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Abstract

The simplified Newton method reduces the work required by Newton’s
method per iteration by reusing the initial Jacobian matrix. However, fast
convergence is sacrificed. The level-m composite Newton method attempts
to balance the trade-off between work and fast convergence by composing one
Newton step with m simplified Newton steps. In this work we demonstrate that
Mehrotra’s predictor-corrector interior-point method is the level-1 composite
Newton variant of the Newton interior-point method. The level-1 composite
Newton method is well known to give cubic convergence. Hence we find it math-
ematically enlightening that the interior-point aspect of the predictor-corrector
method, i.e. choosing the steplength so that the iterates remain nonnegative,
precludes the standard proof of cubic convergence, but does support the proof of
quadratic convergence. We next demonstrate that by choosing steplength one
in a neighborhood of the solution (therefore allowing negative iterates) cubic
convergence can be retained for nondegenerate problems. Preliminary numer-
ical experiments with this locally modified algorithm are most impressive and
are an important and appropriate part of a companion paper that numerically

studies the local behavior of the predictor-corrector algorithm.

'1 Introduction

In Subsection 1.1 we review the composite Newton method, in 1.2 we recall the New-
ton interior-point method, in 1.3 we present Mehrotra’s predictor-corrector interior-
point method, and in 1.4 we present our composite Newton interior-point method.
Section 2 contains equivalence results between Newton predictor-corrector methods
and the level-1 composite Newton method. Since the level-1 composite Newton
method is known to be cubically convergent, in Section 3 we study the cubic conver-

gence aspect of the Mehrotra predictor-corrector interior-point method via our equiv-



alence result. It is interesting to learn that the interior-point feature of the method,
i.e., the step is damped so that iterates remain positive, precludes the standard proof
of cubic convergence of the method. However, for nondegenera.te problems it is pos-
sible to retain quadratic convergence. Recall that recently Zhang, Tapia and Dennis
(1990) demonstrated that the Newton interior-point method can attain quadratic
convergence for nondegenerate problems. We then prove that by choosing steplength
one in a neighborhood of the solution, cubic convergence can be attained by the
predictor-corrector interior-point method for nondegenerate problems. It should be
emphasized that choosing the step to the boundary of the positive orthant is not suffi-
cient to preserve the cubic convergence. Iterates must be allowed to become negative
when steplength one calls for such action. This sequence of events is satisfying since
it adds credibility to the nonlinear programming adage that enforcing feasibility with
respect to inequality constraints may compromise fast convergence. In this sense it is
somewhat noteworthy that Zhang, Tapia and Dennis were able to establish quadratic
convergence of the Newton interior-point method, since it is a method which does not
necessarily give steplength one, even if the step is all the way to the boundary of the

positive orthant.

Numerical experimentation with the cubically convergent modification is most
impressive and has been relegated to the companion paper, El-Bakry, Tapia, Zhang
(2], which numerically studies the local behavior of the predictor-corrector algorithm.
Clearly an optimal implementation of the composite Newton interior-point method
“would alloW m (the number of simplified Newton steps) to vary at each Newton step.
This issue is not the subject of the current work, but probably merits further study.

Finally, in Section 4 we give some concluding remarks.



1.1 The Composite Newton Method

Consider the nonlinear equation
F(z)=0 : (1.1)

where F': IR* — IR". By the damped Newton method for problem (1.1) we mean the

iterative process

solve F'(zi)(Az) = —F(z:) for Az

(1.2)
set Tkl = Tk + oAz, k=0,1,... .

The ﬂexibility of being able to choose ay less than one is important from global
convergence considerations. When the choice of steplength is ax = 1 we drop the

qualifier damped.

Under standard assumptions Newton’s method is known to give @Q-quadratic con-
vergence. Not counting the work required to evaluate the function F or its Jacobian,
the algebra required per iteration is O(n3), since the dominant task is the factorizing

of the n x n Jacobian matrix F'(z,). For large n this can be a very serious concern.

A particularly obvious technique for reducing the amount of algebra needed at

each iteration is given by the damped simplified Newton method

solve F'(zo)(Az) = —F(zx) for Az (1.3)

set T =Tk +axldz, k=0,1,....
. The simplified Newton method requires an initial factorization of F’(zo) and then
a solve at each iteration; hence it requires only O(n?) algebra per iteration. However,
it gives only Q-linear convergence and it is not at all clear in what cases it should be
preferred to Newton’s method, since the slow convergence might force a prohibitive

number of iterations.

In an effort to cover the middle ground between the extremes of Newton and

simplified Newton it is very natural to consider the variant of Newton’s method which
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takes m simplified Newton steps between every two Newton steps. By the damped

(level-m) composite Newton method we mean the iterative procedure

solve F'(zx)(Az;) = —F(zi + Az +--- + Az;_;)) for Az;,i=0,...,m

(1.4)
set Trey1r = Tk + o (Azo + Azy + -+ + Az,) k=0,1,....

