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Managing Interprocedural Optimization

Mary Wolcott Hall

Abstract

This dissertation addresses a number of important issues related to interprocedural
optimization. Interprocedural optimization is an integral component in a compilation
system for high-performance computing. The importance of interprocedural opti-
mization stems from two sources: it increases the context available to the optimizing
compiler, and it enables programmers to use procedure calls without the concern of
hurting execution time.

While important, interprocedural optimization can introduce some significant
compile-time costs. When interprocedural information is used to optimize a pro-
cedure, the procedure is then dependent on those interprocedural facts. Thus, even
if the procedure is not edited, it may require recompilation due to changes in the
interprocedural facts. In addition to these effects on recompilation, interprocedural
information can also be expensive to compute. Furthermore, interprocedural opti-
mizations can increase program size which can in turn increase compile time. To
make interprocedural optimization feasible in a compilation system, it must be pos-
sible to manage the compile-time costs.

This dissertation explores some open questions in interprocedural optimization.
An efficient algorithm is developed for constructing the call multigraph, the under-
lying program representation for interprocedural optimization. A procedure cloning
algorithm is also described. This algorithm avoids the significant code growth and
increased compilation time possible with cloning, while focusing optimization on the
most profitable opportunities. We present results of an in-depth study of inline substi-
tution. These results led to a new approach for interprocedural optimization, focusing
on enabling only high-payoff optimizations. All of these ideas are brought together
in a compilation system supporting interprocedural optimization, which significantly
reduces the costs of interprocedural optimization. The compilation system is further
adapted to support optimizations for enhancing parallelism.
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Chapter 1

Programming Environment Support for
Interprocedural Optimization

Scientific programs are typically characterized by numerous floating point computa-
tions, which result in long execution times. Accordingly, scientific programmers are
often very concerned about execution time performance. Their programs are usually
written in FORTRAN, a fairly natural language for expressing mathematical formulas,
but limited enough that it allows a compiler to generate good quality object code.

The R™/ParaScope programming environment was designed to support the spe-
cial needs of scientific FORTRAN programmers [CCH+87] [CCH*88].! A primary goal
of ParaScope is to provide a vehicle for investigating code optimization. From the
beginning, a major component of the compilation system has been support for opti-
mization across procedure boundaries.

There are two reasons why interprocedural optimization is needed to support
compilation of scientific programs. First, the optimizing compiler can be much more
effective with interprocedural information [MS91]. Otherwise, in the presence of pro-
cedure calls, the compiler must assume that a procedure will both use and change
every variable accessible to it. These worst-case assumptijons restrict optimization
of procedures that contain call$ to other procedures. This restriction is particularly
limiting for high-level optimizations that span multiple statements in the program
source. If the statements involved cross a procedure boundary, the compiler cannot
perform the optimization. This is unacceptable since high-level optimizations can
produce significant improvements in program performance.

The second reason for interprocedural optimization is to enable programmers to
use a good programming style. Programmers requiring efficiency may modify their
programming style to compensate for limitations in the compiler. In particular, pro-
grammers concerned about the overhead of procedure calls often write monolithic

!R"” was originally designed to support programming for scalar architectures. In recent years, R"
has been extended to include support for user-assisted and automatic parallelization, and has been
renamed to ParaScope. For the rest of the dissertation, we refer only to ParaScope.
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procedures. This leads to programs that are difficult to build, debug and maintain. If
provided with a compiler that can effectively optimize across procedure boundaries,
the programmers may be willing to make extensive use of procedures, resulting in a
better programming style.

Interprocedural optimization has been gaining attention recently in the research
community. Still, very few commercial compilers perform optimizations across pro-
cedure boundaries. This is because interprocedural optimization introduces compile-
time costs that are considered too great to make them worthwhile. First, interpro-
cedural analysis interferes with separate compilation. Separate compilation restricts
recompilation to only those modules that have been edited since the last compile.
Once optimizations cross procedure boundaries, a procedure is dependent upon the
interprocedural facts used to optimize it. This makes it possible for a procedure to
require recompilation even if it has not been edited.

There may be additional costs associated with certain interprocedural transforma-
tions. In this dissertation, we cite as a further cost growth in program size. Increases
in program size can substantially increase compile time, as well as storage require-
ments for the program. With program growth, there is also the danger that increased
memory requirements will cause execution time performance to suffer.

ParaScope is designed to overcome these difficulties of interprocedural analysis and
optimization. Through a shared central database and a group of cooperating tools, a
large portion of the information needed to perform the optimizations is known prior
to compilation. Preliminary information for interprocedural analysis is accumulated
during editing, eliminating the need to examine source code during analysis. We fur-
ther manage the costs by limiting interprocedural optimization to situations that are
likely to produce a noticeable run-time improvement. Recompilation requirements are
reduced with analysis to determine compilation dependences. This research addresses
the following important issues related to interprocedural optimization:

e What interprocedural optimization techniques are worth consideration, and

when is one technique more effective than another?

e How can the compiler predict whether application of a transformation is likely

to improve execution-time performance?

e How can the need for recompilation be minimized when interprocedural trans-

formations have been applied?

e How can all of these ideas be effectively incorporated into a practical program-

ming environment?



This chapter introduces the transformation techniques to be discussed in the dis-
sertation and provides the ParaScope framework for interprocedural optimization.
The first section briefly describes the transformation techniques. Section 1.2 de-
scribes the support required from the programming environment to permit efficient
interprocedural optimization. Section 1.3 presents the program compiler, the tool in
the environment that provides program-level management of optimization. In section
1.4, we explain the differences in the interprocedural optimization strategy for paral-
lelizing compilers. Section 1.5 presents work related to the ParaScope framework for
interprocedural optimization. The final section gives an overview of the remaining

chapters of the dissertation.

1.1 Interprocedural Transformations

One of the important goals of this research is to understand the relative advantages of
interprocedural transformation techniques. In this dissertation, we describe a system
where all interprocedural optimization is realized with some combination of three
techniques: (1) inline substitution, (2) procedure cloning, and (3) global optimization
enhanced by interprocedural data-flow information.

With inline substitution, a call site is replaced by the body of the called procedure.
Formal parameters in the procedure body are replaced by actual parameters at the
call. Because the code appears in place of the call site, inline substitution can provide
the best possible context to the optimizer. (However, this is only true if all calls
in the program are inlined.) An additional benefit of inlining a call is that the
overhead associated with procedure calls is eliminated. Previous research has shown
that inline substitution on a limited class of procedures can improve the object code by
eliminating call overhead, without dramatically increasing the program size [Sch77].
Others have suggested that inlining can have a more significant impact on program
performance if followed by optimization [Hec77]. We undertook a study to understand
the efficacy of inlining, and the significance of its associated costs. In this dissertation
we describe our experience with inlining and present a strategy for restricted inlining.

Procedure cloning involves making a clone, or copy, of a procedure. Each copy can
then be optimized to more closely match the interprocedural environment for a par-
ticular group of calls to the procedure. Cloning is useful when calls to a procedure can
be partitioned into groups, with each group having distinctly different interprocedural
information. This permits the refining of incoming interprocedural information. The



utility of cloning had not been fully explored when this research began. This disser-
tation presents a general strategy for cloning as well as a goal-directed strategy that
applies cloning where it anticipates benefits. The effectiveness of this goal-directed
strategy is demonstrated the program matrix300 from the SPEC benchmark suite.

Global optimization of a procedure based on interprocedural information is only
limited in the feasibility of the analysis required. Experimental evidence has demon-
strated that interprocedural analysis designed for parallelizing compilers can signifi-
cantly reduce dependences assumed in the presence of procedure calls [TIF86] [LY88b]
[LY88a] [HK91], resulting in significant execution-time performance improvements
[MS91]. For scalar compilation, research on the effectiveness of interprocedural in-
formation has produced mixed results, ranging from moderate [Con83] to marginal
improvement [RG89b]. This dissertation does not address the issue of making in-
terprocedural analysis effective. The focus of this research is to determine when
interprocedural transformations such as inline substitution and cloning can be more
effective than global optimization based on interprocedural information.

Figure 1.1 presents a graphical description of the differences between the three
techniques for interprocedural optimization. In the figure, both procedures A and B
call procedure C', and C has three calls to procedures not shown. With interprocedural
information, effects coming in from above include effects from A and its ancestors as
well as effects from B and its ancestors. As a result, the amount of optimization
possible in C is limited if A and B provide very different information to C. Cloning
separates the incoming information from A and B by making two copies of C, with A
and B calling separate copies. Then C can be more effectively optimized by tailoring
the code to reflect its calling environment. Inline substitution also results in copies of
C tailored to its callers, but it also moves the body of C into its callers. This allows
movement of code across the call boundary, the most important use of inlining.

Interprocedural optimization is needed to increase the context of information avail-
able to the optimizer. However, the cost of the inc-eased context may be very signif-
icant. The costs of inlining can be significant: it introduces compilation dependences
among all component procedures in an inlined module; it can greatly increase pro-
gram size [Sch77]; and, increased program size can lead to substantial increases in
compile time [RG89a]. The costs of cloning may also be significant: it introduces
compilation dependences among clones of a procedure, and it also increases program
size. In the worst case, the program growth can be as great as with inlining. However,
cloning permits sharing of specially optimized versions of a procedure among multiple
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Interprocedural Information Cloning

o @

Inlining

Figure 1.1 Graphical comparison of the effectiveness
of interprocedural optimization techniques.

callers. The main cost associated with using interprocedural information in global op-
timization is that it introduces compilation dependences. The relationship between
increased costs and increased context associated with interprocedural optimization
techniques is depicted in Figure 1.2.

Inlining
Context Cloning Cost
Interprocedural Information

No Information

Figure 1.2 Tradeoffs between increased context and cost.



1.2 The ParaScope Programming Environment

ParaScop«—is designed to support all the requirements of a scientific programmer.
Editing, program building, and debugging tools, as well as some auxiliary tools such
as an infinite precision calculator and a text editor for documentation, all share
a common database. To make interprocedural analysis efficient, the tasks usually
left for the compiler are distributed throughout a number of tools in the environ-
ment. Information gathered in the editing and compiling tools is coordinated by
the database. The flow of information am« 1g these tools, depicted in Figure 1.3, is

described in this section.

Module editor. The module editor supports a combination of structure and text
editing. The source representation of a FORTRAN module is an Abstract Syntax Tree
(AST). Structure editing is performed directly on the AST. Even during text editing,
each time a new line is completed it is parsed into the AST. Such a representation
obviates the need for parsing in the compiler, and facilitates the gathering of local
information needed for interprocedural analysis.

Interface

Composition
Editor

Immediate
i Effects Call Graph
Program
Compiler
Interprocedural Info
: Modified AST
Module
Compiler
Database

Figure 1.3 Flow of information in ParaScope.



Upon ¢ompletion of an editing session, the module editor writes two sets of in-
formation to a file separate from the AST representation. The first of these is the
module’s interface. This consists of a list of the procedures declared in the module,
with information about the number and type of the procedures’ formal parameters.
There is also a list of the call sites in each procedure, with information about the
number and type of the actual parameters at the calls. The interface information
is used by the composition editor to build the program representation and the call
multigraph.

The second set of information describes the potential interprocedural effects of the
procedure. For example, for the MOD problem, the editor provides global variables and
parameters directly modified within each procedure. This is exactly the information
that a compiler must collect from source code prior to calculating interprocedural
information.

Composition editor. The composition editor is a structure editor for defining
programs, or compositions, from module interfaces and other compositions. When
adding a module to a composition, the composition editor reads in the module’s
interface rather than the module itself.

In addition to providing extensive facilities for building programs from existing
components, it also tracks errors in interfaces such as inconsistencies in the number or
type of parameters, and maintains a list of missing entry points. From a composition
that is complete and without any serious errors, the program compiler can derive the
call multigraph.

Program compiler. The program compiler provides all of the program-level sup-
port necessary for compilation and interprocedural optimization. It supplies the in-
terprocedural information for a procedure to the module compiler. Since some inter-
procedural transformations are applied to source code, it also provides the module
compiler with transformed source. The next section describes the program compiler

in depth.

Module compiler. The module compiler performs the remaining duties typically
considered to be the responsibilities of the compiler. It takes the transformed AST
from the program compiler and translates to an intermediate representation known
as ILOC (Intermediate Language for an Optimizing Compiler). Then, it optimizes



the ILOC and generates object code. An important job of the AST-ILOC translator is
to preserve on translation the interprocedural information provided by the program
compiler. Then, the interprocedural information can be used in optimizations and

register allocation.

1.3 The Program Compiler

The tool in ParaScope that provides program-level support for compilation is the
program compiler. Many aspects of interprocedural optimization require knowledge
about the whole program. As examples, gathering interprocedural information, per-
forming source-level interprocedural transformations and minimizing recompilation
requirements all need program-level support. The program compiler is designed to
support all these tasks in an efficient way.

The program compiler can be broken down into five phases as shown in Figure 1.4.
The first phase is building the call multigraph, the representation of the program used
to calculate interprocedural information. The second phase calculates interprocedural
information over the call multigraph. In the third phase, the program compiler plans
which interprocedural transformations it will perform. Because of the inherent costs of
interprocedural optimization, it is important that transformations only be performed
if they are likely to be profitable. In the fourth phase, the program compiler performs
all source-level interprocedural transformations. Additional optimizations may be
performed by the module compiler, but even these are directed by hints from the
program compiler. In the final phase, the program compiler invokes the module
compiler for each module it has determined requires recompilation. It must locate
not only modules that have been edited, but also those that have been invalidated
by changes to their interprocedural environment. The rest of this section provides a

detailed description of the phases of the program compiler.

1.3.1 Building the Call Multigraph

The call multigraph is a static structure describing the possible run-time interactions
between the procedures in a program. The nodes of the call multigraph represent

call graph || information |—| planning |~ performin.g — | compilation
gathering transformations

Figure 1.4 Phases of the program compiler.



the procedures in the program. An edge (p — ¢) exists if procedure p can invoke
procedure g. Such an edge will be added for each call site in p invoking ¢; thus, the
structure is a multigraph. Edges are annotated with information about the passing of
actual parameters at the call site they represent. Since the call multigraph summarizes
the relationships between procedures in a program, it serves as the framework for
interprocedural data-flow analysis.

In ParaScope, we rely on properties of FORTRAN to simplify the problem of call
multigraph construction. Specifically, procedure-valued parameters are allowed, but
no other procedure-valued variables. Although the FORTRAN 77 standard does not
allow recursion, it is often supported by FORTRAN compilers, and it is allowed in the
FORTRAN 90 standard. Accordingly, our algorithm also supports recursion.

1.3.2 Gathering Interprocedural Information

The second phase of the program compiler gathers interprocedural information over
the call multigraph. There are two distinct types of information collected in this
phase: information used to enhance global optimization and information used to
locate good targets for interprocedural transformations.

For each call site, we calculate MOD and REF information. These are the sets
of variables possibly modified and referenced as a result of the call, respectively.
For each procedure, we calculate ALIAS and CONSTANT information. The former
represents pairs of variables that might refer to the same location in memory within
the procedure. The latter indicates variables known to have the same constant value
for all invocations of the procedure. The MOD, REF, ALIAS and CONSTANT information
is used to enhance global optimization. _

Other interprocedural information is used to locate good targets for interprocedu-
ral transformations. As an example, we use execution frequency estimates to order
the application of interprocedural transformations so that the most important pro-
cedures are transformed first. Other special-purpose interprocedural information is

also used to target good call sites for inlining and cloning.

1.3.3 Planning Optimizations

Once the interprocedural information has been gathered, the program compiler can
examine the information, planning the interprocedural optimizations it will perform.
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Some of the information calculated in the previous phase is used solely to locate
good opportunities for optimization. Based on this information, we select procedures
for optimization. We may also have a number of constraints that need to be satisfied.
For example, if we are concerned about code growth after inline substitution, we may
impose a limit on the increase in code size that will be tolerated. We may have other
constraints designed to limit compilation dependences. Such constraints are needed
to reduce the costs associated with interprocedural optimization.

Some transformation choices may make the resulting interprocedural information
at a procedure more precise. For example, as a result of inlining, after replacing formal
parameters with constant-valued actual parameters, it may be possible to evaluate
some branches in the procedure body. This enables eliminating unreachable code,
which may in turn reduce the list of modified and used variables in the procedure.
When interprocedural information is used to make decisions about applying transfor-
mations, the decision process is improved by incrementally updating interprocedural
information after each transformation.

1.3.4 Performing Interprocedural Transformations

After the planning phase, the program compiler performs the interprocedural transfor-
mations on the source code. This is the stage when inline substitution and procedure
cloning are performed. Optimizing intermediate code based on interprocedural in-
formation is done later by the module compiler. The transformations done by the
- program compiler, and some done by the module compiler, are those that the planning
phase has deemed profitable.

1.3.5 Compiling Modules and Building an Executable

The final phase of the program compiler is to direct the module compiler to compile
the modules with the benefit of the interprocedural data-flow information. In this
phase, the program compiler is responsible for determining which modules require
recompilation, and which modules make up the executable. The program compiler
builds an executable of the program for use in the execution monitor.

When interprocedural information is used to perform optimizations, every time
the program is compiled the validity of these optimizations must be checked. This is
true even if a procedure has not been edited since the previous compilation. Modules
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optimized based on interprocedural facts will need to be recompiled if any of those
interprocedural facts change.

The program compiler must also determine recompilation requirements due to
interprocedural transformations. If a cloned procedure has been changed, all cloned
versions of that procedure must be recompiled. Editing of any procedure making
up an inlined version forces that all the inlining be repeated and that the inlined
version be recompiled. When a change makes a transformed procedure invalid, the
decision to perform the transformation should be reevaluated. The program compiler
must also track what source modules are used to build the program executable. This
information is needed to understand what versions make up an executable, both
for building the executable and for determining recompilation requirements in some
subsequent compilation.

1.4 Parallelizing Program Compiler

The phases of a parallelizing program compiler are given in Figure 1.5. The difference
between this diagram and the one in Figure 1.4 is the inclusion of dependence analysis
before the planning phase. Dependence analysis is a key component in a parallelizing
compiler, used to understand the pattern of memory accesses in a program [Kuc78].
Parallelization preserves the meaning of a program as long as the order of accesses to
an individual memory location is retained. In dependence analysis, pairwise compar-
isons of memory accesses are performed to determine if they can reference the same
location.

In a compiler performing dependence analysis, the analysis is typically in the back-
end of the compiler immediately preceding code generation. We have separated the
analysis from code generation to be able to use the results from dependence analysis
within a single procedure to make decisions about optimizations across procedure
boundaries.

The approach for parallelization differs from the previous program compiler frame-
work because we have added an additional pass over the program source. This is be-
cause the information needed for parallelizing transformations must be precise. While

call |—|information|—|dependence —|planning| performing "".compilationl

graph gathering analysis transformations

Figure 1.5 Phases of the parallelizing program compiler.
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we could mclude the dependence analysis at the end of the editing session as we do
with other interprocedural information, the time required to perform precise analysis
may be longer than the programmer is willing to accept. Also, the precision of the
dependence analysis benefits frcm >2ving solutions to the interprocedural problems
available. During recompilation analysis, dependence testing is avoided in most cases
when the procedure does not require recompilation.

1.5 Related Work
1.5.1 Early Work

The earliest known work on interprocedural optimization is due to Ershov [Yer66).
He suggested procedure calls (and loops) as good targets on which to concentrate
optimization. The ALPHA translator optimized parameter passing using information
about accesses to the parameters within the called procedure.

The Allen-Cocke optimization catalog defined four different ways of implementing
procedure call linkages [AC72]. These are open, closed, semi-open and semi-closed
linkages. Open linkage is another name for inline substitution. Closed linkage is the
usual linkage style for separate compilation. With semi-open linkage, a procedure def-
inition is compiled with its caller. The called procedure and the caller are optimized
together, and the procedure calls are converted to branches to the procedure body.
This type of linkage gives some of the benefits of open linkage without any increase in
code size. Semi-closed linkage requires the called procedure to be compiled before the
calling procedure. In this way, the compiler can optimize the passing of parameters
at the call site, as Ershov did in the ALPHA system. Semi-closed linkage can be re-
alized in ParaScope by using interprocedural information during global optimization.
However, the ParaScope compilation system avoids ordering dependences and also
uses information the caller propagates to the callee.

Much of the early work on interprocedural optimization focused on interprocedu-
ral analysis. This began with the description of an implementation in 1971 [Spi71].
Other work attempted to accomodate unusual language features [Wei80], calculate
more precise information [Ros79] [Mye81], or produce information more efficiently
[Ban79]. The design in ParaScope draws heavily from Banning, who recognized that
interprocedural side-effect analysis can be separated from alias analysis with the re-
sults of side-effect analysis updated to include the effects of aliasing.
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Another early work on interprocedural optimization, the Experimental Compiling
System at IBM, describes a compilation system centered around inline substitution
[Har77b] [ACF*80]. Instructions in the intermediate language represent function
calls, not only to source procedures but also to primitive operations. After translation
to the intermediate language, inline substitution and global optimizations are repeat-
edly performed until the program is represented completely in terms of primitives.
The goals of the system were to improve programming style by making procedure calls
inexpensive; to simplify optimization since it can occur at any time after translation
to intermediate code; and to provide a mechanism for supporting multiple source and

target languages.

1.5.2 Previous Work in ParaScope

The ParaScope strategy for interprocedural optimization has been evolving for a
number of years. Supporting interprocedural analysis efficiently was a goal from
the beginning [HK83]. The first step was the development of efficient algorithms
for interprocedural side-effect and alias analyses, separated into a local phase and a
propagation phase [Coo83] [CK84] [Coo85]. This two-phase analysis required cooper-
ation of other programming environment tools and the concept of a program compiler
[Tor85] [CKT85] [CKT86a). Recompilation analysis was incorporated to minimize the
need for recompilation as a result of changes to interprocedural information [CKT86b)]
[BCKT90]. Also, new algorithms were developed for interprocedural constant propa-
gation [CCKT86], nearly linear side-effect and aliasing analysis [CK88b] [CK89] and
array side-effect analysis [CK88a] [HK91].

This earlier work provided a good framework for the research in this dissertation.
One aspect that was lacking in the previous design was adequate support for interpro-
cedural transformations such as inlining and cloning. Based on the previous program
compiler framework, this dissertation has developed a strategy for interprocedural

optimization that includes interprocedural transformations.

1.6 Overview of Dissertation

In this first chapter, we have laid out the requirements for a programming environment
that efficiently employs interprocedural optimization. Because a great deal of the
work involved in interprocedural optimization takes place in the program compiler,
we have focused this chapter on the program compiler’s design.
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In Cha;ter 2, we present algorithms for building the call multigraph. The call
multigraph is important because it forms the framework for calculating all interpro-
cedural information. Chapter 3 describes a study of inline substitution. Because
inline substitution provides the best possible interprocedural information, and there-
fore the best possible optimization opportunities across procedure calls excluding
secondary effects, a careful look at inline substitution provided insight into the use-
fulness of alternative interprocedural optimizations. Chapter 4 presents a goal-directed
strategy for inlining and cloning designed to enable specific high-payoff optimizations.
Chapter 5 thoroughly explores procedure cloning, presenting a general algorithm that
exploits the potential of cloning while avoiding extensive compilation costs. Chapter
6 completes the treatment of scalar interprocedural optimization, describing the inter-
procedural information calculated in ParaScope and providing guidelines for inlining
and cloning. Most importantly, Chapter 6 describes a general system to combine
inlining, cloning and optimization with interprocedural information, while managing
the recompilation requirements for each of these. Chapter 7 considers interprocedural
optimization for parallelization, describing how interprocedural parallelizing transfor-
mations can be supported efficiently. Chapter 8 concludes the dissertation, describing
its contributions and implications for the future.
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Chapter 2

Call Multigraph Construction

Any technique performing analysis or optimization across procedure boundaries re-
quires some underlying representation of the program structure. Most often the struc-
ture used is the call multigraph. The call multigraph is a static structure describing
the dynamic invocation relationships between procedures in a program. A node in
the call multigraph represénts a procedure, and an edge (p — q) exists if procedure
P can invoke procedure gq.

An algorithm for call multigraph construction is somewhat dependent upon the
features of the language the compiler supports. In this chapter, we make the following

assumptions about the language:

e Recursion is allowed.
e Procedure-valued parameters are allowed.

e Assignments to procedure variables are not allowed.

Of the points above, the only restriction is the third point. The algorithm does
not handle assignments to procedure variables; instead, we require that procedure
variables only receive their values from the parameter passing mechanism.

This chapter presents an algorithm for call multigraph construction designed for
use in ParaScope. As a result, the language features described above exactly match
features of FORTRAN and its extensions. However, this algorithm can be used in
compiling a variety of other programming languages. With minor extensions to the
algorithm, we can relax the requirement that procedure variables only receive their
values from parameter passing. It appears that such extensions would enable call
multigraph construction for languages such as Scheme and ML [Shi88].

When procedure-valued variables do not exist in a language, constructing the
call multigraph only requires a single pass over the procedures and call sites in the
program, adding edges (p — ¢) whenever a call to q appears in procedure p. Building
a call multigraph when procedure-valued formal parameters exist is difficult for two
reasons. First of all, although propagation of values for the procedure formals is fairly



16

straightforward, once new bindings for invoked procedure formals are located, edges
are added to the graph to reflect the new calls that the invocation can represent.
Thus, values are propagated on a changing graph. Secondly, as edges are added, we
propagate information along the new edges, possibly returning to nodes that have
already been visited. This revisiting of nodes can be a source of inefficiency.

In this chapter, we present an efficient algorithm for call multigraph construction.
The algorithm is more efficient than previous techniques because it delays propaga-
tion of new information until it can be used. It is based on the binding multigraph 3,
a structure used in the formulation of effectively linear interprocedural analysis algo-
rithms by Cooper and Kennedy [CK88b] [CK89]. 3 is a specialized call multigraph,
containing a node for each formal parameter in the program, and an edge between
nodes f; and f7 if the i** formal parameter of p is passed as the j* actual parameter
of ¢ at some call site in p invoking ¢q. Thus, S explicitly represents the bindings of
formal parameters in the program. In this chapter, we are only concerned with nodes
in 3 representing procedure-valued formal parameters and the edges between them.

The algorithm presented here produces the same result as a method due to Burke,
but has a better asymptotic time bound. Both approaches are more efficient, though
less precise, than our previous algorithm [CCHK90]. The next section provides back-
ground information and defines what the algorithm computes. Section 3 presents
the algorithm, and Section 4 gives an example that exercises all of the steps of the
algorithm. In Section 5, we prove correctness of the algorithm, and Section 6 proves
its time complexity. Section 7 discusses previous work, including a comparison with
two existing algorithms [Bur87] [CCHK90]. Section 8 summarizes the chapter.

2.1 Background and Definitions

Since processing statically bound calls, (i.e., calls invoking procedure constants) is
straightforward, the challenge is to add edges representing dynamically bound calls
through procedure variables. This requires that we determine the set of possible values
for a procedure variable. Since we assume procedure variables only receive their values
through parameter passing, determining procedures invoked at dynamically bound
calls is equivalent to locating all the possible values bound to the invoked procedure
variable via parameter passing.

The algorithm simulates parameter passing of procedure constants and procedure
variables during execution. For a given procedure formal f, the algorithm calculates
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the set Boundto(f), the procedure constants that can be bound to f. Thus, for some
call site invoking formal f, Boundto(f) is the set of procedures that may be invoked
at the call. The final Boundto values are duscribed by the following simultaneous

equations:

Boundto(f,) = Ue invokes p StaticBindings(fp,c) U
Uc invokes fq A p € Boundto(fq) DynamiCBindings(fqafpsc)

For some formal f, of procedure p, Boundto(f,) receives its values from parameters
passed either at statically bound calls to p or at dynamically bound calls where p is one
of the possible bindings for the invoked parameter. The equations for StaticBindings

and DynamicBindings are as follows:

StaticBindings(fp,c) =
ConstantPassed(f,,c) U Boundto( FormalPassed(fp,c))

DynamicBindings(f,, f,¢) =
ConstantPassed(f,,c) U DynamicFormalBindings(f,, fp,c)

Based on the above equations, a procedure formal f, receives its bindings either
directly from the procedure constants passed to f,, or indirectly from bindings of
the procedure formals passed to f,. This is true for both statically and dynamically
bound calls.

ConstantPassed(f,,c) and FormalPassed(f,,c) contain the procedure constants
and procedure formals of the caller passed as actuals to f, at c, respectively. We derive
C’on.stantPassed( f»,¢) and FormalPassed(f,,c) by examining the call ¢, locating the
actual parameter passed to f,. Either a procedure constant or a procedure formal is
passed at the call, so the sum of the number of elements in ConstantPassed(fp,c)
and FormalPassed(f,,c) is exactly 1 (assuming c invokes p).

The set DynamicFormalBindings(f,, fp,c) gives the bindings for f, at some
dynamically bound call c invoking f, where a formal procedure parameter is passed
to f,. The equations for DynamicFormalBindings are as follows:

DynamicFormalBindings(fy, fp,c) =

{r} if FormalPassed(fp,c) = f,
Boundto(FormalPassed(f,,c)) otherwise

The DynamicFormalBindings equations are only needed for the special case when the
procedure parameter invoked at a call also appears as one of the actual parameters
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at the call. Otherwise, the definitions for StaticBindings and DynamicBindings are
identical. To understand the difference, consider a procedure parameter f, with
multiple values in its Boundto set, one of which is p. If f, is invoked at call ¢ and
also appears as the actual parameter passed to f,, the formulation of StaticBindings
would propagate all of the values in Boundto(f,) to f,. However, we know that p can
only be invoked at this call when f, has binding p, so we are introducing imprecision
by propagating bindings other than p to f,.2

The simultaneous equations in this section could be adapted in a straightforward
way into -an iterative algorithm for call multigraph construction. However, the re-
sulting algorithm could potentially require a pass over all the procedure formals each
time a new binding was located for an invoked procedure formal (i.e., a new edge in
the call multigraph). The algorithm presented in this chapter is efficient because it
propagates new bindings individually as they are located.

2.2 Algorithm

The algorithm for call multigraph construction is given in Figures 2.1 and 2.2. The
procedure InitializeNode in Figure 2.1 is called on a newly reachable procedure to
initialize the Boundto sets for its procedure parameters, and to locate elements for
Worklist. It recursively calls itself to initialize procedures that become reachable
through static edges from the current node.

Procedures are initialized as they become reachable rather than initializing all of
the procedures in the program at the beginning. This is to ensure that only reach-
able nodes are placed in the call multigraph so that procedure parameter bindings
result only from reachable calls. This is important because by adding bindings from
unreachable nodes, we are potentially adding extra edges to the final graph.

The main algorithm Build, shown in Figure 2.2 relies on a list of pairs Worklist.
An element (a, f,) is in Worklist if a can be bound to f, through parameter passing
along some chain of calls and a is possibly not yet in Boundto(f). Initially, Worklist
contains those pairs representing bindings from statically bound calls; that is, a would
be the actual parameter passed to f, at some call to p. The job of Buildis to propagate
bindings for procedure formals at statically bound calls, and handle both procedure
constants and procedure formals at dynamically bound calls. Dynamically bound

2Burke’s algorithm does not handle the special case that DynamicFormalBindings is designed to
capture but could with a slight modification.

L
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/* Add a reachable node and all of its static edges */
procedure [nitialize N ode(p)
add p to Nodes
foreach formal procedure parameter f of p
Boundto(f) — 0
foreach call site (p — ¢) in p
if ¢ is a procedure constant then
if ¢ € Nodes then call Initialize N ode(q)
add edge (p, q) to call multigraph
foreach procedure constant a and formal g of ¢ such that a is passed to g
add (a,g) to Worklist
endif
endfor
end /* InitializeNode */

Figure 2.1 Initializing information at a newly reachable node.

calls are more difficult since we must wait for bindings of the invoked formal to know
what procedure variable is being passed a value.

When a pair (a, f,) is removed from Worklist, we must examine all call sites in
fp’s procedure, looking for uses of f,. There are three distinct situations that may

exist at each call site:

1.. The call site is statically bound.
Then, f, may appear as an actual at the call; the binding a is propagated to
the corresponding parameter of the called procedure (step la of the algorithm).

2. The call site is dynamically bound, but invokes some formal other
than f,.
Again, f, may appear as an actual at the call; the binding a is propagated to
the corresponding parameter of all procedures currently bound to the invoked
formal (step 2a).

3. The call site invokes f,.
First, we can propagate procedure constants at the call to the corresponding
parameters of a (step 3a). Also, we can propagate known bindings for the other
procedure variables at the call to the corresponding parameters of a (step 3c).
In the special case that f, appears as an actual at the call, we propagate a to

the corresponding parameter of a (step 3b).

Steps 2 and 3 of the algorithm complement each other. If we receive the binding
for a formal passed at a dynamically bound call before we know all the bindings of the



/* Build call multigraph starting at root procedure */
program Build

Worklist — ()

Nodes — 0

call InitializeNode(main)

while Worklist # 0
select and delete an element (a, f) from Worklist
let p denote the procedure to which f is a formal parameter

if a ¢ Boundto( f) then
add a to Boundto( f)
foreach call site (p — ¢) in p
(1) if ¢ is a procedure constant then
/* Add to chains in § ending at f through this call to ¢ */
foreach formal g of ¢ such that f is the actual passed to g at the call
(1a) add (a,g) to Worklist

(2) else if ¢ # f then /* ¢ is some procedure parameter other than f */
/* Add to chains in 3 ending at f through all procedures bound to ¢ */
foreach b € Boundto(q)
foreach formal A of b such that f is the actual passed to h at the call
(2a) add (a,h) to Worklist
endif

(3) else /* f is invoked at the call */
if a € Nodes then call I'nitialize N ode(a)
add edge (p, a) to call multigraph
/* Locate beginnings of chains in 8 */
foreach procedure constant b and formal g of a such that b is passed to g
(3a) ) add (b, g) to Worklist
/* Add to chains in 8 through this call to a */
foreach formal h of p and formal g of a such that A is passed to g at the call
if h = f then /* special case from DynamicFormalBindings */
(3b) add (a,g) to Worklist
else
foreach procedure constant ¢ € Boundto(h)
(3¢c) add (c,g) to Worklist
endif
endfor
endif
endwhile
end /* Build */

Figure 2.2 Main algorithm for computing call multigraph.
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invoked formal, when we eventually receive the binding for the invoked formal, step 3¢
propagates the binding of the parameter at the call. If we receive the binding for an
invoked formal before bindings for the formals passed at the call, when we eventually
receive bindings for the formals passed at the call, step 2a propagates their bindings.

2.3 An Example

This section works through the steps of the algorithm to make them clearer. Consider
the following program:
program ma:in

call a(b,c)
end
procedure a(f, f2) procedure b(fs, f1)
call b(a, f3) call f3(fs,d)
call fi(f1, f2) call f,
end end

For this example, the initialization step would locate the passing of procedure con-
stants in ma:n at the call to a, and further, in a at the call to . Thus, the initial
elements of Worklist are {(b, 1), (c, f2), (a, f3)}, and the initial edges are (main,a)
and (a,b).

Now the elements on Worklist are processed. In this example, as elements are
added to Worklist, we annotate the element with the step in the algorithm that
‘caused it to be added to Worklist. The steps are as shown in Figure 2.3.

