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SUMMARY

Monte Carlo cluster update algorithms are extremely efficient for simulating spin models
near their phase transitions, where local update algorithms suffer severe critical slowing
down. Unfortunately, as the cluster algorithms are highly irregular as well as non-
local, they are much more difficult to parallelize efficiently. The main difficulty lies in
identifying which spins belong to which cluster. In this paper we investigate a number of
cluster identification algorithms, both sequential and parallel, which we have implemented
on serial, SIMD and MIMD computers.

1. INTRODUCTION

Monte Carlo simulations on both sequential and parallel computers are a very important
numerical technique for investigating spin models in physics (see References 1 and 2 for
reviews). Unfortunately, traditional Monte Carlo algorithms are afflicted with ‘critical
slowing down’ near the regimes of interest in these models, namely at phase transitions.
We shall explain critical slowing down below; for now, it basically means that the
computational efficiency of the Monte Carlo simulation goes to zero as the size of the
lattice is increased. Recently, however, algorithms which alleviate this problem have
been invented[3-6]. In these so-called ‘cluster’ algorithms, clusters of spins (rather than
single spins) are changed at each step of the Monte Carlo procedure. Thus, in order
to implement these . algorithms, a method for identifying clusters is needed. Cluster
identification algorithms have existed for some time for sequential computers, but they
are fairly new for parallel computers. Herein, after summarizing the standard sequential
algorithms, we go on to describe in detail several parallel cluster identification algorithms
for both SIMD and MIMD machines.

In simulations of spin models, the spins ¢; are usually set up on the sites i of a
d-dimensional hypercubic lattice of length L. The L spins form some configuration.
The goal of computer simulations is to generate spin configurations typical of statistical
equilibrium and measure physical observables on this ensemble of configurations. The
generation of configurations is traditionally performed by Monte Carlo methods. All
Monte Carlo work has the same general structure: given some probability distribution
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p, we wish to generate many random samples ¢ from p. For a statistical mechanical
system such as a spin model the probability distribution we require is the Boltzmann
distribution; hence p = e~P#(®) where H (¢) is the Hamiltonian, or energy, of the system
in configuration ¢, and 3 = 1/k,T is the inverse temperature, or coupling (in numerical
computations we shall set the Boltzmann constant kz = 1). The first application of these
methods to problems in statistical mechanics was by Metropolis et al.[7].

The trouble in practice is that the samples ¢;, ¢:41, . . . are not statistically independent,
but rather are correlated. The statistical error in the Monte Carlo calculation behaves
as 1/{/N, where N is the number of effectively independent samples. For T correlated
samples, it can be shown[8] that the error is given by 1//(T/27), where r is the
autocorrelation time, which is a measure of how many iterations are required to produce
an independent configuration. For a spin model with a phase transition, as the inverse
temperature 3 approaches the critical inverse temperature 3.,  diverges to infinity, so
that the computational efficiency goes to zero! This behavior is called critical slowing
down. Until very recently this problem has plagued Monte Carlo simulations of statistical
mechanical systems, in particular spin models, at or near their phase transitions. The
new cluster algorithms manage to avoid this critical slowing down—partially or even
completely—thus facilitating much better computer simulations.

2. CLUSTER ALGORITHMS

The key feature about traditional (Metropolis-like) Monte Carlo algorithms is that
the updates are local, that is, one spin at a time is updated. Thus in a single step
of the algorithm, ‘information’ about the state of a spin is transmitted only to its
nearest neighbors. Now, in order for the system to reach a new effectively independent
configuration, this information must travel a distance of order the (static or spatial)
correlation length £. As the information executes a random walk around the lattice,
one would suppose the autocorrelation time 7 ~ ¢2 near criticality. This can be shown
analytically to be correct for a free-field (Gaussian) model. However, in general 7 ~ &7,
where z is called the dynamical critical exponent. All numerical computer simulations
of spin models have measured z =~ 2 for local update algorithms[9]; the new cluster
algorithms reduce z by performing non-local spin updates.

