Parallel Cluster Algorithms

P. D. Coddington
C. F. Baillie

CRPC-TR90158
October, 1990

Center for Research on Parallel Computatio:
Rice University

P.O. Box 1892

Houston, TX 77251-1892






PARALLEL CLUSTER ALGORITHMS

P.D. CODDINGTON

Nucizar Physics B «Proc. Suppi.; 2011991 76-T9
North-Hoiland

Physics Department, Syracuse University, Syracuse NY 13244, USA

and C.F. BAILLIE

Physics Department, University of Colorado, Boulder CO 80309, USA

Cluster update algorithms dramatically reduce critical slowing down in spin models, but unlike the standard
Metropolis algorithm, it is not obvious how to implement these algorithms efficiently on parallel or vector
computers. Here we present two different parallel implementations of the Swendsen-Wang algorithm which
give reasonable efficiencies on various MIMD parallel computers.

1. INTRODUCTION

Monte Carlo simulations of spin models have
traditionally used local algorithms such as that of
Metropolis et al. 1 These algorithms have the ma-
jor drawback that the number of iterations needed
to generate a statistically independent configuration
(the “autocorrelation time” ) increases approximately
as the square of the correlation length, which is of
. order L (the linear size of the lattice) near a second
order phase transition. New algorithms have been
developed which dramatically reduce this “critical
slowing down” by using a non-local update scheme
which changes clusters of spins at a time. These
cluster algorithms can greatly increase the computa-
tional efficiency of the simulation, in some cases by
many orders of magnitude, compared to local algo-
rithms which update single spins, and allow simula-
tions to be performed on much greater lattice sizes
(for reviews of cluster algorithms and critical slowing
down, see Refs. 2,3,4).

The original idea, due to Swendsen and Wang >
(S-W), was for the g-state Potts model 6. They in-
troduce bonds between neighboring spins in the same
state, with probability 1 — e~ (where K is the in-
teraction strength divided by the temperature), and
thus create clusters of bonded spins. The S-W algo-
rithm consists of generating all such clusters, then
choosing a random spin value for each cluster and
assigning it to all the sites in that cluster. Wolff has
proposed a variant of this algorithm, in which a site
is chosen at random and a single cluster constructed
around it, and then all its spins are flipped 7,

2. CLUSTER LABELING ALGORITHMS

Cluster algorithms have in common the problem
of identifying and labeling the connected clusters of
spins, which is the most computationally intensive
part of these aigorithms. Cluster labeling is relevant
to the study of percolation models 8, and is also very
similar to an important problem in image processing,
that of identifying and labeling the connected com-
ponents in a binary or multi-colored image composed
of an array of pixels. First we mention some sequen-
tial methods for labeling clusters. A commonly used
algorithm in percolation studies is the algorithm of
Hoshen and Kopelman 9, which has the desirable
feature that it labels the clusters in a time propor-
tional to the number of sites in the lattice. We have
found that in practice another algorithm is slightly
faster 10 — this is just the obvious method for iden-
tifying a single cluster of connected sites, by starting
at any site in the cluster, and then continuing to ex-
pand outwards to all the connected, unlabeled sites
until the entire cluster is labeled.

Whereas Wolff's algorithm is undoubtedly the
best method on a sequential computer 2 theS-Wal-
gorithm seems to be better suited for parallelization,
since each iteration involves the entire lattice rather
than just a single cluster. We have therefore concen-
trated initially on implementing the latter algorithm
in parallel. Near criticality, which in most cases is
where we want to perform simulations, the S-W clus-
ters are present at all length scales, from a single site
to the order of the lattice volume. The highly irreg-
ular and ncn-iocal nature of the clusters means that

0920 -3632/91/53.50 @ Flsevier Seionce Publishers BV (North-Holla:.