The remaining elements on Worklist are {(b, f3), (d, f4), (a, f1), (c, f2),(d, f2)}, all
of which have already been processed by the algorithm. So, the algorithm terminates.
The final values for Boundto and the final call multigraph are shown in Figure 2.3.

2.4 Proof of Correctness

Lemma 2.1 The algorithm Build terminates after no more than EP
iterations of the while loop.

Proof. Each iteration of the while loop selects and removes a pair from Worklist
and processes this pair. Each time an element is added to Worklist represents the
propagation of a new binding of a formal procedure parameter along a distinct edge.
(Note that we refer to an edge rather than a call here. For a dynamically bound
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Process (b, f1): , Process (c, f4):
Boundto( f;) — {b} Boundto( f4) — {c}
add edge (a,b) to call multigraph add edge (b,c¢) to call multigraph
add (b, f3) to Worklist (3b)
Process (d, f2):

Process (c, fa): Boundto( f2) — {c,d}
Boundto( f2) — {c} add (d, fa) to Worklist
add {c, f4) to Worklist (added twice) (1a)(2a)

(really added twice) (1a)(2a)
Process (a, f1):

Process (a, f3): Boundto( f,) ~ {b,a}
- Boundto(f3) — {a} add edge (a,a) to call multigraph
add edge (b, a) to call multigraph add (a, f1) to Worklist (3b)
add (d, f2) to Worklist (3a) add (c, f2) to Worklist (3c)
add (a, f1) to Worklist (3b) add (d, f2) to Worklist (3c)
Process (b, f3): Process (d, f4):
Boundto( f3) — {a,b} Boundto( fy) — {c,d}

add edge (b,b) to call multigraph add edge (b,d) to call multigraph
add (d, f4) to Worklist (3a)
add (b, f3) to Worklist (3b)

Figure 2.3 Steps of algorithm for example program.

call, we actually can introduce separate sets of bindings for each possible value of the
invoked formal. However, each unique value of the invoked formal is represented by
a distinct edge in the final call multigraph).

For each edge, the maximum number of pairs added to Worklist is equal to the
number of unique bindings of the actual procedure parameters appearing at this call.
Let P be the total number of unique procedure constants passed as parameters in
the program. If we assume the number of parameters of a procedure is bounded by
some small constant, then the number of elements added to Worklist as a result of a
single call site is O(P). Thus, the number of pairs appearing on Worklist, and also
the number of iterations of the while loop, is bounded by O(EP).

Lemma 2.2 The algorithm Build builds the portion of the static call
multigraph reachable from the root node through direct calls before en-
tering the while loop.



Boundto(f,) = {b,a}
Boundto( f;) = {c,d}
Boundto(f;) = {a, b}
Boundto( f4) = {c,d}

Figure 2.4 Resulting call multigraph and Boundto sets from example.

When visiting a node, the procedure InitializeNode adds all outgoing static edges
to the call multigraph, recursively initializes newly reachable procedures, and adds
pairs to Worklist from bindings of procedure constants to procedure parameters at
static call sites. Since it recursively visits nodes reachable through static edges, and
since we are starting with the root node, the partially constructed graph upon entry
to the while loop contains the static call multigraph reachable from the root node
through direct calls.

Lemma 2.3 The algorithm adds a pair (a, f,,,) to Worklist if and only
if through some chain of calls ng == n; — ... == n,, a is bound to

frm at cm.

Proof.

=-: By induction on the while loop iteration count.

Basis. As established in Lemma 2, on entry to the while loop Worklist contains the
set of pairs (a, f,) such that procedure constant a is passed directly to f, at some stat-
ically bound call site invoking p. All such bindings correspond to the ConstantPassed
term in the StaticBindings portion of the Boundto equation from Section 2.
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Induction. Assume the lemma is true after the first n iterations of the loop.
The pair (a, f,) selected on iteration n + 1 must then be an element in the final set
Boundto(f,). If the binding has already been propagated, we ignore this pair and
continue to the first iteration that contributes a new binding.

We visit each call site in p such that f, is either invoked or is one of the actual
parameters. In the call sites where f, appears as an actual parameter, we must treat
separately the statically bound call sites from those that invoke procedure parameters.

For statically bound calls, we add pairs (a, f;) to Worklist for any formals of the
called procedure ¢ where f, appears as the corresponding actual parameter at the
call c. Here, FormalPassed(f;,c) = f,,and a € Boundto(f,). So, this corresponds
to the second term in the StaticBindings portion of the equation for Boundto(f,).
For call sites invoking procedure parameters f, # f,, we add pairs (a, f,) if f, is an
actual at the call, ¢ € Boundto(f,'), and f, is the corresponding formal of ¢q. This
matches the second case in DynamicFormalBindings, which makes up part of the
DynamicBindings portion of the equation Boundto(f,).

At call sites where f, is invoked, we have located a new binding for the invoked
parameter, and so we add an edge to the call multigraph. For any procedure constants
passed as actual parameters at the call, we add the binding for parameters of a to
Worklist, corresponding to the ConstantPassed term in the DynamicBindings portion
of the Boundto equation for the formals of a. If f, appears as an actual parameter,
we add (a, fo) to Worklist, the special case from DynamicFormalBindings. Also, for
any other formal procedure parameter f,’ passed as an actual at the call, we add to
Worklist pairs (b, f,), where b € Boundto(f,') and f, is the corresponding formal at
the call. These bindings are included in the general case of DynamicFormalBindings.

Note that since a may become a reachable procedure as a result of this call, we
invoke InitializeNode, so we may also add bindings from any static calls through a.
That these statically bound calls are correctly processed follows from Lemma 2.

<=: By induction on the length of the call chain.

Basis. The only length-0 call chain is the root node. It has no parameters, so no
bindings.

Proof. Assume that for every call chain ng = ... == n,, of length m, pairs
(a, fn) are inserted into Worklist representing bindings for the formal parameters of
Nm. Let ng = ny; =2 ... =™ n, 24 n,., be some call chain in the program.
By the induction hypothesis, all bindings for the procedure formals of n,, that result
from this call chain have been inserted into Worklist.
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Consider the effect of propagating the pairs in Worklist representing bindings at
¢m at a particular call ¢4y in n,. Suppose ¢y is a statically bound call. Then
values for procedure parameters of n,4; come from the procedure constants and
procedure parameters passed as actuals at the call. The procedure constants are
added in InitializeNode. The bindings for the procedure formals of n,, are added
whenever the bindings for the procedure formals of n,, are processed.

If ¢m41 is a dynamically bound call invoking some formal f, , then one of the
bindings for f,, must be n,4,. By the induction hypothesis, the pair (npni1, fan.)
must have been added to Worklist when actuals passed at ¢, were propagated to
nm. Bindings for all other formals of n,, through this call chain have also already
been added to Worklist. The bindings of the formals of np,4+; arise from the actuals
at ¢p41. For actuals that are procedure constants, the bindings are added during
processing of the pair (nm41, fn,,). Bindings through procedure formals are added
during processing of the bindings for formals of n,, passed as actuals at cp41-

Once we process the pairs for all of the procedure parameters of n,,, we will have
propagated these values to nn,4; along the call site ¢,41, and this is guaranteed to
happen since we have proven termination of the algorithm. O

Theorem 1 Build correctly builds the Boundto sets as defined in Section
2, and as a result, correctly computes the call multigraph for any input

program.

Proof. By Lemma 1, the algorithm terminates, and by Lemma 2, InitializeNode
correctly builds the static portion of the call multigraph. Lemma 3 establishes that
each chain of formal procedure parameters is correctly located and that such chains
correspond to chains of calls in the call multigraph. Since the chains in § are located
and bindings for nodes in these chains are correctly computed, bindings for invoked
procedure parameters must all be correct. With correct bindings at the invoked
procedure parameters, edges representing dynamic calls can all be added to the call
multigraph. Since we have shown that both statically and dynamically bound calls
are correctly added, we have the desired result. O

2.5 Time Complexity

The procedure InitializeNode, which initializes Boundto sets and Worklist, exam-
ines a procedure and its call sites once for each formal procedure parameter. It is
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invoked once for each node in the final call multigraph. Let ¢, be the maximum num-
ber of procedure parameters of any procedure. Then the initialization step requires
O(cp(N + E)), where N and E are the number of nodes and edges in the final call
multigraph, respectively. In the following discussion, we assume c, is bounded by a
small constant and eliminate it from consideration, consistent with assumptions made
in other work [CK88b] [CK89].

The procedure Build processes an element of Worklist on each iteration of the
loop. Lemma 1 asserted that the maximum number of pairs appearing on Worklist
is bounded by O(EP). Consider the number of unique pairs appearing on
Worklist. As part of the processing of a p_air'(a, f), the procedure constant a
is added to the Boundto set of the procedure parameter f. If this pair is ever
selected from Worklist again, it will not be processed since a already appears in
Boundto(f). Thus, the number of iterations of the while loop that proceed past the
initial test is no greater than the number of possible pairs in Worklist. These are
( procedure constant, procedure parameter ) pairs, so the maximum number is N P.
Since the maximum number of unique Worklist elements for a given procedure is
bounded by P, in the for loop we visit a distinct call site O(P) times. As a result,
examining call sites requires O(EP) time.

Consider the inner loops that propagate newly determined bindings of procedure
parameters. Each operation inside these loops either adds an element to Worklist, or
adds an edge to the final call multigraph. Since we have already established that the
total number of elements added to Worklist is O(E P), the step where an element is
added to Worklist can only be executed a total of (EP) times. The step where edges
are added is only executed once for each edge in the final call multigraph that did not
occur in the static call multigraph. Thus, the total number of times this step occurs
is O(F) times.

The entire algorithm is O(N + EP). Although P < N, in our experience with
FORTRAN this number is almost always < 1, so we expect the algorithm to have linear
behavior in practice.

2.6 Related Work
2.6.1 Comparison with Burke’s Algorithm

Figure 2.5 presents a summary of the algorithm proposed by Burke [Bur87]. The set
Actual Bound(f) represents all procedure constants that can be bound to a procedure
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parameter f that is invoked. For procedure parameters that are not invoked, it
contains only those values directly bound to the procedure parameter (and not those
bound through a chain of calls). The set Bound(f) contains all of the procedure
parameters in the program that may be bound to procedure formal f through some
chain of call sites. The Bound relation can be thought of as representing the transitive
closure of the edges in 8.

The algorithm initializes the ActualBound sets from direct bindings appearing at
call sites, and adds edges to the call multigraph if bindings for any invoked procedure
parameters are set. Then the Bound set is built using interval analysis, based on the
edges in the current call multigraph. Subsequently, new bindings for calls through
procedure parameters are located, and the appropriate edges are added to the ca!
multigraph.

The problem with building the call multigraph in this way is that adding edges may
add new values to the Bound sets. This is the case if call sites invoking procedure
formals also pass procedure formals as actuals at the call site. As a result, if any
changes are made to the call multigraph, the cycle of interval analysis and updating
the call multigraph must be repeated.

build static call multigraph
initialize ActualBound(f) to empty for all procedure formals f in the program
foreach procedure constant passed as an actual at a direct call

add procedure constant to ActualBound(f) for the corresponding formal f

repeat until no changes in ActualBound(f) for any procedure formal f
foreach procedure formal f that is invoked
foreach new ¢q € ActualBound(f)
‘add edge (p, q) to call multigraph
if callsite has procedure constants passed as actuals then
update ActualBound sets for procedure formals of ¢

calculate Bound( f) for all procedure formals f using interval analysis
on the current call multigraph

foreach procedure formal f that is invoked
foreach procedure formal g € Bound(f)
ActualBound(f) « ActualBound(f)U ActualBound(g)
end /* repeat */

Figure 2.5 Summary of Burke’s algorithm.
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Time complexity. Building the static call multigraph and initializing ActualBound
sets requires examination of each procedure and call site in the program, and their
parameters. Again assuming that the maximum number of procedure parameters for
any procedure in the program is bounded by a constant, this step requires O(N + E)
time. Updates to the call multigraph based on changes to ActualBound can be made
as such changes are located. Thus, the time complexity for this step is O(E), since
these changes result in edge additions to the multigraph.

To calculate the Bound sets, the current call multigraph is broken down into
intervals. The time required for interval analysis is O(dE) bit vector steps where d

"is the loop nesting depth of the call multigraph for a reducible call multigraph, or
the loop connectedness for an irreducible call multigraph. Here the length of the
bit vectors is the maximum size of ActualBound sets, which is equal to the number
of procedure parameters in the program. Since we have assumed the number of
procedure parameters for a single procedure is bounded by a small constant, the
resulting length of the bit vectors is bounded by O(N).

Recognizing changes to ActualBound requires visiting each procedure parameter
that is invoked, and each parameter in its Bound set. Since only ActualBound sets
for invoked procedure formals are updated, the outer loop executes O(E,) time, where
E, is the number of call sites invoking procedure formals (E, < E). Since the size of
the Bound set is bounded by the number of procedure formals in the program, the
number of times the inner loop executes is bounded by O(/N). Assuming bit vector
operations for the union of ActualBound sets, this requires O(N E,) bit vector steps
with the length of the bit vector bounded by P. (Recall that P is the number of
unique procedure constants passed as parameters in the program.)

So one cycle of interval analysis and updating the ActualBound sets requires
O(NE, + dE) steps. As mentioned before, this cycle is repeated when procedure
parameters are passed as actuals at call sites invoking procedure parameters. Thus,
the number of times the cycle is repeated is one more than the length of the longest
chain of procedure parameters passed as actuals through indirect calls. This is no
greater than O(PE,), where PE, < E, but is likely to be much less. Thus, the final
algorithm requires at most O(PE,(NE, + dE)) time.

Comparing the two algorithms, the asymptotic complexity of our algorithm is
O(N + EP) unit steps while Burke’s is O(PN E? + dPE, E) bit vector steps. Clearly,
our algorithm has a better asymptotic time complexity. However, we expect the
algorithms to perform comparably on typical FORTRAN programs. Let us consider
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the complexity of Burke’s method for most FORTRAN programs as we did with our
algorithm. Typically, chains of indirect calls do not exist, so the cycle of interval
analysis and call multigraph updates will only be executed once. Also, the value for
d is small, since call multigraphs are unlikely to have deeply nested loops. Thus,
building the call multigraph for a typical FORTRAN program using Burke’s method
requires O(N E,, + E) bit vector steps. At least on FORTRAN programs, we expect the
two methods to perform comparably.

2.6.2 Comparison to Precise Algorithm

In [CCHK90], we present a precise algorithm for call multigraph construction, based
on work by Ryder [Ryd79]. Ryder’s algorithm propagates simultaneous bindings of
values to procedure parameters. The algorithm computes a precise call multigraph
and requires only a single pass over the program, but it cannot be used for languages
permitting recursion.

To be able to use Ryder’s algorithm in ParaScope, we extended it to an iterative
algorithm, thus allowing recursion. While precise, the algorithm has a worst-case
time bound of the maximum number of simultaneous bindings of values to procedure
parameters over all calls. If ¢, is the maximum number of procedure formals for any
procedure, the time required by the algorithm is bounded by O(N + E P°?). Even with
the assumption that ¢, is a constant (used in the previous analyses), the algorithm is
still polynomial in the size of the graph.

Although in [CCHK90] we pointed out that a loss of precision could result from
using Burke’s algorithm, the conditions for this loss of precision rarely occur in FOR-
TRAN. The potential for loss of precision using the algorithm in this chapter is
demonstrated with the following example:

program main

call p(a,b)
call p(c,d)
end
procedure p(e, f) procedure a(g) procedure c(h)
call e(f) call ¢ call h
end end end

The call multigraph for this example is shown in Figure 2.6. The solid lines show
edges added to the graph by either method, and the dashed lines represent additional
edges added by the new method.
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Figure 2.6 Call multigraph generated by precise method, with
additional edges added by new method shown in dashed lines.

The extra edges are added because the new algorithm tracks the bindings for
the formals individually, while the precise algorithm maintains simultaneous bindings
contributed from each call. Thus, the new algorithm produces a less precise graph
whenever there exist two distinct calls to a procedure propagating bindings where at
least two of the bindings for the formals differ. This is not possible when at most
one procedure formal exists for any procedure. Thus, we do not expect that it will
happen often in FORTRAN.

2.6.3 Early Work

Early algorithms for call multigraph construction in the presence of procedure for-
mals were suggested by Spillman [Spi71] and Walter [Wal76]. Spillman builds the call
multigraph as part of an overall interprocedural analysis approach for PL/I. Using
the “expose matrix” he captures information about values for procedure parameters
as well as variable aliasing, values for label variables, modification side-effect infor-
mation, available expressions and exception handling. The algorithm formulation
requires two passes over the program, but in some cases, such as with invoked pro-
cedure parameters, after propagation we may find new values that require additional
passes over the program. The worst case scenario would require repeating passes over
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the program for each edge added to the graph; that is, for each unique binding of an
invoked precedure formal. Thus, the worst-case time bound is O(PE,) passes over
the program. The resulting call multigraph is imprecise.

Walter builds the call multigraph to locate recursion in the program. His method
supports Algol 60, which adds the requirement of handling call-by-name parameter
passing semantics.® The call multigraph is described using boolean relations, requiring
repeating transitive closure and and composition of the relations until the graph
stabilizes. As a result, the algorithm is not very efficient.

2.6.4 Extensions for Other Languages

The next step with this algorithm is to extend it to handle other language features
such as assignments to procedure-valued variables. Shivers’ work on control flow
analysis in Scheme suggests that such extensions are possible, although the result
might not be very precise [Shi88]. He converts Scheme programs to Continuation
Passing Style so that all transfers of control can be represented as function calls.
Then the problem of representing the control flow in the program is exactly the same
as constructing the call multigraph. The method he describes could use the algorithm
that has been presented in this chapter with some minor extensions.

When a function is stashed into a data structure (similar to assignment), he makes
worst-case assumptions about the effects of its callers. This is because its callers
can include functions not currently part of the program. Similarly, when unknown
functions are fetched from a data structure (a use of a function variable), he assumes
that any of the stashed functions could be invoked. In dealing with other languages,
these worst-case assumptions could be improved. For example, taking advantage of
scoping rules in the language or types of procedure variables could refine the worst-
case assumptions.

2.7 Chapter Summary

This paper has presented a very efficient algorithm for calculating the call multigraph
in the presence of procedure-valued parameters. The new algorithm is less precise
than the modified Ryder algorithm. However, we believe this loss of precision will
not occur in FORTRAN where procedure parameters are infrequently used.

3Actual call-by-name parameters are treated as function definitions, and their uses as function calls.



32

The algorithm will perform efficiently on any input program. However, since pro-
cedure parameters appear so infrequently in FORTRAN, it will probably not perform
much better than any other method in the typical case. The new algorithm will only
prove itself to be much more efficient than other methods in situations where proce-
dure parameters are more prevalent - either special classes of FORTRAN programs, or
programs in other languages.

In using this algorithm over the precise one, there is a tradeoff between efficiency
and precision. Unfortunately, in languages where procedure parameters are frequently
used, loss of precision is more likely using the new method. Thus, selecting an algo-
rithm for building the call multigraph requires consideration of whether efficiency is
more important than the precision that may be lost by the more efficient technique.

The next step in call multigraph construction is dealing with other language fea-
tures, including assignments to procedure-valued variables. A precise algorithm would
require tracing data-flow in the source. However, a straightforward adaptation of this
algorithm could produce conservative results. The value of the adapted algorithm
would depend on the prevalence of assignments and invocations of procedure-valued

variables.
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Chapter 3

Inline Substitution

As we stated in Chapter 1, interprocedural optimization is needed because it increases
the context available to the optimizing compiler. Of all interprocedural optimizations,
inline substitution provides the most context to the compiler since it makes code for
the called procedures directly available to the optimizer.* By understanding the effect
of inline substitution on optimization, we can also anticipate the kinds of improve-
ments possible from other interprocedural techniques.

This dissertation research began with a study of the interaction between inline sub-
stitution and aggressive code optimization. We sought to divide the improvements
due to inlining into two categories: those that can be approximated with interproce-
dural information, and those that necessitate inlining. For the latter, we also hoped
to define some simple heuristics to predict cases when inlining is profitable.

The previous work on inlining, discussed at the end of the chapter, did not ade-
quately explain the impact of inlining on optimizing compilers. Moreover, the results
seemed to depend on the programming language, the amount of optimization per-
formed in the compiler and architectural features of the machine.

To explore these issues, we conducted the experiment depicted in Figure 3.1, an
investigation into the efficacy of inlining in FORTRAN. (FORTRAN is a particularly
interesting language because it has a long tradition of high quality optimizing com-
pilers.) We built a user-controlled, source-to-source inlining facility. This tool allows
us to examine a FORTRAN source program, apply an inlining strategy by manually
marking call sites, and automatically produce a transformed FORTRAN source that
reflects the inlining. Because both the original source and the transformed source
are valid FORTRAN programs, we can then compile and execute them on a variety
of target machines. To serve as a basis for our study, we transformed a set of eight
programs. We then compiled and ran them on five different machines, taking mea-

4This is not exactly true since inlining is usually performed on a limited number of call sites, while
optimization based on interprocedural information can be performed around all call sites.
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FORTRAN user-controlled
source inliner

FORTRAN
source

FORTRAN compile and run

Figure 3.1 Structure of the inlining experiment.

surements throughout the process. A discussion of the inlining study can also be
found in [CHT90b)].

The remainder of this chapter is divided into five main sections. The next sec-
tion discusses the experimental methodology in more detail. Section 3.2 summarizes
our measurements and discusses what these findings show about changes in source
code size, object code size, compilation time, and execution time. Section 3.3 draws
together conclusions from the preceding sections and summarizes them. One of the
conclusions from the study is that register allocation is significantly affected by in-
lining. A discussion of the effects of inlining on register allocation is in Section 3.4.
In Section 3.5, we discuss important issues that arose in the implementation of the
inlining tool itself. It provides an overview of the implementation, followed by some
detailed discussion of cases where the tool cannot inline a call site. The chapter closes

with a discussion of previous work in inlining and a summary.

3.1 Experimental Methodology

The experiment took place in two phases. In the first phase, we created a set of
transformed programs. In the second phase, we compiled both the original source
and the transformed source on each machine, and took measurements of the compile

time and run time of each.

3.1.1 Phase 1: Transforming Programs

To create the transformed source, we built a two-part facility for user-directed inline
substitution. First, we built an interface to the program compiler that allows the user
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to specify, on a call site by call site basis, those calls that are to be inlined. The level
of granularity is important; selecting individual call sites allows maximal freedom in
designing inlining strategies to evaluate. The tool allows the user to navigate around
the call multigraph, simplifying the task of finding all such call sites.

The second step of the process actually constructs the transformed source. The
inliner reads the program description and the annotations that specify the inlining
pattern. With this information, it constructs a new abstract syntax tree (AST) for
each procedure in the transformed program. To do this, it reads in the AST for the
base procedure and then merges into that tree the ASTs for the inlined procedures. It
then prettyprints the tree to produce a text file containing the transformed FORTRAN
source.

To avoid redundant inlining, the call sites are processed in reverse topological
order. Thus, if we want to inline a call from some procedure p to another procedure
q, we do this before we inline p into any of its callers. This way, the inlining of g
into p occurs only once, rather than once for each of p’s callers. A topological order
exists for non-recursive programs, which was the case for all of the programs used in
the study. When recursion exists, the call sites are visited in essentially topological
order, with the exception of calls to procedures involved in recursive cycles.

The tools inside the environment imposed a limit on our ability to inline. The
AST used to represent FORTRAN source is relatively large, around 1000 bytes of tree
per line of source text. This imposed a practical limit of 2500 lines on the size of any
single procedure. For larger trees, the performance of the tools on our workstations
degraded quickly due to the large virtual working sets. Given this restriction, we

inlined any call site that met one of the following criteria:

1. It invoked a procedure of fewer than 25 source code lines.
2. It was the sole call to a procedure of less than 100 source code lines.
3. It was contained in a loop and invoked a procedure of less than 175 source code

lines.

Due to limitations imposed by features of FORTRAN or details of the tool’s implemen-
tation, we could not inline some call sites. The five cases that arose are discussed in
detail in section 3.5.

Initially, we examined twelve numerically intensive FORTRAN programs. As the
study progressed, we dropped four of the programs due to specific nonstandard prop-
erties of the individual programs that made inlining illegal. The remaining programs



.
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are of moderate size, ranging from 297 to 5979 non-comment lines of code. The eight
programs included in the study are:

vortex  a particle dynamics code simulating the dynamics of a 1-dimensional
vortex sheet via discrete vortices;

shal64  a simple atmospheric dynamics model based on the “shallow-water”
equations;

efie304  solves electromagnetic scattering problems involving arbitrarily shaped
conducting surfaces;

wanall  boundary control of the wave equation by Conjugate Gradient Metho- .

wave a 2-dimensional relativistic electromagnetic particle simulation used to
study plasma phenomena;

euler a l-dimensional spectral code modeling shock waves propagating in a
tube, bursting diaphragm flows and colliding shock wave flows;

cedeta  an implementation of the Celis-Dennis-Tapia method for equality con-
strained global minimization; and

linpackd the classical “Dongarra” benchmark of LINPACK routines.

Figure 3.2 gives some basic information about each of the programs included in the
study, in both the original and transformed state. The programs are ordered by
percentage growth in text size. We use this ordering throughout the paper, in both
tables and graphs, except where explicitly stated otherwise. The percentage of calls
inlined give a direct measure of our heuristics’ effectiveness. (The number of call sites
represented includes calls to libraries, such as LINPACK, but not calls to intrinsics,
such as abs.) A sirﬁple count of the call sites inlined shows that, on average, 75 percent
of the call sites were eliminated from the programs. All of the programs except vortex
grew in the process. The average procedure length grew in every case.

The column labeled “% Inlined — Dyn” shows the number of procedure call
executions eliminated. This number is expressed as a percentage of the calls executed
by the original program on the same data. On average, our heuristics were able
to eliminate 89 percent of the executed procedure calls. Thus, the transformations
eliminated the vast majority of the time spent in procedure call overhead at run time.

(In five of the programs, we eliminated over 99 percent of the dynamic calls.)
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Original Source Transformed Source

— Total | % Inlined | Total | Total | Avg Proc | Total | Total | Avg Proc
Name Calls | Stat | Dyn | Lines | Procs Length | Lines | Procs Length
vortex 19| 100 | 100 | 534 19 28 527 1 527
shal64 25 96 | 100 | 297 8 37 321 2 161
efie304 40 83| 100 | 1248 18 69 | 1456 8 182
wanall 43 84 | 100 | 1252 11 114 | 1751 8 219
wave 223 52 75| 5979 92 65 | 8820 53 166
euler 31 65 57 | 1098 13 84 | 1646 4 412
cedeta 247 79 82 | 4269 48 89 | 9296 20 465
linpackd 34 44 | 100 417 10 42 988 4 247
Average 83 75 89 | 1887 27 66 | 3101 13 297

Figure 3.2 Characteristics of original programs.

3.1.2 Phase 2: Measurement

To evaluate the effectiveness of the inlining strategy, we compiled each program, both
the original and transformed version, on each of our target machines. We recorded
compile time and run time for each program at each level of optimization provided
by the compiler. To obtain reliable timing information, we repeated each operation
multiple times.

This part of the experiment was performed on each of five machines. Three of
them are scalar machines: an IBM 3081d, a MIPS 120/5, and a Sequent Symmetry
(used as an 80386 uniprocessor). The other two machines are vector multiprocessors:
a Stardent Titan and a Convex C240. These two machines provided us with some
insight into the expected results on a large class of modern supercomputers or minisu-
percomputers. Figure 3.3 shows configuration information about each of the target
machines. While this collection of machines is small, we feel that it is reasonably

Number | Memory Compiler &
Machine CPU CPUs | Size (mb) Version
IBM 3081d 3081 1 32 VS FORTRAN 2
MIPS R2000 1 16 MIPS FORTRAN 2.0
Sequent S81 80386 1 80 SVS FORTRAN 3.2
Convex C240 Convex 4 512 Convex FORTRAN V5
Stardent Titan-p2 | R2000 4 64 Stardent FORTRAN 2.1.1

Figure 3.3 Target machines and compilers.



L Execution Times — Base Numbers
(hours:minutes:seconds)
3081 M120 S81 C240 Titan
vortex 17:20.9 | 15:10.4 49:05.8 | 8:21.5 38:41.2
shal64 1:37:00.5 | 42:20.4 | 2:57:36.6 | 11:03.1 32:27.8
efie304 16.8 14.6 1:02.9 7.9 29.1
wanall | 6:57:45.0 | 4:51:03.9 | 15:22:09.6 | 54:36.1 | 2:53:53.8
wave 1:23:18.3 | 1:11:55.7 | 2:52:40.2 | 25:12.8 | 1:11:55.5
euler 1:09.7 47.1 3:09.6 20.8 32.9
cedeta 34.1 30.8 1:17.1 14.5 41.0
linpackd 34.7 25.1 1:59.4 14.6 31.0
Compilation Times — Full Optimization
(minutes:seconds)
3081 | M120 S81 | C240 Titan
vortex 2.6 10.3 7.2 13.4 39.9
shal64 1.7 7.9 5.1 7.8 21.5
efie304 7.6 | 52.6 133 26.2 1:32.0
wanall 19.8 | 8:42.4 20.2 | 1:37.0 3:49.6
wave 35.0 | 2:54.7 | 1:05.2 | 2:14.6 9:25.4
euler 5.0 29.6 129 234 1:15.0
cedeta 18.1 | 1:39.1 | 2:01.1 | 1:12.4 8:55.2
linpackd | 2.6 | 11.3 5.8 12.6 31.6

Figure 3.4 Baseline data for comparisons.
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representative of the market today. Each machine is a well established platform that,

within its market niche, is regarded as having relatively stable and solid software.

Figure 3.4 provides baseline data for later comparison. The first table shows exe-

cution times for each program on each machine. The measurements were made using

the original source code, with no code optimization. Throughout the paper, execution

times are given as percentages of these base times. The second table shows compile

times for each program on each machine. In each case, the measured compilation is

at the highest level of optimization available on the machine (vector multiprocessor
mode on the Convex and Stardent machines).
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3.2 Experimental Results

One of our primary goals was to gain an understanding of the efficacy of inline substi-
tution in reasonable quality commercial FORTRAN compilers. Three key issues arise:
(1) growth in object code size, (2) growth in compile time, and (3) improved run-time
efficiency. In this section, we examine the data collected in our experiments and draw
some conclusions about each of these issues.

In general, the conclusions that can be drawn from our experiment present a
mixed picture. To simplify the presentation, we will first discuss overall trends and
conclusions, and then consider any differences between the scalar machines and the
vector multiprocessors. In the experiment, we gathefed data on each compiler at each
of its various levels of optimization. Unless otherwise stated, we will cite numbers for
each compiler at its highest level of optimization.

3.2.1 Program Characteristics

The three issues described above arise because inlining changes fundamentally the
characteristics of the user’s program. As shown in Figure 3.2, the transformed pro-
gram is almost always larger than the original program, both in terms of total source
lines and the size of an average procedure.

Because the procedures in the transformed source are constructed mechanically,
their name spaces are likely to be larger than those of equivalent procedures written
by humans — a human would re-use temporary names where the inliner will merge
the two name spaces and rename to avoid conflicts. Thus, if we inline procedure ¢
into p at two distinct call sites, the resulting code will contain two complete copies of
¢’s local name space, rather than the single copy (or less) that a version of the same
code written by a human would use.

The transformed source, with its larger procedures, should provide more contex-
tual information to the compiler and its optimizer. Expanding the callee’s body at the
call site exposes a wealth of information to the compiler. It exposes constant-valued
formal parameters and makes explicit the aliases that arise from parameter binding.
Definitions and uses are now visible to standard single-procedure analysis techniques.
Loops that previously contained calls are now susceptible to analysis with standard
techniques, like strength reduction, that are not applied to a loop that contains a call.
(On the SVS compiler for the Sequent, this effect was particularly noticeable. The
improvement in execution time due to enabling strength reduction was always larger
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in the inlined programs than in the original versions.) In some cases, this information
could be derived by an aggressive interprocedural analysis of the original source code.
In many cases, however, the program is subject to more precise analysis after inlining
because of the additional information that is exposed through inlining.

During the study, we encountered a number of coding practices that made in-
line substitution impossible. Most of these also violate the FORTRAN standard.
Procedures that rely on a default assumption of static allocation for all local variables
was the most common problem encountered. In general, these variables appeared in
DATA statements. Explicitly passed array dimensions that varied across the invo-
cations of call sites’was -a second common problem. In most cases, this arose in
connection with an array used to provide iempo"_raAryv storage. (The lack of dynamic
allocation has given rise to this style of programming.) We encountered several call
sites where actual parameters and their corresponding formals had different types.
Finally, two of the programs contain jumps into loops from outside the loop. The
programs containing these problems were either corrected or removed from consider-
ation in the study.

3.2.2 Object Code Size

Most discussions of inlining include a warning to suggest that growth in object code
size is a possible concern. Two specific problems may arise: increased loop size over-
flowing instruction caches and increased working set sizes swamping demand paged
virtual memory systems. Certainly, one can construct pathological examples that
will exhibit geometric growth in source code size. The arguments presented in the
introduction to justify inlining as a code improvement technique also suggest that
optimization should moderate object code expansion. Optimization improvements
come from two sources: eliminating code and generating less general, more special-
ized code. The former directly shrinks the object code. The latter is expected to
eliminate control flow, expose code as dead code, and increase the effectiveness of
techniques like common subexpression elimination and constant folding. These, in
turn, should lead to some reduction in object code size.

Figure 3.5 plots the data on source text growth and object code growth for our
programs on the five compilers. While the results varied both with program and with
compiler, none of the compilers exhibited linear growth in object code size. Four of
the five compilers exhibited average growth of less than 6 percent, while the fifth (the
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Figure 3.5 Object size vs. source text size.

SVS FORTRAN compiler) averaged less than 10 percent. The MIPS compiler showed
minimal variation; its growth numbers all fall within 11 percent of the original code.
The largest variation came with the VS FORTRAN compiler; it showed a range from
-57 percent on vortex to 58 percent on cedeta. Almost all of the individual data points
lie in the range between -5 and 25 percent growth.

This suggests that optimization did indeed mitigate growth in object code. To
examine this issue in more detail, we compared object code size with no optimization
against that produced with full optimization. We looked at changes to both the
original and inlined versions of the program. Figure 3.6 shows the change in object
code size due to optimization, expressed as a percentage of the pre-optimization
object code size. For each compiler, the changes to the original program are reported
in the left column, and the changes to the inlined program are reported on the right.
(For the Convex and Stardent machines, we used compilations with full optimization
targeted for a scalar uniprocessor configuration — no attempt to use vector or parallel
hardware.)

