECV(TYPE, SBUF, SLEN, TONODE,
TOPID, TOTYPE, RBUF, RLEN)

Timing results :

Timing results for two way vector exchange operation between node 0 and node

1 for message size ranging from 10 to 512, are given in Table 11.

Table 11: Timing results for the vector exchange operation
(no offset at source and destination)

EXPRESS iPSC/2 Timing Ratio
Message Size | send recv. send recv. send recv.
10 4.13 4.15 1.01 0.94 4.09 4.42
64 39.34 39.46 2.35 2.18 16.79 18.10
128 136.79 [136.77 |3.315 |[3.025 |41.26 4521
256 509.20 [509.23 |[5.14 4.84 99.07 105.21
512 1958.00 [1957.50 |/8.85 8.53 229.54 229.48

The EXPRESS routine KXVCHAN is extremely slow, as shown in Table 10. The

use of this routine is not recommended.

S. The Performance Comparison of Gaussian Elimination by using

EXPRESS and iPSC/2

In order to compare the performance of the two programming model with real
applications, we wrote and implemented a Gaussian Elimination algorithm with par-
tial pivoting. The algorithm is based on row partitioning of the coefficient matrix. The
algorithm was implemented with two programs written under iPSC/2 primitives and
EXPRESS primitives. The main difference between two programs lies in the use of
communication primitives like broadcast and global reduction operations such as per-
forming the global addition and finding the global maximum. The execution time of

both programs versus various matrix sizes using 8 nodes are shown in Figure 5. Figure

—24-

6 and Figure 7 show the execution time of Gaussian Elimination for 16 and 32 nodes,
respectively.

For 8 processors, the difference in execution times of EXPRESS and iPSC/2is 1
to 2 seconds. However, EXPRESS gets relatively slower for larger number of proces-
sors. The execution time, with larger number of processors s higher for the EXPRESS
version. This difference becomes 2 to 3 seconds if 16 processors are used. For 32
processors, the difference becomes up to 10 seconds for a matrix size of 512. The EX-
PRESS primitives used in this program include KXCOMB, KXREAD and KXWRIT
which are substituted for equivalent iPSC/2 primitives, GSSUM, CSEND and
CRECV. The timing results indicate that these primitives of EXPRESS and iPSC/2
perform almost identical, with the exception of send operation where CSEND is faster
than KXWRIT. However, the increased execution time of EXPRESS version of Gaus-
sian Elimination program is due to the fact that this program uses broadcast communi-
cation in such a way that the origin of communication is not known to the receiving
processors. This can be easily implemented with iPSC/2 primitive, CSEND and
CRECV, by calling these routines only once. The EXPRESS broadcast primitive,
KXBROD could not be used in this case because the format of the routine requires
the receiving processors to know the id of the sending processor. As a result,
KXREAD and KXWRIT have been used. Broadcast was carried out by making a call
to these routines for each processor. As a results, the execution time increases if this

technique is used for large number of processors.

-25-

EXPRESS — iPSC/2

100
time §
seconds 90

80

70

60

50

40

30

192 256 320 384 448 512

matrix size

Figure 5: Performance of Gaussian Elimination on 8 Node Hypercube

—26-

EXPRESS B iPSC/2

time
seconds 60

50

20 384 448 512

matrix size

Figure 6: Performance of Gaussian Elimination on 16 Node Hypercube

-27-

EXPRESS iPSC/2

time
seconds .

192 256 320 384 448 512

matrix size

Figure 7: Performance of Gaussian Elimination on 32 Node Hypercube

-28—

6. Conclusions

In this report, we have presented a comparison of EXPRESS and iPSC/2 pro-
gramming models. We have done this comparison by benchmarking various EX-
PRESS primitives as well as their equivalent iPSC/2 primitives. We have considered
various environments, such as host-to-node and node-to-node communication, for
testing the performance of these primitives and have analyzed the effect of data size
on overall timing. For making a fair comparison, by writing new programs, we also
implemented some of the equivalent operations of EXPRESS, which are not provided

by iPSC/2. We considered both short and long messages.