The aim of the cluster update algorithms is to find a suitable collection of spins which
can be flipped with relatively little cost in energy. Note that we could obtain non-local
updating very simply by using the standard Metropolis Monte Carlo algorithm to flip
randomly selected bunches of spins, but then the change in energy would most likely
be large and the acceptance tiny. Therefore we need a method which picks sensible
bunches or clusters of spins to be updated. The first such algorithm was proposed
by Swendsen and Wang[3], and was based on an equivalence between a Potts spin
model[10] and percolation models[11] for which cluster properties play a fundamental
role. :

The Potts model is a very simple spin model in which the spins ¢; can take g different
values, and whose Hamiltonian is

H=- /Z\ 60‘.01. (1)
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For g = 2 this is just the well-known Ising model[12]. In the Swendsen—Wang algorithm,
clusters of spins are created by introducing bonds between neighboring spins with
probability

P(0i,0)) = b5;,0;(1 — €7P) 2

All such clusters are generated and then updated by choosing a random new spin value
for each cluster and assigning it to all the spins in that cluster.

A slightly different cluster algorithm has been proposed by Wolff[4]. In this algorithm,
a spin is chosen at random and a single cluster constructed around it, using the same
bond probabilities as for the Swendsen—Wang algorithm. All the spins in this cluster are
then flipped (i.e. collectively changed to a random new spin different from the old one).
Whereas Wolff’s algorithm is undoubtedly the best method on a sequential computer[6],
the algorithm of Swendsen and Wang seems to be better suited for parallelization, since
it involves the entire lattice rather than just a single cluster.

3. CLUSTER IDENTIFICATION

Cluster algorithms have in common the problem of identifying and labeling the connected
clusters of spins. This is very similar to an important problem in image processing, that
of identifying and labeling the connected components in a binary or multi-colored image
composed of an array of pixels. The only real difference is that in the spin model case,
neighboring sites of the same spin have a certain probability of being in the same cluster,
while for neighboring pixels of the same color that probability is 1. Unfortunately this
is a large enough difference so that some algorithms which work in image analysis will
not work, or require substantial changes, for spin models, for example the algorithm in
Reference 13.

First we outline three sequential methods for labeling clusters, the so-called ‘ants
in the labyrinth’ algorithm, the commonly used (especially for cluster identification in
percolation models) algorithm of Hoshen and Kopelman, and an algorithm based on
equivalence classes. We then present the results of a comparison of these algorithms on
a Sun 4 workstation.

3.1. Ants in the labyrinth

This method is the most obvious one for identifying a single cluster of connected sites.
The reason for its name is that we can visualize the algorithm as follows[14]. An ant is
put somewhere on the lattice and notes which of the neighboring sites are connected to
the site it is on. At the next timestep this ant places children on each of these connected
sites which are not already occupied. The children then proceed to reproduce likewise
until the entire cluster is populated. In order to label all the clusters, we start by giving
every site a negative label, set the initial cluster label to be zero, and then loop through
all the sites in turn. If a site’s label is negative then the site has not already been assigned
to a cluster, so we place an ant on this site, give it the current cluster label, and let it
reproduce, passing the label on to all its offspring. When this cluster is identified we
increment the cluster label and carry on, repeating the ant-colony birth, growth and death
cvcle untl all the clusters have bheen identified. An examnle for 1 4x4 lattice is shown
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in Figure 1. Figure 1(a) shows the bonds connecting the sites in each cluster. The ant
is initially placed at the site shown in Figure 1(b). After one generation the picture is
as in Figure 1(c), and by the second generation (Figure 1(d)) the entire cluster has been
identified.

(@ ®) © @

Figure 1. Example set of clusters, here identified by the ‘ants in the labyrinth’ algorithm: (a) the
bonds connecting the sites in each cluster; (b) where the ant is initially placed; (c) after one
generation; (d) after two generations

3.2. Hoshen and Kopelman

Hoshen and Kopelman([15] invented a sequential cluster identification algorithm which
gives each cluster a unique label and counts the number of sites it contains. Each site
i belonging to cluster « is assigned a cluster label m®. The cluster o may initially be
assigned several different cluster labels, which are given as a set of natural numbers
{mg,mg,...,m&,...,m&,...}. In this set only one number is regarded as the proper
cluster label, which we designate as m&. This is the smallest number in the set.