The ability of the individual compilers to reduce object code size through opti-
mization differs greatly. The Convex and Stardent compilers show average decreases
in the range of 1 to 2 percent. The MIPS and VS FORTRAN compilers exhibit more
substantial average decreases between 5 and 28 percent. The SVS compiler exhibits



_ Text Change in Object Code Size %

Size % 3081 M120 S81 C240 | Titan
vortex -1 -171-280 -3 | -3 |-6[6(0]-2/l0]o0
shal64 8 25 1-35) -1 | -2 0 |0}-2[-2(071*
efie304 17 -191-23) -6 | -7 |00 -2]-2(-3]-3
wanall 40 -36|-36 | -10| * 01-6{-2[01|-7]-7
wave 48 21 1-25) -8 | -8 ¢(-1f-1ffo]oflofoO
euler 50 22 1-27) 4 [-13( 0 [-3(0]-2]071-3
cedeta 118 211 -26 || -13 [ -24 || 11| 9 || -1 [-1|[-2]-2
linpackd 137 17125 -1 | 9 (-5 *|O0]OYfoO0]O
Average 52 22 1-28) -5 | -9 -1 |1 {-1]-1{-2]-2

Figure 3.6 Effect of optimization on object code growth.

code growth as a result of optimization in three cases. To isolate the problem, we
compared object code sizes generated by different settings of the optimization flag.
On the inlined version of vortex, the problem first appears when global register al-
location is enabled. On both versions of cedeta, the increased size appears when,
according to the compiler manual, only constant folding is enabled.

The general trend in the data in Figure 3.6 suggests that decreases in object code
size as a result of optimization are greater for the inlined version of the program
than for the original version. With the exception of the SVS compiler, all compilers
showed a greater percentage decrease in object code size in the inlined version for at
least one program. The differences are very small for the Convex and Titan, but are
significant for the 3081 and the MIPS. Comparing the 37 pairs of entries in the table,
there are 17 pairs where the reduction for the inlined program is greater than for the
original program. There are only three where the reduction is greater for the original
program, and two of these occurred with the SVS compiler. (Three pairs are excluded
from the count because the numbers for the inlined versions were unavailable.)

Taken as a whole, these numbers suggest that the object code growth resulting
from inlining is manageable. Given the large percentage of dynamic calls eliminated
by our heuristic, it appears that, in most situations, the compiler can eliminate the
majority of calls, and, hence, most procedure call overhead, without a substantial
increase in object code size.

We have demonstrated that inlining does not disastrously increase object code
size. This suggests that code growth due to inlining will not have an adverse effect
on paging and caching. However, the actual impact of changes in object code size on
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Figure 3.7 Compile time vs. source text size.

execution time performance is much harder to assess and is outside the scope of this
dissertation.

3.2.3 Compile Time

A second argument used against inline substitution is the potential for dramatic
increases in compile time. In practice, compilers use some algorithms that have non-
linear asymptotic complexities. This raises the concern that applying inlining can
lead to unacceptable increases in compile time.

Figure 3.7 plots increase in compile time against increase in program size. All
compilations are shown with full optimization enabled. From the plot, it appears that
euler has some fundamentally different characteristics from a compiler’s viewpoint.
Each compiler showed a large jump in growth of compile time between wave and
euler. The times for cedeta and linpackd appear to better fit the trend established
without euler.

Most of the compilers had fairly stable compilation times. Compile time on the
Convex never grew faster than source text size. The Stardent and SVS compilers
each had one program where growth in compile time exceeded growth in source text.
The VS FORTRAN compiler had mixed results; its compile time growth exceeded
source text growth half of the time. (On the other hand, it alone showed substantial
decreases in object code size.) Finally, the MIPS compiler appears to be extremely
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sensitive to average procedure size. It alone showed consistent superlinear growth in
compile time.®

T’ e performance of both the Convex and Stardent compilers is particularly sat-
isfying, since both perform sophisticated data dependence analysis to support their
vector and parallel hardware. Despite the costs associated with this analysis, neither
compiler saw extraordinary growth in compile time when dependence analysis was
enabled. While the numbers in Figure 3.4 suggested that the Stardent compiler is
somewhat slower than the other compilers in the study, the speed problem shows up
when compiling the original source without optimization for a uniprocessor machine.
This strongly suggests that it is not related to either optimization or dependence
analysis.

3.2.4 Execution Time

Given that compilers can mitigate the potential for explosion in object code size and
compile time, one key question remains. Can compilers capitalize on the opportunities
presented by inlining to improve the actual execution time of programs? Figure 3.8
shows the overall effectiveness of inlining by plotting the change in execution times for
each combination of program and machine. Figure 3.9 plots the change in execution
time as a function of change in compile time. In both figures, the times shown for
the Convex and Stardent machines are for multiprocessor vector execution.

Figure 3.10 gives the raw data from which these plots are derived. The numbers in
the figure represent the execution time for the program versions at each optimization
as a percentage of the execution time of the. unoptimized original program. The
baseline data is reported in Figure 3.4. In Figure 3.10, the averages for a compiler
were computed by completely discarding any program that the compiler failed to
successfully translate. (Such programs are denoted by asterisks in the tables.)

Scalar Results

In Figure 3.8, it is clear that there is no real trend, either by compiler or by program.
The results are mixed, with many instances each of improvement and of degradation.

5The MIPS compiler also showed a surprising growth in working set size for compilation. To obtain
timings that were not dominated by paging overhead required a machine with 48 megabytes of
memory. Running the compiler on a machine with 16 megabytes of memory resulted in radical
increases in compile time. For example, wanall before inlining required over 95 hours of wall time
to compile. On the 48 megabyte system, that compilation required around nine minutes.
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e Across the board, the IBM compiler had the most stable performance. It showed
the best improvement of the three scalar machines, 16 percent on cedeta. There
were two cases where inlining caused it to produce slower code; in each case the
degradation amounted to less than 1 percent of the execution time. In general,
the IBM compiler was able to improve the code after inlining.

e The MIPS compiler exhibited relatively stable performance. It showed little
improvement or degradation as a result of inlining, with one exception being a

12 percent degradation on cedeta.®

e The SVS compiler had mixed results — four wins and two losses. It produced
the single largest degradation among the scalar machines, 15 percent on shal64.

e The Convex compiler, targeting a uniprocessor vector configuration, profited
from the transformation. Six of the programs showed improvement; the two

6 At its highest level of optimization, the MIPS compiler performs interprocedural register allocation.
Because the effects of interprocedural register allocation could mask the effects of inlining, the
numbers reported for the MIPS are without interprocedural register allocation. In most cases, the
performance change after interprocedural register allocation was negligible, with four exceptions:
the inlined version of cedeta exhibited a 15 percent improvement due to interprocedural register
allocation; both versions of linpackd were slowed down by about 5 percent after interprocedural
register allocation; and the inlined version of efie304 was slowed down by 27 percent.
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Figure 3.9 Change in execution time vs. compile time.

degradations were both small. It showed the largest overall improvement, 20

percent on cedeta.

o The Stardent compiler, targeting a uniprocessor vector configuration, showed
little improvement from inlining. Its best improvement was 5 percent on efie304.
Its worst degradation was 18 percent on cedeta.

There does not appear to be a clear trend in the data, either by compiler or by
program. Overall, wins outnumber losses. But, the vast majority of the wins fall in
the range between the infinitesimal improvement and 5 percent.

Figure 3.9 suggests that increased compile time also fails to predict improved
execution time. Three of the compilers get marginally better results at the high end
of the compile time scale; the MIPS compiler often fails to get back to the original
program’s execution time.

These results provide insight into another issue: the relative importance of proce-
dure call overhead. The transformation process eliminated most procedure calls; in
five of the programs, we eliminated over 99 percent of the executed calls. This did
not lead to consistently faster execution.

Two conclusions are possible. Either call overhead is a negligible part of program
execution, or program properties introduced by inlining resulted in decreased code



IBM 3081d MIPS M120/5 Sequent S81
uopt | opt opt uopt | opt opt uopt | opt opt
+ inl + inl || 4 inl + inl || 4+ inl + inl
vortex 100 65 66 102 68 69 99 82 76
shal64 100 19 19 100 33 33 100 38 44
efie304 97 46 45 88 50 48 100 92 90
wanall 100 16 16 100 34 * 100 46 45
wave 101 37 36 100 41 40 100 67 69
euler 100 34 34 103 30 30 100 79 78
cedeta 96 61 51 115 43 48 108 85 85
linpackd 193 | 39 34 171 | 44 49 137 | 67 *
Average || 1109 | 39.6 | 37.6 || 111.3 | 44.1 | 45.3 || 101.0 | 69.9 | 69.6
Convex C240 Stardent Titan
uopt | vect vect | para | para || uopt | vect vect | para | para
+ inl + inl + inl || + inl + inl + inl
vortex 93 26 27 21 26 63 60 66 28 29
shal64 100 18 19 6 6 * 32 32 12 11
efie304 94 64 60 40 40 87 79 75 96 76
wanall 117 19 19 7 7 101 * 13 * *
wave 101 32 30 26 25 98 63 62 60 59
euler 99 51 50 69 71 93 84 85 200 190
cedeta 92 89 71| 160 143 101 | 101 119 | 168 179
linpackd 109 21 18 27 14 92 20 20 21 14
Average || 100.6 | 40.0 | 36.8 | 44.5 | 415 89.0 | 67.8 | 71.2 | 97.5 | 91.2

Figure 3.10 Changes in execution time.

47

quality that masked the savings in call overhead. The former point may be the result
of the FORTRAN programmers’ reluctance to use procedure calls. If procedure calls
make up only a small amount of the work in the program, eliminating all of them
does not have a significant effect on performance. However, it appears from Figure
3.10 that interactions with the compiler are also hiding the call overhead savings. The

unoptimized execution of the transformed source on the three scalar machines shows

little improvement and sometimes degradation from eliminating calls; the Convex and
Stardent compilers do a somewhat better job. As an example of an adverse effect

of inlining, we know from experience with ParaScope’s compiler that inlining often

increases register pressure.



Parallel Results

Two of the machines are vector multiprocessors, the Stardent Titan and the Convex
C240. They both have stable restructuring compilers — compilers that attempt to
automatically discover opportunities for vector and parallel execution. Both compilers
use techniques based on data-dependence analysis. Thus, they provide us with the
opportunity to examine the issue of inlining as an aid in automatic parallelization.

In general, the compilers were able to generate better code for the transformed
source text. For both compilers the difference was just under 7 percent. Looking
at specific programs, each compiler had two cases where the transformed code ran
slower than the original. On the Convex, vortex ran 24 percent slower; on the Stardent
cedeta slowed-down by 7 percent. The remaining cases range from minimal differences
to major improvements — 48 percent for linpackd on the Convex and 33 percent for
linpackd on the Stardent.

This suggests that seven of the programs could be improved by inlining. (Both
compilers failed to improve vortex.) However, the execution time improvements were
small compared to what might be expected. We wondered if the loops with inlined
call sites still had dependences that were preventing parallelization, or the compilers
were parallelizing unprofitable loops.

To make this determination, we examined each loop containing procedure calls
in our set of programs. Wherever a call appeared in a loop nest, each loop in the
nest was counted. For each loop, we looked at the diagnostic information provided
by both compilers. The results appear in Figure 3.11.

Line 1 of the table represents the static count of loops with calls. The numbers
in line 2 represent those loops from line 1 where inlining has eliminated the calls.

vortex | shal64 | efie304 | wanall | wave | euler | cedeta [ linpackd

1. po loops

with calls 1 0 15 20 20 6 23 10
2. no calls after

inlining 1 0 14 20 15 0 22 8
3. Convex

improved 0 0 4 6 1 0 0 1
4. Titan

improved 0 0 1 4 1 0 1 1

Figure 3.11 Static count of loops with call sites.
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Because the inlining was guided by heuristics, there are a few cases where the calls
remain. Lines 3 and 4 indicate the loops from line 2 that each compiler was able to
at least p:;rtially parallelize.

The outcome of this exercise was the observation that in 5 of the programs -
efie304, wanall, wave, cedeta and linpackd - a large number of loops have been opened
up to analysis, but few have any additional parallelism. This prompted a more
detailed study of the loops that the compilers were unable to parallelize. Inlining
had exposed parallelism in some of the loops, but the compilers failed to locate it.
We observed certain properties of the loops unlike code that would be generated by
a human. These properties suggested some optimizations that should be performed
between inlining and dependence analysis to aid the compiler in locating additional
parallelism. The optimizations and an experiment demonstfating their effectiveness
is described in Chapter 7.

The table in Figure 3.11 shows that the compilers did not find parallelism in a
majority of the loops containing inlined calls. However, it also responds to the second
question — were the compilers parallelizing unprofitable loops?

Both compilers had problems deciding when parallel execution was profitable.
Compare the execution times of the original code in uniprocessor vector mode against
the results for multiprocessor vector mode. On the Convex, three of the programs
ran slower as parallel programs than as uniprocessor programs. On the Stardent,
four programs exhibited this behavior. This was particularly bad for both euler and
cedeta. This problem exists before inlining, but can be compounded as a result of
inlining by exposing parallel loops that are not profitable to parallelize, as in the
case of cedeta on the Stardent. It appears that both compilers assume that parallel
execution is profitable unless it can discover a tight bound on loop iterations that
conclusively proves otherwise.

3.3 Implications

Overall, the five compilers were unable to consistently capitalize on the opportunities
provided by inlining. Recall, from Figure 3.2, that our inlining strategy eliminated
nearly all procedure calls — on average, 89 percent of the procedure calls executed in
the original source were eliminated in the transformed source. The expected run-time
savings do not appear during execution, as shown in Figure 3.10. We did not find a
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consistent and appreciable improvement in run-time speed. Several factors appear to
account for this phenomenon.

First, inlining often increases register pressure. Both vortex and edler contain call
sites that pass global variables from several COMMON blocks as actual parameters.
In the original code, the actual parameters in the callee have one-register names.
After inlining on some machines, they have two-register names, a base address plus
an offset.” On the MIPS machine, the transformed version of euler executed 2 percent
more loads and stores — that is, 1,900,000 more loads and stores — than the original
version. Those cycles mask other improvements. On those compilers where the
application of global register allocation is controlled by a user-supplied switch, the
results of global allocation were mixed. To better understand why inlining affects
register pressure, we compared assembler code before and after inlining. The results
are presented in the next section.

Second, the inlined code may have fundamentally different properties. For exam-
ple, in linpackd on the MIPS; inlining resulted in a 6 percent degradation in run-time
speed. Closer investigation showed that the number of floating point interlocks per
floating point operation rose from 0.62 to 1.1 after inlining. Since the program exe-
cutes almost 20,000,000 floating point operations, that factor is significant.

Closer investigation revealed that the call from dgefa to dazpy passes two regions
inside a single array in two distinct parameter positions. Unfortunately, complicated
range analysis would be required to show that the regions do not overlap. Thus,
when the call is inlined, the body of the key loop in dazrpy is a single statement that
both reads two locations and writes one location inside the array. Without complex
analysis, the compiler must assume that the references can 'ove'rlap. This introduces
the data interlocks that we observed. A discussion of the analysis required to detect
the changes brought about by inlining is found in [CHT90a).

Finally, design decisions that are justifiable for code written by a programmer
may have unforeseen consequences when applied to code generated by the inliner.
For example, many compilers place a hard upper limit on the number of variables
subject to data-flow analysis; typically, they summarize all remaining variables with

"This accounts for the two instances of degradation on the IBM 3081. It may also account for the
degradation that occurs when vectorization and inlining are combined on the Stardent. Although
no additional loops were vectorized on these programs due to inlining, the execution time increased
on both programs.
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a single bit position.® With inlined code, the growth in name space as a function of
procedure length is probably much greater than in human-generated code. This may
exacerbate the adverse effects of summarization in data-flow analysis.

On the two parallel machines, we observed several cases where the decision to run a
loop nest in parallel resulted in a disastrous slowdown. This happened with both euler
and cedeta. It appears that both compilers assume that the parallel loop is profitable
in those cases where the number of iterations is unknown. A simple strategy would
allow the compilers to avoid these major slowdowns: in those cases where the number
of iterations is unknown, generate both the uniprocessor and multiprocessor versions
of the loop and insert a simple run-time test. Our results suggest that the growth in
object code may be small. If doing so eliminated these slowdowns while allowing the
compilers to aggressively generate parallel code, it would almost certainly make up
for the minor object code growth.

3.4 Effects of Inlining on Register Allocation

To understand the impact of inlining on register allocation, we carefully compared
the assembler code for the original and inlined versions of the programs generated by
the MIPS compiler. The MIPS compiler was particularly amenable to this exercise
for two reasons: (1) it annotates its assembler code with the source code, and (2)
statement-level profiling information is available through the tool pixstats.

We observed the following effects of inlining on register allocation:

e The live ranges of values in the caller were sometimes extended.

e Renaming from formals to actuals changed the number of registers needed for
address calculation.

¢ By inlining all calls within a procedure, registers were available for longer spans
of the procedure.

Each one of these issues is described in this section.

8This strategy makes all bit-vector operations have a known, uniform length. It allows the compiler
writer to hard code the bit-vector operations, and eliminate the loop based on bit-vector length on
each operation.
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3.4.1 Sharing Values across Procedure Boundaries

If a value4s used by both the caller and the called procedure, there are two possible
effects on register usage as a result of inlining. If the caller uses the value both before
and after the call, then the value will already be in a register across the call. Thus,
inlining will open up a reuse of a value already in a register, so one fewer register is
required for the callee body.

On the other hand, suppose the caller uses the value only on one side of the call
site, either before or afterward. Then the value stays in a register from its use in the
caller to its use in the callee (or vice versa), rather than being loaded into a register
immediately before each use. As a result of inlining such a call site, the caller will
require one additional register in the region between the call site and the caller’s use
of the value.

An example from linpackd demonstrated how extending a live range could result
in register pressure. Suppose an expression n — i is calculated in a procedure, where
n and : are formal parameters of the procedure. In the caller of this procedure, the
expression z — y is calculated, where z and y are the same values passed to n and i
at the call site. As a result, after inlining the call site, the expression is calculated
twice in the loop body. This causes the expression to stay in a register for both
uses. Because the expression is loop-varying in the caller, it had previously been in a
register only for the single use. Note that if the expression had been loop-invariant in
the caller, it would have remained in a register across the call anyway, so this would
not have increased register pressure.

3.4.2 Effects of Renaming from Formal to Actual

Inlining can have a tremendous impact on the number of registers used to perform
address calculations. Because of the call-by-reference parameter passing semantics
of FORTRAN, the compiler assumes that all actuals at call sites can be modified by
the called procedure. As a result, most compilers implement parameter passing by
passing the address of the actuals rather than their value. At some time in the body
of a called procedure, each parameter has its address in a register. (On the MIPS, if
it is one of the first four parameters, it is placed in a register for the call.)

In the case of an expression-valued parameter, placing the address in a register
is a bit unnatural. The expression is calculated, and the value of the expression is
placed on the stack. Then, this stack address is either passed in a register or on
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the stack. By inlining, the need for placing the expression’s value on the stack and
passing the stack address is eliminated. When parameters are constant integers, two
registers are freed up since integer variables are used directly in instructions rather
than being accessed from registers.

Both positive and negative effects on register pressure occur as a result of renaming
arrays from formals to local or global variables in the caller. Addresses for an array
access are calculated in the position in the code in which its most quickly varying
subscript expression is being updated. Two array accesses from the same global or
from local storage whose addresses are calculated in the same loop share a pointer to
the beginning of the global or local storage, respectively. Two accesses handled at the
same place in the code may also share other portions of the addressing calculation.®
This sharing would not occur if the two accesses were to independent formals.

A special case occurs for 1-dimensional arrays. One register must be used to
hold the beginning of the local variable storage, but offsets from there can often
be calculated at compile time. Figure 3.12 shows an example from vortex where
the change from parameter accesses to local variable accesses greatly decreases the
number of registers used in the caller.

The placement of array address calculations has another effect as a result of in-
lining. Since addresses for array accesses are calculated in the loop in which the
subscript expression is most quickly varying, the renaming from formal to actual can
also affect the registers used to calculate subscript expressions. When formal param-
eters are used in subscript expressions, the address calculation may be moved to a
different location in the caller after inlining. This would increase the portion of code

in which the address for the array access is live.

3.4.3 Inlining All Calls in a Procedure

Many compilers divide the register set into caller-saved and callee-saved registers.
The caller-saved registers must be saved and restored around procedure calls. For

this reason, caller-saved registers are usually used for expressions with short live

9For example, accesses with identical subscript expressions from the rightmost dimension up to
some previous dimension and equal constant dimension sizes will share the calculation of the identical
dimensions. Also, accesses with identical subscripts from the leftmost position to some later position
may share the identical portions if dimension sizes are the same for all dimensions, and if differing
subscript expressions are constant (so that they can be calculated statically).
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/* Before inlining, accesses in loop are to parameters */
procedure p(a,b,c,n)

dimension a(n), b(n), ¢(n)

/* Assume rl=addr(a)+i, r2=addr(b)+i, r3=addr(c)+i */

doi=1,n
a(i) = --- /* Access is torl */
b(i) = --- /* Access is to12 */
c(i)=---/* Access is to13 */
enddo
end
procedure ¢
dimension [1(10), {2(10), /3(10)
call p(11,12,13,10)
end

/* After inlining, accesses are to local variables */

procedure ¢
dimension [1(10), /2(10), [3(10)

/* Assume rl=beginning of local area + i */
doi=1,n
I1(i) = --- /* Access is torl */
12(d) = --- /* Access is to 10(r1) */
13(¢) = --- /* Access is to 20(rl) */
enddo
end

Figure 3.12 Accessing parameters vs. accessing local variables.

ranges, so that it is unlikely they remain live across the procedure call. The callee-
saved registers are saved in a procedure before it uses them and are restored before
exit from the procedure. Callee-saved registers are used for values that span a long
range within a procedure [Cho88].

Upon inlining the last call in a procedure, the caller is able to freely use the
caller-saved registers without ever having to save and restore them. Thus, inlining
the final call in a procedure allows all registers to be used freely throughout the entire
procedure body. Even though the same number of registers open up after inlining a
call regardless of whether or not it is the last remaining call in the procedure, the
span for which the register allocator can use the registers has changed.
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This effect of inlining on register allocation was observed on the LINPACK routine
dgefa. This procedure contains a loop nest of two loops. In the outer loop, there are
calls to idamaz and dscal. In the inner loop is a call to dazpy. Comparing the number
of loads and stores when all calls are inlined versus inlining just idamaz and dscal,
12 fewer accesses to memory occur in the fully inlined version. Inlining eliminates all

unnecessary memory accesses.

3.5 Implementation Issues

Although our principal goal in performing this study was to increase our understand-
ing of the interactions between inline substitution and global optimization, a subtask
of the experiment was to construct the tools required to produce the transformed
sources. In this section, we describe some of the lessons learned from the implemen-

tation.

3.5.1 Implementation Overview

As discussed earlier, we built the inliner as part of the program compiler. Inline
substitution is implemented as a source-to-source transformation. It is performed on
the AST representation of the program. The first step in inlining is a check to ensure
that inlining is possible; this test checks for the five separate conditions that might
make the transformation illegal in our system, described in Section 3.5.2.

After the compiler has proven that a particular substitution is legal, the actual
transformation takes place in two phases. The first phase iterates over all of the sym-
bols appearing in the called procedure, assigning unique names to its local variables
and labels, and building a symbol table of the new names hashed on their original
names. The second phase walks the AST, updates the names of all variables and
labels, and moves the actual statements from the body of the callee to their new
locations in the caller.

During the first phase, all global variables retain their original names. Common
block definitions are added to the caller as needed. In the absence of name conflicts,
local variables and labels retain their original names. If a conflict arises, local variable
names are textually altered, and new labels are generated by incrementing the label
number until a unique label is generated.

Formal parameters are renamed to their corresponding actual parameters from
the call site. Two cases of interest arise: expression-valued parameters and array
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parameters. If the actual is an expression rather than a variable, the inliner generates
a temporary and inserts an assignment before the procedure body to evaluate the
expression and save its value. Constant-valued expressions are a special case. Unless
the formal parameter appears on the left-hand-side of an assignment, no temporary is
generated. (Although the FORTRAN standard forbids assignments to constant valued
formals, it happens often enough in real programs to warrant handling it.)

The most complicated mapping of formals to actuals occurs with array valued
actuals. The mapping relies on the fact that Fortran uses column-major storage. For
an n-dimensional formal f, the inliner currently requires that the actual must match
the formal in each of its first n-1 dimensions. The actual may contain more dimensions
than the formal. Alternatively, the actual parameter may specify a location other than
the first element of the array. This results in passing a subsection of the actual array.

The second phase of the inliner renames all references to variables and labels based
on the translation table built in the first phase. Next it moves the statements that
comprise the callee’s body into an appropriate position in the caller. The executable
statements are moved together.

e For a subroutine call, these statements simply replace the CALL statement.

e For a function call, they are moved immediately above the statement containing

the call site. A temporary is created to hold the function’s return value.

If the statement containing the call site has a label, the label is moved to the beginning
of the inserted code. Declarations for the variables from the callee are inserted with
those of the caller. COMMENT, IMPLICIT, and ENTRY statements are removed.!® A
number of minor issues arise in translating CALL and RETURN statements.
e RETURN statements are converted to GOTO statements that refer to a label
immediately following the inlined procedure body.
o If the callee is a FUNCTION, then an assignment to the temporary designated
for the return value is generated at each RETURN statement.
o If the procedure uses FORTRAN’s alternate return mechanism to change the
return address, then the RETURN statement is translated to a GOTO that targets

the appropriate label-valued parameter.

19Comments are removed to limit the growth of the inlined program. The implicit statements are
removed because they may conflict with implicit typing in the caller. Instead, type declarations
are added when they do not already exist for every variable in the called procedure including those
temporaries generated by the inliner. Finally, entry statements are removed so as to not have
multiply defined subroutines.
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o If the call site specifies an entry point rather than a procedure, the inliner
must-inline the entire procedure and add a jump to the location of the ENTRY
statement. (That part of the callee’s body preceding the ENTRY statement must
remain intact in case the subsequent code jumps back to it.)

The inliner handles each of these appropriately.

Figure 3.13 shows an example which may clarify some of the issues. The placement
of declarations and data statements ensures that meaning is preserved. Rather than
attempt to resolve implicit typing conflicts between procedures, the inliner creates
declarations for all implicitly typed variables from the callee. The declarations and
data statements originating from b are sandwiched between a’s declarations and data
statements so that they remain in their original order. Any new declarations for b
precede b’s declarations to ensure that dependences between declarations are satisfied.
An example of this might be a parameterstatement that is used to dimension an array.

3.5.2 Failure to Inline

Five situations can prevent the inliner from constructing a valid FORTRAN program.
Some of these are fundamental problems that any inlining tool will encounter; others
are idiosyncratic to our implementation.

1. Inlining replaces the formal parameters of the callee with the actuals from the
call site. For this to be meaningful, the formal and its corresponding actual must
agree in type. If the formal and actual have different types, the transformation

subroutine a subroutine a
a’s declarations a’s declarations
a’s data statements new declarations for b
ves b’s declarations
10 if (b(x)) then b’s data statements

a’s data statements

10 begin body of b
ret = return value for b
goto 1

1 if ret then

Figure 3.13 An example of inlining a call site.
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cannot be performed. A program that contains such a call site does not conform
to the FORTRAN standard.

Nonetheless, few FORTRAN compilers enforce this restriction. We found such
call sites in our study; others have reported similar results [CS85]. Some, quite
obviously, had been carefully crafted to achieve specific behavior. For example,
in euler, one call site passes an array of reals to a formal that is a.complex
array, relying on the standard’s requirement that complex numbers must be
implemented as pairs of reals.

Another class of problems arises when an actual parameter and its corresponding
formal parameter are declared with different dimension information. These
problems manifest themselves in two different ways: the number of elements in
each dimension and the number of dimensions.

The inliner requires that the sizes of the first n — 1 dimensions specified in the
callee be identical to the corresponding dimensions in the caller. While more
complex mappings can conform to the storage, such remapping can introduce
a level of complexity into all the subscript expressions.

If the actual parameter has more dimensions than its corresponding formal,
the inliner translates references to the formal into references to the actual in
a straightforward manner. (This case is the classical FORTRAN dimension re-
duction at a call site.) If the actual parameter has fewer dimensions than the
formal parameter, the references can still be translated. However, the resulting
references can be substantially more complex than their original forms.

In both cases that remap storage, changes to the size of an inner dimension or an
increase in the number of dimensions, we disallow inlining. This decision stems
from our caution about generating extra multiplies in subscript expressions as
a result of inlining, and thus, potentially hurting program performance and

analysis for optimization.

To allow for safe application of anchor pointing, the transformer does not inline
any call site that appears in the second term or subsequent terms of a boolean
expression. This optimization, also called a short circuit optimization, cuts short
the evaluation of an expression as soon as its value has been fully determined.
In the expression (a .and. b), the compiler can avoid evaluating b if evaluating
a yields false.
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Strictly speaking, any program whose behavior changes under this transforma-
tion does not conform to the FORTRAN standard. Nevertheless, we felt that the
inliner should preserve the original program’s behavior in this case. To trans-
form the source in a way that preserves its original behavior under inlining and
anchor pointing requires the introduction of additional control flow operations.
To simplify this situation, we elected to disallow inlining of any call except the

leftmost in a boolean expression.

4. A call site that invokes a procedure-valued parameter cannot be inlined unless
the compiler can, through interprocedural analysis, determine that the proce-
dure variable has a single value across all invocations of the caller. If the variable
has multiple values, the transformer cannot replace the call site with the body

of any single procedure.

Even with this restriction, the transformer handles the most common use of
procedure-valued parameters in scientific FORTRAN programs. Programmers
often pass into a procedure the name of another procedure that implements
the mathematical function being manipulated. This simplifies applying the
overall algorithm to different functions, but retains the property that, within
a single compilation, the procedure-valued parameter has a single consistent
value. In our experience, this is by far the most common use for procedure-

valued parameters.

5. FORTRAN provides a mechanism to declare a variable static, the SAVE statement.
The value of such a variable is preserved across invocations of the procedure
in which it is declared. To preserve the correct behavior of these variables
requires the introduction of a generated COMMON block in every instance of the
procedure body. To date, we have not implemented this transformation.

As shown in Figure 3.2, even with these restrictions, we were able to eliminate most

of the dynamically executed procedure calls.

3.6 Related Work

This section presents descriptions of numerous other implementations of inline sub-
stitution. Some of these include experimental results. The presentation is divided
between inlining to reduce call overhead, and inlining to enhance optimization. Two
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distinct themes can be derived from this discussion. First, improvements due to
inlining depend upon the programming language, the level of optimization in the
compiler, and to some extent, the architecture of the target machine. Second, lit-
tle experimental data is available to understand which optimizations are enabled by

inlining.

3.6.1 Inlining to Reduce Call Overhead

For a long time, the primary goal of inline substitution was to reduce call overhead,
the saving and restoring of state around procedure calls. The first study undertaken
to understand the impact of inlining on call overhead was Scheifler’s [Sch77]. He
implemented inlining in a compiler for Clu, selecting call sites for inlining based on
execution profiles, and restricting overall program growth to twice its original size. He
observes that in data abstraction languages such as Clu, programs consist of many
very short procedures. Moderate execution time improvements of 5 to 28 percent
were demonstrated on 4 programs.

Hwu and Chang used a similar inlining strategy on C programs, considering not
only the increased code size as the cost of inline substitution of a call site, but also
the size of the control stack during execution [HC89].

Davidson and Holler also implemented source-to-source inlining for C programs,
giving results for 4 different target compilers [DH88]. They report an average exe-
cution time improvement of 12 percent on 13 programs. However, the improvements
range from a 60 percent improvement to a 9 percent degradation. They attribute the
cases of increased execution time to be caused primarily by register pressure. The
only variables allocated to registers by the observed C compilers are those explicitly
designated by the programmer using register declarations. After inlining, the num-
ber of register declarations in a procedure may increase, in some cases exceeding the
available number of registers.

In Holler’s dissertation, she further investigates the effects of inlining on execution-
time performance [Hol91]. By avoiding inlining when the number of register decla-
rations will become too large, she still observes adverse effects of register allocation.
Many compilers divide the burden of saving registers around procedure calls between
the caller and the callee. Inlining moves the location of these saves and restores. It
can potentially move them into a place in the program that is more frequently ex-
ecuted than their previous location, resulting in execution time degradation. Holler
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also provides extensive evidence to suggest that inlining does not usually adversely

affect paging and caching.

3.6.2 Inlining to Improve Optimization

Much of the literature suggests that the value of inline substitution should be en-
hanced by subsequent global optimization. Hecht included inline substitution in an
optimizing compiler for a structured programming language [Hec77]. A very restricted
inlining strategy eliminated about 20 percent of the calls, with about a 2 percent de-
crease in the program intermediate representation. The general-purpose optimizer in
the Experimental Compiling System at IBM used inline substitution as a key com-
ponent in the implementation of an optimizing compiler [Har77b] [ACF*80].

For these two compilers, the kinds of improvements anticipated by inlining are
not given. However, other work suggests that improvements will arise from (1) prop-
agating constant-valued parameters through the body of the called procedure, (2)
enabling code motion across the former call site, and (3) exposing more information
to the register allocator [Bal79] [RG89a] [WZ85]. Unfortunately, very little experi-
mental evidence has been published to prove these assumptions.

Prior to this study, only two others have analyzed through experimentation the
impact of inlining on optimization. Richardson and Ganapathi’s study on 5 Pascal
programs demonstrated an average of 20 percent improvement [RG89a]. However,
the compile times grew on average by a factor of five. They provide evidence to sug-
gest that the performance improvement was primarily due to eliminating call over-
head. Huson investigated inlining in Parafrase, an automatic parallelization system
for FORTRAN ‘[Hus82]. His results were mixed, with only a third of the procedures
demonstrating any improvements. However, a single example yielded a speedup of
4 due to inlining. Huson’s study was performed on the LINPACK library of subrou-
tines. Recall that the linpackd program was the only one from our study that showed
substantial improvement when inlining and parallelization were combined.

3.7 Chapter Summary

To close this chapt=r, we review the findings from the study that will be used in the
rest of this dissert..ion. First, secondary effects of inlining mask the improvements
due to elimination of call overhead and improved optimization. We have suggested
ways the compiler can avoid secondary effects in some cases. Secondly, the impact of



62

code growth on execution time should not be a tremendous concern. However, the
adverse impact of procedure size on compile time suggests that limiting procedure
growth is indicated.

Based on the results of this study, one could conclude that inlining is not a worth-
while optimization for FORTRAN compilers. At least for the scalar compilers, the
benefits were not significant enough to make the costs tolerable. The potential for
performance degradation is also discouraging. However, if it were possible to restict
inlining to high-payoff optimizations, the significant improvements from the optimiza-
tions would make up for any degradations associated with inlining. An example of
such optimizations is parallelization. The improvements in execution time of the
parallelized versions of linpackd due to inlining are an indication that inlining can
significantly improve parallelization when applied to appropriate call sites. In the
next chapter, we give a strategy for inlining that is designed to enable memory opti-
mizations. This approach is similar to what would be used to enable parallelization.
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Chapter 4

Goal-Directed Interprocedural Optimization

During the study in Chapter 3, we observed that execution time improvements due
to inlining were small, with occasional performance degradations. The failure of
inlining to improve the code suggests that either (1) secondary effects mask the true
improvements, or (2) the negative effects of procedure calls on code optimization are
not substantial.