Of course it is possible to introduce a different steplength control ax; for each cor-

rection Az;, i =0,...,m; however we have no need to consider such flexibility.

It is reasonably well known that, under the standard Newton’s method assump-
tions, the level-m composite Newton rhethod has a Q-convergence rate of m + 2. A
proof can be found in Chapter 10 of Ortega and Rheinboldt (1970). The damped
level-1 composite Newton method where one Newton step is composed with one sim-

plified Newton step is of particular interest to us. It can be written

solve F'(z1)(Azn) = —F(z4) for Azy
solve F'(zx)(Azs) = —F(zx + Azy) for Azs (1.5)

set Tr+1 = Tk + ak(Azn + Azs), k=0,1,..., .

Ortega and Rheinboldt (1970) credit the cubic convergence of the level-1 composite
'Newton method to Traub (1964). However, the notion of composing Newton steps
with simplified Newton steps is much older and a part of the folklore of Newton'’s
‘method. It is generally felt by practitioners that the formulation of composite Newton
steps is of value when n is large and the function F can be evaluated cheaply; this
is clearly the situation for the Newton interior-point method for linear programming

described in Subsection 1.2.

Observe that each level-m composite Newton iterate can be viewed as a major
iterate and is the result of m + 1 inner iterations. The average amount of algebra
per inner iteration is O((n® + mn?)/ (m + 1)) and is O(n?) for large m. The average
convergence rate for the inner iterates is the (m + 1)-st root of m + 2 and behaves

like 1 for large m. It is no surprise then that for large m the level-m composite
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Newton method behaves like the sirripliﬁed Newton method. It follows that an optimal
implementation of composite Newton would not only vary m at each Newton step

but would keep m relatively small.

1.2 The Newton Interior-Point Method

Consider a linear program in the standard form

minimize Iz
subject to Az =b (1.6)
z20

where c,z € R", b€ R™, A € R™*" (m < n) and A has full rank m.

The first-order optimality conditions for the linear program (1.6) can be written

Az -b
F(z,y, )= | ATA+y—c | =0, (z,y)20 (1.7)
XYe

where y and A are dual variables, X = diag(z), Y = diag(y), and €7 = (1,...,1) €
R".

The point (z,y, A) is said to be feasible for problem (1.7) if Az = b, ATA+y—c =0,
and (z,y) > 0. A feasible point (z,y, ) is strictly feasible if (z,y) > 0. We tacitly

assume that strictly feasible points exist.

It is now v;rell understood how the primal-dual logarithmic barrier function interior-
point method introduced by Megiddo (1989) and its numerous subsequent modifica-
tions can be stated in the framework of a damped and perturbed Newton’s method
applied to problem (1.7). For more detail, see Zhang, Tapia and Dennis (1990)
for example. In presenting this algorithmic framework we will write z = (z,y, ),

Az = (Az,Ay,AN), AX = diag(Az) and AY = diag(Ay). We also let min(u) denote
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the smallest component of the vector u and & denote the vector (0,... 0,1,...,1)T
where the number of zeros is n +m and the number of ones is n. Finally, we will write
the choice of the barrier parameter as #(z) where z is the current iterate. When it is

appropriate we write u; for u(zk).
Algorithm 1 (Newton Interior-Point Method)

Given zo = (2o, Yo, Ao) with (T0,%0) >0, for k=0,1,..., do

(1) Solve F'(z)(Az) = =F(zx) + p(z)é for Az (1.8)
(2)  Choose 7, € (0,1) and set
_ . —Tk —Tk :
Yk = min (1’ min(X; 'Az;)’ min(Y,:lAyk)) (19)

(3) Set Zk41 = 2k + oAz

Actually in most implementations the formula (1.9) for a4 is further broken down
and one steplength is used to update the z-variable and another is used to update
the y-variable and the A-variable. While this distinction is of value in practice; it is

not an issue in the present work and consequently will be ignored.

Recently, under mild assumptions, Zhang, Tapia and Dennis ( 1990) demonstrated
that for nondegenerate and degenerate problems Q-superlinear convergence could be
attained by Algorithm 1 by merely letting oy — 0 and 7, — 1, where Ok is defined
by ur = oxzlys/n. Moreover, for nondegenerate problems @Q-quadratic convergence

could be attained by letting o = O(zTyi) and 7 = 1 + O(zTys).