A connection between the label m® at any site and the proper cluster label m is
provided by an array N. This is constructed so that only N (m;) is positive and denotes
the number of sites in the cluster, while the remaining N (m) provide the links between
the m& and the proper cluster label. To be specific, if a site with label m;* is bonded to
a site which has the proper cluster label m>, then

N(@m:) = -m )

However, if a site with label m;* is not directly bonded to a site with the proper cluster
label, but is connected to a site with label m;*, then

N(mg) = —my @

Thus to get the proper cluster label for this site we have to go through m,* using (4) then
(3). Similarly for higher-order indirections, we just need to iterate —m « N (m) until
we reach a positive value of N (m), which means that m is the proper cluster label and
N (m) the current number of sites in the cluster. Fortunately in most cases this hierarchy
extends to one or two levels only.

In practice the algorithm works as follows. We sweep through the sites of the lattice
looking at neighbors in the negative directions (there are d of them for a d-dimensional
lattice). If site i has no connected neighbors (or none of its neighbors have been labeled),
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then it is assigned a new label S; = m®, and N(m>) = 1. If there is only one connected
neighbor, at site n with label S, = m?, say, then i gets the same label as n: §; = mg,
and N(m>) = N(m?) + 1. The good feature of this cluster labeling technique becomes
apparent when site i links two or more previously labeled cluster fragments into a single
cluster, that is, when it is bonded to two or more of its neighbors. No site belonging
to any of these cluster fragments is relabeled (so that once a site is labeled it retains
this label throughout the labeling process)—instead the readjustments occur within the
N (m{). The number of readjusted N (mZ)s for a site is equal to the number of coalescing
cluster fragments at that site. Let us assume that the connected sites belong to clusters
@, 8,7, ... which have proper cluster labels m&,m? ,m7 ..., with m being the smallest.
These clusters coalesce at i to form a single larger cluster, so we set label S; = m® and
readjust: :

N(m®) = Nm®) +NmP)+NmY)+...+1
N(mP)y= —mg
N(ml)= —mg

&)

It is this continual readjustment which keeps the hierarchy of indirections small. As a
final stage in the algorithm we can pass through the lattice a second time, setting the
label at each site to be the proper cluster label m&. This makes it easier to pick out
the clusters for updating. An illustration of this algorithm for the 4x4 lattice used in
Figure 1 is given in Figure 2. Figure 2(a) shows the labels assigned to the sites, after
running the algorithm from the top left. Figure 2(b) shows the corresponding values of
the connection array N. Finally, in Figure 2(c) we have the proper cluster labels; notice
that (c) differs from (a) only where N is negative.

label N(label] proper label

1 |2 |3 |3 1 {7 [3 |3 1 12 {3 |3

4 |2 |2 |3 21017 |7 |3 2 1212 13

5 12 |12 |2 341(7 |7 |7 5 |12 12 |2

5 |5 |6 |6 313 (2 ]2 51516 1|6
(@) (®) ©

Figure 2. Hoshen—Kopelman algorithm for clusters in Figure 1(a). Note that the j axis runs from
top to bottom. (a) labels assigned to the sites; (b) corresponding values of array N ; (c) proper
cluster labels

3.3. Equivalence class method

Identifying and labeling clusters of connected sites in a lattice is a special case of a more
general problem known variously as the set union, union-find or equivalence problem,
that is, given a list of equivalences between elements. sort the elements into equivalence
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classes. In the context of cluster algorithms, the list of equivalences is just a list of
the sites which are connected together, and the equivalence classes are just the clusters.
There are a multitude of algorithms for this problem[16]; we have used an elegant and
easy to code method due to Galler and Fisher[17].

To implement this algorithm, we first sweep through all the sites, creating a list of
sites which are connected together. This list of equivalences is the input to the algorithm,
which proceeds as follows. Let F(j) be the class or ‘family’ label of element J (in our
case, F (j) is the cluster label of site j). We start off with each element in its own family,
so that F(j) = j. The array F(j) can be interpreted as a tree structure, where F(j) denotes
the parent of j. If we arrange for each family to be its own tree, disjoint from all other
‘family trees’, then we can label each family by its most senior great-great-. . .grandparent,
which will be the only element in the tree for which F (/) = j, since it has no parent.
Therefore we process each equivalence of two sites j and k by:

(1) tracking j up to its highest ancestor by iterating j «— F(j) until j = F({)
(2) tracking k up to its highest ancestor by iterating k — F (k) until k = F (9]
(3) giving j to k as a new parent (or vice versa) by setting F (j) = k.