P.D. Codidineton. . F. Baiilje

cluster algorithms do not vectorize. and hence give
poor performance on vector machines. One proces-
sor of a CRAY X-MP is only about ten times faster
than a Sund workstation (the CRAY time is taken
from Ref. 11). We therefore also expect to get poor
performance on SIMD (Singie Instruction. Multiple
Data) computers such as the Connection Machine or
the AMT DAP, and we have thus concentrated our
efforts on algorithms for MIMD (Multiple Instruc-
tion, Multiple Data) computers, such as the Ncube
or Intel hypercubes.

On MIMD machines, we can use the trivial par-
allelization technique of running independent Monte
Carlo simulations on each processor. This method
works well until the lattice size gets too big to fit into
the memory of each processor, and we have used it
to measure autocorrelation times for the Potts model
23 However in order to simulate large lattices, we
need a parallel algorithm where the lattice can be dis-
tributed over many processors of a parallel machine.
This can be easily and efficiently done for local up-
date algorithms 12 however for cluster algorithms it
is a much more difficult probiem. The non-locality
which makes cluster algorithms so useful also makes
them very difficult to parallelize efficiently, since this
involves a large amount of non-local communication.
Also the extreme irregularity in the size and shape of
the clusters means that load balancing is potentially
a severe problem.

The parallel cluster algorithms we have imple-
mented involve distributing the lattice onto an array
of processors using the usual domain decomposition
12, so that each processor deals with a subdomain of
the original lattice. On a MIMD machine, a sequen-
tial algorithm can be used to label the sub-clusters
on each processor, but we need a procedure for con-
verting these labels to their correct global values. We
will outline two methods we have used for tackling
this problem, “self-labeling” and “global equivalenc-
ing”, as well as some other algorithms which have
been proposed for this problem.

3. SELF-LABELING

We refer to this algorithm as “self-labeling”,
since each site figures out which cluster it is in by
itself from local information. We begin by assigning

Paraile! ciuster algorizions T
each site / a unique cluster label S;. At each step
of the algorithm, in parallel, every site looks in turn
at each of its neighbors in the positive directions.
If it is bonded to a neighboring site n which has a
different cluster labei S,, then both S; and S, are
set to the minimum of the two. This is continued
until nothing changes. by which time all the clusters
will have been labeled with the minimum initial la-
bel of all the sites in the cluster. This is a purely
SIMD algorithm, and when implemented in this way
on a SIMD machine (such as the Connection Ma-
chine or the AMT DAP) it is very inefficient, due
to the large amount of communication required. and
the poor load balance 10- 13 Since the largest clus-
ter is of the order of the lattice size, it takes order
L iterations to propagate the cluster label through
the largest cluster, with communication required at
each step. Hence there is a very large amount of
communication, and many of the processors are ly-
ing idle while the label is propagated through to the
final sites in the largest cluster.

On a MIMD machine we can improve this
method greatly by using a fast sequential algorithm
to label the sub-clusters in the sub-lattice on each
processor, and then just use self-labeling on the sites
at the edges of each processor, to match up the
clusters which go across processor boundaries, and
eventually arrive at the global cluster labels. The
number of self-labeling steps will now only be of the
order of the maximum distance between processors,
rather than lattice sites, which for a square array of
P processors is just 2v/P. Hence the time to do the
seif-labeling, which is proportional to the number of
iterations times the perimeter of the sub-lattice, goes
like L for an LxL lattice, whereas the time taken on
each processor to do the local cluster labeling goes
like the area of the sub-lattice, which is L?/P, so as
long as L is substantially greater than the number
of processors we can expect to obtain a reasonable
speedup.

For our test case of the 2-D Potts model, the
spéedups obtained for the self-labeling algorithm on
the Symult 2010 for a variety of lattice sizes are
shown in Fig. 1. The dashed line indicates per-
fect speedup (i.e. 100% efficiency). We obtained
similar results on the Ncube-1 hypercube. For this



100 - , : ‘
- Iattic% size o ;:
- X 12 ‘
80 - 1:82 ,/ —-"
= ) !
- C 3i2 , 3
= - 7 C 2
= - / =
= - . c 4
7 40 = / =
- /
C /'z °© ° j
_0= , o E
/8 x X x 1
0 ey ' 3
0 50 100

aumber of nodes

Figure 1: Speedups on the Symult 2010 for self-
labeling.