We were interested in determining which of these was the case. If secondary ef-
fects were masking improvements, then other interprocedural techniques might still
be effective. Improved constant propagation has been suggested as the most impor-
tant effect of inlining [Bal79] [WZ89]. To test this, we performed an experiment to
isolate the effects of interprocedural constant propagation. We also studied improve-
ments when constants information is further refined by cloning. The experiment,
described in the next section, proved that interprocedural constants are reasonably
important — yielding greater improvements than occurred with inlining. However,
further improvements due to cloning were not very significant.

The failure of inlining and cloning to yield improvements prompted the following
question: when would the improvements due to inlining and cloning be significant
enough to outweigh the costs and any degradations caused by secondary effects?
We discovered the answer following a second experiment, described in Section 4.2.
The second experiment was in response to a challenge to improve performance of a
benchmark program using any known optimization techniques. The optimizations had
to be possible on an automatic system. Inlining and cloning turned out to be critical
to improving the program; they were needed to enable high-payoff optimizations.
These high-payoff optimizations required surrounding context to be applicable, and
the interprocedural transformations were used to provide the needed context.

We call the use of interprocedural transformations to enable certain high-payoff
transformations goal-directed interprocedural optimization. This chapter presents a
goal-directed approach to inlining and cloning. Since the two experiments were critical
in forming this strategy, the chapter begins with a description of the experiments in
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the next two sections. Section 4.3 presents an overview of the strategy. Analysis
for the claning portion is described in Section 4.4, and the analysis for the inlining
portion is described in Section 4.5. Related work is described in Section 4.6, and
Section 4.7 concludes the chapter with a summary.

4.1 Constant Propagation and Cloning Experiment

We performed the experiment depicted in Figure 4.1 to assess the benefits of inter-
procedural constant propagation and cloning based on interprocedural constants. By
hand, we applied interprocedural constant propagation to the 8 programs from the in-
lining study. The constants were located using the “Pass Through” method improved
by side-effect information, as described in [CCKT86].

After applying constant propagation, we looked for procedures invoked from mul-
tiple call sites in the program. We examined values of global variables and actual
parameters at each call site. Whenever a unique set of constants appeared at a call
site, we formed a clone of the called procedure and propagated the newly exposed
constants to the cloned version. The result was a maximal cloning of the program
based on interprocedural constants information.

Cloning was possible in only 5 of the 8 programs. The other 3 programs were
eliminated from consideration. For the remaining 5 programs, we examined the effects
of constant propagation and cloning on both code size and execution time.

As a simple measure of the changes in code size, we counted number of non-
comment lines in the text size for the original program, the program after con-
stant propagation, and the cloned version. The changes in program size are given
in Figure 4.2. As a result of constant propagation, the program size is significantly

FORTRAN
source

propagate
constants

clone

\
FORTRAN FORTRAN
source source

FORTRAN compile and run

Figure 4.1 Structure of cloning and constants experiment.
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reduced; on average it is 23 percent smaller than the original program. After cloning,
in only twe cases the programs are larger than their original size, and on average the
programs are 14 percent smaller. Even the difference in size between the constant
propagated version and the cloned version, represented by the column labelled §, is
small. On average, this difference is 11 percent. These results suggest that even with
the maximal amount of cloning, growth in program size is manageable.

We also measured execution times for the original program, the constant prop-
agated program and the cloned program. The measurements were gathered on the
MIPS 120/5 compiler, version 2.1. Effects on execution time for the program version
with constant propagation and the version with constant propagation plus cloning
are shown in Figure 4.3. The numbers shown are percentages of the execution time
of the original program. All execution times result from full global optimization!?.

The results in Figure 4.3 show that fairly significant improvements are possible
with constant propagation - nearly 9 percent in two cases, and overall an average
of 4.8 percent improvement. However, the results for cloning do not demonstrate
a significant improvement over constant propagation. Only two cases demonstrated
noticeable improvement due to cloning — cedeta and linpackd. It turns out that these
two programs gained certain “important” constants from cloning. When we explain

cloning +

constants | constants )
cedeta -4 5 9
euler . -52 -91 11
linpackd -24 -5 3
wanall -4 6 8
wave -29 -23 24
avg -23 -14 11

Figure 4.2 Percentage change in text size after
constant propagation, and after cloning.

11The MIPS compiler performs interprocedural register allocation at its highest level of optimization
[Cho88]. The result of increased constants information appeared to interact poorly with interproce-
dural register allocation. We speculate that simplification of inner loop bodies may have permitted
loop unrolling in a few cases. Since loop unrolling requires additional registers for addresses and
floating point values, leaf procedures were using extra registers, causing register pressure in pro-
cedures higher in the call multigraph. The results reported in the table use the second highest
optimization level, which does not perform interprocedural register allocation.
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cloning +

constants | constants

cedeta 8.8 10.4
euler 8.9 8.7
linpackd 0.3 1.6
wanall 0.0 0.0
wave 5.9 6.0
avg 4.8 5.3

Figure 4.3 Execution-time improvements due
to constant propagation and cloning.

what constitutes an important constant later in the chapter, we will return to this

experiment.

4.2 Optimizing matrix300

Colleagues at Rice have been demonstrating impressive results with optimizations
designed to improve memory hierarchy performance [CCK90]. In particular, strip
mining is used to improve cache blocking, scalar replacement is used to place array
values in registers, and unroll and jam is used to adjust register pressure and loop bal-
ance. In response to this work, a researcher at SUN Microsystems became interested
in the effectiveness of these techniques on the SPARC microprocessor. He challenged
us to apply these techniques to the SPEC benchmark matrix300.

Using a combination of interprocedural transformations and memory-management
transformations, we were able to achieve substantial improvements on both the SPARC
and the MIPS!2. The success of the experiment suggests a promising approach to in-
terprocedural optimization: interprocedural transformations are useful in enabling
important high-payoff intraprocedural optimizations. This section describes the ex-

periment with matrix300.

4.2.1 Structure of the Program

The call multigraph of matrix300 is shown in Figure 4.4. The bulk of the compu-

tation is carried out in dgemm and its components.

e dgemm computes a matrix-matrix product, using dgemu.

12This experiment was done with Preston Briggs.
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main
- / \
tme dgemm prat
dgemv
daxpy

Figure 4.4 Original call multigraph for matrix300.

e dgemv computes a matrix-vector product, using dazpy.
e dazpy computes ¥ — ¥ + af.

All of the floating-point computations are actually performed in dazpy. Its form is
very simple:!3
subroutine dazpy(m, x, A, ia, Y, iy)
dimension A(ia, m), Y(iy, m)

doi=1m
Y(1,i) = Y(1,i) + x * A(1,1)
enddo

end /* daxpy */
The unusual form of the subscripts is simply a notational convenience, allowing the

original authors a handy way of expressing access to non-unit stride vectors.

4.2.2 Improving Memory Performance

Examining the code for dazpy, we notice that each iteration of the loop contains three
memory accesses and two floating point computations. Since floating point operations
take less time than memory accesses, most of the execution time for the loop will be
spent waiting on the memory accesses. Also, because each iteration crosses an entire
column of the arrays X and Y, the loop will probably generate a large number of

cache misses.

13Note that some variables have been renamed for clarity. Further, the BLAS routines were renamed
to emphasize that all floating-point computations are double-precision.
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We would like to apply optimizations to reduce the number of memory accesses in
the loop. The key to avoiding memory accesses is recognizing reuse [CCK90]. When
values are used multiple times, they can be kept in registers (or cache). By exposing
reuse, accesses to memory are converted to register or cache accesses, which are much
faster. Techniques for exposing reuse include scalar replacement and unroll and jam.

Unfortunately, dazpy offers no opportunities for scalar replacement; that is, there
is no reuse of any of the array locations and therefore no profit in allocating array
elements to registers. Further, the absence of reuse suggests that cache will be inef-
fective. Unroll and jam is often suitable for exposing opportunities for scalar replace-
ment; however, to perform unroll and jam requires nested loops, and dazpy contains
only a single loop. Examining dgemv below, we notice that the call to dazpy is con-
tained inside a loop. This suggests that inlining dazpy would create a doubly-nested
loop, suitable for transforming with unroll and jam.

subroutine dgemy(m, n, A, ia, X, ix, Y, iy, job)
dimension A(ia, n), X(ix, n), Y(iy, n)
if ((iabs(job) - 1) / 2) = 0 then
ii =ia
ij=1
else
i=1
ij=ia
endif
doj=1,m
y(1j) = zero
enddo
doj=1,n
k=14+(G-1)*ij
call dazpy(m, X(1,j), A(k, 1), ii, Y(1, 1), iy)
enddo
end /* dgemv */

Inlining dazpy involves an ugly array reshape of A. Difficulty arises because the
variable i: is passed to formal ¢a in dazpy, representing the leading dimension size
in A’s declaration. If the compiler were to automatically perform the translation
and substitute for k, the resulting .reference to A(1,i) in dazpy would be
A(1+(j-1)*ij+(i-1)*ii,1). This subscript expression is complex enough to defy
the dependence analysis [Kuc78] on which scalar replacement and unroll and jam rely.

The value of i¢ depends on the parameter job so we trace backwards through the
program to locate the value of job. In dgemm, the value of job passed into dgemv



69

main

/ \

tme prnt
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\ /
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Figure 4.5 Call multigraph for matrix300 after cloning.

depends on the value of the parameter jtrpos. Each of the eight call sites in the main
program binds a different constant value to jtrpos when calling dgemm. By cloning
the calls to dgemm from main, the constant value of jtrpos is exposed for each clone.

After cloning, we perform constant propagation within each clone to determine
the value of job at each call to dgemv. Unfortunately, in four of the clones, dgemu is
called with a value of 1 for job; in the other four clones, job has the value 3. Again,
we can use procedure cloning - this time two copies of dgemv are created (dgemu!
and dgemv3), for the two values of ]ob The final call multigraph is illustrated in
Figure 4.5.

Performing constant propagation on the clones of dgemv determines the value of
1z and ij and allows dazpy to be inlined cleanly. With some simplification, we arrive
at the following loop nest for dgemv3:

doj=1,n
doi=1,m
Y(1,i) = Y(1,1) + X(1,])) * A(j, i)
enddo
enddo

For dgemvl, the results are similar.
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At this point we are finally in a position to make use of the transformations
described in [CCK88]. We perform loop interchang:, loop fusion,"* unroll and jam,
and scalar replacement. The transformed source of dgemv3 is shown below:

do i=1,m,10
y0 = zero
yl = zero

y9 = zero

doj=1,n
x0 = X(1, j)
y0 = y0 + x0 * A(j, i+0)
yl =yl + x0* A(j, i+1)

¥y9 =y9 + x0 * A(j, i+9)

enddo

Y(1,i40) = y0

Y(1,i+1) =yl

Y(1,i49) = y9
enddo

4.2.3 Experimental Results

The table below summarizes the results of our experiment. In addition to the relevant
timings, we have included the object code sizes for both versions of the program.

compiler original modified ezecution
machine options | (bytes) | (seconds) | (bytes) | (seconds) | improvement
Sparcstation 1 -04 122,880 466 122,880 229 2.0x
mips M-120 ' -03 114,464 l 755 l 112,976 ‘ 229 3.3x

The improvements on each machine are quite significant. There are several sources
of improvement:

Memory: In the original version of dgemv, there were mn fetches from A, n fetches
from X, mn fetches from Y, and mn + m stores into Y. The improved code
avoids much memory traffic by holding values in registers for reuse (the variables
y0, ..., y9, and z0). Overall, dgemv3 requires mn fetches from A, mn/10
fetches from X, and m stores into Y'; there are no fetches from Y. Briefly,
the improvements avoid nearly 100% of the stores and 50% of the loads. In
matriz300, we save about 216 million stores and nearly as many loads.!®

14Fusion is performed with an earlier loop that initializes the first row of Y to 0.
15 dgemm is invoked 8 times, on 300 x 300 matrices.
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Scheduling: In dgemv3, each of the multiply-accumulate statements can potentially
be executed in parallel. Both compilers take advantage of this freedom when
scheduling. The original code in dazpy is less amenable to scheduling improve-
ments, even after unrolling, because of the store to Y. Without dependence
analysis, the optimizers do not recognize the lack of dependence between suc-
cessive stores and loads to Y.

Inlining and unrolling: The improved code has fewer procedure calls and less loop
overhead. However, it should be noted that the call overhead for 720,000 calls is
insignificant when compared against the improvements due to the elimination
of almost 500,000,000 memory accesses.

Further improvements seem possible. In particular, further inlining would provide
additional opportunities for loop restructuring to exploit reuse, possibly leading to

better cache behavior.

4.3 A Strategy for Interprocedural Optimization

Our previous experience has shown that, in many cases, secondary effects in the
compiler and optimizer can obscure any improvement derived from cloning or in-
lining. The results of the experiment with matrix300 demonstrate that cloning and
inlining are worthwhile when they enable high-payoff optimizations. This suggests a
new strategy for performing these interprocedural transformations: use cloning and
inlining only when they can enable application of a high-payoff transformation.

The high-payoff memory-managemerit transformations are characteristically dif-
ferent from the types of optimizations performed by typical global optimizers (like the
commercial compilers in the inlining study and the cloning experiment from Section
4.2). For one thing, the high-payoff optimizations require a great deal of surrounding
context to be applicable. Additionally, significant improvements are possible from a
single application of a high-payoff optimization.

These two properties are in contrast with the low-level optimizations performed
by typical global optimizers. Low-level optimizations are often applicable and require
little surrounding context, but they achieve only small improvements for each appli-
cation. Thus, a characterization of our optimization strategy is to use interprocedural
transformations in a restricted way only for high returns, rather than widespread use
aimed at accumulating small improvements. Inlining and cloning are used in the

following ways:



-1
[SV]

e Clone to expose additional interprocedural constants.
Exposing additional constants can simplify control flow and subscript expres-
sions. It also can provide bindings for parameters used as array dimension sizes.
As a consequence, cloning can improve the results of inlining.

¢ Inline to expose loop nests.
The loop nests provide the adequate context to perform high-payoff optimiza-
tions. '

In this section, we develop the insight from the matrix300 experiment into strategies
for inlining and cloning. At the end of the section, we present an algorithm for goal-
directed interprocedural optimization. This section only provides an overview of the

algorithm, with details deferred until later in the chapter.

4.3.1 Cloning Strategy

By creating copies of a procedure for distinct sets of contant parameter values, cloning
exposed constants that enabled optimization. The program was improved in three
ways. First, control flow was simplified. Second, constants in subscript expressions
simplified dependence analysis. Finally, constants passed as array dimensions resulted
in less complicated subscript expressions. This made inlining possible and improved
the results of dependence analysis.

Based on our experience, certain types of constants are important to optimization.
If we want to avoid unnecessary cloning, we can just form clones from calls that -
expose “important” constants. Also, since cloning exposes constants used as array
dimensions, it should be performed before any inlining. These insights led to the
following approach for cloning:

1. discover “important” constants.

2. in topological order, visit each procedure p:

(a) partition calls to p by values of the important constants.

(b) propagate newly exposed constants through procedure bodies.

There are a couple of important points in this approach. First, we visit the procedures
in topological order. This is because cloning a procedure can change the optimization
of its descendants in the call multigraph. Recall from matrix300 the impact of cloning
dgemm. Once the value of its parameter jtrpos became constant, we were able to
determine the value of job in dgemv. As a result, it became possible to clone dgemv.
By cloning dgemv, the value of the variable 7 became known, which in turn made
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possible inlining the call to dazpy. This suggests a topological order for cloning, so
that a procedure is visited prior to its descendants. Further, it suggests that inter-
procedural constants be incrementally updated to take advantage of newly exposed
constants coming from ancestor procedures.

Newly exposed constants are also propagated through the procedure bodies for the
cloned versions. In matrix300, this was needed when cloning dgemm. After cloning,
the constant value of jtrpos was applied to expressions that determine the control
flow within dgemm and the value of job. This, in turn, affected cloning of dgemv.1®

Given the above algorithm, the only problem remaining is how to determine which
constants are important. In our experiment with matrix300, the critical constants fit

into one of the following three categories:

1. They determine control flow.
2. They determine the value of a parameter used as an array dimension size.
3. They contribute to the value of a subscript expression.

There are other constants that are not useful in optimization. An excellent example
is the set of string constants passed to an error message routine. Even constants used
as terms in an expression (such as a multiplier) do not usually improve execution
time.

We gained some of the insight about what constants are important from the exper-
iment in Section 4.1. As a result of cloning, many of the programs gained constants
that appeared as terms in expressions. These turned out to have insignificant effects
on execution time. However, on cedeta and linpackd, where execution time was no-
ticeably improved after cloning, the constants exposed fit into one of the above three
categories. On linpackd, the only constant exposed was an array dimension size. After
cloning, the address calculations for this particular array were greatly simplified and
required fewer registers. On cedeta, constants were exposed that determined control
flow through two critical procedures. The results from the experiment described in 4.2
give further evidence to the importance of these types of constants, and demonstrate
their usefulness for a variety of optimizations.

16We would like to avoid making this extra pass in which newly exposed constants are propagated
over a cloned procedure body. This would require that enough information be recorded during
local analysis of a procedure to be able to determine values of expressions dependent upon incoming
constants. Recorded functions that are based on unknown parameter values are called jump functions
[CCKT86]. An efficient and useful representation of jump functions for a particular problem is
difficult and is not addressed in this dissertation.
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To be able to partition based on “important” constants, we first need to identify
all formal_parameters and global variables in a procedure that, if constant, would
perform one of the above three functions. For a procedure p, we call this set of vari-
ables CloningVars(p). Calculating CloningVars(p) for each procedure is formulated
as an interprocedural problem. Within p, globals and formals are located that are
used either directly or through a sequence of assignments to determine control flow or
subscript information within a procedure. After the preliminary local analysis, this
information is propagated backward through the call multigraph, mapping formal pa-
rameters in CloningVars(p) to the variables that determine their values in callers of p.
The final set CloningVars(p) contains the formals and globals that affect control flow
and subscripts somewhere in the program — either in p or in one of its descendants.
The calculation of CloningVars is presented in Section 4.4.

4.3.2 Inlining Strategy

Once constants used as a array dimension sizes have been exposed by cloning, the
compiler can proceed to select call sites for inlining. The goal for inlining is simple
— we want to inline call sites in a way that enables application of the memory-
management optimizations. Memory-management optimizations are used to adjust
balance [CCK88]. A machine’s balance 8y is the number of floating point operations
that can be performed in the time it takes for a single memory access. The balance
of a loop B is roughly the ratio of memory accesses to floating point operations in
the loop. If for some loop I, B; > Bu, then during loop execution, there are waits on
memory accesses (a memory-bound loop).

The memory-management transformations can improve memory-bound loops by
exposing reuse. In this way, fewer of the variable references actually require accesses
to memory. For memory-bound loops, exposing reuse increases the extent to which
memory accesses and floating point operations are overlapped, thus reducing over-
all program execution time. (For compute-bound loops, the memory-management
transformations will effect little execution-time improvement, so these loops will be
ignored.)

The inlining strategy is to produce loop nests of two or more loops. This is
necessary only when we have an inner loop that is memory-bound. The inlining

strategy is summarized as follows:
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1. for each inner loop [/, compute ;.
2. select loop [ in reverse topological order:
(a)if I is memory-bound and the only loop in a leaf procedure, attempt to
inline into caller.

(b) otherwise, if [ is memory-bound, and contains call sites, consider inlining
to eliminate all calls in loop.
i. assuming all inlining is legal, perform inlining.
ii. recalculate 8, and goto 2a.
The algorithm produces loop nests around memory-bound inner loops in two ways.
First, it inlines leaf procedures containing a single loop into their callers. If the call site
appears inside a loop, the result is a loop nest of two or more loops. For inner loops
in non-leaf procedures, the algorithm attempfs to inline all the call sites in the inner
loop. This creates an inner loop with no calls, and possibly a loop nest with no calls.
Neither approach necessarily produces a loop nest, but both tactics enable inlining
other call sites invoking the inlined version. Even if an inlining decision does not
produce a loop nest to which we can apply the memory-management transformations,
inlining may expose reuse as a result of renaming from formal to actual parameters.

The algorithm specifically targets leaf procedures with single loops and inlines
inner loops in callers because these are the most likely to benefit from memory op-
timization. For the best results with the memory-management transformations, we
want loops with no procedure calls and would prefer perfect loop nests (i.e., loops
made of a loop body surrounded by multiple loop headers).

Call sites are considered for inlining in reverse topological order. Recall from
Chapter 3 that reverse topological order guarantees that the minimal amount of
inlining is performed by the compiler. It also makes it possible to inline a single-loop
procedure into its caller, and subsequently evaluate the caller as a target for inlining
based on a new value for the loop’s balance.

From an implementation perspective, this algorithm requires a formulation of
loop balance. Because balance is considered for loops containing procedure calls, an
interprocedural formulation is required. These topics are covered in Section 4.5.

4.3.3 Algorithm for Goal-Directed Interprocedural Optimization

Combining the techniques in the previous two sections gives us the algorithm shown
in Figure 4.6. To complete the algorithm description, a few clarifications are needed.
The cloning phase examines constants at both call sites and procedures. Interprocedural



Phase 1: Cloning

1. Compute CloningVars(p) for each procedure.
2. In topological order, visit each procedure p:
(a)Partition calls ¢; to p by (CloningVars(p) N CONSTANT(¢;))
(b) Create a cloned version for each partition.
(c) For each cloned version cv:
i. Propagate CONSTANT(cv) through cv.
ii. Update CONSTANT(c;) for call sites ¢; in cv.

Phase 2: Inlining
1. For each inner loop [, compute 3.
2. Visit call sites ¢ in reverse topological order:

(a) If c invokes a leaf procedure that contains a single memory-bound inner
loop I, attempt to inline c.
(b) If c invokes a non-leaf procedure containing a memory-bound inner loop |/,
i. Evaluate inlining of all call sites in I.
ii. If all inlining legal, perform inlining.
iii. Reevaluate 3; and goto 2a.

Figure 4.6 Goal-directed interprocedural optimization strategy.

constants, as defined in Chapter 6, exist only for procedures. The constants at call
sites in procedure p include CONSTANT(p) and any constants initiated in the proce-
dure, as long as they are not modified on any path to the call site. In both cases, the
constants appearing as actuals at the call site must be mapped to the corresponding
formals in the called procedure.

As a second point, the intersection in step 2a of the cloning phase should be
explained. The set elements of CONSTANT(c;) are (variable,value) pairs. When the
intersection is performed, the variables from these pairs are extracted and compared
with the variables in CloningVars(p).

4.4 Calculating CloningVars

The set CloningVars(p) for some procedure p contains the formals and global variables
that may either affect control flow or be used for dimensions or subscript expressions.
These variables are used in one of these ways either in the procedure, or in one
of its descendants in the call multigraph. Once interprocedural constants have been
calculated, the set of CloningVars can be compared against the variables with constant
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values to determine if cloning a particular call will expose a constant value for a
variable in CloningVars.

Calcul;ting CloningVars can be formulated as a backward interprocedural prob-
lem. As with previous interprocedural analysis problems, calculation o Cloning Vars
occurs in two phases. The local analysis builds a list of the globals and formals that af-
fect control flow, are used in subscript expressions, or are passed as actual parameters
at some call site in the procedure. The ones used as actual parameters are associated
with the corresponding formal parameters of the called procedure. This information
is required by the propagation phase, which maps variables in CloningVars(p) to
variables that determine their values at call sites invoking p.

4.4.1 Phase 1: Local Analysis

The approach for local analysis is inspired by Ball’s work [Bal79]. To determine the
benefits of constant propagation on a procedure (as a result of inlining), he calculates
the strong dependency set for each statement. For a given statement, the strong
dependency set consists of those variables that, if constant, would determine the value
of the statement. We would like something similar to the strong dependency sets for
the important program points -~ control flow decisions, subscript expressions and
actual parameters. However, Ball’s formulation is too pessimistic. Whenever paths
merge in the control flow graph and two definitions of a variable reach a statement,
the strong dependency set for the statement is assumed to be L.

Even when control flow paths merge, a variable can still be constant. The follow-
ing code fragment illustrates this point:

Sl: z=...

S2: if (¢) then

S3: z=...
endif

S4: if (z) then

In the example, z is a local variable of the procedure. Since z is used in the conditional
at S4, we are interested in what globals and formals determine the value of z. There
are two definitions of z that reach S4: at S1 and S3. There are several ways in which
constant propagation could determine the value of z.

If 51 and S3 assign the same constant value to z, then z is constant. Otherwise,
if we can determine that the condition at S2 will evaluate to false, then z is constant
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if constant at S1. Similarly, if the branch at S2 always evaluates to trie, then z is
constant if constant at S3. Knowledge about constants at any two of S1, S2 and S3
may be adequate to determine the value of the branch at S4. Thus, the value of a
variable is dependent both on its definitions and on the control flow decisions that
guard the definitions.

This motivates a simple formulation of local analysis for CloningVars, which may
perform cloning when unnecessary but does not miss any important opportunities.
The basic idea is to propagate globals and formals to their uses to derive the list of
globals and formal parameters that determine the values of expressions at important
program points. To perform this propagation, we take the union of the sets for
each definition reaching a program point. This provides all of the possible variables
contributing to the value of the definitions of an expression. Variables determining
the value of the guards on the assignments will also be discovered since all guards are
considered important program points.

Local analysis is based on a static single assignment (SSA) representation of the
source [CFR*89]. To represent a program in SSA form, it is transformed so that
only one definition reaches a use. Definitions are given unique names, and each use
of a variable is renamed to correspond to the definition that reaches it. Wherever
two definitions reach a use, a new statement is inserted where the control flow paths
merge. The new statements, called ¢-functions, are definitions. The left-hand side is
a unique name for the definition, and the right-hand side is essentially a list of the
names for the reaching definitions. Edges in the SSA graph connect the definition of
a variable to its uses, to allow direct propagation of information from definition to
use.

SSA form is used in constant propagation because the space requirement is much
less than traditional data-flow techniques on the control flow graph, and it has a
better expected time bound [WZ89] [CFR*89]. We use the SSA representation for
this reason, but also because SSA form is already constructed in ParaScope to perform
local analysis for constant propagation.

Algorithm. The primary goal of the local analysis algorithm is to compute the
portion of CloningVars used directly in this procedure. For each node 7 in the SSA
graph, the algorithm constructs a variable set V. This is the set of variables that, if
constant, could determine the value of the node. Since nodes correspond to definitions
and uses of variables, a variable set will exist for assignment statements, conditionals
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and subscript expressions. Upon termination, the variable sets for important expres-
sions determine the value of CloningVars. '

The algorithm also builds annotations A! for the i** actual parameter at call site
¢, which provides the set of variables determining the value of the actual parameter.
These are used in translating formal parameter members of CloningVars(p), for some
procedure p, to the appropriate variables in p’s callers during the propagation phase.

The algorithm propagates variables that could be constant on entry — formal
parameters and globals that appear in the procedure body — to their uses in the
procedure. It begins by propagating these variables to their uses along paths where
they are not modified. Whenever variable sets for all operands on the right-hand side
of an assignment become available, the union of the variable sets is propagated to
uses of the defined variable. When multiple definitions of a variable reach a use (i.e.,
at ¢ nodes), the use inherits the union of variable sets for its definitions.

To simplify the presentation of the algorithm, assume that constants have already
been propagated and variables proven constant have been replaced by their constant
values. Assume also that formals and globals that appear in the procedure body are
represented by dummy assignments at the beginning of the code. (Note that we are
only interested in scalar variables.) These assignments are treated as definitions of
the formals and globals, and edges from these nodes to uses of initial values of the
variables are integrated into the SSA representation.

For a dummy node ngy, the set V,, contains only the formal or global that the
dummy assignment represents. Nodes are also created for constant-valued expres-
sions n., with variable sets V,, equal to §. All other nodes n have V, initialized to
T, indicating that the node’s variable set has not yet been determined. The value
of CloningVars for this procedure is initially . All annotations for actuals at call
sites in the procedure are also initialized to §. The Worklist is initialized to contain
outgoing edges from the dummy statements.
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Until the Worklist becomes empty, the following steps are performed:

1. Select an SSA edge from the Worklist. The target for the edge is node n
appearing in some sort of expression e, possibly a ¢-node. The variable set V.
can be determined as follows:

(a) if e is a ¢-node, we form the union of the sets V. for all the definitions
making up the ¢-node, including n.

(b) if e is some other expression, we form the union of the sets Va. for the
definitions of each of the operands in the expression, including . However,
in this case, all operands in the expression must have some set value defined
for them other than T. An expression is not processed until all of its
operands have defined set values.

2. If the e is the right-hand side of an assignment statement, as soon as V. has a
value other than T, V, can be propagated to uses of the defined variable. If V,
has changed, all SSA edges emanating from the defined variable are added to
Worklist.

3. If e determines control flow, or is part of a subscript expression (including step
sizes), we union the set V, with Cloning Vars.

4. If e is an actual parameter, we add V, to the annotation for the actual at the
call. '

The difference between the treatment of ¢-nodes and other expressions is simple. To
be able to determine the value of an expression, there must be at least one definition
of each of its operands for which we can determine the value of the operand. In the
case of ¢-nodes, there is a chance that the value will be constant if the value of only
one of the definitions can be determined.

Time Complexity. Constant propagation on the SSA graph has a time bound of
O(EV), where E is the number of edges in the control flow graph and V is the number
of variables in the procedure. However, the expected time bound is linear in the size
of the SSA graph [WZ89).

The algorithm for calculating initial CloningVars is more expensive than this
because the set values associated with a node can change more than twice. The
number of elements in a set V, is bounded by the number of scalar formal parameters
and global variables appearing in the procedure. Thus, the set values can change
once for every possible element in the set. We expect this number to be small, and to
not grow with the procedure size. This is consistent with assumptions made in other
interprocedural analysis algorithms [CK88b] [CK89].
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4.4.2 Phase 2: Propagation

The propagation phase adds to CloningVars(p) any variables of p that can be used
at important program points in p’s successors in the call multigraph. This requires a
function which maps variables in CloningVars(s) to variables in p, for some successor
s of p. This mapping relies on the annotations A! for the actual parameters at the
call to s, calculated in the local analysis phase. In the mapping function, assume p in-
vokes s at call site c¢. Then for a variable v in s, the mapping function is the following:

(v) = {v} if v is a global variable
mapelv) = AL if v is the ith formal parameter of p

Assume that the definition of map.(S) for some set of variables S is just the union
of the sets map.(v;) for each variable v; € S. Then the value of CloningVars(p) can
be determined by the following set of simultaneous equations:
CloningVars(n) =
CloningVars(p) U U.z(p—s) mapc(CloningVars(s))

4.5 Estimating Loop Balance

As a simple measure of loop balance, we can count the number of floating point
computations and memory accesses in the loop. Any variable reference is considered
a memory access, thus implicitly assuming that no variables remain in registers or
cache across accesses. This measure is not very accurate in a compiler that attempts
to expose reuse. However, if the measure indicates a loop is compute-bound, it would
definitely be compute-bound when variables were reused in registers or cache. Thus,
it allows us to ignore the loops that it considers compute-bound.

To take reuse into account in measuring loop balance requires dependence infor-
mation [CCK90]. A dependence suggests the occurrence of two accesses to the same
memory location. Certain types of dependences indicate that two accesses refer to
the same value - two reads, or a write followed by a read. Dependence analysis has
a quadratic time bound, and because it is potentially expensive, it is rarely found
in scalar optimizing compilers. Nevertheless, dependence analysis is critical to the
memory-management transformations. Because of the potential for dramatic per-
formance improvements — speedups of 2 and 3 in our experiment — the expense of
dependence analysis is warranted. The issue of incorporating dependence analysis
into the program compiler is addressed in Chapter 7.
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Assuming we can use dependence analysis to locate opportunities for reuse, we
have one remaining problem: our inlining algorithm requires that we estimate balance
in loops with call sites. The precision of dependence analysis makes it intractable
across procedure boundaries [Mye8l]. As a compromise, reuse is only considered
within a procedure. Memory accesses crossing procedure boundaries are considered
to be independent.

This approach is reasonable since reuse across procedure boundaries, even if de-
tected, would be difficult for a compiler to exploit. Inlining alone may expose reuse
across procedure boundaries, without even applying the memory management trans-
formations. After inlining, a better estimate of loop balance can be made when the
code representing a call site is in place.

The balance calculation is formulated as a backward interprocedural problem. In
a leaf procedure, the number of floating point operations and memory accesses are
counted, taking reuse into account. These counts are also determined for any loops
contained in the procedure. For a non-leaf procedure, the estimate of floating point
operations is the sum of operations occurring within the procedure and the estimate
of floating point operations for each procedure it invokes. The estimate of memory
accesses begins with accesses within the procedure, taking reuse into account. Added

to this are estimates of memory accesses for each procedure it invokes.

4.6 Related Work

For the most part, the primary goal of the inlining strategies presented in Chapter 3
is to eliminate procedure call overhead. In general, these inlining strategies are driven
by heuristics weighted toward frequently executed procedures, while attempting to

control program growth:

e Hecht’s SIMPL-T compiler only inlines procedures called once with a single
entry and exit [Hec77].

o Scheifler substitutes any procedure not resulting in an increase in code size,
and then procedures with the highest ratio of expected number of executions
to net increase in code size [Sch77]. He restricts the final program size to twice
its original size. Execution frequency estimates are obtained from run-time

measurements of the program on sample input data.
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e Hwu and Chang use a similar approach, considering not only the increased code
size as the cost of inlining, but also the size of the control stack during execution

[HCS9).

e Davidson and Holler substitute called procedures when their caller appears in
the same source file [DH88]. They avoid inlining for recursion and when reg-
ister declarations would exceed the number available to the compiler. In her
dissertation, a model for predicting the improvement to a call site due to inlin-
ing is presented [Hol91]. The model considers the following costs: saving and
restoring registers, passing parameters, local stack adjustment, parameter stack
adjustment and the call/return sequence.

Heuristics focusing on eliminating call overhead work reasonably well for non-
optimizing compilers [Sch77] [DH88]. However, when compilers perform optimiza-
tion and register allocation, the interaction with inlining can reduce the importance
of call overhead. What is really significant is the amount of optimization enabled by
inlining. Only Ball and Cooper select call sites for inlining based on the optimizations
that will result [Bal79] [Coo83].

Ball formulates improvement estimates resulting from inline substitution as a data-
flow problem [Bal79]. The strong dependency sets, as described in section 4.4, provide
the set of formal parameters whose values determine a statement’s value. Given a set
of constant parameters, the compiler can examine the strong dependency sets for the
statements in the procedure and evaluate the impact that inlining would have on the
procedure body. This method estimates decreases in code size and execution time as
a result of constant propagation and test elision.

Building on Ball’s work, Cooper presents an algorithm for Iinkagc tailoring, as-
signing linkages to call sites [Coo83]. The possible linkage styles include a default
linkage where separate compilation is improved by interprocedural information, in-
lining, cloning and some variants. He uses a similar estimate of code improvement
to determine how the constant value of a global or parameter exposed by inlining or
cloning can affect optimization. (He also suggests that these estimates could be used
to determine what constants might make cloning worthwhile.)

For each procedure, the benefits of optimization and the costs of each linkage
choice (in terms of code growth) are calculated. The linkage tailoring algorithm
assigns linkages to call sites in order of choices with the highest benefit/cost ratio. At
call sites where costs are negative, inlining is always performed. The algorithm stops
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when program growth exceeds some constraint, and remaining call sites are assigned
the default linkage.