This process joins the ‘branches’ (or subtrees) containing j and k by giving them the
same highest ancestor, thus putting them in the same equivalence class. After processing
all the relations, we go through all the elements j and reset their F(j)s to their highest
possible ancestors, by iterating F (j) «— F(F(j)) until F(j) = F (F()), so that the F (j)s
are now the equivalence classes.

It is worthwhile noting that in step 3 we can choose to set either the first or the second
label to be the highest ancestor when merging two branches of the tree. Which way we
do it makes no difference to the result, but in practice it can make a big difference to
the number of iterations required for each step in the algorithm, especially for a regular
problem like the labeling of connected sites on a lattice, where some of the regularity is
coded into the order of the elements in the list. We checked which method was faster,
due to better balanced trees, and used that version.

3.4. Comparison of sequential algorithms

We have implemented the three sequential algorithms described above, and used them in
a Swendsen—Wang update algorithm for the two-dimensional Potts model. As with local
update algorithms, the time to update the lattice grows in proportion to the number of
sites in the lattice, except for the equivalence class method, where the time is a slowly
increasing function of the number of sites. The times taken on a Sun 4 workstation to
update a 642 lattice are shown in Table 1, for the two-dimensional Ising (g = 2 Potts)
model at various values of the inverse temperature 3. The times are approximately the
same for other values of g. The critical inverse temperature 3, of the phase transition
for this model is known exactly: . = In(y/2 + 1) = 0.881374.... Thus we know
where to run in order to suffer the most severe critical slowing down. We also ran
at § = 04,0.6,0.8,1.0 and 1.2 in order to understand how the algorithms behave as
the cluster size distribution changes. At large values of 3, i.e. small temperatures, larger
clusters are more favorable; conversely, at small 3 the clusters are smaller. For the Wolff
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update, we have used the ants algorithm to grow the single clusters, so the update time
per site is the same as for the Swendsen—Wang update using ants.

Table 1. Times in milliseconds for one sweep of a 642 lattice

B Metropolis  ants Hoshen- F&G

Kopelmann equiv.
04 179 224 263 264
0.6 184 219 263 285
0.8 192 211 286 354
Be 198 202 301 466
1.0 198 197 326 659
12 200 191 . 318 617

We find that in our implementation, the ants algorithm is up to 50% faster than that
of Hoshen-Kopelman. Although it is very general, elegant and easy to program, the
equivalence class method is much slower than the other two algorithms, especially near
the critical temperature. It is therefore never used to label clusters sequentially; however
we will find a use for it in one of our parallel algorithms. Finally, notice that the cluster
algorithms using ants have about the same update time as the Metropolis algorithm.

4. PARALLEL ALGORITHMS

Near criticality, which in most cases is where we want to perform simulations, clusters
come in all sizes, from order L? (the number of sites in the lattice) right down to a single
site. The highly irregular and non-local nature of the clusters means that cluster update
algorithms do not easily vectorize, and hence give poor performance on vector machines.
One processor of a CRAY X-MP runs the sequential code only about ten times faster
than a Sun 4 workstation (the CRAY -time is taken from Reference 18). We therefore
also expect to get poor performance on SIMD computers.

On MIMD computers, by using the trivial parallelization technique of running
independent Monte Carlo simulations on different processors, it is possible to do better
than the standard code on a single CRAY X-MP processor using only about 20 nodes,
if each node does better than about half an MFlop (such as a T800 transputer or an
Ncube-2 processor). This method works well until the lattice size gets too big to fit into
the memory of each node; we have actually used it to calculate the dynamical critical
exponents of various cluster algorithms[19]. However, in the case of the Potts model,
for example, only lattices of size less than about 300? or 45° will fit into 1 Mbyte, and
most other spin models are more complicated and more memory intensive. We therefore
need a parallel algorithm where a large lattice can be distributed over many processors
of a parallel machine. This can be easily and efficiently done for local update algorithms,
such as Metropolis; however, for cluster algorithms it is a much more difficult problem.
The quality of non-locality which makes cluster algorithms so useful also makes them
very difficult to parallelize efficiently, since this involves a large amount of non-local
communication.