problem, a lattice of size 123% can easily be simu-
lated on a single processor, or by doing independent
runs on different processors, so the poor speedups
for this small problem are of no great concern. The
lattice sizes for which we actually need large num-
bers of processors are of the order of 312° or greater,
and we can see that running on 64 nodes (or run-
ning multiple simulations of 64 nodes each) gives us
quite acceptable efficiencies of about 70% for 5122
and 80% for 1024%2. Using all 192 nodes of Cal-
tech’s Symuit 2010 in this way gives a performance
of approximately one miilion spin updates per sec-
ond, which is about six times that of one head of
a CRAY X-MP, and about twice that of the current
best algorithm on a full sized Connection Machine
13 A machine with much faster processors, such as
an Ncube-2 or Intel iPSC/860, could be expected to
greatly improve on this figure. We have used this
algorithm to measure autocorrelation times for the
2-D Potts model on lattices up to 5122 24,

4. GLOBAL EQUIVALENCING

In this method we again use the fastest sequen-
tial algorithm to identify the clusters in the sub-
lattice on every node. Each node then checks to

N P.D. Conisiineton. C.F. Baillie / Parallei riusrer algorithms

see which of the edge sites of its sub-lattice are con-
nected to edge sites on the neighboring nodes in the
positive directions, and should be given the same
cluster label. These lists of “equivalences” between
local cluster labels are all passed to one of the nodes,
which uses an algorithm due to Galler and Fisher 15
to sort them into equivalence classes (which in this
case are the global cluster labels) and then broad-
casts the results to all the other nodes.

The problem here is that the equivalencing is
purely sequential, and is thus a potentially disas-
trous bottleneck. To get around this problem, we can
adopt a hierarchical divide-and-conquer approach. In
this hierarchical equivalencing the processor array is
divided up into smaller sub-arrays of, for example,
2x2 processors. Each sub-array performs the global
equivalencing algorithm on its section of the lattice.
The resuits of these partial matchings are then com-
bined on each 4x4 sub-array, and this process is con-
tinued until finally all the partial results are merged
together to give the global cluster values. In this way
the number of processors performing the equivalenc-
ing step is P/4 for the first level of the hierarchy,
P/16 for the second level, and so on, until the fi-
nal stage is done on a single processor. However by
that time most of the work has been done, so the
bottleneck has been at least partially alleviated. A
very similar algorithm which uses the same hierarchi-
cal procedure has been implemented on the iPSC-2
hypercube for the image processing component la-
beling problem by Embrechts et al. 14

Our results for the hierarchical equivalencing are
slightly worse than for self-labeling, however we are
hopeful that an optimized version of the program
will do better. Note that all these results are for the
simplest of spin models, the two-dimensional Potts
model, although the parallel algorithms could clearly
be used in more general cases. In fact for higher di-
mensions cr for more computationally intensive mod-
els, such as continuous spin models, the amount
of calculation involved per processor should increase
much more than the amount of communication re-
quired for the parallel algorithms, and consequently
we would expect to implement them efficiently on
larger numzers of processors.



P.D. Coddingron. C.F. Baillie / Parailei =iuster alworitims o9

5. OTHER ALGCRITHMS

Currently the only other MIMD parallel clus-
ter algorithm proposed for spin models is a par-
allel extension of the Hoshen and Kopelman algo-
rithm due to Burkitt and Heermann 16, Their al-
gorithm is more complicated and less efficient than
self-labeling, giving speedups for a 5122 lattice of
approximately 11.5 and 11.0 on 16 and 32 proces-
sors respectively. Recently, Brower et al. have in-
vestigated parallel cluster algorithms for SIMD ma-
chines 13. They have implemented a self-labeling
algorithm (which they call “local diffusion”) and a
non-local, multi-grid style algorithm on the Connec-
tion Machine. The non-local method takes many
fewer iterations. and performs much better, than the
local algorithm, although it is still very inefficient.