Both Cooper and Ball developed estimates that attempt to capture the improve-
ments due to inlining. In light of the results of the inlining study, it seems unlikely
that such estimates can predict good choices for inlining. This is because these sim-
plified models do not capture the complex interactions inlining has with other aspects
of compilation.

4.7 Chapter Summary

Our previous experience with inlining and cloning demonstrated only small improve-
ments. There was little motivation to include these optimizations in a FORTRAN
compiler, given their substantial compile-time costs. However, the experiment with
matrix300 showed that inlining and cloning could yield significant improvements if
used to enable high-payoff transformations. The high-payoff optimizations described
in this chapter were memory-management optimizations, but a similar strategy could
be used to enable parallelizing transformations. To enable the memory-management
optimizations, cloning is performed only to expose certain important constants and
inlining is used to produce loop nests of 2 or more loops around memory-bound inner
loops.

This chapter has ignored the problem of code growth and compilation dependences
associated with inlining and cloning. In the next chapter, controls on the amount of
cloning are described, and an algorithm is given for merging clones whenever they
produce the same effects on optimizé,tion. In Chapter 6, constraints on inlining are
- suggested to avoid code growth and extensive compilation dependences.
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) Chapter 5

Procedure Cloning

A major goal of this dissertation research was to explore the potential of inline substi-
tution and procedure cloning in enhancing aggressive code optimization. For cloning,
there were two main subgoals. The first was to determine when cloning is effective,
and the second was to develop a general algorithm for cloning which could be used
to partition calls based on solutions to many interprocedural problems.

The work in the previous chapter on goal-directed optimization provided insights
into the answer for both of these. We learned when cloning based on interprocedural
constants could be effective. In addition, issues arose in the exercise of optimizing
matrix300 that led to a general cloning algorithm.

This chapter presents a cloning algorithm that partitions calls based on the solu-
tion to any forward interprocedural problem. Because cloning can theoretically result
in exponential program growth and an exponential increase in the number of proce-
dures in the program, the algorithm has certain restrictions on the amount of cloning
and program growth tolerated. After the algorithm has determined the maximal set
of clones that meet the restrictions, clones are merged whenever they produce the
same effect on optimization. The final phase of the algorithm applies cloning based
on these decisions until program growth reaches a certain size constraint.

The next section develops the insights that led to the cloning algorithm. The
second section presents the cloning algorithm, with separate subsections devoted to
each of algorithm’s three phases. Section 5.3 presents related work on procedure
cloning, and section 5.4 concludes the chapter.

5.1 Motivation

Procedure cloning was introduced by Cooper as a method of partitioning calls to
a procedure based on its interprocedural constants information [Coo83]. Previous
research, particularly Ball’s work, used inlining to accomplish the same result [Bal79].
Cooper observed that cloning had an advantage over inlining in refining constants
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information, since multiple calls to a procedure can share a cloned version. A further
advantage of cloning is that it does not introduce as many compilation dependences
among pr:)-cedures as compared to inlining. Procedures invoking or invoked by a
cloned version do not necessarily require recompilation when the cloned procedure is
edited but can just be relinked

This chapter provides a general approach to procedure cloning. The algorithm
can be used to refine a variety of interprocedural solutions. The algorithm attempts
to use cloning in the most effective way, while controlling the costs of cloning due
to additional analysis and compile time. It was motivated by the following four
observations:

1. Cloning can be used to partition calls based on the solution to any forward
interprocedural data-flow problem.

o

Cloning a procedure can affect the interprocedural information at its descendant
procedures.
3. Creating unnecessary clones can be avoided by merging clones that create the
same effect on optimization.
4. Cloning is bounded by exponential time and program growth, so considerations
must be made to avoid this worst-case behavior.
Each of these points is developed in the paragraphs below.

Cloning on any forward interprocedural problem:. Although previous work
has only considered cloning based on interprocedural constants, cloning can be used
to refine any information coming into a procedure from its predecessors. Thus, cloning
can be used to partition calls to a procedure based on the solution to any forward
interprocedural data-flow analysis problem. A forward data-flow problem determines
information at a node based on its predecessors in the graph. Call multigraph con-
struction, interprocedural CONSTANT and ALIAS analyses are forward interprocedural
problems.

Propagation. Cloning refines information coming into a procedure from its callers
by avoiding approximating the interprocedural solution to match all callers. By im-
proving interprocedural information at a procedure, we may also be able to refine
information at its descendants. This is because the solution of a forward interproce-
dural problem at a procedure is propagated during analysis to its descendants. This
suggests that a cloning algorithm should propagate cloning opportunities top-down
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in the call multigraph. The impact of these options on descendant procedures can be
evaluated after all cloning opportunities have been located.

The decision to clone a procedure may in turn enable opportunities for creating a
chain of cloned procedures down the call multigraph. In some cases, as with matrix300,
this cloning can result in dramatic improvements in program performance. Consider
that using inling to accomplish the same effect would require constructing a single
procedure that compresses a large chain of calls. Such a large procedure would be
expensive to optimize, could have adverse performance behavior, and would introduce
compilation dependences requiring all procedures in the chain of calls to be recompiled
if any one of them changed.

Merging equivalent clones. After determining all possible clones for a program,
it may be the case that some of them can be rherged. Each clone will have different
interprocedural information. However, in some cases, the differences in interprocedu-
ral information will have little effect on the optimizations that can be performed on
the procedure. If two clones of a procedure produce the same effects on important
optimizations, they are good candidates for merging.

This relates to the goal-directed strategy of the previous chapter. We selected
for cloning only those call sites that exposed constant values for important variables.
During the merging step, we can test the effects of these constant values on optimiza-
tion, since we have the set of possible constant values from the analysis of possible
cloning decisions. The notion of equivalence of clones is explored in this chapter.
The second phase of the cloning algorithm merges equivalent clones, producing the
minimal number of clones required for specific effects on optimization.

Restricting cloning. The amount of cloning that can be performed on a program
has a worst-case exponential time bound. Based on our experimentation, the amount
of cloning performed on a program, especially after filtering out uninteresting cases, is
likely to be be very small. Nevertheless, a cloning algorithm should impose restrictions
on the amount of cloning in the event of pathological behavior.

In the first phase of the algorithm, we restrict the number of clones being con-
sidered to a polynomial of the number of procedures. Based on our experience, we
expect the restrictions on the number of clones being considered to rarely be neces-
sary. For this reason, when restrictions are imposed, they do not attempt to produce
the best cloning solution within the constraints. This polynomial number of clones is
only tolerated during the analysis phase.
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When cloning is actually performed in the third phase, the growth of the program
size is also restricted. The restriction on program growth, which is more likely to
be required, does in fact attempt to perform the most important cloning. The next
chapter defines PathFrequency, an ordering on nodes determined by execution fre-
quency estimates of a procedure’s descendants. The idea of PathFrequency is to give
priority to paths in the call multigraph leading to frequently executed calls. Cloning
is performed on procedures in PathFrequency order, and halted when program growth
exceeds its constraints. As defined, PathFrequency also preserves topological order.

5.2 Cloning Algorithm

The algorithm has three phases. First, we propagate vectors of interprocedural in-
formation describing the possible cloning that can be performed on the program. In
the second phase, we merge vectors that represent clones with “equivalent” effects.
In third phase, the cloning is actually performed.

The rest of this section is divided into five parts. The next three parts describe the
three phases of the algorithm. The other two parts present how to use the algorithm
to clone based on multiple interprocedural problems, and how to actually perform
the cloning as a source-level transformation.

5.2.1 Phase 1: Calculate CloningVectors

In the first phase, cloning information is propagated down the call multigraph to
determine the maximal number of clones that should be created for the program. The
idea behind the algorithm is to retain 'intéresting interprocedural information along
all paths through the prcsgram, rather than conservatively approximating information
when multiple paths join.

Each unique procedure clone can be represented by a CloningVector. This can be
thought of as a vector of information representing the value of the interprocedural set
used as the basis for cloning. For example, it could be the list of (variable, constant)
pairs from constant propagation or the list of variable pairs from alias analysis. (This
definition will be altered slightly in the discussion below.)

Given a forward interprocedural problem and an input program, the cloning al-
gorithm calculates all values for the interprocedural set of each procedure that are
possible through execution of the program. Essentially, the algorithm is tracing the
flow of interprocedural sets on all paths through the program. It can be thought of
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of as performing interprocedural analysis of the set used as the basis for cloning
but propagating this information in a way that is flow sensitive on the call multi-
graph.

Algorithm

The algorithm for calculating CloningVectors is given in Figure 5.1. It operates by
propagating all values for some forward interprocedural set S that can be created
during program execution. Since a procedure can inherit information exposed by
cloning from its callers, CloningVectors are propagated in topological order. This
makes it possible for the algorithm to make only a single forward pass over the call
multigraph. Procedures involved in recursive cycles are handled specially. Their
CloningVectors set contains only the set value for that procedure. In other words,
no cloning will be performed within recursive cycles. This restriction can be relaxed
with some modifications to the algorithm. An explanation of the restriction and
discussion of how to relax it are given in Section 5.2.4. Time considerations did not
permit support for cloning in recursive cycles to be incorporated into the algorithm.

Before presentation of the algorithm, a few definitions are needed:

e S identifies the interprocedural set being used as the basis for cloning. It is
also used in the algorithm to give the value for that interprocedural set at a
particular procedure or at a call site.

e The set CloningVectors(S, p) gives all possible values for interprocedural set S
that can reach procedure p.

e The function Translate(c, cv), for some call site ¢ with caller p and callee ¢, maps
elements in the Cloning Vector cv of p to the corresponding variables in g based
on parameter passing at c¢. The result is the creation of a new CloningVector
for ¢. This mapping function is similar to what is used in interprocedural
propagation to map variables in the caller to variables in the callee.

The CloningVectors for each procedure are initialized to . Possible values for the
interprocedural set S are then propagated in topological order down the call multi-
graph. It is necessary to initialize CloningVectors for a recursive procedure p in case
p invokes some other procedure ¢ that is not contained in a cycle. In this way, when
calculating CloningVectors(q), q inherits a value from p.
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/* Initialization */
foreach procedure p
CloningVectors(S,p) — 0

/* Propagation */
foreach procedure p in topological order
if p is part of a recursive cycle then
CloningVectors(S,p) — {S(p)}
else
foreach call site ¢ invoking p
let n be the procedure invoking p at ¢
foreach vector v in CloningVectors(S, n)
CloningVectors(S,p) — CloningVectors(S,p) U Translate(c, v)
endif
end

Figure 5.1 Algorithm for calculating Cloning Vectors.

Time Complexity

The time required by the algorithm is bounded by the number of procedures and
by the number of unique Cloning Vectors generated at each call site, since the outer
loop iterates over procedures, and the inner loop iterates over CloningVectors at a
call site. Assume the maximum number of elements in a CloningVector is L, and the
maximum number of values for each element is V. N is the number of procedures in
the program, and E is the number of call sites. Then, the algorithm is bounded by
O((N + E)VL) time.

The actual sizes of V and L are dependent on the interprocedural set being used
and the possible values of the set elements. Since we are dealing with interprocedural
information, the size of L is related to the number of externally accessible variables
in the scope of the procedure. This is the number of global variables and formal
parameters of a procedure. Let us assume that this number is bounded by clogN.
This assumption is based on the idea that the number of variables in a program grows
logarithmically with the program size.

Let v; be the number of distinct values that the ith element in a CloningVector
can have. For each v, there is a k; such that 25-1 < v; < 2% For a given procedure,
an upper bound on the number of unique CloningVectors is defined by the following
equation:

L, 26 = X ki,

i=1
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Taking the average of k; over its L possible values, we arrive at some value k. 2kp
gives an ayerage number of values for each element. Assuming L < clogN, we know
that the number of CloningVectors for a procedure p < 2%2¢/°9N  The total number of

Cloning Vectors is as follows:

Zf\il 2k.clogN < N x 2clogN-xmax.~ ki — ] cxmax; k.-‘

This shows that, given reasonable values for L and the k;, the time complexity is
polynomial.

These bounds are plausible for most programs and most interprocedural problems.
However, even if the bounds are too low, they can easily be enforced. If the vector
length exceeds clogN for some c, worst-case assumptions are made about the variables
in the positions after the clogNth. Also, if 2¥ unique values for an element have been
found, additional values are not tracked. (There is a boundary condition here. If L
is not one of the 2% unique values, then only 2 — 1 unique values are tracked, and
remaining values are assumed L.) Ideally, the restriction should merge Cloning Vectors
that are similar so that little is lost by the merge.

The restriction on V may be somewhat limiting, especially for problems like inter-
procedural constants where V' can be quite large. So instead of imposing both restric-
tions in all cases, we restrict the overall number of CloningVectors to be bounded by
O(N°®*). Only when the number of CloningVectors exceeds this bound is it necessary
to impose either of the restrictions. Extensive filtering of CloningVectors can occur
by propagating values for interesting variables only, such as the CloningVars of the
previous chapter. This further reduces the likelihood that the restrictions on cloning
will need to be imposed.

Based on the experiments with cloning, it is unlikely that any restrictions on
the number of CloningVectors will be necessary in practice. The amount of cloning
possible in a program has not been that large. For these reasons, the restrictions do
not make an attempt to produce the optimal cloning while obeying the constraints.
Instead, they are simply a guard on the potentially exponential behavior theoretically
possible with cloning.

Examples

Let us consider as examples cloning based on interprocedural constants and on aliases.
For cloning based on constants, we will have vectors of (constant,value) pairs. In
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this case, the number of elements in the vector will likely be small. However, the
number of values for each element in the vector can be relatively large. In the case
of constants, restricting the number of values tracked for each element could inhibit
optimization. However, if we only restrict the total number of vectors, it is unlikely
the need will arise to restrict the number of values for an element.

For aliases, we will have vectors representing each pair of variables, with a value
of true or false indicating whether they are aliased. If all pairs of variables were
represented, then the vector length could get quite large, although the number of
values for each element is at most 2. However, the only elements that will have
multiple values are those that the interprocedural information indicates are aliases,
but which are not aliases under some caller. This number will probably be small.

5.2.2 Phase 2: Merge Equivalent Cloning Vectors

Assuming none of the restrictions on cloning are imposed, the previous algorithm
produces CloningVectors describing all interesting cloning in the program. Some of
these clones may be equivalent in the sense that, even though their interprocedural
information is different, they have the same effect on important optimizations. As an
example, in the previous chapter describing the matrix300 experiment, eight copies
of the procedure dgemm were made, but only two of those were needed to create the
appropriate two clones of the called procedure dgemv.

The second phase of the cloning algorithm locates equivalent Cloning Vectors and
merges them. This step reduces the amount of cloning required by the program, while
not affecting the important optimizations. This second phase is completely unneces-
sary for the correctness or the effectiveness of the cloning algorithm. Nevertheless,
it is useful because it reduces the significant costs of cloning without an appreciable
effect on optimization.

Determining when two Cloning Vectors result in the same important optimizations
requires a goal-directed strategy. It is necessary to locate specific targets of optimiza-
tion, so that the effects of a particular CloningVector on the targets of optimization
can be ascertained. If two different CloningVectors have the same effect on these tar-
gets of optimization, then they can be merged. The importance of a cloning decision
is represented by a State Vector.



93

Defining a State Vector

For each cloning problem, it is necessary to determine what contributions from a
CloningVector are significant. As an example, this can be based directly on the impor-
tant program points used in a goal-directed strategy to calculate the CloningVectors.
For interprocedural constants, the StateVector would then be the values of important
constants appearing in the procedure: the values of each control flow test, subscript
expression and formal parameter used as an array dimension. For each one of these,
we construct a jump function that describes the expression value as a function of po-
tential interprocedural constants [CCKT86]. To reduce the number of jump functions,
they are only provided for program points whose values could become known through
interprocedural constants, as determined during the calculation of CloningVars. With
this information and a Cloning Vector describing constant interprocedural values, the
value of a StateVector can be determined. The example in Figure 5.2 illustrates these
points.

If each cloning problem was formulated in a goal-directed way, and the State Vectors
were directly generated from the interesting program points targeted by the goal-
directed strategy, then the merging of CloningVectors would not hurt the optimiza-
tions targeted by the goal-directed strategy. However, it should be noted that the
information propagated to locate worthwhile cloning may be more general than that
required by the important optimizations.

To see this point, let us return to the matrix300 example. Eight copies of dgemm
were created, but this could have been reduced to. two copies without affecting the
important optimizations. However, each copy has a different value for a variable which

procedure p(fi, f2)

S,: dimension A(f1,1)
Sy: if (f2 mod 2) then ...
S3: A(fi+2,1)=...

Jump functions:
S1:
522 f2 mod 2
S3: fr+2

Cloning Vector(c,) = ((f1 = 10), (f2 = 7)) StateVector(c:) = (10,1,12)
CloningVector(cz) = ((f1 = 10), (f2 = 5)) StateVector(c;) = (10,1,12)

Figure 5.2 Example illustrating calculation of StateVectors.
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determines control flow within dgemm. Thus, by defining StateVector to consider the
same program points as what was used in the goal-directed cloning strategy, we would
still create the eight copies of dgemm.

It turns out that what is really important for memory-management optimizations
Is improvement in the precision of dependence information. The constants used to
determine control flow are not interesting by themselves, but only to the extent that
they affect dependence analysis. In the example, once all possible values for the
control flow variable were known, the effects could be determined, with certain proce-
dures producing equivalent results. By only tracking subscript expressions and certain
types of control flow (such as loop bounds and control flow within inner loops), we
can reduce the size of StateVector and merge more clones. This would have allowed
us to only generate two copies of dgemm.

Any goal-directed strategy, because it involves heuristics, should be driven by the
results of experimentation. Reducing the contents of State Vector from that prescribed
by the goal-directed strategy should also be driven by experimentation. Additionally,
experimentation might indicate that the amount of cloning resulting from the goal-
directed strategy is so small that minimization of cloning is not an important issue.

Partitioning Algorithm

The algorithm for merging equivalent CloningVectors is related to the algorithm for
minimizing the number of states in a Deterministic Finite Automaton (DFA) [Hop71].
It is very similar to an algorithm used in ParaScope to minimize the number of
implementations of a procedure required when multiple definitions of the procedure
occur ‘in the program composition [CKT+86c].

The partitioning algorithm is presented in Figure 5.3. Initially, all clones of a
procedure are placed in the same partition. The algorithm distinguishes between
cloned versions, based on their State Vector and the partitioning of procedures they
invoke. Upon termination of the algorithm, clones remaining in the same partition
can be merged and represented by a single clone. Two clones can be merged if they
have the same State Vector, and for corresponding call sites in the cloned versions, the
invoked procedures are in the same partition of Cloning Vectors.

Procedures are visited in reverse topological order. Since cloning is not considered
for procedures involved in recursive cycles, this ordering always exists for the proce-
dures with multiple CloningVectors. With reverse topological order, the clones of a
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1. Partition the Cloning Vectors such that all Cloning Vectors for a particular procedure
are in the same partition.

2. In reyerse topological order, visit the partition = representing each procedure p:
(a) Partition elements p; of = based on the value of State Vector(p;).
(b) For each partition =; of 7 consisting of multiple elements:
Form partitions of elements of 7; such that if two Cloning Vectors
a and b in m; result in invocations at some call site ¢ with

Cloning Vectors z and y of the called procedure, then a and b
are in different partitions if z and y are in different partitions.

Figure 5.3 Algorithm for minimizing the number of CloningVectors.

procedure have been partitioned before any of its callers are considered. This means

that only one pass over the procedures is necessary.

Time Complexity

The expected time required by the algorithm is linear in the number of CloningVectors.
The CloningVectors for a procedure are only partitioned once. With an appropriate
representation for StateVector and for CloningVectors resulting from call sites, the
expected time required for partitioning can be done in time linear in the number of
elements being partitioned. (A different representation would yield O(nlogn) time,
even for worst-case performance [Hop71].)

As a possibility, the set representations can be treated as strings, with some canon-
ical order imposed on the set elements. Then, partitioning can be performed by hash-
ing to a location matching the string representation of the set. If two sets hash to

the same location and have the same set value, they belong in the same partition.

5.2.3 Phase 3: Perform Cloning

After minimization of the CloningVectors, a potentially polynomial number of them
remain. If all of this cloning were performed, the final program size could be a poly-
nomial of its original size. The polynomial bound on the number of CloningVectors
is acceptable during analysis, but a polynomial growth in program size is intolerable
due to its effects on compile time. Thus, as an additional safeguard to the costs of
cloning, we only clone until program growth exceeds some threshold. As with the
restrictions on the number of CloningVectors, we expect the need for this will be

rare.
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originalSize — program.size

foreach procedure p in PathFrequency order
tempPF — p.PathFrequency
performCloning(p)

/* If size constraint exceeded, clone all remaining procedures with same PathFrequency */
if (program.size > originalSize x threshold) then
foreach remaining procedure p’ such that p’.PathFrequency = tempPF
performCloning (p')
exit
endif
endfor

performCloning (p)
foreach partition 7, of p
- create a copy newp of p
program.size «— program.size + newp.size
— annotate representation of newp with State Vector and set of Cloning Vectors in m,
- update other interprocedural information for newp and descendants
end
endfor /* performCloning */

Figure 5.4 Algorithm for performing cloning.

Algorithm

The algorithm for performing cloning is given in Figure 5.4. The algorithm performs
the cloning indicated by the partitions of CloningVectors produced in the previous
step. Since the cloning decisions at a procedure are affected by cloning of its ancestors
in the call multigraph, it is critical that the cloning be performed in topological order.

The algorithm clones in PathFrequency order, first cloning procedures in portions
of the call multigraph leading to frequently executed procedures. The calculation of
PathFrequency, as presented in Chapter 6, also preserves topological order. An ideal
ordering of cloning decisions would take into account not only execution frequency
but also an estimate of the benefits expected by cloning.

The algorithm performs cloning until the program size reaches some threshold
factor of its original size. A good rule of thumb is to allow the program size to dou-
ble. Once the program has passed its size constraint, a little more cloning may be
performed. The algorithm will continue to create the clones for the current proce-
dure. It will also create the clones for any remaining procedures with equal values
of PathFrequency. This is because the entire path leading to a frequently executed
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procedure will have the same value for PathFrequency. Thus, cloning is completed
on the path that is currently being optimized so that the cloning that was performed
above will not have been wasted.

After performing the cloning, the program representation needs to be updated to
reflect changes to the interprocedural information. Because the program structure
is changed, some of the interprocedural solutions may observe refinements to their
information, even though the purpose of the cloning was not to refine these solu-
tions. For interprocedural problems other than the one that was used as the basis
for cloning, the information must be incrementally updated. Incremental updates to
interprocedural information will be addressed in the next chapter.

For the interprocedural proBlem_ being used as the basis for cloning, we need to
associate with a clone its set of CloningVectors and its StateVector. Since multiple
CloningVectors may have been merged into a partition, it is not sufficient to just
update the interprocedural information to reflect the new values. This is because the
conservative approximation of multiple CloningVectors will not reflect the optimiza-
tions that can be performed on the procedure. The StateVector will be needed by
the optimizer to enable reconstructing the important effects that initiated the cloning
decisions. The StateVector and the set of CloningVectors will be needed for recom-
pilation analysis, to ensure on a subsequent compile that the optimizations are still
valid. The problem of recompilation analysis in the presence of this cloning algorithm
will be presented in Chapter 6.

5.2.4 Cloning in Recursive Cycles

If cloning were performed in recursive cycles during calculation of new Cloning Vectors,
and interprocedural sets were incrementally updated, the effect of cloning could be
to unroll the recursive cycle. Potentially, the algorithm would not terminate. This
was our concern when disallowing cloning within recursive cycles.

We now understand how to support recursion. First, strongly-connected regions
are located in the call multigraph, and each cycle is replaced with a representative
node [Zad84]. When the algorithm reaches a node representing a cycle, it must
take each incoming CloningVector and propagate it within nodes in the recursive
cycle until the CloningVector information stabilizes. The CloningVectors resulting
from the propagation, which may contain less information than the original incoming
CloningVectors, determine both cloning of the cycle and the CloningVectors that
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are propagated to successors of the cycle in the call multigraph. Whenever the final
cloning algerithm determines that cloning should occur at a representative node, each

procedure involved in the cycle is cloned.

5.2.5 Cloning Based on Multiple Interprocedural Problems

If multiple interprocedural problems are being used as the basis for cloning, then the
entire cloning process should be iterated for each interprocedural problem. The three
phase process of constructing Cloning Vectors, merging them and performing cloning
should first be performed based on the most important interprocedural problem. If
the size constraints have not been exceeded when this process is complete, it can be
repeated on the second most important problem. Cloning for the second interproce-
dural problem should be performed on the altered call multigraph after edges have
been reassociated and interprocedural information has been updated.

The reason for the iterative process is that cloning based on one interprocedural
problem can affect the solution to other interprocedural problems. Since cloning
changes the structure of the call multigraph, it may result in refinements to other

interprocedural solutions.

5.2.6 Implementing Cloning

A final issue in cloning is how to represent it in the source code. This issue came up in
the cloning experiment, described in the previous chapter. During the experiment, a
procedure was cloned by making a copy and renaming the copy. Call sites invoked the
clone by referencing the new name. We first considered that the constant parameters
of a clone be eliminated from the parameter list and each reference in the source code
be replaced by the corresponding constant value. An unfortunate consequence of this
approach is that any call sites invoking a clone must have their actual parameter lists
modified to eliminate the constant-valued actuals passed at the call. If callers of cloned
procedures are modified, this introduces an unnecessary compilation dependence from
a cloned procedure to its callers.

We decided that an automatic system should leave call sites invoking clones intact.
The assignment of call sites to clones can then be done at link time. This makes it
possible for a call site invoking a clone to be mapped to a different cloned version on
later compilations of the program. This requires that the compiler have some control
over program linking. It would be impossible to do this strictly at the source level.
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5.3 Related Work
5.3.1 Procedure Cloning

Procedure cloning was introduced in Cooper’s dissertation as part of his linkage tai-
loring algorithm [Coo83]. At that time, the technique was referred to as node splitting;
it was renamed cloning in a later publication [CKT86a]. Cooper performed cloning
based on interprocedural constants, and did not propagate improvement in informa-
tion due to cloning down the call multigraph. Thus, a cloning decision was based on
the direct effects it would have on a procedure. Because cloning was only performed
at one level in the call multigraph, the final number of procedures in the program
was bounded by the number of call sites. For this reason, Cooper was not concerned
about restricting cloning to ensure efficiency.

5.3.2 Similar Techniques

Cloning bears some relationship to node splitting as used in interval-based data-flow
analysis techniques [AC76]. Two copies of a control flow node are made, and edges
into the node are reassociated with the copies, to break up unstructured program
portions. In this case, the copies are made to enable the analysis, not to improve
optimization.

In his dissertation, Wegman describes a technique called node distinction, which
uses node splitting intraprocedurally on the control flow graph to improve optimization
[Weg81]. His technique makes multiple copies of a control flow node if its data-flow
information differs on incoming edges. Thus, based on the value of some forward
data-flow set, he constructs the maximal node distinction control flow graph. As with
the Cloning Vectors algorithm, this can potentially produce an exponential number of
nodes in the flow graph.

Wegman uses a goal-directed strategy to reduce the amount of copies being made.
For a given data-flow problem, he considers if the refinement of information provided
by making a copy of a node will actually have an effect on optimization. Some
heuristics for restructuring the control flow graph also reduce the amount of copying
that occurs. As a final restriction, he suggests only performing this optimization in
innermost loops. Nevertheless, the amount of copying retains an exponential bound
on the nodes in innermost loops since the heuristics do not guarantee that copying is
eliminated.
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Also, the algorithm deals with intraprocedural data-flow sets, which may have
profoundly different properties from interprocedural sets. It may be the case that
intraprocedural sets are more likely to differ than intraprocedural sets when paths in

the graph merge.

5.4 Chapter Summary

This chapter has presented a general algorithm for procedure cloning. The algorithm
represents significant progress over previous work. It can be used for partitioning
calls to a procedure based on any forward interprocedural problem. Time complex-
ity for the algorithm will be polynomial for most programs and cloning problems.
Restrictions are provided to maintain a polynomial time bound if needed. After lo-
cating all opportunities for cloning, clones are merged whenever they result in equiva-
lent effects on optimization. When cloning is actually performed, further restrictions
are imposed to limit program growth. The algorithm has restrictions to avoid the
worst-case exponential behavior of cloning. Even so, based on experimental evidence,
we expect the restrictions will rarely be necessary and the full amount of cloning will
be performed.



101

Chapter 6

Interprocedural Compilation System

This chapter completes the treatment of interprocedural optimization for scalar op-
timizing compilers. A general system is described for supporting interprocedural
optimization. This system performs interprocedural optimizations using some combi-
nation of three techniques: 1) inline substitution, 2) procedure cloning, and 3) global
optimization improved by interprocedural information. These transformations inter-
act with each other and with interprocedural analysis. This chapter addresses the
interaction between the techniques and the implication this interaction has on the
design of the compilation system.

The previous design of the ParaScope compilation system did not consider how
to incorporate inlining and cloning while avoiding unnecessary recompilation. The
recompilation problem affects all aspects of the design of the compilation system.
When deciding whether an inlining or cloning decision is worthwhile, the compilation
dependences resulting from this decision are considered. Also, the batch system for
interprocedural optimization is formulated to enable efficient recompilation. Both
the batch and recompilation systems for interprocedural optimization are presented
in this chapter.

In the next section, the effect of procedure cloning on other optimization tech-
niques and on program growth is reviewed. Section 6.2 briefly presents how inlining
can be used to enable optimizations other than memory-management transforma-
tions while avoiding performance degradation and excessive compile-time costs. The
third section describes interprocedural analysis in ParaScope and the additional in-
terprocedural analysis required for inlining and cloning. In section 6.4 we present
an algorithm for applying interprocedural optimization that evaluates call sites for
cloning and inlining. Section 6.5 extends this algorithm to manage recompilation
when interprocedural optimizations have been applied, attempting to reuse as many
of the procedure components from the previous compilation as possible. Section 6.6
presents related work in the area of compilation systems for automatically managing
the dependences among procedures.
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6.1 Procedure Cloning

The previeus chapter thoroughly described the cloning algorithm. This section
presents two remaining issues on cloning as it relates to system support. First of
all, cloning can affect the results of inlining and optimization based on interprocedu-
ral information. The relationship of cloning to these other problems is presented here.
Secondly, to avoid excessive program growth, the amount of cloning is constrained.
At the end of the section, we briefly describe how to constrain program growth.

6.1.1 Effects of Cloning

Cloning has two effects on interprocedural information. First, it refines information
for the interprocedural problem used as a basis for cloning. Second, it changes the
structure of the call multigraph, which may indirectly improve the precision of other
interprocedural solutions. These two effects of cloning have some implications on how
it should be used in cooperation with other interprocedural techniques.

The second effect of cloning implies that after cloning based on one interprocedural
problem has been performed, the solutions of other forward interprocedural problems
should be updated. In this way, the other forward problems will be correct with
respect to the current call multigraph. Such updates should be performed before
these other interprocedural solutions are used as a basis for further cloning. For
efficiency reasons outlined in Section 6.4, updating solutions to backward problems
is deferred until after cloning.

The most important effect of the cloning phase is to produce refinements in for-
ward interprocedural solutions. As it turns out, solutions to forward interprocedural
problems are very important, and refinements in the solutions can produce dramatic
improvements in opportunities for optimization. Most significantly, improved con-
stants information can greatly simplify the control flow within a procedure, which can
refine the solution to any interprocedural problem. Moreover, increased information
about constants and aliases can result in improvements to backward interprocedu-
ral problems, such as side-effect information. (This should become clearer when the
calculation of this interprocedural information is described in section 6.3.) Also, in
Chapter 4 we established that improved constants information could affect inlining
decisions. Taken as a whole, it appears that cloning should be the first interprocedu-
ral technique used on a program, and cloning should be completed before any other
optimization techniques are used.
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6.1.2 Restricting Cloning

To avoid problems with program growth, cloning should be restricted so that program
size does not increase past some threshold. A useful measure is allowing the program
to grow to twice its original size. However, this may need to be adjusted if inlining
will also be performed, since it also requires constraints on program growth.

Program growth can be measured in a variety of ways. Text size of the source code
provides a rough measure of program size. In our system, the overriding efficiency
concern is the size of the Abstract Syntax Tree representation, so we use this as
the measure. In general, size of lower-level representations of the program will likely
provide a more accurate measure than higher-level ones, since they more closely reflect
object code size. Factoring in the effects of optimization will also improve the size
estimates, especially constant propagation.

6.2 Inline Substitution

Based on the inlining experiments in Chapter 3, inlining should be avoided unless it
1s very likely to improve performance. This is particularly true in ParaScope, where
other interprocedural optimizations are performed which achieve some of the benefits
of inlining. Chapter 4 provided one motivation for inlining - to enable memory-
management transformations. The brief discussion of inlining in this section gives
guidelines for using inlining for other purposes. There are three main points:

e Perform inlining of call sites in reverse topological order.
e Base inlining decisions on heuristics that guarantee inlining will improve the
code or at least avoid degradation.

e Stop when constraints are exceeded to avoid recompilation costs.

6.2.1 Inlining Order

To avoid unnecessary steps, inlining should be performed in reverse topological order.
To see this, consider the call chains (a — b — ¢) and (d — b — c). Suppose that
b is inlined into a and d. Then, to inline c into b, the inlining has to be performed
to both a and d. If ¢ had been inlined first, then the inlining would have only been
performed once.

The next section describes an ordering FdgeFrequency on call sites that favors most
frequently executed calls. As defined, EdgeFrequency preserves reverse topological
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order. Such an ordering is needed because inlining is restricted to avoid compilation
costs. There may be some call sites which the heuristics suggest are good targets for
inlining but do not meet the inlining constraints. Thus, the most important call sites
are considered first.

While inlining is being performed, solutions to backward interprocedural prob-
lems can be updated incrementally using the method described in section 6.5. The
backward interprocedural solutions may have improved from the cloning phase, or as
a direct result of inlining. Updating the information is particularly useful if the inlin-
ing heuristics happen to be based on the solution to some backward interprocedural
problem. Changes to forward interprocedural solutions following inlining are ignored
for efficiency considerations.

©.2.2 Inlining Heuristics

The heuristics for inlining should either strongly suggest that inlining will improve
the code or at least that no significant degradation will result. In Chapter 4, we
inlined calls in memory-bound loops, with the assumption that the inlining would
either reduce the number of memory accesses or would enable other optimizations
that would do so. A previous approach we considered was to estimate the number
of registers used by a procedure and its caller before and after inlining. Then, inlin-
ing could only be performed if the estimate indicated that the number of required
registers did not increase after inlining. We selected the former approach because it
targets optimizations with significant payoffs. The latter approach would have been
justified if we had found that, in general, inlining alone could bring about substantial
performance improvements.

6.2.3 Restricting Inlining

Inlining has a profoundly different effect on compilation costs than cloning. It not only
increases program size but also increases the size of individual procedures. In addition,
inlining introduces increased compilation dependences. All procedures making up an
inlined version are interdependent. The inlined version requires recompilation if any
one of them is edited. To avoid growth in compile time as well as extensive compilation
dependences, inlining requires several restrictions.