We firstly describe cluster identification algorithms for SIMD machines and then for

AL A e W oo B
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4.1. SIMD

It is not clear a priori whether the Wolff cluster algorithm (which requires identification
of only one cluster) would be more efficient than Swendsen—-Wang (which requires
identification of all clusters) on an SIMD computer. For the former, the simplest
cluster identification algorithm to use is ants in the labyrinth; for the latter one can
use this or a rather obvious parallel algorithm (which is widely known but not, to our
knowledge, published in the standard literature) which we shall call ‘self-labeling’. We
describe our implementation of these algorithms on the 1024-processor AMT Distributed
Array Processor (DAP) 510 SIMD computer and give the performances obtained. We
also mention an SIMD parallel algorithm which has been implemented on the TMC
Connection Machine (CM) 2 computer. ’

4.1.1. Ants in the labyrinth

‘Ants in the labyrinth’ may be used to identify one cluster (for the Wolff algorithm)
or all the clusters (for Swendsen-Wang), as described in Section 3.1. On the parallel
computer, all of the ants in each generation are evolved simultaneously, thereby furnishing
wavefront-like parallelism. Unfortunately the maximum number of processors in use at
any time is only of the order of the square root of the total number of processors. We
timed the two algorithms for the two-dimensional Ising model on the DAP, at various
values of the temperature. As the Wolff algorithm updates only one cluster, whereas
Swendsen-Wang does them all, we scale the Wolff times by the average cluster size
divided by the size of the lattice. The times are shown in Table 2. We would expect
that the update time per site would be the same for Wolff and Swendsen-Wang, since
they are both using the same algorithm to identify the clusters. This is true sequentially,
but not in parallel. This is because the Wolff algorithm has a larger average cluster size
than does the Swendsen—-Wang, and therefore more opportunity to exploit the limited
parallelism available from the ants algorithm. This also explains why ants works much
better at large 3, where the average cluster size is large, than at small 3, where the small
cluster sizes severely limit the amount of parallelism which can be obtained.

Table 2. Times in milliseconds for one sweep of a 642

lattice on the DAP
B Wolff SwW SwW SwW
ants ants s-1 s-l+comp

0.4 10480 4041 1319 1755
0.6 5244 3246 1308 1210
0.8 969 2086 1329 700
B 138 1157 1397 532
1.0 56 504 1330 278
1.2 47 263 1311 161

We also measured the time taken for the Wolff algorithm using ants as a function of
lattice size; the results are in Table 3. Sequentially, the time to execute the ants algorithm
scales linearlv with the number of sites in the lattice: however this is not the case in
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parallel. In fact, on the DAP, the times increase roughly as L? rather than L2. We can
explain this as follows. Firstly, we find that a cluster of given size takes four times longer
to identify on a four times larger lattice. This is because each processor in the DAP has
four times as many lattice sizes mapped into it and so takes four times longer to work
through them. The other factor of two comes from the fact that on a larger lattice there
are more larger clusters, which take longer to identify. Another way to think of this is
that the wavefront parallelism is spread over fewer (log4 = 2 times less) processors.

Table 3. Times in milliseconds for one
sweep at 3. on the DAP

Lattice Wolff SwW
size ants s-l+comp
642 138 532
1282 1172 6554
2562 10287 92327

4.1.2. Self-labeling

We refer to this algorithm as ‘self-labeling’, since each site figures out which cluster it
is in by itself from local information. We begin by assigning each site i a unique cluster
label S;. In practice this is simply chosen as the position of that site in the lattice. At
each step of the algorithm, in parallel, every site looks in turn at each of its neighbors
in the positive directions. If it is bonded to a neighboring site n which has a different
cluster label S,, then both §; and S, are set to the minimum of the two. This is continued
until nothing changes, by which time all the clusters will have been labeled with the
minimum initial label of all the sites in the cluster. Note that to check termination of the
algorithm a global logical OR of all the individual termination flags on each processor
must be performed—an operation which is usually very efficiently implemented on SIMD
computers. An illustration of this algorithm for a 4 x4 lattice is given in Figure 3 for the
cluster shown in Figure 1(a). In Figure 3(a) we see the original cluster labels. It takes
three iterations of the algorithm (plus one to verify that we have finished) to uniquely
label the clusters, shown in Figures 3(b),(c),(d). Note that our implementation firstly
checks bonds to the north then bonds to the east.