A number of component labeling algorithms

have been proposed for image analysis applications, -

for both SIMD 20 21. 22 354 MiMD 17. 18. 19 .
chines. Further investigation is needed to see if they
might be applied to the difficult problem of pro-
ducing an efficient parallel cluster algorithm for spin
models on large numbers of processors.

ACKNOWLEDGEMENTS A

The parallel algorithms were developed and run
on a 512 node Ncube-1, a 192 node Symult 52010,
and a 32 node Meiko Computing Surface. We would
like to thank the Caltech Concurrent Supercomputer
Facility for the use of these machines. This work
was sponsored in part by DOE grants DE-FGO3-
85ER25009 and DE-AC03-81ER40050.

REFERENCES
1. N. Metropolis et al., J. Chem. Phys. 21 (1953)
1087.

2. U. Wolff, Proc. of the Int. Conf. ‘Lattice 89°,
Nucl. Phys. B (Proc. Suppl.) 17 1990 93.

3. A. Sokal, these proceedings.

4. C.F. Baillie, Int. J. of Mod. Phys. C 1 (1990)
91.

5. R.H. Swendsen and J.-S. Wang, Phys. Rev.
Lett. 58 (1987) 86.

6. R.B. Potts, Proc. Camb. Phil. Soc. 48 (1952)
106: F.Y. Wu, Rev. Mod. Phys. 54 (1982) 235.

7. U. Wolff, Phys. Rev. Lett. 62 (1989) 361.

8.
9.

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

D. Stauffer. Phys. Rep. 54 (1978) 1.

J. Hoshen and R. Kopelman, Phys. Rev. 8 14
(1976) 3438. )

C.F. Baillie and P.D. Coddington, “Cluster
Identification Algorithms for Spin Modeis —
Sequential and Parallel”, Caltech preprint C3P-
855 (June 1990).

U. Woiff, Phys. Lett. B228 (1989) 379.

G.C. Fox et al., Solving Problems on Con-
current Processors (Prentice-Hall, Englewood
Cliffs, New Jersey, 1988).

R.C. Brower, P. Tamayo and B. York, “A Par-
allel Multigrid Algorithm for Percolation Clus-
ters”, Boston University preprint, submitted to
J. Stat. Phys.

H. Embrechts et ai., “Component Labeiing on
a Distributed Memory Multiprocessor”, Proc.
Firs¢ European Workshop on Hypercube and
Distributed Computers, F. Andre and J.P. Ver-
jus eds., (North-Holland, Amsterdam, 1939).

B.A. Galler and M.J. Fisher, Commun. ACM
T (1964) 301; W.H. Press et al.. Numerical
Recines in C: The Art of Scientific Program-
mina, (Cambridge University Press, Cambridge,
1988).

A.N. Burkitt and D.W. Heermann, Comp. Phys.
Comm. 54 (1989) 210.

R. Hummel, “Connected component labeling in
image processing with MIMD architectures”, in
Intermediate-Level Image Processing, M.J.B.
Duff ed., (Academic Press, New York, 1986).

R. Cypher, J.L.C. Sanz and L. Snyder, J. Algo-
rithms 10 (1989) 140.

J. Woo and S. Sahni, J. of Supercomputing 3
(1989) 209.

W. Lim, A. Agrawal, L. Nekludova, “A
Fast Parallel Algorithm for Labeling Connected
Components in Image Arrays”, Thinking Ma-
chines Corporation Technical Report NA86-2.

D. Nassimi and S. Sahni, SIAM J. Comput. 9
(1980) 744.

M. Manohar, Computer Vision, Graphics and
Image Processing 45 (1989) 133.

P.D. Coddington and C.F. Baillie, Proc. of the
Int. Conf. ‘Lattice 89°, Nucl. Phys. B (Proc.
Suppi.) 17 (1990) 305.

C.F. 2aillie and P.D. Coddington, " Comparison
of Cluster Algorithms for 2-D Potts Models”,
Caltezh preprint C3P-945 (October 1990).