To control compilation time, overall program growth is restricted to twice its
original size. The growth of individual procedures is also restricted. As supported by
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the experiments in Chapter 3, some optimization techniques use nonlinear algorithms.
Since an optimizer only examines one procedure at a time, the procedure size is
actually more critical than program size. Procedure size should be restricted to twice
the size of the largest procedure in the original program. This keeps the overall
compile time cost about the same. It may also be necessary to place a fixed limit
on procedure size. For example, in ParaScope manipulating large procedures causes
serious performance problems. This was also the case with the MIPS compiler.
Further restrictions on inlining are needed to avoid extensive recompilation. First,
the length of inlined call chains is restricted. Additionally, we restrict the number
of call sites within a procedure that may be inlined. This puts a fixed limit on the
number of procedures that may be interdependent as a result of inlining. To see
this, suppose that the limit on the length of call chains is L; and the the limit on
the number of call sites is L,. Then, in a given inlined procedure, the number of
procedure bodies it includes can be no greater than L,%* + 1. Since the number of
compilation dependences grows exponentially, it should be obvious how important
these restrictions are to avoiding unnecessary recompilation. Note that these two

restrictions to inlining mean that the algorithm can be used on recursive programs.

6.3 Optimization Using Interprocedural Information

This section describes interprocedural information that can be used to enhance global
optimization and to detect opportunities for inlining and cloning. This section has
three main purposes: to document the interprocedural analysis used in ParaScope, to
demonstrate the extent to which interprocedural information enables many optimiza-
tions considered important .consequences of inlining, and to describe the remaining
interprocedural information needed to support inlining and cloning.

In describing the interprocedural analysis performed in ParaScope, the calculation
of the analysis is described as well as the applications of the interprocedural sets to
optimization problems. It is important to understand the benefits of interprocedural
information to use as a basis of comparison against inlining. In terms of space costs
and compilation dependences, it is preferable to use the default linkage and optimize
based on interprocedural information if the effects on optimization are similar. (Of
course, it is difficult to efficiently make this determination.)

Interprocedural information is also needed by the inlining and cloning algorithms
to locate good targets for optimization. As an example, execution frequency estimates
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are presented in this section. Other interprocedural information used in cloning and
inlining was presented in Chapter 4. Finally, interprocedural information is used to
optimize the cloning and inlined procedure versions.

6.3.1 Interprocedural Analysis in ParaScope

ParaScope currently calculates the following sets of interprocedural information:

® MOD(e) = {z | z may be changed through call e}
® REF(e) = {z | z may be accessed through call e}
® ALIAS(p) = {(z,y) |  and y may refer to the same memory location in p}

® CONSTANT(p) = {(z,c) | z must have value c across all calls to procedure p}

Side effects. Side-effect information is comprised of MOD and REF sets. The side-
effect information for a call site ¢ contains variables affected by the procedure ¢
invoked at c, including variables affected by the descendant procedures of g. Both
MOD and REF sets are flow-insensitive; that is, they represent the union of information
occurring along all paths in the program. As a result, MOD and REF sets may contain
some variables that are not actually modified or used (i.e., the sets are conservative).
A flow-insensitive approach is necessary in the presence of aliasing to guarantee a
polynomial time bound [Mye81].

With side-effect information, a compiler can avoid reading in a variable from
memory after a procedure call if the variable is not modified by the call. The compiler
can also avoid writing a variable to memory before a call if it is neither referenced nor
modified by the called procedure. These uses of interprocedural information reduce
call overhead, which is considered an important benefit of inlining.

Side-effect information is also useful in a variety of global data-flow problems.
Modification information can be used in determining available expressions and reach-
ing definitions. Reference information can be used for live variable analysis and
reachable uses.

Aliases. The set ALIAS(p) contains all pairs of variables (z,y) such that z and y
may refer to the same memory location along some chain of calls in the program
leading to procedure p. In FORTRAN, aliases result from two mechanisms: passing by
reference the same variable to two formal parameters at a single call site, and passing
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by reference global variables as parameters. In other languages, pointer variables also
contribute to aliasing.

Once aliasing information is known, MOD and REF sets are updated to reflect this
knowledge. This is because a variable is modified (referenced) if any of its aliases are
modified (referenced). Side-effect analysis and alias analysis are performed separately,
with alias information added to the side-effect information (Ban79]. Recent algorithms
have been proposed to calculate aliasing and interprocedural side-effect information
in time effectively linear in the size of the call multigraph [CK88b)] [CK89]. However,
currently in ParaScope, we use an iterative technique based on Banning’s equations
[BanT79].

In addition to making side-effect information correct, alias information is useful
to the register allocator. Compilers cannot place variables in registers that might
be aliased, so the absence of a variable in the ALIAS set enables allocating it to a
register. Also, any optimization that involves moving computation from one place
to another in the program (e.g., code motion) requires that the order of loads and
stores be preserved, which is difficult to determine if the variables involved may have
aliases.

Interprocedural constants. The set CONSTANT(p) gives variables and their con-
stant values only when the constant values exist for all calls to p. Since the problem
of finding all variables that are constant at run-time is undecidable [KU77), the set
calculated is an approximation.

The algorithm used for interprocedural constant propagation is given in [CCKTS86).
It relies on a jump function J, at the call site ¢ which gives the values of the actual
parameters of ¢ as functions of the formal parameters of the called procedure. These
jump functions are determined by the module editor on completion of an editing
session. There are several alternative methods for generating jump functions in the
editor, with each improvement to the information requiring additional analysis.

In the current implementation in ParaScope, we use a modification of the pass
through scheme described in [CCKT86]. This detects constants when they are directly
passed at a call, or when they are passed as parameters through a chain of calls
without modification before being passed. As defined, the pass-through method uses
analysis within the procedure to determine whether a formal is passed to a call before
modification. In order to avoid analysis within a procedure, the implementation
instead uses the interprocedural MOD information to detect whether the formal can
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be modified anywhere in the procedure. While not as precise as the method described
in the paper, it was easily added to the implementation, and it catches many constants
used to declare bounds of arrays, and loop bounds.

The benefits of constant propagation have been touted throughout this disserta-
tion: for simplifying control flow, improving the results of dependence analysis and
enabling inlining by providing array dimension sizes. Overall, the most important
benefit of interprocedural constants is the simplification of control flow within a pro-
cedure, which can improve the results of all analysis techniques. Constants are also
particularly useful in calculating estimates of execution frequency, described later in
this section. Additionally, CONSTANT information is useful as input to supplement
the results from an intraprocedural constant propagator.

6.3.2 Information Required by Cloning and Inlining

Execution frequency estimates are used to target inlining and cloning for frequently
executed portions of the call multigraph. For inlining, Edge Frequency(c) is calculated,
which provides an estimate of the number of times call site c is executed. For cloning,
PathFrequency(n) is calculated for each procedure, which gives the maximum execu-
tion frequency for any descendant procedure of n in the call multigraph. Both of these
rely on NodeFrequency(n), which is an estimate of the number of times procedure n
is invoked.

Frequently executed calls and procedures are important for several reasons. It
targets places in the call multigraph with the highest call overhead. Also, the estimate
favors calls in loops, an important target of many optimizations. For cloning, high
execution frequency estimates only suggest that a path in the program is important.
An ideal measure would weight the execution frequency estimate by an estimate of
the benefits expected from cloning.

Annotations on call site edges

The orderings required for inlining and cloning are based on execution frequency
estimates of call sites in the program. To obtain these estimates, an annotation
EdgeFunction is added to each edge (p — ¢) that describes the number of times q is
invoked through this edge whenever p is invoked. For example, if ¢ is called from a
loop in p, and the loop iterates 10 times, the estimate at (p — ¢) is 10. The following
rules determine the annotation on an edge:
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1. Edges representing calls that appear in loops in the caller are annotated with
an estimate of the number of iterations of the loop.

(8]

Edges representing conditional calls are given an estimate of
max(1, (call estimate)/2).

3. All other edges are given the annotation 1.

The first rule requires further explanation. Accurately estimating the number of
iterations of a loop can be difficult. As a simplification, Cooper suggests that we
assume that all loops perform 8 iterations [Coo83]. Then, the number of times a call
site is executed is 8%, where d is the nesting depth of the loop in the procedure. This
estimate at least takes into account the multiplicative benefits of optimizing a deeply
nested procedure call. To support this approximation, the module editor need only
determine the loop nesting depth of each call site.

There are many cases where a more precise estimate is possible. Consider the
FORTRAN DO loop. Often, the lower and upper bounds, and the step size, are con-
stants. If not, they may be variables that interprocedural constant propagation can
determine are constant. To take advantage of this information, the module editor
must write out the initial and final values of the induction variable and the step size
for each loop in the nest in which a call site appears.

Further improvements are possible with other techniques. For example, in loops
that are not DO loops, we can look for induction variables [ASU86]. Then, we locate
exit branches from the loop and try to determine how many iterations of the loop
are required to make the exit condition evaluate to true. We can also improve the
results of constant propagation using range analysis and range propagation, which
give ranges of variable values rather thard a single value [Har77a). However, since the
analysis described in this paragraph must occur in the module editor at the end of an
editing session, it is doubtful that the increased precision of the execution frequency
estimates will be worth the added cost.

The second point in describing edge annotations, dealing with conditional calls, is
designed to make conditional calls less important than calls that are always executed.
However, the minimum value of an edge annotation must be 1. This is required so
that the frequency estimates preserve topological order, as explained later.
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Execution frequency estimates

With the edge annotations, FdgeFrequency and NodeFrequency are calculated. First,
assume that the cycles in the call multigraph have been located, and nodes appearing
in a cycle are collapsed into a single node [Zad84]. Secondly, assume that a topological
ordering of the nodes in the reduced graph is available.

NodeFrequency(n) is initialized to 1 for the main procedure. To deal with the
possibility of cycles in the call multigraph (denoting recursion), we locate cycles and
eliminate back edges from our consideration. Starting at main, the nodes in the re-
duced graph are visited in topological order so that a procedure is visited before any
procedures it invokes. NodeFrequency values, once determined, are used to calculate
EdgeFrequency values. The calculations are as follows:

NodeFrequency(n) = Y. (NodeFrequency(p)* EdgeFunction(p,n))
pEpred(n)

EdgeFrequency((p — q)) = NodeFrequency(p) * Edge Function(p, q)

Frequently executed paths

To locate paths in the call multigraph with high execution frequencies, we use a simple
solution that relies on the values of NodeFrequency. Again, assume that cycles in
the graph have been collapsed into a single node, and that a topological order exists
for the nodes.

PathFrequency(l) is initialized to NodeFrequency(l) for all leaf procedures . Then,
PathFrequency(n) for each procedure is calculated in reverse topological order. The
equations for PathFrequency are as follows:

PathFrequency(n) = max ) PathFrequency(s)

s€succ(n
From the calculation of PathFrequency(n), we know the highest NodeFrequency value
for any descendant of n. Nodes with high PathFrequency values are on paths leading
to frequently executed procedures.

6.4 Batch System for Interprocedural Optimization

Recall from chapter 1 the five phases of the program compiler. In this chapter, we
have focused on Phase 3: Planning. This section reviews the five program compiler
phases, and overviews the planning phase as discussed in this chapter.
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The most important part of the planning phase is the relationship between cloning
and inlining, and their relationships to interprocedural analysis. Cloning improves
results of forward interprocedural problems and should be performed in topological
order. Inlining is performed in reverse topological order. Since cloning can enable
inlining, cloning should be performed before inlining. All of these suggests that the
planning phase should consist of two phases on the call multigraph. First there is a
top-down sweep where cloning decisions are made and forward interprocedural infor-
mation is updated. Then a bottom-up sweep makes inlining decisions and updates
backward interprocedural information. The algorithm is outlined below.

1. Build call multigraph (discussed in chapter 2).
2. Calculate interprocedural information (overviewed in section 6.3).
3. Plan transformations:
(a) Cloning
1. For each interprocedural problem used as a basis for cloning:
A. Visit procedures in PathFrequency order.
B. Partition calls to the procedures.
il. Incrementally update interprocedural solutions for problems used as
basis for cloning.
ili. Stop when program growth exceeds constraints.
(b) At this point, if we have not done so incrementally, we propagate new
solutions to the remaining forward interprocedural problems.
(c) Inlining
i. Visit call sites in EdgeFrequency order.
ii. Apply tests to determine value of inlining the call, and mark call site
for inlining if worthwhile and meets constraints.
iii. Incrementally update backward interprocedural information used in
inlining decisions.
iv. Stop when program growth exceeds constraints.
(d) At this point, propagate new solutions to any remaining backward inter-
procedural problems.
4. Perform interprocedural transformations.
5. Build executable (to be discussed in the next section).
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The algorithm is based on the idea that improvements to forward interprocedural
information affect each other, and the solutions to backward interprocedural informa-
tion. In fact, changes to backward interprocedural solutions may also affect solutions
to forward problems. In particular, MOD results can be used to improve CONSTANT
information, by formulating jump functions to include values of a variable r~nc.-
tional on whether it is modified at a call site [CCKT86]. Although taking advantage
of improved backward solutions to refine forward solutions may seem desirable, this
prevents a two phase algorithm on subsequent compilations. The addition of extra
passes over the call multigraph causes a significant recompilation problem when trying
to evaluate whether the compiled version of a procedure has correct interprocedural
information. Thus, initial backward information is used in the solution of forward
problefhs, but forward solutions are not updated due to improvements in backward
ones.

6.5 Recompilation Algorithm

In a traditional separate compilation system, only those modules which have been
edited since the last compilation need to be recompiled. However, when interpro-
cedural optimizations are performed, dependences between modules arise, poten-
tially causing unedited modules to need to be recompiled. Modules optimized based
on interprocedural facts will need to be recompiled if any of those interprocedural
facts change. Understanding the impact of changes to interprocedural information
is required when interprocedural information is used in optimization. Recompilation
analysis determines procedures requiring recompilation, attempting to minimize the
recompilation requirements. Interprocedural transformations such as inlining and
cloning require further consideration.

6.5.1 Recompilation Analysis for Interprocedural Information

Torczon presents three different approaches for minimizing the need for recompila-
tion after interprocedural optimization [Tor85] [CKT86b] [BCKT90]. The method
currently used in the program compiler compares interprocedural information from
the last compilation of a module with information obtained in the current compilation.
For a procedure and its call sites, the MOD, REF, ALIAS and CONSTANT information
must either be more precise than the information calculated in the previous compila-
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tion, or where it is less precise, the variables involved must not be referenced by the
procedure. If these tests fail, the procedure must be recompiled.

By allowing the new interprocedural set to be more precise than its previous value,
recompilation is avoided at the expense of lost optimization opportunities. The test of
whether or not a variable that represents less precise information is referenced avoids
recompilation when the difference could not have affected optimization.

6.5.2 Support for Cloning and Inlining

To analyze recompilation requirements after cloning and inlining, a representation of
the program is needed to describe the cloning and inlining that was performed on the
previous compilation. This representation must provide sufficient information to re-
construct the cloning and inlining performed on the program and the interprocedural
information used to compile the transformed modules.

Inlining is represented with call trees. A call tree is a subtree of the call multigraph
where all of the elements have been inlined into the root node of the tree. This
uniquely describes a sequence of inlining operations. A node representing a call tree
is added to the graph, replacing the group of nodes and edges making up the call
tree. The representative node is annotated with the call tree it represents.

Special nodes are also added to the call multigraph to represent cloning. When
a procedure is cloned, a new node is created to represent the cloned version. The
incoming edges in the call multigraph are divided between the new node and the
default procedure. A cloned version is annotated with its set of Cloning Vectors and
its State Vector. Interprocedural data-flow sets are associated with all nodes and edges
in the call multigraph, even when they occur in call trees or represent cloned versions.

An auxiliary data structure is required, representing each of the procedures in the
original program. For each procedure, a list of its clones and the call trees in which
it is included maps a call site in the original program to the appropriate version
of the procedure. With this data structure, it is straightforward to locate relevant
procedure versions when determining recompilation requirements. This structure is
also useful when one version of a procedure is no longer correct with respect to its
interprocedural information. If its information matches some other compiled version
of the procedure, recompilation can be avoided.
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6.5.3 Algorithm

The recompilation algorithm is shown below. It is based on the algorithm from the
previous section. Again, a two-phase approach is used. The first phase is a top-down
sweep, testing for recompilation requirements based on edits or changes to forward
interprocedural problems. During this phase, the call multigraph is updated to include
inlining and cloning that is still valid from the previous compilation.

There are really two recompilation tests to validate call trees. The first is, have
any of the member procedures been edited? This indicates if the inlining is still valid.
The second is, has the interprocedural information for the call tree changed? If so,
the inlined source is still valid, but the object code is not. As long as the inlined
source is still valid, the version is left in its inlined form, but the call tree node is
slated for recompilation.

For call sites that map to versions in the old executable of the program, the
recompilation test is applied to the forward interprocedural information. For a cloned
version, this may require a test on the value of StateVector if the version represents
multiple CloningVectors. If the forward interprocedural information has changed
and is now less precise than on the previous compilation, the procedure is slated
for recompilation. The backward interprocedural information is not tested, since the
second phase of the algorithm may make the information in the new call multigraph
more precise. The compiler assumes it is more likely that the information remains the
same than that it becomes less precise. This is because the recompilation algorithm
is intended to be used only after small changes to the program.

During the first phase, a call site invoking a procedure version that is not up to
date may be mapped to a different compiled procedure version. The call site is not up
to date if either it did not appear in the previous version of the program or it has less
precise forward interprocedural information than on the previous compilation. It can
be mapped to another compiled version if the interprocedural information at the call
site is more precise than the information of some compiled version. In this case, both
the forward and backward interprocedural information is tested. Since the call site was
not mapped to the compiled version in the previous compilation, there is no reason to
believe that the backward interprocedural information will approximate the compiled
version’s after the second phase of the algorithm. After locating such opportunities,
any remaining call sites require recompilation. For these, cloning opportunities are
considered.
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The second phase is a bottom-up sweep, evaluating recompilation needs based on
backward interprocedural problems. At the same time, inlining decisions are made
using the same heuristics as in the batch algorithm. However, inlining is only allowed
if the caller is slated for recompilation. Further inlining is permitted into already
inlined source in those cases where the source is still valid but the object code is not.
Finally, the procedure versions marked for recompilation are compiled.

1. Analyze current version of program:

(2)
(b)

Build the call multigraph based on the new version of the program.

Calculate interprocedural information for the new call multigraph.

2. Forward pass over call multigraph:

For each procedure p in PathFrequency order:

(a)

(b)
(c)

(d)

(e).

(f)

(8)

For each call tree ct, where p is the root, and one of the members of ct has
been edited since the last compilation (possibly p):

1. Mark ct as invalid.

ii. Delete source and compiled versions on ct from database.
If p has been edited since the last compilation, goto step 2g.

For each call site ¢ invoking p, match ¢ to its version of p in the old call
multigraph if a valid version exists and the new forward interprocedural
information for ¢ is more precise than the old information.

For any unmatched call site ¢ invoking a valid call tree, replace the corre-
sponding portion of the new call multigraph with a node representing the
call tree and mark as requiring recompilation.

For unmatched call sites ¢ invoking p, match ¢ to some version of p in
the old call multigraph if both the forward and backward interprocedural
information for ¢ is more precise than the information for the old version.

For any call site matched to a call tree in 2c or 2e, replace the corresponding
portion of the new call multigraph with a node representing the call tree.

For remaining unmatched call sites c invoking p, evaluate cloning decisions
for each problem used as a basis for cloning, if program growth constraint
has not been exceeded. For each cloning opportunity, add a node rep-
resenting the clone to the new call multigraph and reassociate the edges
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representing the call sites invoking this clone. Mark the node as requiring

recompilation.

(h) The rest of the unmatched call sites are grouped together, representing
the default version of the procedure. The node in the new call multigraph
representing the default procedure is marked as requiring recompilation.

Propagate in the new call multigraph the forward interprocedural

solutions from each node representing p.

3. Reverse pass over call multigraph:
For each node n in NodeFrequency order:

(2) If the node is matched to some version in the old call multigraph, mark
as requiring recompilation if the backward interprocedural information for
the node is less precise than the version to which it is matched in the old
call multigraph, and delete the compiled version in the database.

(b) Evaluate inlining for each caller of the node marked as needing recompila-
tion, keeping within program and procedure growth constraints. Perform
inlining where indicated, and update the new call multigraph to reflect the
inlining.

Propagate in the new call multigraph the backward interprocedural solutions

from the node if it has not been inlined at all calls.

4. Compilation:
Compile all nodes in the call multigraph marked as requiring recompilation.

6.5.4 Incremental Updates to Interprocedural Information
Incremental Updates During Planning Phase

During the forward and backward passes over the call multigraph, interprocedural
information is updated to reflect refinements. To do this efficiently requires an incre-
mental algorithm for performing the analysis. The design of the two-phase algorithm
is amenable to efficient incremental updates to the interprocedural information.
The incremental updates are based on Marlowe’s algorithm for incremental data-
flow analysis [MR90] [Mar89]. This algorithm requires that the graph be maintained
in topological order, and that the strongly connected components, or loops, be located.
Topological ordering guarantees that during a single update, the information is not
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propagated to a particular node more than once. Locating loops is necessary to
guarantee correctness of the result.

In the batch version of the algorithm, information is propagated iteratively within
the strongly connected components and summarized at their head nodes.!” Then
the information is propagated in topological order on the call multigraph. The in-
cremental algorithm is similar, first updating information within strongly connected
components, and then propagating information, where needed, in topological order.

With this algorithm, the types of incremental changes that are expensive are those
that change the strongly connected component structure, change the topological order
or both. The types of changes during cloning and inlining are not likely to have these
effects. Inlining results in edges deleted from the call multigraph, but cannot eliminate
edges within a strongly connected component unless the corresponding recursive cycle
is completely unrolled. With cloning, nodes and edges may be added to the graph,
but cannot affect the topological ordering. However, as a result of cloning, newly
exposed constants could simplify control flow sufficiently to eliminate call sites and
thus break up a recursive cycle. In general, it is very unlikely that inlining or cloning
will result in an expensive incremental update.

The topological ordering and strongly connected components needed by the algo-
rithm were already being used in other aspects of the cloning and inlining process.
Also, since cloning is performed in topological order, incremental updates to the infor-
mation can be made in such a way that the changes at a node are accumulated until
all its predecessors have been visited. Then, only a single update occurs at each node.
The same is true for updates to the backward interprocedural solutions. Inlining oc-
curs in- reverse topological order, and changes can be accumulated at a node until it
is visited. Note that we do not update backward interprocedural information during
the cloning phase, nor do we update forward interprocedural information during the
inlining phase.

Batch Analysis Between Compiles

We could also use incremental interprocedural analysis between compilations. However,
there is a distinct difference between the controlled types of changes occurring during
cloning and inlining and the unpredictable changes occurring from program edits.

1"The iterative solution within the strongly connected components allows the algorithm to work
even for unstructured code.



118

Even if we attempt to calculate the information in topological order, the call multi-
graph could change radically, affecting the topological order. There is no way to
guarantee that the amount of work done with incremental analysis is less than do-
ing batch analysis. So, interprocedural information between compiles is calculated in
batch, especially since we have nearly linear time algorithms for the call multigraph,
MOD, REF and ALIAS problems.

6.6 Related Work

This section focuses on related work in the area of managing the relationship be-
tween procedures in a program, since work related to other aspects of this chapter
have already been covered. The Unix make facility by Feldman was perhaps the
first tool that managed the relationship between procedures in a program [Fel79].
The make facility allows a programmer to specify the components of a program, the
actions required to build the program, and the dependences among the components.
Modification to a component is enough to force rebuilding of components that depend
upon it.

Tichy and Baker considered a finer granularity for establishing dependences among
components [TB85]. Their method determines the portions of a component that
are shared by other components: definitions, declarations and constants. This is
basically the interface to the outside. Then modification of a component can only force
recompilation of other components if the interface changes. Specifically, a reference
set is built for each component C that describes information used in C that is defined
elsewhere. During module editing, a change set is genefa.ted that describes changes
to the interface. Recompilation for a component C is indicated if the intersection of
the reference set for C and the change set for a component upon which C depends is
non-empty.

Miiller developed an algorithm similar to Tichy and Baker’s for the Rigi software
development environment [Mul86] [MHKS86]. Rigi is designed to support code shar-
ing across programmers and projects. The global interface analysis algorithms are
designed to detect recompilation requirements across a system of programs based on
imported and exported interfaces of the components.

The research following the introduction of the make facility freed the programmer
from specifying the dependences among procedures and decreased the amount of
recompilation required as a result of an editing change. ParaScope drew from these
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ideas but extended them to manage optimization across procedure boundaries. This
is unusual, even for compilers supporting interprocedural optimizations. Compilers
such as the Modula 2 compiler and the Gnu C compiler provide inlining facilities, but
they require the programmer to manage the compilation dependences of a procedure
on its inlined call sites. The Cray FORTRAN compiler manages dependences when it
performs automatic inlining.

The recompilation algorithm in this chapter extends the previous algorithms, ac-
commodating incremental inlining and cloning [Tor85] [CKT86b] [BCKT90]. Torczon
suggests that inlining and cloning be part of the program compiler design, but does
not provide an algorithm for determining if inlined or cloned versions require recom-
pilation. A representation of inlining and cloning similar to the one in this chapter
is described in [BCKT90]. However, the recompilation algorithm does not consider
how to perform inlining and cloning on a partially compiled program, only how to

determine if an inlined or cloned version is up to date.

6.7 Chapter Summary

The main contribution of this chapter is to describe how inlining and cloning can be
incorporated into the ParaScope compilation system, while maintaining a separate
compilation system. The chapter considers the interaction among the optimization
techniques and presents an algorithm designed to exploit these interactions.

The algorithm for inlining and cloning has two phases. A top-down sweep of the
call multigraph occurs first, making cloning decisions and updating forward interpro-
cedural information. A bottom-up sweep follows which makes cloning decisions and
updates backward interprocedural information. Cloning and inlining are performed,
and the compilation units are optimized based on the updated interprocedural infor-
mation.

This chapter has also considered recompilation, and the algorithm has been de-
signed to accommodate recompilation. A representation of the program was described
which recreates the cloning and inlining applied to the program. The algorithm
attempts to match call sites to their implementations in the previous compilation.
Additional cloning and inlining is only performed when recompilation is needed.



Chapter 7

Interprocedural Optimization for Parallelization

Previous work on interprocedural optimization for parallelism has focused on inline
substitution and interprocedural analysis of array side-effects. Even though array
side-effect analysis and inlining are frequently successful [Hus82] [HK91], each of
these methods has its limitations. Considerations of compilation time and space
require that array side-effect analysis summarize information about accesses. In gen-
eral, summary information is less precise than the analysis of inlined code. On the
other hand, inlining can yield an explosion in code size while disastrously increasing
compile time and seriously inhibiting separate compilation. Furthermore, inlining
can sometimes cause a loss of precision in dependence analysis, due to the complexity
of subscripts that result from array parameter reshapes. For example, in the SPEC
benchmark matrix300 described in Chapter 4, the dimension size of a formal array
parameter was also passed as a parameter. The translation of references to the formal
after inlining introduced multiplications of unknown symbolic values into subscript
expressions.

This chapter introduces a hybrid approach to interprocedural optimization that
overcomes some of these limitations. Array side-effect information is used to locate
opportunities for parallelizing transformations across procedure boundaries.!® These
transformations move a small amount of code across procedure boundaries, and the
effects of the transformation are annotated in the call multigraph. This yields many
of the benefits but few of the costs of inline substitution. Code growth of individual
procedures is nominal. Overall program growth is moderate since multiple callers
can invoke the same transformed procedure. In addition, compilation dependences
among procedures are reduced since the compiler controls the small amount of code
movement across procedures and can easily determine if an editing change of one
procedure involved in an interprocedural transformation invalidates other procedures.

18 Although the chapter focuses on optimizations for multiprocessors, the same transformations would
be useful for vector uniprocessors or distributed memory multiprocessors.
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The effects of inline substitution on parallelization are also considered. From the
inlining study of Chapter 3, we observed that although inlining eliminated call sites
from loops, the resulting loops were often not parallelized. We suggest some optimiza-
tions to further reduce dependences in inlined loops, and describe an experiment to
determine the effectiveness of the optimizations in increasing parallelism. The chap-
ter also describes a form of array side-effect analysis called regular section analysis
[CK88a] [HK91].

This chapter provides an overview of interprocedural optimization for enhancing
parallelization. It is organized into five sections. The next section describes inter-
procedural information required to perform dependence analysis of loops containing
procedure calls. Section 7.2 demonstrates how a few important parallelizing transfor-
mations can be performed across procedure calls, providing a framework for interpro-
cedural transformations. Support for the extensive analysis required by this approach
necessitates modications to the ParaScope compilation system. These modifications
are described. In Section 7.3, we discuss inline substitution in the context of paral-
lelism. The bulk of the section describes some optimizations that break dependences
after inlining. We present experimental results from applying these transformations
to the programs from the inlining study. Section 7.4 presents related work, mostly
regarding techniques for summarizing array subsections. The chapter closes with a
summary of important points.

7.1 Interprocedural Analysis for Parallelization
7.1.1 Scalar Interprocedural Information

The interprocedural information described in Chapter 6 is useful for parallelization.
In particular, discovering interprocedural constants used in loop bounds, array dimen-
sions or subscript expressions may improve dependence analysis. Constants describ-
ing loop bounds also aid the code generator in determining whether parallelization
is profitable. Scalar MOD can be of help in dependence testing when scalars appear
in subscript expressions. If a such a scalar is not modified at any call sites within
a loop, dependence tests may be able to determine that the scalar is loop-invariant.
This enables symbolic dependence tests. Finally, KILL information can eliminate
scalar dependences.

Information provided by scalar interprocedural analysis is useful in reducing de-
pendences. However, by itself scalar interprocedural information is too coarse to



effectively increase parallelism in loops. Scalar analysis treats arrays as single units,
marking an entire array as used or modified for each reference. This deficiency with
scalar interprocedural information has motivated techniques for summarizing the ef-

fects of procedure calls on array subsections.

7.1.2 Array Side-Effect Analysis

With more precise information about the portion of an array accessed in a procedure,
dependences may be pruned from the dependence graph. At the end of this chapter,
we describe a number of techniques designed to provide information about array side-
effects. We base our transformations on regular section descriptors (RSDs) [CK88a]
[HK91].

Regular sections describe side-effects to a few important substructures of arrays:
single elements, rows, columns, grids and their higher dimensional analogs. The
restriction to a few shapes makes the implementation efficient as compared to other
techniques. These shapes form a lattice, which allows formulation of array section
analysis as a data-flow analysis problem.

An RSD consists of a variable name and a representation of each dimension. Each
dimension is described in one of three ways: an invocation invariant expression (repre-
senting a single element); a range consisting of a lower bound, an upper bound and a
step size; or L, signifying that the entire dimension is affected. Like scalar side-effect
information, the regular sections are separated into modified and referenced sets.

Two-Phase Analysis

As in the scalar interprocedural analysis approach, gathering regular section informa-
tion is separated into two phases. The local phase, performed at the end of an editing
session, locates array references. Subscript expressions are examined for each array
reference. A regular section is constructed based on the loop induction variables, con-
stants, global variables or parameters that appear in the subscript expression. For
subsequent references to the same array, the sections representing the two references
are merged, based on the lattice meet function. In the interprocedural phase, the
regular sections are propagated over the call multigraph. Scalar MOD and CONSTANT
information is calculated first in order to refine RSDs based on parameters and global
variables.
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An important aspect of the propagation phase is renaming from formal parame-
ters to actual parameters across a call site. Just as with inlining, this can be difficult
if the programmer has reshaped the array at the call so that dimension sizes are
different. We could linearize the subscript expressions [BC86], reducing all arrays
to a single dimension. However, this yields very complicated subscript expressions
that may greatly hamper the ability of the dependence analyzer in disproving depen-
dences, especially since dependence analysis techniques are more successful on simple
subscript expressions.

Instead of linearization, the same rules used in Chapter 3 for inlining govern array
renaming. The actual must have at least as many dimensions as the formal. Also, for
a formal of k& dimensions and an actual of / dimensions, the size of dimensions | — k+ 1
to I —1 in the actual must match dimensions 1 to k — 1 in the formal. This makes
the renaming fairly straightforward. Otherwise, linearization may be performed as a
last resort.

Dependence testing with RsDs

Locating dependences on procedure calls is very much like dependence testing on
ordinary statements. The RSD information for the call consists of a list of modified
and referenced subsections. The modified and referenced subsections appear to the
dependence analyzer like the left- and right-hand sides of an expression, respectively.
For single element subsections, dependence testing is the same as it would be for
any other variable access. For subsections that contain one or more dimensions with
ranges, the dependence analyzer simulates DO loops for each of the range dimension.
The lower bound, upper bound and step size of each loop are derived from the range
of the corresponding dimension.

Information at each loop

One of the transformations described in the next section requires RSDs for each outer
loop of a procedure. This information can be gathered during the first phase of
analysis, in the same way as for the entire procedure.

However, propagation of these RSDs is not required. We are only interested in
translating the loop information for a procedure to its callers, based on the parameters
passed at the call. There is no need to propagate this information all the way up the
call multigraph. Whenever a caller examines the RSDs for loops in a procedure it
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calls, it can then do the translation from formal parameters appearing in the RSDs to

the actual-parameters at the call.

7.2 Interprocedural Transformations

This section demonstrates how to use RSD information to locate opportunities for par-
allelizing transformations that are legal across procedure boundaries. We introduce a
new transformation, loop embedding, that moves a loop header into a procedure that
is invoked within the loop. Following loop embedding, we can perform intraproce-
dural transformations on the loop, since we have eliminated the call site in the loop.
In this section, we consider loop embedding and loop distribution, in order to enable
loop permutation of a loop nest containing a procedure call. This group of transfor-
mations is not complete, but by describing these, we develop a framework for efficient
interprocedural transformation.

This section describes each of the transformations in the context of a compilation
system and a transformation framework. To provide the needed background, the
phases of the program compiler are described below. Following this, we describe the

transformation framework.

7.2.1 Program Compiler

As described in Chapter 1, the program compiler consists of six phases: (1) build-
ing the call multigraph, (2) computing interprocedural information, (3) performing
dependence analysis, (4) planning transformations, (5) performing transformations,
and (6) creating the program executable. We now describe the activities of the first
five phases as it relates to interprocedural parallelizing transformations.

Program Representation. We augment the call multigraph to contain information
about the interprocedural loop nesting of the program. Special loop nodes and
nesting edges are added to the graph. Nesting edges emanate from loop nodes.
Their targets are loops nested and procedures invoked within the current loop.

Interprocedural Analysis. RSD information is constructed as described in the pre-
vious section. Regular sections are computed for each procedure and for each
outer loop in a procedure. These are translated across the call to variables in
the caller’s name space. Nesting edges and call site edges in the augmented call
multigraph are annotated with their regular section information.
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Dependence Analysis. Dependence analysis is performed in procedures with the
benefit of the RSD information. Analysis occurs in a separate pass from code
generation so that the results of dependence analysis can be used to determine
the safety and profitability of interprocedural transformations. Dependence
analysis also marks parallel loops in the augmented call multigraph. We restrict
dependence analysis (and optimizations requiring dependence analysis) to those
procedures that require recompilation, thus limiting the extent of the analysis.