We implemented self-labeling for the Swendsen—Wang algorithm applied to the two-
dimensional Ising model on the DAP. We tested two versions of self-labeling, as there
is actually an optimization which one can do to enhance its performance when there are
only a few large clusters, i.e. at large 5. To begin self-labeling we assign each lattice
site a unique label, and hence we have 4096 labels. After running the algorithm we
are left with, say, N labels identifying the clusters present. However, these N labels
are scattered throughout the 4096 possible values. Since we do not know which values
will turn up we generate 4096 new random spins. Obviously, if N is much smaller than
4096 it would be more efficient to first look through the labels and only generate new
spins for the N which are being used. We call this ‘compressing the labels’ and the
version of self-labeling which uses it ‘compressed self-labeling’. Our timings for the two
implementations of Swendsen-Wang using self-labeling are in Table 2.
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1|2 |3 |4 1 (2|3 |3 1|2 |3 |3 1 {2 |3 |3

516 |7 (8 2 |2 |2 |4 2 {2 |2 |3 2 |2 |2 |3

9 [10]11]12 9 {6 |6 |11 9 |2 |2 |6 9 |2 |2 |2

1314|1516 9 {9 [15]15 9 |9 |15]15 9 |9 [15]15
(@ ®) (©) d

Figure 3. Self-labeling algorithm for cluster in Figure I(a). Labels are compared firstly with the
neighbor to the north, then to the east: (a) original cluster labels; (b) first iteration; (c) second
iteration; (d) third iteration

Interestingly, the time to execute Swendsen—Wang using the original self-labeling
implementation is the same irrespective of S. This is almost certainly because most of
the time is being spent generating the 4096 new random spins. That this is the case seems
confirmed by the fact that compressing the labels does indeed help at large 3. In fact,
at the phase transition, Swendsen—Wang using the compressed self-labeling algorithm
is roughly a factor of two faster than Swendsen-Wang using ‘ants in the labyrinth’;
however, it is still almost a factor of four slower than Wolff using ‘ants in the labyrinth’.
The main reason for this is that the DAP computer is much faster handling the logical
mask bits needed to identify the single cluster in the ants algorithm, rather than the
integer labels required in self-labeling.

We also measured the time the Swendsen—Wang algorithm using compressed self-
labeling took as a function of lattice size; the results are in Table 3. Sequentially, the
time taken on a four times bigger lattice is about eight times longer, since there is a factor
of L? for the number of sites, and the number of iterations needed to label the largest
cluster is approximately 2L. In parallel, on the DAP, we find this factor is more like 12
or 14, rather than eight. We are not certain as to what is causing this extra unexpected
increase in the time required.

In the final analysis, all the cluster algorithms perform rather poorly on the DAP; in fact
the Swendsen—Wang algorithms execute in less wall clock time on a Sun 4 workstation.
This is primarily due to lack of parallelism in the ants algorithm and load imbalance in
self-labeling, where most of the processors are waiting on the few finishing identifying
the largest cluster. Of course, on the standard Metropolis algorithm the DAP is orders of
magnitude faster than the Sun.

4.1.3. Other algorithms

Recently, Brower et al. have also investigated parallel cluster algorithms for SIMD
machines[20] They have implemented a self-labeling algorithm (which they call ‘local
diffusion’) and a non-local, multi-grid-style algorithm on the TMC Connection Machine,
for the Swendsen-Wang algorithm applied to the 2-D Ising model. As expected, the
non-local method takes fewer iterations, and performs better than the local algorithms. A
number of other SIMD algorithms have been proposed for component labeling in image
analysis applications[13,21-23], and the algorithm of Lim, Agrawal and Nekludova[21]
has been implemented on the Connection Machine. This algorithm identifies the clusters
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by finding the boundary of each cluster, and then giving the same label to each site on
the boundary. Once this has been done, filling in the interior of each cluster can be done
easily and quickly. We have not yet applied any of these algorithms to spin models;
however, we are aiming to investigate them in the future, since they should perform
better than the much simpler ants and self-labeling algorithms, which we have found to
be very inefficient.