Vector functions are useful EXPRESS facilities which are not provided by
iPSC/2. On the other hand, EXPRESS has not implemented non-blocking send and
receive primitives on the hypercube system so far. The EXPRESS broadcast primitive
KXBROD requires the receiving processors to know the id of the sendirig processor,
whereas iPSC/2 primitive CRECV does not. In some cases, such as in the Gaussian
Elimination program, the receiving processors do not know the source of broadcast-
ing, and KXBROD cannot be used.

The benchmark comparison of two programming models reveals many insights
which can be summarized as follows. _
¢ The iPSC/2 primitives clearly outperform EXPRESS primitives in most of the cases.

A few exceptions include the node to node exchange for large messages.

® However, in many cases, the performance of EXPRESS primitives is comparable
with iPSC/2 primitives.
® The most important performance measure is the node to node communication time.
The comparison shows EXPRESS primitives are 30% to 70% slower than iPSC/2
primitives.
® The receiving time of two models is comparable but the sending time of EXPRESS
is higher.

EXPRESS provides a portable environment for parallel programming on differ-
ent parallel machines with a rich set of utility functions. The cost of using EXPRESS is
larger overhead. Larger overhead leads to worse performance, or it requires larger
granularity. With the exception of a few cases, the timing ratio of EXPRESS and

-29-

iPSC/2 primitives is in the range of 1 to 2.5 (The EXPRESS vector exchange is ex-
tremely slow). However, we believe that is an implementation error). Assume com-
munication time is 10% of total execution time, it causes less than 10% performance
degradation. Considering its functionality, the overhead of EXPRESS appears not
too large and affordable.

Acknowledgements
We thankfully acknowledge the support of Center for Research on Parallel Computation.

This work was supported by a grant from National Science Foundation under Cooperative
Agreement No. CCR-8809165.

References

[1] Express Fortran User’s Guide, Parasoft Corporation, 1990.
[2] Express Fortran Reference Guide, Parasoft Corporation, 1990.
[3] iPSC/2 Fortran Language Reference Manual, Intel Corporation, 1989.

[4] I. Angus, G. Fox, J. Kim, D. Walker, Solving Problems on Concurrent Processors,
Volume 11, Prentice Hall, Englewood Cliffs, New Jersey, 1990.

[5] David Bradley, “First and Second Generation Hypercube Performance,” Report No.
UIUCDCS-R-88-1455, Department of Computer Science, University of Ilinois at
Urbana-Champaign, Sept. 1988.

-30-

6. Conclusions

In this report, we have presented a comparison of EXPRESS and iPSC/2 pro-
gramming models. We have done this comparison by benchmarking various EX-
PRESS primitives as well as their equivalent iPSC/2 primitives. We have considered
various environments, such as host-to-node and node-to-node communication, for
testing the performance of these primitives and have analyzed the effect of data size
on overall timing. For making a fair comparison, by writing new programs, we also
implemented some of the equivalent operations of EXPRESS, which are not provided

by iPSC/2. We considered both short and long messages.

Vector functions are useful EXPRESS facilities which are not provided by
iPSC/2. On the other hand, EXPRESS has not implemented non-blocking send and
receive primitives on the hypercube system so far. The EXPRESS broadcast primitive
KXBROD requires the receiving processors to know the id of the sendirig processor,
whereas iPSC/2 primitive CRECV does not. In some cases, such as in the Gaussian

Elimination program, the receiving processors do not know the source of broadcast-
ing, and KXBROD cannot be used.

The benchmark comparison of two programming models reveals many insi ghts
which can be summarized as follows. _
® The iPSC/2 primitives clearly outperform EXPRESS primitives in most of the cases.
A few exceptions include the node to node exchange for large messages.
¢ However, in many cases, the performance of EXPRESS primitives is comparable
with iPSC/2 primitives.
® The most important performance measure is the node to node communication time.
The comparison shows EXPRESS primitives are 30% to 70% slower than iPSC/2
primitives.
® The receiving time of two models is comparable but the sending time of EXPRESS
is higher.

EXPRESS provides a portable environment for parallel programming on differ-
ent parallel machines with a rich set of utility functions. The cost of using EXPRESS is
larger overhead. Larger overhead leads to worse performance, or it requires larger

granularity. With the exception of a few cases, the timing ratio of EXPRESS and

-29-