Planning and Transformation. At this point, we can determine the safety and
profitability of interprocedural transformations. Targeting profitable interpro-
cedural transformations is particularly important for parallelization since un-
necessary optimization can lead to performance degradation and significant
compile-time costs. By separating this phase from dependence analysis, we
avoid the compilation order dependences associated with using dependence in-

formation to make decisions about multiple procedures.

The flow of information among the phases is depicted in Figure 7.1. Each step adds
annotations the augmented call multigraph that are used by the next phase.

7.2.2 Transformation Framework

The methods used to perform these transformations indicate a framework for inter-
procedural transformations based on RSD information and dependence analysis. For
each optimization, we need to answer the following questions:

Augmented
Call Graph

4

Analysis
RSDs Marked || Loops

Dependence Graphs w/RSDs

Planning and

RSD
Transformation

Analysis

Figure 7.1 Flow of information for interprocedural transformations.
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e When is the transformation safe?
Determining safety usually takes place during deperdence analysis. Wherever

call sites occur, RSDs are used to stand in for the called procedure.

An important aspect of safety pertains to optimizations that require dependence
tests over multiple loops. We derive tests that can be performed a single loop at
a time, with requisite interprocedural information saved to enable merging the
individual results for each loop into a single result. By developing tests that can
be applied to loops independently, we avoid any compilation order dependences.

e How is the transformation performed?
The technical issues involved in performing a transformation need to be ad-
dressed. In each case, the benefits of the optimization are weighed against its
costs, where costs include code growth and compilation dependences.

e What tests need to be performed during recompilation to ensure
transformations are still valid?
Recompilation is required if the tests that indicated safety of the transformation
are no longer true. However, these tests are usually based on dependence anal-
ysis. Given that dependence analysis may be expensive, it should be avoided,
especially for procedures that are not expected to require recompilation.

For this reason, RSDs are used as an initial test before dependence analysis.
If the procedures involved in a transformation have not been edited and the
RSD information for relevant call sites has not changed, then there can be no
additional dependences that invalidate the transformations. In fact, even if the
RSD information has changed, as long as it has not become larger (i.e., as long
as there are no additional sections, and existing sections do not have additional
elements), no new dependences can exist. However, if this test on RSDs fails,
dependence analysis must be repeated. Since RSDs are not precise, it is possible
that the test on RSDs will fail, but dependence analysis will prove that no new
dependences exist.

e How can transformed procedures be used by multiple callers?
It is useful to describe the transformations performed on a procedure with an-
notations on the call multigraph. This information is important after program
changes to determine whether the transformations are still valid.
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This description of the procedure can also be used in the cloning process. It
should provide other callers of the procedure with enough information to detect
whether the transformed procedure is also valid for their call. Cloning can then
be performed by matching this information across all the callers of a procedure.
In this way, the annotations can be thought of as special ClonirVectors.

We address each of these issues as we present the transformations in the rest of this
section.

7.2.3 Loop Embedding

When a call site occurs within a loop, parallelization may be hampered, even with
accurate knowledge available about the interprocedural side-effects of the call. For
example, consider the following pair of procedures:

procedure p(a, b) procedure ¢(z,y, k)
dimension a(100), b(100) dimension x(100), y(100)
do i =1,100 z(k) =y(k) + k
call ¢(a,b,1) end /* q */
enddo
end /* p */

In the above example, the loop in p containing the call to ¢ could be vectorized if ¢
was inlined into p. However, even with knowledge of the side effects of ¢, the compiler
cannot vectorize the loop, because vectorizing a call does not make sense to the code
generator. Also, since the vectorization of the statement in q is dependent on the
calling environment, it is possible that other calls to q will exist in the program where
vectorization is not appropriate.

Of course, we could inline all calls to ¢ when inlining makes vectorization of the
statement in g possible. Alternatively, we can move the loop header across the call
and into ¢. This transformation can sometimes achieve the same benefits as inlining
into a loop, but it may not increase the code size, and it induces fewer compilation
dependences among procedures.

We present two methods for loop embedding. The first method is always possible,
requires little analysis, but makes reuse of the resulting procedure by other calls un-
likely. The second method promotes the possibility of reuse, but is not always possible,
and requires more expensive analysis to determine safety. Both solutions intrc duce
fewer compilation dependences than inlining, with the second solution preferavle to
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the first on this point. Also, both solutions reduce call overhead, but may instead

add other types of overhead.

Loop Embedding: General Solution

Safety. The most obvious way to move a loop header into a procedure is to move
the entire loop body into the called procedure along with the header. Then, the order
of statement execution in the loop body is preserved, and we are guaranteed that it
is always possible.

However, there should be one restriction on this transformation. Suppose a loop
in some procedure p contains calls to two procedures ¢ and r. Then if the loop header
is moved into ¢, there is now a new call (¢ — r). By further moving the loop header
into r, this introduces compilation dependences among p, ¢ and r, almost as if the
calls to ¢ and r were inlined into p. Moving a call into another procedure also changes
the calling structure of the program, which could consequently change the solutions to
interprocedural problems. For these reasons, loop embedding should not be allowed
when multiple calls appear in the loop.

Mechanics. With this method, we must deal with the following problems associated
with renaming variables moved from the caller to the callee:

e Eliminate actual parameters that vary in the loop body, since their values at the
point of the new call will be unknown. Add statements to the callee to calculate
their values. If it is the case that a subscript expression of an actual array
parameter contains the loop induction variable, the entire array is passed as the
parameter, and subscripts in references to the corresponding formal parameter
are updated in a manner similar to inlining.

e Ensure that global variables accessed in the loop are within the scope of the
called procedure.

o Pass as parameters to the called procedure any local variables of the caller that
are accessed within the loop and are visible outside the loop.

o Create local variables in the called procedure corresponding to locals of the
caller that are accessed within the loop but are not visible outside the loop.
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Recompilation. Consider how an edit in the calling procedure affects the called
procedur Without explicit knowledge that the loop where the call appears is not
changed, the code movement into the callee needs to be performed again and the
callee requires recompilation. On the other hand, if the callee is edited, we only have
to repeat the code movement into the callee. The caller is unaffected, and the caller
does not require recompilation. This optimization is less costly than inlining because
it does not induce a dependence from the callee to the caller.

Cloning. The procedure resulting from this transformation is specialized for the
particular loop in which it is called. It is therefore unlikely that any of the other
callers can invoke this modified version. Even if the code in the loop is identical to
that in some other caller, the compiler is not able to detect this. Thus, the effect of
this optimization on code growth is essentially the same as with inlining. Each time
it is applied, we are creating an additional copy of the procedure body.

Additional overhead. The overhead associated with this transformation has two
sources. The first is that we may be passing more parameters at the call. However,
after optimization the call executes only once, rather than once per loop iteration.
With a sufficient number of loop iterations, the cost of passing the extra parameters
should be less than the call overhead being eliminated.

The other source of overhead is the increased name space in the callee. Local
variables from the caller have been added, either as parameters or as new locals. We
have also added globals from the caller. It is difficult to determine if this will have
any appreciable effect on run-time.

Loop Embedding: A Solution Enabling Cloning

The second solution is designed to enable sharing of the transformed procedure by
multiple callers. It also has the added advantage of reducing compilation dependence
from caller to callee.

This time, the call is isolated from any other statements in the loop body. That
is, if the body of the loop looks like (S;; call ¢; S;), where S; and S, are sequences of
statements, it must be possible to separate the loop into three loops: one containing
(51), one containing (call ¢) and one with (S,). This transformation is called loop
distribution [KKL*81].
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Safety. This version of loop embeddings is safe if loop distribution around the call
is legal. Loop distribution must preserve the dependences in the loop. This is true
as long as statements involved in a dependence cycle remain within the same loop.

The test for loop distribution can be performed whenever an opportunity for the
transformation is located. The dependence graph is traversed for the loop containing
the call. During the traversal, we look for cycles in the dependence information for
the loop. For each cycle, if the call is included in the cycle along with additional
statements, then partitioning the call into a separate loop is not safe.

Mechanics. The goal is to isolate the call from the rest of the loop body in order
to move only the loop header into the called procedure. For a FORTRAN DO loop, the
loop header consists of three pieces of information: the lower bound of the induction
variable, the upper bound, and a step size. If any of these are parameters or local
variables of the caller, they must be passed as additional parameters at the call.

Although loop-variant variables cause cycles in the dependence graph, there is
one way in which loop-variant parameters can be passed at the call site. Suppose
that functions of the induction variable are passed as parameters to the call. Since
the value of the function cannot be computed at the call, it must be copied into the
called procedure with the loop header. Again, the call representation is annotated
with information about the parameter and the function.

Recompilation. Since the caller evaluates the legality of the optimization based
on the RSDs at the call site, the recompilation test must verify that the RSDs have
not changed in a way that suggests that dependences have been introduced. Changes
to the RSDs at the call site (caused by edits to the called procedure or to one of its
descendants in the call multigraph), must not enlarge or add new sections that were
not found in the previous compilation. Similarly, other call sites in the loop must not
have RSDs larger than those found in the previous compilation. If the RSDs have not
grown larger, there can be no new dependences on this call site, so the optimization
is still valid. This is true even if the called procedure has been edited.

However, if RSD information suggests that new dependences exist, it is possible
that the optimization is no longer legal. Safety analysis must then be performed in
the caller, to determine whether dependences exist which prevent loop distribution.
If no such dependences exist, then the optimization still is safe, and the caller does
not require recompilation.
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Editing changes to the caller may also invalidate the safety of the optimization.
In this case, dependence analysis must be performed on the caller since it is being
recompiled. At this time, the safety of the optimization can be determined. Further
tests are needed to verify that the call matches the annotations describing parameters
that are functions of the loop induction variable. Thus, the callee is only affected by
changes in the caller that either invalidate the legality of the optimization or change

the annotations.

Cloning. Two callers can invoke a transformed procedure under the following cir-

cumstances:

1. The transformation is legal in both callers.
2. They have the same annotations describing the actual parameters that are func-
tions of the loop induction variable.

Additional overhead. This optimization takes a single loop and turns it into as
many as three loops. Within this loop, a procedure call is eliminated. Thus, we
are trading decreased call overhead for increased loop overhead. Their relative costs
depend on a number of factors, including whether the loop is parallel or scalar, and

how many iterations it executes.

7.2.4 Interprocedural Loop Permutation

The primary goal in loop-based parallelization is to parallelize an outermost loop. A
large amount of-code can then be executed in parallel without having to synchronize
parallel processes. However, an outermost loop cannot be parallelized if it carries a
dependence [AK87]. A particular loop carries a dependence if the references of the
source and sink of the dependence occur in different iterations of the loop.

Even if the outermost loop cannot be parallelized, it may be possible to move
an inner parallel loop to the outermost position. This transformation is called loop
permutation [Ban90], a generalization of loop interchange [AK84] [AK87] [Wol86]
[Wol89]. To perform loop permutation, the dependence analysis phase looks for loops
that do not carry any dependences. These loops will be candidates for moving to the
outermost position.

This section presents two versions of loop permutation. First, we address the
problem of perfectly nested loops. These are loop nests in which the only statements
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appear in the innermost loop. Then the transformation is expanded to consider
imperfectly nested loops. The technique for perfectly nested loops is much simpler.
However, it is unlikely that perfectly nested loops will occur often when the loops
cross procedure boundaries.!® For this reason, it is important to consider imperfectly

nested loops.

Loop Permutation for Perfectly Nested Loops

We begin with an example of interprocedural loop permutation. Consider the follow-
ing pair of procedures:
procedure g¢(A.,i,j)

do:=1,n dok=1,n
doj=1,n A(i,5,k) = A(i = 1,7,k) + A(i,j — 1,k)
call g(A i) enddo
enddo end /* q*/
enddo

Because the 7 and j loops carry the dependence on C(3,j), neither can be run in
parallel. The k loop carries no dependence, and so it can be moved to the outermost
position as in the following:

procedure g¢(A,i,j,k)

dok=1,n A(i,j,k) = A — 1,5,k) + A(z,7 — 1,k)
do:=1,n end /* q*/
do j=1,n
call q(A,i,j,k)
enddo
enddo
enddo

Safety. In terms of preserving the dependences in a loop, it is legal to move a loop
outward if for all dependences in the loop, the source and sink of the dependence
occur on the same iteration. Most loops that do not carry a dependence can be
moved outward. There are also some requirements on the lower bound, upper bound
and step size of the loop. It must be possible to perform the translation from variables
in the original procedure to variables in the procedure to which the loop header is
moved. To this end, these values must either be constants, globals in the scope of

19In fact, experiences from the experiment described in Section 7.3 indicate that procedures often
contain initialization and testing code at the beginning.
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the procedure to which the loop is moved, or parameters that can be mapped to a
name in the procedure to which the loop is moved. Furthermore, the variables in the
bounds must not be modified along the chain of calls from their new position to their
original one. Possible exceptions include loop bounds based on induction variables of
an outer loop. Permutation of these triangular and trapezoidal loops requires a slight
extension to the transformation described here [Wol86].

Mechanics. During dependence analysis, loops that do not carry any dependences
are marked. To determine whether a loop containing a procedure call carries a de-
pendence, RSDs represent the called procedure.

When selecting foops for loop permutation, the compiler examines a chain of
procedures making up a loop nest. Starting at the procedure containing the outermost
loop, each procedure in the nest is considered, looking for a loop that has been marked
by the dependence analysis phase. When such a loop is located, the loop bounds are
considered to determine if it is legal to move the loop to the outermost position.2°

With a loop that is legal to move outward, the transformation is simple. The loop
is extracted from the procedure and added to the procedure containing the outermost
loop in the nest. Variables in the loop header are translated as needed to names in
the new scope. If needed, the induction variable of the extracted loop is passed as a
parameter down the chain of calls to the original procedure.

These changes essentially only affect the two procedures representing the original
and final locations of the loop. The only potential change in the intervening proce-
dures in the call chain is the addition of an induction variable to the parameter list.
However, even if no textual changes are made to the intervening procedures, they
are still affected by the transformation. This is because the intervening procedures
directly or indirectly invoke an altered version of the procedure formerly containing
the parallel loop. If they have callers outside of this call chain, the altered version of
the procedure will not be correct. For this reason, cloned versions of the intervening

procedures will be required if they can be invoked by callers outside the call chain

being optimized.

20A more general solution would attempt to move the loop to some position other than the outermost
if loop bounds proved to be illegal. Then, the code generator would have to select among the possible
parallel loops, locating the one which could be moved to the best position in the nest.
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Recompilation. The recompilation test involves the procedure formerly containing
the parallel loop, the procedure containing the outermost loop, and all intervening
procedures in the call chain.

If the procedure formerly containing the parallel loop has not been edited, the loop
is guaranteed to still be parallel if RSDs for all call sites within the parallel loop have
not grown larger. The conditions for the loop bounds must also be verified since these
can become invalid even if the procedure has not been edited. If the procedure has
either been edited, or the RSDs have changed, we must perform dependence analysis
on the procedure. If the same loop is still parallel and conditions for the loop bounds
have not changed, then the optimization is still valid. This procedure may need to
be transformed and recompiled, but the other procedures will not be affected.

If the procedure to which the loop has been moved has not been edited, it only
needs to be recompiled if the transformation is no longer valid. If the transformation
is still valid, but the procedure has been edited, the outer loop needs to be added and
the procedure recompiled. Intervening procedures in the call chain require changes if
they have been altered by the transformation, and it is no longer valid.

Cloning. A procedure containing a parallel loop that has been moved out can be
reused by other callers if it is legal to move the same loop out of the procedure. This
requires an annotation on the call to the procedure that specifies the loop that has
been eliminated.

The modified intervening procedures in the call chain can also be shared by other
callers if they lead to the same transformed procedure. To do this, annotations are
added to the cloned version that describe the call chain in the call multigraph that is
being optimized, of which this procedure is a part. Two callers can share the modified
procedure if they are both part of an optimized call chain. However, the tails of the
optimized paths, from the modified procedure to the end of the chain, must be the
same. Opportunities for sharing can be located by applying the minimization phase
of the cloning algorithm from Chapter 5, which recognizes and merges equivalent
cloned versions.

Permutation for Imperfect Loop Nests

Consider what must be done if the loop is not perfectly nested. In the following
example, the inner k loop is parallel, but the i and j loops are not:



procedure ¢(4,1, 7)

do:=1,n dok=1,n
doj=1,n A(i,j,k):A(i—l,j,k)+A(z',j—l,k)
A4, J,i4+37)=0 enddo
call g(A,1,5) end /* q */
enddo
enddo

To be able to move the k loop outward, we first have to distribute the 5 loop around
its two statements. At this point, we can either interchange the j and k loops, or

distribute the 7 loop around the revised j loops. The result of doing the former looks
like this:

procedure ¢(A, B, C,1)

doi=1,n dok=1,n
doj=1,n doj=1,n
enddo enddo
call ¢(A,1,7) enddo

enddo end /* q */

In the above example, the j loop is distributed around the the call site. Then the J
loop is embedded in the callee. Finally, the & loop is interchanged with the j loop.
Although we could have interchanged the k loop outside the loop quite easily in this
example, it would not have been so simple if ¢ contained statements other than the
single loop.

The discussion of loop permutation on an imperfectly nested loop only deals with
a subset of the possible combinations of caller and callee. We restrict consideration
to distributing a single inner loop in the caller, and interchanging the resulting loops
with outermost loops in the callee. (Another approach to imperfect loop interchange
avoids this distribution step. The class of loop nests for which interchange is appli-
cable is different than the one for this version [Wol86].) This transformation is not
performed along arbitrary chains in the call multigraph, but only across a single call.
Following the presentation of this transformation, we explain why these restrictions

are necessary.

Safety. On imperfect loop nests, the test for safety is divided between analysis in
the caller and analysis in the called procedure. In the called procedure, just as with
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perfect loop nests, parallel loops are marked during dependence analysis. The loop
bounds and step size must be non-varying within the caller’s loop. However, if these
were varying in the caller’s loop, it would cause a dependence cycle, which would be
caught in a subsequent test for safety of loop distribution.

In the calling procedure, the safety of loop distribution is considered. It must be
legal to create a partition of the loop containing only the call site. If the called proce-
dure contains multiple loops, it must also be legal to form partitions surrounding each
one of the callee’s loops. Testing for legality of loop distribution could also performed
during dependence analysis. However, since traversing the dependence graph looking
for cycles can be expensive, it is preferable to only consider this transformation when
the loop in the caller is not parallel, but the caller invokes a procedure with parallel
loops. -

Test the safety of loop distribution within the callee requires RSDs for each of the
loops in the callee, rather than a single RSD set for the call site. If distribution is
legal for any loops in the callee, the representation of the call is annotated with the
list of loops where distribution is legal.

Mechanics. This transformation is worthwhile when the only parallel loops in the
nest are inner loops. If this is the case, the safety of loop distribution in the caller
is evaluated. If such a combination is found, the loop header containing the call is
moved out of the caller. Prior to this step, it may be necessary to distribute the loop
in the caller around the call site. The parameter list in the call site may need to be
adjusted, as in Section 7.1 when moving the loop header across the call.

Within the callee, the loop header from the caller is added. Then, we distribute the
loop around inner loops wherever distribution is legal and the inner loop is parallel.
Finally, for each portion of the distributed loop, the parallel inner loop is interchanged
with the outer one.

Recompilation. This validity of this optimization relies on three factors: (1) par-
allel loops must exist in the called procedure; (2) loop embedding into the called
procedure must be legal; and, (1) distribution of the loop in the caller around loops
in the callee must be legal. The test for recompilation must verify all three criteria.

If RSDs for any call sites within the inner loop of the caller have grown larger,
it is possible that loop distribution around the call site and around the loops in the
callee is no longer legal. The test for safety of loop distribution must be applied to
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determine whether the changes in RSDs affect the validity of the transformation. The
callee onlv requires recompilation if the distribution of the inner loop of the caller is
no longer legal.

If any of the RSDs for the loops in the callee grow larger, then dependence analysis
must be repeated on the callee to verify that new dependences have not invalidated
the optimizations. The safety of loop distribution of the caller’s inner loop must also
be considered. If the same loops in the callee are parallel, and the same partitioning
of the caller’s inner loop is still legal, no recompilation is required. If either of these
tests fails, the callee must be recompiled. The caller only requires recompilation if it
is no longer safe to move the loop header into the callee, even if the callee has been

edited.

Cloning. Two calls can use the same transformed procedure if the inner loop of
the caller can be partitioned in the same way. There is also a second test. From the
caller’s perspective, this optimization only moves the loop header across the call and
into the called procedure. As a result, the same tests that applied to cloning for loop
embedding (Section 7.1.2) also apply here.

Requirements for general permutation of imperfect loop nests. The discus-
sion above restricts permutation to an inner loop in the caller being interchanged with
the outermost loops in the callee. All other possibilities fall into at least one of three
categories. The other possibilities are presented here, accompanied by a discussion of
why they are more difficult to support.

® Moving a loop from the called procedure outside an outer loop in the caller.
For this case, the transformation described in this section is performed. If this is
successful, RSDs must be constructed for the new partitioned loops. Moving to
the enclosing loop, the transformation is repeated. This continues until either
the outermost loop is reached, or a loop is reached for which the transformation
is not legal.

This analysis is extensive, and the representation of the procedure becomes quite
involved. Even if we are willing to perform the analysis, rather than attempting
to retain the separate procedures, inlining the call may be more appropriate.
Analysis for the other two possibilities is similar.
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® Moving a loop to another ancestor in the call multigraph.
If a loop is moved out to a procedure other than the immediate caller, evaluating
the safety of distribution must be performed at each procedure in the chain of
calls. First, distribution is tested for each loop in the caller. Each time a
distribution is found to be legal, RSDs are constructed for the new distributed
loop. Then, the safety of distribution is considered in the caller’s caller, and so
on through the procedures in the call multigraph.

e Moving an inner loop in the callee outside of the loop in the caller.
First, the safety of distribution of outer loops in the callee is considered. If this is
legal, RSDs are constructed to represent the distributed loops. This information
must be available for analysis in the caller.

7.3 Inline Substitution to Enhance Parallelism

In this chapter, inlining is considered in a new light. Previously, inlining was recom-
mended as the only transformation technique which allowed code to be moved across
the call boundary. The transformations in the previous section actually move code
across the call without inlining, as long as changes to the code can be represented
concisely with annotations to the call multigraph. The transformed procedures can
be thought of as special clones, which may be shared by other callers.

Inlining can still be useful for enhancing parallelism. For some transformations
that move code across call boundaries, inlining may be more appropriate than any
other transformation. As an example, general loop permutation for imperfectly nested
loops can be. so complex to describe that even if the analysis was feasible, the pro-
gram representation required would still be too complex. Inlining may also succeed
in exposing parallelism when other optimization techniques fail, since the RSD infor-
mation is not always precise. Additionally, certain transformations designed to break
dependences (such as scalar expansion and scalar renaming) are not evaluated across
procedure boundaries.

A goal-directed inlining strategy should be followed during evaluation of possible
optimizations on a loop nest. As a possible strategy, inlining could be performed
to produce loop nests of two or more loops. This is because many transformations
to break dependences require or work better with loop nests. The goal-directed
strategy for parallelization is not considered further. This section instead considers
how inlining affects parallelism.
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The results of the inlining study from Chapter 3 indicated that in most cases
inlining was not particularly beneficial to enhancing parallelism To gain insight into
the cause, we examined loops containing call sites that had been inlined. As Figure
3.11 showed, often too many dependences remain in these loops to gain improvement
in parallelism. However, the nature of these dependences in many cases seemed to be
related to inlining. Loops with inlined call sites exhibit some similar properties that
are unlike human-generated code. We observed instances where dependences could
be broken by certain optimizations. These optimizations are designed to improve
inlined code and probably not as profitable for code written by humans.

The rest of this section describes some unique properties of loops containing inlined
procedure calls and presents optimizations that promote parallelism in loops with
such properties. Most of the examples used to illustrate these optimizations arose
in the inlining study. A compiler that supports automatic or programmer-specified
inline substitution can more effectively parallelize a program by performing these
optimizations either during inlining or, in cases where the optimizations can possibly
cause execution-time performance degradation, during dependence analysis.

7.3.1 Properties of Inlined Programs

After inlining, often loops exhibit properties inhibiting optimization that would not
ordinarily appear in human-generated code. These properties can be categorized in
the following way:

1. Unreachable code.
2. Loop-invariant code.
3. Bounds checking.

4. Partial parallelism.

Unreachable code

Unreachable code can result from inline substitution when constant actual parameters
appear at the inlined procedure call. As a result of replacing constant parameters in
the procedure body, tests based on the value of these parameters can be evaluated at
compile time. Thus, the tests themselves can be eliminated, and if they evaluate to
false, code conditionally executed based on such tests can also be eliminated.

One obvious benefit of eliminating unreachable code is that less of the program
needs to be examined during analysis and optimization. However, a more important
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reason to eliminate unreachable code is because it can contribute dependences that
inhibit parallelism. For example, code guarded by a conditional such as i f(1#1)
may be contributing dependences, even though the condition is always false.

Unreachable code elimination occurs before dependence analysis in many compil-
ers. Since a certain amount of semantic analysis is required to perform inlining, it
is beneficial to eliminate unreachable code during inlining, so that the code growth
associated with inlining is reduced.

Loop-invariant code

Because our goal is to parallelize more loops after inlining, call sites selected for
inlining are usually those that appear within loops. When a procedure is called
repeatedly within a loop, it is often the case that there is some initialization code
appearing at the beginning of the procedure body that only needs to be executed
once within the loop. Inlining exposes the opportunity to move this code outside of
the loop body.

Moving loop-invariant code out of loops is profitable within a scalar optimizing
compiler because doing so can greatly reduce the amount of computation performed at
run time. However, there is an additional reason why it is profitable in a parallelizing
compiler. Just like unreachable code, loop-invariant code can contribute dependences
that inhibit parallelization. Consider the following example:

do:i=1,10
if(z#1)5j=1
y(i) = y(i) + ]
enddo
A dependence analyzer would detect the dependence of the assignment to y(¢) upon
the conditional assignment to j in the previous statement. However, the value of the
condition (z # 1) is loop-invariant, so j will have the same value on each iteration of
the loop. The conditional assignment to j can thus be moved outside the loop, and
the loop can then be parallelized.

The traditional loop-invariant code motion algorithm is used to eliminate a single
expression at a time. To eliminate dependences and improve parallelism, compound
statements such as loops and conditionals must be located and moved outside of
the loop. Such extensions to the traditional algorithm have been described [CLZ86]
[FOW8T).
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Loop unswitching. A similar technique, loop unswitching [AC72], can be applied
when a condition in the loop is loop-invariant, but the code guarded by the condition
is not. For an if-then-else clause within a loop, two copies of the loop are created.
One is guarded by the if condition, eliminating the portion of the loop that the else
condition guards. The other copy is guarded by the else condition, eliminating the
part of the loop guarded by the if condition.

Bounds checking

When call sites are inlined within a loop, many optimization opportunities involving
loop induction variables can arise. When calls appear in loops, the current problem
size, a function of the loop induction variable, may be passed as a parameter. Then,
within the called procedure, there may be a test of the value of the parameter to
ensure that it is within the range of the array bounds or within some other suitable
bounds (e.g., greater than 0). Because the bounds of the induction variable and
variables whose values are based on the induction variable can be determined directly
from the bounds of the condition for loop execution, tests involving such variables
can often be eliminated, as in the following example:

dok=1,n-1
/* before inlining, call p(n — k,...) appeared here */
t=n-—k

if (t < 0) then

enddo

Because the loop induction variable k ranges from 1 to n — 1, the value of ¢ ranges
from n — 1 on the first iteration, to n — (n — 1) = 1 on its final iteration. Thus, the
test for ¢ < 0 will always evaluate to false. The test and the code guarded by the test
can be eliminated.

A similar opportunity arises when the test only evaluates to true on the first or
last iteration of the loop (or the first few or the last few). By peeling off the first
or last iteration and removing the test and its accompanying code within the loop,
control flow is simpler, possibly exposing parallelism within the loop.

Locating variables whose values are based on the induction variable. Some
variables that are functions of the induction variable are auxiliary induction variables
and can be located using a variant of induction variable elimination [ASU86]. Once
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these variables are located, their possible ranges must be determined. If we know that
2 is a loop induction variable ranging from Ib to ub, and j is an induction variable
expressed in terms of i, we can substitute /b for 7 in the expression for j’s value to
determine the lower bound of j. Similarly, ub can be substituted for i to get the upper
bound of j. Note that if —i appears in the expression for j’s value, substituting (b for
¢ instead gives the upper bound of j, and substituting ub gives the lower bound of J-

This is a simplification of the techniques range analysis and range propagation
[Har77a). These techniques track the range of values for all variables in a program.
Although much more precise, tracking ranges of all variables is too expensive for
most practical compilers. Here, we have limited ourselves to only tracking ranges of
induction variables because often their ranges are explicitly declared in the loop body.
This knowledge has proven to be especially useful in the context of optimization after
inline substitution.

Partial parallelism

After inlining call sites appearing in loops, the loops are often long and complicated.
With such loops dependences are more likely to exist that defy the dependence an-
alyzer. Even after applying the optimizations described above, a loop may contain
dependences that make it inherently sequential. To parallelize such loops, it is neces-
sary to locate parallel portions of the loop and distribute the loop among the parallel
and sequential portions of the loop.

We observed that many of the dependences remaining in the loops after inlining
were on scalar variables. The technique commonly used in vectorization to eliminate
dependences on scalar variables is scalar ezpansion [KKL*81]. A similar technique is
used in parallelization, where such variables are made private to each processor. A
scalar r is expanded in a loop with induction variable : by replacing accesses to r with
accesses to an array element r(z), where the new array r has length at least as great
as the number of iterations of the loop. This optimization is always safe, but the
compiler must ensure that uses of the expanded scalar are translated to correspond
to either the previous or the current iteration, whichever is appropriate. However,
due to the increased memory requirements resulting from scalar expansion, it is not
usually performed unless doing so allows the loop to be parallelized.
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Scalar expansion can also be used even when it does not automatically allow the
loop to be-parallelized. The combination of scalar expansion and loop distribution
may allow portions of the loop to run in parallel. Two such opportunities arose in
our sample programs.

First, it may be possible to expand a scalar and calculate its value for all iterations
in parallel, even if the rest of the loop is sequential. Another possibility is to calculate
the scalar values sequentially and expand them into array values for every iteration
so that the rest of the loop can be run in parallel. Both of these cases are illustrated
in this example from wave:

do: =2,ny
yn = (¢ — 1.5) * hy
do j = lb,ub
r=0.
if (yn =y())) 7 = dy(y)
if (yn >y(j — 1) and yn < y(3)) then
r=(dy(j) —dy(j — 1)) * (yn —y(5))

y(j+1)=yn
endif
enddo
d=d+r=*hy

enddo

Scalar expansion permits all of the values for yn to be calculated in parallel or vector.
However, the inner loop is inherently sequential. Thus, yn is an example of scalar
expansion to permit the scalar to be calculated in parallel. Now, since the inner loop
is sequential, values for the variable r are calculated sequentially. However, scalar
expansion of ﬁsing an array element for each outer loop iteration allows the value
of d to be calculated in parallel using a sum reduction.?! This expansion of r is an
example of scalar expansion to permit use of the scalar in a vector loop. Here is the
parallelized version of the above loop:

21 A vector reduction operation uses special hardware to accumulate the results of certain operations
applied across an array of values, even though there is a dependence. To compute the same result
as the scalar version, reduction operations should be associative.
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doall : = 2,ny
yn(:) = (1 — 1.5) x hy
enddo
do : =2,ny
do j = lb,ub
r(i) = 0.
if (yn(z) = y(5)) r(2) = dy(j)
if (yn(i) > y(j — 1) and yn(s) < y(j)) then
r(1) = (dy(5) — dy(5 — 1)) * (yn(?) — y(4))
y(J + 1) =yn(7)
endif
enddo
enddo
doall : = 2,ny
d = d + sum_reduction(r(z) * hy)
enddo
This particular pair of optimizations should be applied with great care since they
may carry with them a substantial overhead. The overhead of loop distribution arises
from the cost of duplicating loop control structures combined with the overhead of
parallelizing a loop. Thus, the number of loop iterations and the number of statements
appearing in the distributed loops must be sufficiently large to justify the increased
overhead. Scalar expansion increases the memory requirements of a program, which
can adversely affect performance of the memory hierarchy. These issues are further

discussed below.

7.3.2 Experimental Results

The optimizations in this section were applied by hand to the eight programs from the
inlining study. On three of the programs, these optimizations yielded improvements
in pa.ra.llelis:m. After optimization, we executed versions of the inlined program with
and without optimization on the Stardent Titan, configured with four processors. The
code was instrumented to measure the time spent in the optimized portions of the
programs. The results are summarized in Figure 7.2 and discussed in the remainder

of this section.

Explanation of Results

In Figure 7.2, line 1 displays the number of candidate loops where inlining could be
applied to eliminate calls within loops. Since we used a heuristic to determine when
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efie304 | wave | cedeta
1. DO loops with procedure calls 15 20 23
2. loops with no calls after inlining 14 15 22
3. loops improved after inlining 1 1 1
4. additional loops improved by opts 4 10 1
5. execution time improvement
in optimized loops 51% | 7% | 18%
6. execution time improvement
for program 6% | 4% 4%

Figure 7.2 Results of applying optimizations to inlined programs.

to inline a call site, not every call site appearing in a loop was inlined. Line 2 gives
the number of loops from line 1 in which all calls were inlined. The calls remaining
in loops in wave and cedeta either are to large procedures, or are calls where the
types of parameters do not match. Line 3 shows the number of loops from line 2
that are fully or partially parallelized after inlining. This represents the improvement
in optimization gained from inlining. Line 4 gives the number of additional loops
from line 2 with partial parallelism after applying the optimizations described in this
section. Lines 5 and 6 represent the percentage decreases in execution time for the
optimized portion of the code and for the entire program, respectively.

While the number of loops improved and execution time improvements for opti-
mized loops are significant, overall execution time improvements are not as impressive.
Comparing the inlined versions of these three programs before and after optimization,
the overall execution time improvements have been no greater than 6 percent. This
is because the time spent in the optimized loops is a very small percentage of the
program execution time. This may be because FORTRAN programmers are concerned
about the inefficiency of procedure calls, and therefore avoid placement of calls in

frequently executed parts of their programs.

Problems

Throughout these experiments, there were problems that interfered with program
performance after optimization. These were as follows:

e When loop distribution is needed to make a loop parallel, the overhead can be
enough to make the parallelization not worthwhile. This problem is exacerbated
by the code generation phase of the Titan compiler, which distributes loops into
the smallest number of statements that still preserve all of the dependences.
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These loops are then fused together when possible into parallel and sequential
loops. Unfortunately, loops containing conditionals are not fused with any other
loops [All90]. On cedeta, the optimized loop was distributed into four separate
loops, two of which consisted of only a single statement. Parallelizing the short
loops caused execution time of the loop to increase by 25 percent. By making
the two parallel loops run in vector mode instead, we obtained the 18 percent
improvement in Figure 7.2.

o Scalar expansion increases the memory requirements of a program, and as a
result, can hurt performance of the components of the memory hierarchy. After
the combination of scalar expansion and loop distribution, executing an opti-
mized loop in wave increased the ex- cution time in the optimized portion of
the code by a factor of three. The couibination of variable renaming and scalar
expansion affected the compiler’s analysis of accesses and introduced a pipeline
interlock in the parallel loop. By avoiding the renaming, the interlock was
eliminated, resulting in the significant improvement in Figure 7.2. Although
this problem was in some sense a mistake in our hand optimization, it points
out how sensitive performance can be to changes in memory accesses. A code
generator that incorporates scalar expansion must consider these effects.