4.2. MIMD

On an MIMD parallel computer, such as the Symult 2010, a parallel cluster algorithm
involves distributing the lattice on to an array of processors using the usual domain
decomposition[24]. Clearly a sequential algorithm can be used to label the clusters on
each processor, but we need -a procedure for converting these labels to their correct
global values. We must be able to tell many processors, which may be any distance
apart, that some of their clusters are actually the same. Thus we need to be able to
agree on which of the many different local labels for a given cluster should be assigned
to be the global cluster label, and to pass this label to all the processors containing
a part of that cluster. We will discuss two methods we have used for tackling this
problem—*‘self-labeling’ and ‘global equivalencing’—and give timings and efficiencies
for our implementation of these two algorithms on various MIMD computers. In fact,
since our code is written in terms of the ParaSoft Express System([25], it runs portably on
the Symult 2010, Ncube hypercube, Meiko Computing Surface and Caltech/JPL Mark IIT
hypercube computers. We also mention some other algorithms which have been proposed
for this problem.

4.2.1. Self-labeling

Self-labeling on an MIMD computer is essentially the same as on an SIMD machine.
The only difference is that the termination check involves each processor sending its
termination flag to every other processor after each step, i.e. a broadcast operation has
to be performed. On most machines, like hypercubes, for example, this is efficiently
implemented (so as to use the logarithmic combining feature of the hypercube network,
for example); however, this step can still be quite time consuming. This overhead can
be greatly reduced by only checking for termination after a certain number of steps,
which can be taken to be slightly less than the average number of steps for the particular
problem.

As described in Section 4.1.2, this is a purely SIMD algorithm, and if implemented in
this way it would suffer from the same problem as for SIMD machines, which give very
poor performance due to a large load imbalance, with most processors waiting for the
few in the largest cluster which are the last to get the label for that cluster. However, on
an MIMD machine we can improve this method by using a faster sequential algorithm,
such as ants, to label the clusters in the sublattice on each processor, and then just use
self-labeling on the sites at the edges of each processor to eventually arrive at the global
cluster labels.

The number of steps required to do the self-labeling will depend on the largest cluster,
which at the nhase transition will oenerallv enan the entira lattice The nnmher nf
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Figure 4. Speed-ups on the Symult 2010 for self-labeling

self-labeling steps will therefore be of the order of the maximum distance between
processors, which for a square array of P processors is just 2,/P. Hence the amount
of communication (and calculation) involved in doing the self-labeling, which is
proportional to the number of iterations times the perimeter of the sublattice, goes like
L for an L x L lattice, whereas the time taken on each processor to do the local cluster
labeling goes like the area of the sublattice, which is L2/P. Therefore as long as L is
substantially greater than the number of processors (which is generally the case) we can
expect to obtain a reasonable speed-up.

Table 4. Timings and efficiencies for one sweep of a
5122 lattice at 3. using 32 processors

Machine Time (s) Efficiency

Ncube-1 445 0.79
Symult 1.39 0.79
Meiko 1.23 0.72

The speed-ups obtained on the Symult 2010 for a variety of lattice sizes are shown in
Figure 4. The dashed line indicates perfect speed-up (i.e. 100% efficiency). The lattice
sizes for which we actually need large numbers of processors are of the order of 5122 or
greater, and we can see that running on 64 nodes (or running multiple simulations of 64
nodes each) gives us quite acceptable efficiencies of about 70% for 5122 and 80% for
10242, Using all 192 nodes of Caltech’s Symult 2010 in this way gives a performance of
approximately one million spin updates per second, which is about six times that of one
processor of a CRAY X-MP[18], and twice that of the current best algorithm on a full
sized (64K processor) Connection Machinel201. Timings and efficiencies for self-labeling
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on 32 nodes of three different MIMD computers — the Ncube-1, the Symult 2010 and
the Meiko Computing Surface—are given in Table 4.

4.2.2. Global equivalencing

In this method we again use the fastest sequential algorithm to identify the clusters in
the sublattice on every node. Each node then checks to see which of the edge sites of its
sublattice are connected to edge sites on the neighboring nodes in the positive directions,
and are therefore part of the same cluster and should be given the same cluster label.
These lists of ‘equivalences’ are all passed to one of the nodes, which uses the equivalence
class algorithm of Fisher and Galler[17] to match up the connected subclusters, and then
broadcasts the global cluster labels to all the other nodes.

The problem here is that the equivalencing is purely sequential, and is thus a potentially
disastrous bottleneck for large numbers of processors. The amount of extra work and
communication involved goes like the number of processors P times the perimeter of
the sublattice on each node, i.e. like L./P, so that the efficiency should be less than for
self-labeling, although we might still expect reasonable speed-ups if the number of nodes
is not extremely large. The speed-ups obtained for this algorithm on the Symult 2010
for a variety of lattice sizes are shown in Figure 5. Global equivalencing gives about
the same speed-ups as self-labeling for small numbers of processors, but as expected
self-labeling does much better as the number of nodes increases.
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Figure 5. Speed-ups on the Symult 2010 for global equivalencing

To get around the sequential bottleneck in the global equivalencing step, we need to
adopt a hierarchical divide-and-conquer approach. In this hierarchical equivalencing the
processor array is divided up into smaller subarrays of, for example, 2 x 2 processors.
Each subarray performs the global equivalencing algorithm on its section of the lattice.
The results of these partial matchings are then combined on each 4 x 4 subarray, and this
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process is continued until finally all the partial results are merged together to give the
global cluster values. In this way the number of processors performing the equivalencing
step is P /4 for the first level of the hierarchy, P /16 for the second level, and so on,
until the final stage is done on a single processor. However, by that time most of the
work has been done, so the bottleneck has been at least partially alleviated.

A very similar algorithm which uses the same hierarchical procedure has been
implemented on the iPSC-2 hypercube for the image processing component labeling
problem by Embrechts et al.[26].
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Figure 6. Speed-ups on the Symult 2010 for hierarchical equivalencing

The speed-ups for hierarchical equivalencing on the Symult 2010 are shown in Figure
6. Results are given only for 4, 16 and 64 processors, since the algorithm requires the
number of processors to be an even power of two. The results are rather poor, and
much worse than for self-labeling; however, this is a preliminary implementation of a
quite complicated algorithm, and there are many parts of the program which could be
improved upon. We are hopeful that an optimized version of this algorithm will do better
than self-labeling, at least for large numbers of processors.

4.2.3. Other algorithms

Currendy the only other MIMD cluster algorithm proposed for spin models is a parallel
extension of the Hoshen and Kopelman algorithm[15] due to Burkitt and Heermann[27],
which has been implemented on a transputer array. Their algorithm is much more
complicated, and less efficient, than the self-labeling algorithm, giving speed-ups for
a 5122 lattice of approximately 11.5 and 11.0 on 16 and 32 processors, respectively.
Some other MIMD algorithms have been proposed for the component labeling problem,
both for shared([28] and distributed(29,30] memory architectures. Further investigation is
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needed to see if these algorithms might be applied to the problem of producing an efficient
parallel cluster algorithm for spin models on larger numbers of processors.

5. CONCLUSIONS

We have described several cluster identification algorithms for both sequential and parallel
computers. Of the three sequential algorithms, we have found that ‘ants in the labyrinth’
and Hoshen—Kopelman are much faster than the more general equivalence class method.
Since ‘ants in the labyrinth’ is faster and slightly easier to program than Hoshen—
Kopelman, we would reccommed it as the best available sequential algorithm.

Parallel algorithms may be divided into two categories—SIMD and MIMD. On SIMD
computers we have found that it is indeed very difficult to efficiently implement cluster
identification algorithms. However, of the three possibilities which we tried, ‘ants in the
labyrinth’ for the Wolff algorithm (where only one cluster is identified) is the fastest
on the DAP. In the future we need to investigate some of the many algorithms which
have been proposed for the component labeling problem, which may provide a more
efficient implementation of cluster algorithms on SIMD machines. Finally, for MIMD
computers we have proposed two different types of algorithm—self-labeling and global
equivalencing—with self-labeling being the more efficient of the two at the present time,
although that may change since the implementation of hierarchical equivalencing can
certainly be improved upon. We were able to implement the self-labeling algorithm
fairly efficiently for the problem sizes of interest on up to about 64 nodes, for a number
of different MIMD machines. Finding an efficient algorithm for very large numbers of
processors seems to be a very difficult problem, although it can be avoided in most cases
by running multiple independent simulations of 32 or 64 nodes each.

Note that all the results given above were for the simplest of spin models, the two-
dimensional Potts model. For more computationally intensive spin models, or for gauge
theories, the amount of calculation involved per processor should increase much more
than the amount of communication for the parallel algorithms, and consequently we
would expect to implement them efficiently on larger numbers of processors.
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