7.4 Related Work
7.4.1 Approaches to Summarizing Array Side Effects

A number of approaches to array side effects have been suggested in the literature.
A 'compa.rison of these techniques can be found in [HK91]. In this comparison, the
precision of the techniques is weighed against their costs. The costs are broken down
into a number of categories. The two most important costs are the cost of merging
two pieces of information about the same array, and the cost of intersecting two pieces
of information to determine if there exists a dependence between them.

e Two techniques avoid summarizing accesses to the same array by building a list
of all accesses. The first of these, by Burke and Cytron, linearizes all subscript
expressions, resulting in a list of accesses to 1-dimensional objects [BC86]. The
effect of linearization can be a significant loss of information for dependence
testing. Li and Yew developed a more precise representation of array accesses,
called atom images [LY88a] [LY88b]. These precisely represent linear subscript
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expressions in rectangular and triangular iteration spaces. In both cases, testing
whether two lists have a non-empty intersection requires a traversal of the lists

of accesses. Thus, the cost of these techniques can be significant.

e Triolet summarizes array accesses using a more precise representation of the
summary than RSDs[TIF86]. This technique locates the convex hull surround-
ing two regions representing accesses. Dependence testing requires an assymp-
totically exponential linear inequality solver.

¢ Balasundaram proposed an approach to summarizing array accesses designed
to locate opportunities for task-level parallelism [Bal89]. It can also be used to
provide programmers with a visual description of affected regions of an array.
For this purpose, Data Access Descriptors also include a traversal order and a
reference template.

The implementation of RSD analysis described in [HK91] gives up some precision in
favor of efficiency. By describing only simple access patterns and by summarizing
multiple accesses to an array, all aspects of the technique are efficient. Experiments
with regular section analysis on the LINPACK library demonstrated a 33 percent re-
dution in parallelism-inhibiting dependences, allowing 31 loops containing calls to
be parallelized. Comparing these numbers against published results of more precise
techniques, [LY88a] [LY88b] [TIF86), there was no benefit to the increased precision
of the other techniques.

7.4.2 Interprocedural Transformations

Prior to this research, array side-effect information has been employed only in decid-
ing whether loops containing calls can be parallelized. In contrast, this chapter has
described how array side-effect information can also be utilized in guiding interproce-
dural transformations. In fact, we know of only one other author who has addressed
the issue of interprocedural transformations. Huson’s implementation of inline sub-
stitution actually performs loop embedding [Hus82], as described in Section 7.2.1. No
interprocedural information is required to determine the safety of this transformation.

The Convex Applications Compiler analyzes array side effects using a technique
similar to regular section analysis [Met91]. This information is combined with inlin-
ing and cloning to parallelize loops with procedure calls. Inlining is used to eliminate
call overhead. Cloning is used to expose constants in order to improve dependence
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analysis. Experience using this compiler has demonstrated that interprocedural anal-
ysis and optimization typically execution-time improvement of 10 to 25 percent over
standard compilation. In a few cases, the compiler compiler yields a speedup of 5
over separate compilation [MS91].

7.5 Chapter Summary

The ideas in this chapter provide a framework for interprocedural optimization sup-
porting parallelization. The chapter makes two main contributions: how to use array
subsections to guide interprocedural transformations, and how to eliminate depen-
dences in loops after inlining.

Transformation framework. In the framework for interprocedural transforma-
tion, the legality of transformations is established with tests that can be applied to a
single procedure at a time. These tests can be applied during or following dependence
analysis, so that we can take advantage of the detailed information gathered during
this phase. When tests are performed a single procedure at a time, no ordering is
imposed on the analysis of procedures.

After transformations are performed, their effects are captured with annotations
on the call multigraph. This provides a natural mechanism for locating opportunities
for cloning, as well as making decisions about recompilation. As an initial test for
recompilation, RSDs are tested to see if they have changed. This prevents the need
for dependence analysis in cases where recompilation is not required.

Optimizations after inlining. The optimizations on inlined loops can be incor-
porated into a compiler supporting automatic or programmer-specified inline substi-
tution. Because the optimizations are motivated by properties of inlined programs,
they can enhance parallelism beyond what is possible with inlining alone.

The optimizations were validated with experimentation. We observed that the
secondary effects caused by loop distribution and scalar expansion can cause perfor-
mance degradation. A compiler that performs these optimizations should consider
such problems during code generation.

The experiments measured execution time improvements in the optimized por-
tions of the programs, as well as in overall program execution time. The execution
time improvements within the optimized portions of the programs were significant.
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However, improvements in the overall program execution times were only moderate,
since the time spent in optimized portions of most of the programs was only = small
percentage of program execution time. Similarly, parallelism results after inlining in
Chapter 3 suggested that inlining did not often open up opportunities for paralleliza-
tion. This is perhaps due to a perception by the programmers that procedure calls are
expensive. However, the improvements on just the optimized loops are an indication
that significant execution time improvements may be possible on code written in a

more modular style.



8.2 Implementation Status

8.2.1 Program Compiler

Large portions of the program compiler have already been implemented, and further
implementation is planned. The current program compiler first builds the call multi-
graph, using the precise algorithm [CCHK90]. Then interprocedural information is
calculated on the call multigraph. Currently, the program compiler builds scalar MOD,
REF, ALIAS and CONSTANT sets. RSD information is also available in the environment,
although it is calculated outside of ParaScope.

The program compiler performs inline substitution at the source level, and this
part of the implementation was briefly described in Chapter 3. At this time, inlining
requires programmer selection, made possible by a tool which acts as an interface to
the program com ~‘ler. The programmer selects individual call sites for inlining, and
the program compiler inlines these call sites whenever it is legal.

Recompilation analysis is performed to determine what procedures require recom-
pilation due to changes in interprocedural information. This analysis also deals with
inlining, determining if changes have invalidated an inlined version of a procedure.
After recompilation analysis, the program compiler executes the appropriate com-
mands to build a program executable. It also saves a program representation describ-
ing the interprocedural information and inlining assertions used in this compilation.
This information will be used by the program compiler during recompilation analysis
on a future compilation, and by other tools interested in knowledge of interprocedural
information.

8.2.2 Program Compiler Display

Through the course of this research, it became necessary to build an interface to the
program compiler. This was particularly important for the inlining study. A display
from the program compiler interface is shown in Figure 8.1.

The display window has 3 panes. The top pane shows the composition, which is
the description of the program. The middle pane, the entry display, allows brows-
ing of individual procedures in the program, annotated with their interprocedural
information. All statements other than the procedure declarations and call sites are
filtered out of the entry display. The bottom pane displays output from the compiler.
In its verbose mode, the compiler describes its activities at each phase of the program
compiler. Included in this description is the list of procedures to which interproce-
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Chapter 8

Conclusion

This dissertation has dealt with some important issues in interprocedural optimiza-
tion. It has presented a comprehensive approach to interprocedural optimization,
balancing the effectiveness with costs in code growth and compilation dependences.
A system was described which manages interprocedural optimization while attempt-
ing to reduce the amount of recompilation required after minor changes.

This chapter concludes the dissertation by summarizing its contributions, describ-
ing a prototype implementation and outlining future work planned for ParaScope.
Each one of these topics is given a separate section. The final section presents the
implications of this work on compiler design and programming practices.

8.1 Contributions of the Dissertation

This research has included extensive experimentation leading to a much improved
understanding of interprocedural optimization. In particular, the inlining study de-
scribed in Chapter 3 spanned over 2 years. The data from the study led to a variety
of unexpected conclusions about the benefits of interprocedural optimization. Other
experiments — on cloning, constant propagation and goal-directed interprocedural
optimization in Chapter 4, and improving parallelism after inlining in Chapter 7 -
though less extensive, also contributed to knowledge about the effects of interproce-
dural optimization.

Much of the compilation system described in this dissertation has been imple-
mented in the ParaScope Programming Environment. As a result of the prototype
implementation, the rest of the design was developed based on what was feasible to
incorporate into the existing framework. While the experimentation suggested when
interprocedural optimization would be effective, the implementation guided how to
use interprocedural optimization without absorbing significant costs.

Several important algorithms resulted from this work. In Chapter 2, we presented
an algorithm for constructing the call multigraph that is nearly linear for most pro-
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grams, and is quadratic in the worst case. These are much better time bounds than
previous algorithms. This algorithm is important because the call multigraph provides
the program representation used in all interprocedural analysis and optimization.

Chapter 4 describes a goal-directed strategy for interprocedural optimization, us-
ing interprocedural transformations only to enable high-payoff memory management
optimizations. This represents a significant departure from previous work on interpro-
cedural optimization, where interprocedural optimizations are widely used to enable
low-level optimizations. This strategy was a direct application of the experimental
results. It includes an algorithm to recognize important variables, only allowing pro-
cedure cloning when doing so exposes constant values for these important variables.
It also includes an estimate of the relatlopshlp between computation and memory
accesses within a loop, so that only loops that are memory-bound are optimized.

Chapter 5 presents a general algorithm for procedure cloning, which in the worst
case requires polynomial time and a doubling of program size. The algorithm re-
stricts cloning to avoid its potentially exponential behavior. The amount of cloning
is reduced by performing cloning only when it is worthwhile, and by merging clones
that cause equivalent effects on optimization. If the amount of cloning would still
cause intolerable code growth, then cloning is performed only on the most frequently
executed portions of the call multigraph. The work on cloning in this dissertation
significantly expands previous knowledge.

Chapter 6 provides a system for combining inlining, cloning and optimization
based on interprocedural information. Included in this chapter is a presentation of the
interprocedural analysis performed in ParaScope and general guidelines for supporting
inlining and cloning. Most importantly, this chapter describes the necessary support
for recompilation analyis when inlining and cloning are performed.

In Chapter 7, we develop a strategy for interprocedural optimization supporting
parallelization. This chapter presents some interprocedural transformations designed
to enhance parallelization when a loop containing call sites cannot be directly paral-
lelized. It also describes transformations to apply following inlining to further enhance
parallelization.
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dural transformations are applied. The compiler explains why the transformation
was applied and whether it was successful. The compiler also provides the list of
procedures requiring recompilation and explains why recompilation was necessary.

To illustrate the utility of such a display, we use the example program rkf45, part
of the Forsythe, Malcolm and Moler library package [FMM77]. In the entry display
from Figure 8.1, the procedure definition of rkfs is annotated with its interprocedural
constants and aliases. In this case, there are no constants, but a significant number of
alias pairs. The call sites invoking feh! and procedure-valued formal f are annotated
with their MOD and REF sets. The display of interprocedural information to the
programmer can be useful in debugging [CS85]. For example, from the main procedure
it is possible to locate variables that are modified but never referenced.

The buttons on the title bar of this pane are callers, calls and linkage. Selection
of the callers button results in a menu of the procedures invoking the subroutine
currently being displayed. Selection of one of the menu items changes the focus of
the entry display to the information for the caller. Similarly, the calls button allows
changing the focus in the display to the called procedure. In this way, the entry pane
can be used to walk the call multigraph. The focus of the entry display can also
be changed through a mechanism provided by the composition pane, enabling direct
selection of procedures to be the focus. The linkage button allows the programmer
to select call sites for inline substitution. This mechanism was used in the inlining
study of Chapter 3.

The main subroutine of this program passes the subroutine orbit as a parameter
at a call site and is passed down a chain of calls before it is invoked. The program
compiler determines that the procedufe-vélued formal f invoked by rkfs can have only
the binding orbit. In the snapshot of the display from Figure 8.1, we have selected
a call site invoking f and the linkage button in order to set the linkage style for the
call site. The small box to the right of the linkage button is a pop-up menu providing
the list of procedures invoked at the selected statement. The menu shows that the

program compiler has resolved the binding of f.

8.3 Future Work

8.3.1 Complete Implementation

Work continues on the program compiler implementation. First, we plan to in-
corporate the interprocedural optimization to enable memory-management trans-
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formations, as described in Chapter 4. This includes interprocedural analysis of
CloningVars and loop balance, as well as automating inlining and cloning and the re-
compilation analysis required to support them. Analysis of RSDs will also be added to
ParaScope. This will allow incorporating the parallelizing transformations described
in Chapter 7. Finally, analysis will be added to the program compiler to be used by
other tools, as described at the end of this section.

8.3.2 More Experimentation

We have studied inlining extensively. Experiments were also performed to assess the
effectiveness of constant propagation, and cloning based on constants, although more
work could be done in these areas. Another study at Rice has provided insight into
the value of array side-effect analysis.

A number of additional experiments would provide a better understanding of the
effectiveness of interprocedural optimization, particularly the impact of CONSTANT,
MOD, REF and ALIAS information on optimization. Studies for other programming
languages have shown mixed results. Conradi estimated that a 5 to 20 percent im-
provement in execution time was possible with a combination of inlining and inter-
procedural information, based on empirical results on program characteristics for the
PQCC multi-language compiler backend [Con83]. Richardson and Ganapathi ob-
served an average of 1.5 percent using only MOD and REF information to optimize
Pascal programs [RG89b]. Richardson and Ganapathi’s results may not reflect what
can be expected from scientific FORTRAN code. Since Pascal allows the programmer
to declare a parameter as call-by-value or call-by-reference, the programmer can con-
vey a certain amount of the interprocedural information to the compiler that is not
possible with FORTRAN. A study of the effectiveness of interprocedural information

for compiling FORTRAN programs is needed to determine its usefulness.

8.3.3 New Uses for Interprocedural Analysis and Optimization

The original design of the program compiler was meant to support improved scalar
optimization. Over time, we extended the design to include support for improved
parallelization. As the implementation has matured, new applications of interproce-
dural knowledge have arisen. Because of the unique design of ParaScope, extending
the analysis to solve new interprocedural problems is not difficult. For this reason,
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we are planning to apply interprocedural knowledge to some new areas. Two of these
are briefly_described in this section.

Distributed memory compilation

Major challenges in compiling for distributed memory multiprocessors include deter-
mining the processor on which to locate a data item, and managing the communica-
tion of the data when accessed by processors other than the one on which it is located.
Most compilers for distributed memory machines require the programmer to deter-
mine how the data will be assigned to the processors [ZBG88] [RP89] [KMV90]. The
compiler is responsible for adding the message passing to move the data to processors
that use it and from processors that define it. The compiler also adds the necessary
synchronization to guarantee that data dependences are preserved.

Distributed memory compilers typically assume that procedure calls do not oc-
cur in parallel loops, with the exception of the SUPERB compiler [Ger89]. If this
assumption is relaxed, the compiler must have knowledge of decompositions across
procedure boundaries. This adds a host of problems requiring interprocedural solu-
tions [HKT91].

The compiler must propagate decompositions on the call multigraph, with for-
mal parameters inheriting the decomposition of the actual parameters passed at the
call, and globals retaining their decomposition across the call. If a variable inherits
multiple decompositions, the compiler clones the called procedure, creating unique
copies for each unique set of decompositions.?? The procedure body can be tailored
to the decomposition of its data, since this is known at compile time. As an example,
the code generated could compute values only for variables that are located on the

processor being used.

Access anomaly detection

Accesses to the same memory location by multiple parallel threads, with at least
one write, are a common source of bugs in parallel programs. These types of bugs

22For this problem, SUPERB adds extra parameters to a call site specifying decompositions for vari-
ables of the called procedure. The code for the called procedure tests these extra parameters for
each possible decomposition, and separate code is executed for each possibility. This looks a lot like
procedure cloning, but may cause more code expansion, and much of the work must be done at run
time.
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are difficult to locate because they may only occur when concurrent threads are
interleaved in a specific way. Thus, they may be difficult ¢to repeat with subsequent
executions of the program.

Access anomaly detection is a technique used in debugging on shared memory mul-
tiprocessors to locate potential race conditions by tracing memory accesses [Sch89).
To avoid significant overhead, Schonberg only traces memory locations in executing
concurrent threads. When all concurrent threads that may access the same variable
have completed execution, trace information about the variable is discarded.

To further reduce the overhead of access anomaly detection, researchers at Rice are
taking advantage of dependence analysis [HKMC90]. By assuming that concurrent
threads are only created by parallel loops, dependence analysis at the loop-level can
eliminate mefhory locations from consideration. If there are no dependences on a
variable in a parallel loop, there is no need to trace accesses to it. For parallel loops
containing procedure calls, interprocedural analysis is needed to aid in the dependence
analysis.

First, we need to determine if dependences exist on call sites within a parallel loop.
This is done by constructing RSDs for each parallel loop, and intersecting them with
RSDs for the call sites within the parallel loop. A non-empty intersection describes
the set of possible dependences, and any accesses which are in the intersection must
be traced in the procedure containing the parallel loop. Accesses to variables in the
called procedures also need to be traced if they can fall within the intersection. To
determine this, the intersection is translated to variables in the scope of the called
procedures (i.e., from actual parameters at the call site to formal parameters in the
called procedure). Then, accesses in the called procedure can be compared to the
intersection, yielding the accesses that must be traced. Thus, the intersection is
propagated throughout the portion of the call multigraph making up the parallel loop.
In some cases, a procedure may inherit from its callers significantly different sets of
variables that need to be traced. This situation may provide a good opportunity for
cloning in order to reduce the amount of instrumentation needed.

8.4 Final Remarks

Modern architectural features - such as instruction pipelines, long instruction words
and multiprocessors - place a significant burden on the compiler to take advantage
of the performance potential. Moreover, effective instruction scheduling for these
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types of architectures requires that the compiler understand the effects of multiple
statements at a time. Thus, to produce efficient object code for these architectures,
a compiler must have surrounding context when performing optimization.

When a compiler can only optimize procedures as single units, the restricted
context may cause it to miss some important opportunities for optimization. As
a consequence, a programmer concerned about efficiency may rewrite a program to
avoid procedure calls in places where optimization is important. The programmer may
even attempt to hand-optimize their program to take advantage of the architectural
features of a machine.

The role of interprocedural optimization is to provide the compiler with adequate
context to perform optimization. We have shown in this dissertation that sometimes
this can make dramatic improvements in program performance. The underlying mo-
tivation to this work is to avoid or reduce the performance penalty suffered when pro-
cedure calls occur frequently in code. Then programmers can make use of procedure
calls without concern of hurting performance. This allows them to write modular,
machine-independent programs, resulting in debuggable, portable and maintainable
programs.



[ACT2]

[ACTS)

[ACF+80]

[AKS4]

[AKS7]

[A1190]
[ASUS6]

[Bal79]

[Bal8g)

[Ban79]

(Ban90]

[BCS6)]

159

Bibliography

F. E. Allen and J. Cocke. A catalogue of optimizing transformations. In
J. Rustin, editor, Design and Optimization of Compilers. Prentice-Hall,
Englewood Cliffs, NJ, 1972.

F.E. Allen and J. Cocke. A program data flow analysis procedure. Com-
munications of the ACM, 19(3):137-147, March 1976.

F.E. Allen, J.L. Carter, J. Fabri, J. Ferrante, W.H. Harrison, P.G.
Loewner, and L.H. Trevillyan. The experimental compiling system. IBM
Journal of Research and Development, 24(6):695-715, November 1980.

R. Allen and K. Kennedy. Automatic loop interchange. In Proceedings
of the SIGPLAN 84 Symposium on Compiler Construction. ACM, June
1984.

J. R. Allen and K. Kennedy. Automatic translation of Fortran programs
to vector form. ACM Transactions on Programming Languages and Sys-
tems, 9(4):491-542, October 1987.

R. Allen. Private communication, March 1990.

A.V. Aho, R. Sethi, and J.D. Ullman. Compilers, Principles, Techniques
and Tools. Addison-Wesley, Reading, MA, 1986.

J. E. Ball. Predicting the effects of optimization on a procedure body. In
Proceedings of the SIGPLAN 79 Symposium on Compiler Construction.
ACM, August 1979.

V. Balasundaram. Interactive Parallelization of Numerical Scientific Pro-
grams. PhD thesis, Rice University, Houston, TX, July 1989.

J. P. Banning. An efficient way to find the side effects of procedure calls
and the aliases of variables. In Proceedings of the Sizth Annual Sympo-
sium on Principles of Programming Languages. ACM, January 1979.

U. Banerjee. A theory of loop permutations. In D. Gelernter, A. Nicolau,
and D. Padua, editors, Languages and Compilers for Parallel Computing,
chapter 4. The MIT Press, 1990.

M. Burke and R. Cytron. Interprocedural dependence analysis and par-
allelization. In Proceedings of the SIGPLAN 86 Symposium on Compiler
Construction. ACM, June 1986.



[BCKTY0]

[Bur87]

[CCH*87]

[CCH*8g]

[CCHK90]

[CCKss]

[CCK90]

[CCKTS6]

[CFR*89]

[Cho88]

[CHT90a]

[CHT90b)

160

M. Burke, K. Cooper, K. Kennedy, and L. Torczon. Interprocedural
optimization: Eliminating unnecessary recompilation. Technical Report
TR90-126, Dept. of Computer Science, Rice University, July 1990.

M. Burke. An interval-based approach to exhaustive and incremental
interprocedural analysis. Research Report RC 12702, IBM Yorktown
Heights, September 1987.

A. Carle, K. D. Cooper, R. T. Hood, K. Kennedy, L. Torczon, and S. K.
Warren. A practical environment for scientific programming. [EEE Com-
puter, 20(11):75-89, November 1987.

D. Callahan, K. Cooper, R. T. Hood, K. Kennedy, and L. M. Torczon.
ParaScope: a parallel programming environment. International Journal
of Supercomputer Applications, 2(4):84-89, December 1988.

D. Callahan, A. Carle, M. W. Hall, and K. Kennedy. Constructing the
procedure call multigraph. IEEE Transactions on Software Engineering,
16(4):483-487, April 1990.

D. Callahan, J. Cocke, and K. Kennedy. Estimating interlock and im-

proving balance for pipelined architectures. Journal of Parallel and Dis-
tributed Computing, 5(4):334-358, August 1988.

D. Callahan, S. Carr, and K. Kennedy. Improving register allocation for
subscripted variables. In Proceedings of the SIGPLAN 90 Conference on
Programming Language Design and Implementation. ACM, June 1990.

D. Callahan, K. Cooper, K. Kennedy, and L. Torczon. Interprocedural
constant propagation. In Proceedings of the SIGPLAN 86 Symposium on
Compiler Construction. ACM, June 1986.

R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. An effi-
cient method of computing static single assignment form. In Conference
Record of the Sizteenth Annual Symposium on Principles of Programming
Languages, June 1989.

F. Chow. Minimizing register usage penalty at procedure calls. In Pro-
ceedings of the SIGPLAN 88 Conference on Programming Language De-
sign and Implementation. ACM, June 1988.

K. D. Cooper, M. Hall, and L. Torczon. The perils of interprocedural
knowledge. Technical Report TR90-132, Dept. of Computer Science, Rice
University, September 1990.

K.D. Cooper, M.W. Hall, and L. Torczon. An experiment with inline sub-
stitution. Technical Report TR90-128, Dept. of Computer Science, Rice
University, July 1990. To appear in Software—Practice and Ezperience.



[CK84]

[CK88a]

[CK88b]

[CK89]

[CKT85]

[CKT86a]

[CKT86b]

[CKT*86¢]

[CLZ86)

[Con83]
[Coo83]

[Coo85]

161

K. Cooper and K. Kennedy. Efficient computation of flow insensitive
interprocedural summary information. In Proceedings of the SIGPLAN
84 Sym. on Compiler Construction. ACM, June 1984.

D. Callahan and K. Kennedy. Analysis of interprocedural side effects in
a parallel programming environment. Journal of Parallel and Distributed
Computing, 5:517-550, 1988.

K. Cooper and K. Kennedy. Interprocedural side-effect analysis in linear
time. In Proceedings of the SIGPLAN 88 Conference on Programming
Languages Design and Implementation. ACM, June 1988.

K. Cooper and K. Kennedy. Fast interprocedural alias analysis. In Con-
ference Record of the Sizteenth Annual Symposium on Principles of Pro-
gramming Languages. ACM, January 1989.

K.-Cooper, K. Kennedy, and L. Torczon. The impact of interprocedural
analysis and optimization on the design of a software development envi-
ronment. In Proceedings of the SIGPLAN 85 Symposium on Compiler
Construction, June 1985.

K. Cooper, K. Kennedy, and L. Torczon. The impact of interprocedural
analysis and optimization in the R environment. ACM Transactions on
Programming Languages and Systems, 8(4):491-523, October 1986.

K. Cooper, K. Kennedy, and L. Torczon. Interprocedural optimization:
Eliminating unnecessary recompilation. In Proceedings of the SIGPLAN
86 Symposium on Compiler Construction. ACM, June 1986.

K. Cooper, K. Kennedy, L. Torczon, A. Weingarten, and M. Wolcott.
Editing and compiling whole programs. In Proceedings of the SIG-
SOFT/SIGPLAN Software Engineering Symposium on Practical Soft-
ware Development Environments, December 1986.

R. Cytron, A. Lowry, and K. Zadeck. Code motion of control struc-
tures in high-level languages. In Conference Record of the Thirteenth
Annual Symposium on Principles of Programming Languages. ACM, Jan-
uary 1986.

R. Conradi. Inter-procedural optimization of object code. Technical
Report 25/83, University of Trondheim, Norway, 1983.

K. D. Cooper. Interprocedural Data Flow Analysis in a Programming
Environment. PhD thesis, Rice University, Houston,TX, April 1983.

K. Cooper. Analyzing aliases of reference formal parameters. In Confer-
ence Record of the Twelfth Annual Symposium on Principles of Program-
ming Languages. ACM, Januarv 1985.



[CS85)

[DHSS]
[FelT9]

[FMM77

[FOWS7]

[Ger89]
[Har77a]

[Har77b]

[HCS89]

[HecTT]

[HK83]

[HK91]

[HKMC90]

[HKT91]

162

R. Conradi and D. Svanaes. FORTVER — a tool for documentation
and error diagnosis of FORTRAN-77 programs. Technical Report 1/85,

“University of Trondheim, Norway, January 1985.

J. W. Davidson and A. M. Holler. A study of a C function inliner.
Software— Practice and Ezperience, 18(8):775-790, August 1988.

S. Feldman. Make - a program for maintaining computer programs.
Software—Practice and Ezperience, 9:255-265, 1979.

G. E. Forsythe, M. A. Malcolm, and C. B. Moler. Computer Methods for
Mathematical Computations. Prentice-Hall, Inc., Englewood Cliffs, NJ,
1977.

J. Ferrante, K. Ottenstein, and J. Warren. The program dependence
graph and its use in optimization. ACM Transactions on Programming
Languages and Systems, 9(3):319-349, July 1987.

M. Gerndt. Array distribution in SUPERB. In Proceedings of the 1989
International Conference on Superc mputing, June 1989.

W. Harrison. Compiler analysis for the value ranges of variables. IEEE
Transactions on Software Engineering, SE-3(5):243-250, May 1977.

W. Harrison. A new strategy for code generation-the general purpose
optimizing compiler. [EEE Transactions on Software Engineering, SE-
5(7):367-373, July 1977.

W. W. Hwu and P. P. Chang. Inline function expansion for inlining C
programs. In Proceedings of the SIGPLAN 89 Conference on Program-
ming Language Design and Implementation. ACM, June 1989.

M. Hecht. Flow Analysis of Computer Programs. American Elsevier,
North Holland, 1977.

R. T. Hood and K. Kennedy. A programming environment for Fortran.
Technical Report MASC TR 83-22, Dept. of Mathematical Sciences, Rice
University, 1983.

P. Havlak and K. Kennedy. An implementation of interprocedural
bounded regular section analysis. IEEE Transactions on Parallel and
Distributed Systems, 2(3), July 1991.

R. Hood, K. Kennedy, and J. Mellor-Crummey. Parallel program debug-
ging with on-the-fly anomaly detection. In Proceedings of Supercomputing
90, November 1990.

S. Hiranandani, K. Kennedy, and C. Tseng. Compiler support for
machine-independent parallel programming in Fortran D. Technical Re-
port TR90-149, Dept. of Computer Science, Rice University, February
1991. To appear in J. Saltz and P. Mehrotra, editors, Compilers and
Runtime Software for Scalable Multiprocessors, Elsevier, 1991.



[Hol91]

[HopT1]

[Hus82]

[KKL*+81]

[KMV90]

[KU77]
[Kuc78]

[LY88a]

[LY88b)]

[Mar89]

[Met91]
[MHKS6]

[MR90]

163

A. M. Holler. A Study of the Effects of Subprogram Inlining. PhD thesis,
Univ. of Virginia, Charlottesville, VA, May 1991.

J. Hopcroft. An nlogn algorithm for minimizing states in a finite au-
tomaton. In Z. Kohavi and A. Paz, editors, Theory of Machines and
Computations, pages 189-196. Academic Press, New York, NY, 1971.

C. A. Huson. An inline subroutine expander for Parafrase. Masters Thesis
UIUCDCS-R-82-1118, Dept. of Computer Science, University of Illinois,
Urbana-Champaign, 1982.

D. J. Kuck, R. Kuhn, B. Leasure, D. Padua, and M. Wolfe. Dependence
graphs and compiler optimizations. In Conference Record of the Eighth
Annual Symposium on Principles of Programming Languages. ACM, Jan-
uary 1981.

C. Koelbel, P. Mehrotra, and J. Van Rosendale. Supporting shared data
structures on distributed memory machines. In Proceedings of the Second

SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming. ACM, March 1990.

J. Kam and J. D. Ullman. Monotone data flow analysis frameworks. Acta
Informatica, 7(3):305-318, 1977.

D. J. Kuck. The Structure of Computers and Computations, volume 1.
John Wiley and Sons, New York, 1978.

Z. Li and P.-C. Yew. Efficient interprocedural analysis for program re-
structuring for parallel programs. In Proceedings of the SIGPLAN Sym-
posium on Parallel Programs: Ezperience with Applications, Languages
and Systems, July 1988.

Z. Li and P.-C. Yew. Interprocedural analysis and program restructuring
for parallel programs. Technical Report CSRD-720, University of Illinois,
Urbana-Champaign, January 1988.

T. J. Marlowe. Incremental Iteration and Data Flow. PhD thesis, Rutgers
University, New Brunswick, NJ, October 1989.

- R. Metzger. Private communication, January 1991.

H. Muller, R. Hood, and K. Kennedy. Efficient recompilation of mod-
ule interfaces in a software development environment. In Proceedings of
the SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, December 1986.

T. J. Marlowe and B. G. Ryder. An efficient hybrid algorithm for in-
cremental data flow analysis. In Conference Record of the Seventeenth
Annual Symposium on Principles of Programming Languages. ACM, Jan-
uary 1990.



[MS91]

[Mul86]
[Mye81]
[RG89a]
[RG89b]

[Ros79]

[RP8Y]

[Ryd79]

 [3ch77]
[Sch89)]
[Shigs]
[SpiT1]
[TBS5]

[TIF86]

164

R. Metzger and P. Smith. The CONVEX application compiler. Fortran
Journal, 3(1):8-10, 1991.

H. Muller. Rigi - A Model for Software System Construction, Integration,
and Evolution Based on Module Interface Specifications. PhD thesis, Rice
University, Houston, TX, August 1986.

E. Myers. A precise inter-procedur=! data flow algorithm. In Conference
of the Eighth Annual Symposium on Principles of Programming Lan-
guages. ACM, January 1981.

S. Richardson and M. Ganapathi. Interprocedural analysis versus proce-
dure integration. Information Processing Letters, 32(3):137-142, August
1989.

S. Richardson and M. Ganapathi. Interprocedural optimization: Ex-
perimental results. Software—Practice and Ezperience, 19(2):149-169,
February 1989. A

B. Rosen. Data flow analysis for procedural languages. Journal of the
ACM, 26(2):322-344, 1979.
A. Rogers and K. Pingali. Process decomposition through locality of

reference. In Proceedings of the SIGPLAN 89 Conference on Program
Language Design and Implementation, June 1989.

B. Ryder. Constructing the call graph of a program. [FEE Trans. on
Software Engineering, SE-5:216-225, May 1979.
R. Scheifler. An analysis of inline substitution for a structured program-

ming language. Communications of the ACM, 20(9):647-654, September
1977.

E. Schonberg. On-the-fly detection of access anomalies. In Proceedings
of the SIGPLAN 89 Conference on Programming Language Design and
Implementation. ACM, June 1989.

O. Shivers. Control flow analysis in Scheme. In Proceedings of the SIG-
PLAN 88 Conference on Programming Language Design and Implemen-

-tation. ACM, June 1988.

T. C. Spillman. Exposing side-effects in a PL/I optimizing compiler.
In Proceedings of the IFIP Congress 1971, pages 376-381, Amsterdam,
1971. North Holland.

W. F. Tichy and M. C. Baker. Smart recompilation. In Conference
Record of the Twelfth Annual Symposium on Principles of Programming
Languages. ACM, January 1985.

R. Triolet, F. Irigoin, and P. Feautrier. Direct parallelization of call
statements. In Proceedings of the SIGPLAN 86 Symposium on Compiler
Construction. ACM, June 1986.



[Tor85)
[Wal76)

[Weg81]

[Wei80)]

[Wol86]

[Wol89]

[WZ85]

[WZ89]

[Yer66]

[Zad84]

[ZBG8S]

165

L. Torczon. Compilation Dependencies in an Ambitious Optimizing Com-
piler. PhD thesis, Rice University, Houston, TX, May 1985.

K. Walter. Recursion analysis for compiler optimization. Communica-
tions of the ACM, 19(9):514-516, September 1976.

M. Wegman. General and Efficient Methods for Global Code Improve-
ment. PhD thesis, University of California, Berkeley, CA, December
1981.

W. E. Weihl. Interprocedural data flow analysis in the presence of point-
ers, procedure variables, and label variables. In Conference Record of the
Seventh Symposium on Principles of Programming Languages, January
1980.

- M. Wolfe. Advanced loop interchanging. In Proceedings of the 1986

International Conference on Parallel Processing, August 1986.

M. J. Wolfe. Optimizing Supercompilers for Supercomputers. The MIT
Press, Cambridge, MA, 1989.

M. Wegman and F. K. Zadeck. Constant propagation with conditional
branches. In Conference Record of the Twelfth Annual Symposium on
Principles of Programming Languages. ACM, January 1985.

M. Wegman and K. Zadeck. Constant propagation with conditional
branches. Technical Report CS-89-36, Dept. of Computer Science, Brown
University, May 1989.

A. P. Yershov. Alpha - an automatic programming system of high effi-
ciency. Journal of the ACM, 13(1):17-24, January 1966.

F. K. Zadeck. Incremental data flow analysis in a structured program
editor. In Proceedings of the SIGPLAN 84 Symposium on Compiler Con-
struction, June 1984.

H. Zima, H.-J. Bast, and M. Gerndt. SUPERB: A tool for semi-automatic
MIMD/SIMD parallelization. Parallel Computing, 6:1-18, 1988.