For the current iterate z let Azy = — F* (2)~'F(z) denote the Newton step and let
Az, = p(z)F'(z)~'é denote the centering step. The Newton step can very likely point
toward the boundary of the positive orthant, necessitating a very small choice for the
steplength a. The major role of the centering step Az, is to remedy this situation.
Hence it seems quite reasonable that the choice for the barrier function parameter 7]

should also be a function of the Newton step Azy. The problem with implementing
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this idea is that the Newton step Azy must be calculated before the centering step
Az, is calculated. This entails an additional solve. However, we believe that this
idea deserves further study. We are interested in a barrier parameter choice function
of the form p(z,Az) and the following adaptive form of Algorithm 1, in which the
barrier parameter y is not only a function of the current iterate but also a function

of the Newton step.

Adaptive Newton Interior-Point Method

The algorithm is the same as Algorithm 1, except that Step (1) is replaced with

(1)  Solve F'(zx)(Azn) = —F(z:) for Azny
Solve F'(zi)(Az,) = p(zk, Azn)é for Az, (1.10)
Set Az = Azy + Az,

1.3 The Predictor-Corrector Interior-Point Method

Mizuno, Todd, and Ye (1989) suggested and studied an algorithm which they labeled
a predictor-corrector algorithm. In their algorithm the predictor step is a damged
Newton step for problem (1.7), producing a new strictly feasible iterate. The subse-
quent corrector step is a centered Newton step. In this corrector step, the choice of
i, the barrier parameter, is based on the predictor step. Both the predictor and the
corrector steps require essentially the same amount of work, namely, the evaluation

and factorization of the Jacobian matrix.

Mehrotra (1989) later presented the following variant of Algorithm 1, which he also
referred to as a predictor-corrector method. A common feature in these two predictor-
corrector approaches is that the value of the barrier parameter in the corrector step

depends on the predictor step. However, unlike Mizuno, Todd and Ye’s corrector



step, Mehrotra’s corrector step does not evaluate a fresh Jacobian matrix. Instead,

it reuses the Jacobian matrix sed by the predictor step.
Algorithm 2 (Predictor-Corrector Interior-Point Method)

Given zg = (zo, yo, Ao) with (zg,y0) > 0, for k = 0,1,...do

(1)  Solve F'(z)(Az,) = —F(z) for Az,
0
(2)  Solve F'(z)(Az) = — 0 + u(zk, Azp)é (1.11)
AX,Ay,
for Az,
(3) Set Az= Az, + Az,

(4)  Choose 7, € (0,1) and set
: —Tk =Tk
%k = min (1 " min(X;'Azy)’ min(Y,,'lAyk))
(5) Set zpp1 = 2k + i Az

While in the present section we are not concerned with the specific choice of the
initial iterate zo or the various algorithmic parameters, we emphasize that Mehrotra

suggested choices that allowed him to obtain very impressive numerical results.

1.4 The Composite Newton Interior-Point Method

In this subsection we present our composite Newton interior-point method for problem
(1.7). As in the predictor-corrector methods of Mizuno, Todd, and Ye (1989) and
Mehrotra (1989) we assume that the barrier parameter choice function is of the form

#(z,Az). Recall that é = (0,...,0,1,...,1)T.

Algorithm 3 (Level-m Composite Newton Interior-Point Method)



Given zo = (2o, Yo, Ao) With (Zo,%0) >0for k=0,1,..., do

(1)  Solve F'(z)(Az) = —F(z) for Az

(2) For i=1,...,m do
. i-1 i-1
Solve F'(z)(Az) = —F(z + D" Az) + pi(z, > Az)é (1.12)
1=0 7=0
for Az;

(3) Set Az=) Az
=0
(4) Choose 7 € (0,1) and set
ar = min | 1 L L
£ " min(X;'Azi) * min(Y; T Ay)
(5) Set ziy1 =z + axAz.

As was the case with the Newton interior-point method we will also be interested

in the adaptive form of our algorithm.

1.4.1 Adaptive Composite Newton Interior-Point Method

The algorithm is the same as Algorithm 3, except that Steps (1) and (2) are replaced
with

(1)  Solve F'(z)(Azc)=é for the centering step Az
(2) For ¢=0,...,mdo

, i-1
Solve F'(z:)(Az) = —F(zx + Y Az;) for Az

=0

Replace Az with Az + p(zi, Y Azj)Azc
j=0

Observe that the adaptive form of the Newton interior-point method and the
adaptive form of the composite Newton interior-point method require one additional

solve.
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2 Predictor-Corrector as Composite Newton

We say that two algorithms are equivalent if given a current iterate they produce the

same subsequent iterate for the same choice of common algorithmic parameters. .

Theorem 2.1 The predictor-corrector interior-point method (Algorithm 2) is equiv-

alent to the level-1 composite Newton interior-point method (Algorithm 3).

Proof. Let z = (z,y, \) be the current iterate and let Az, = (Azy,, Ay,, A),) be the
predictor step for problem (1.7), i.e., Az, is obtained from Step (1) of Algorithm 2.
By comparing Algorithm 2 with Algorithm 3 (m = 1), we see that our proof will be

complete once we show that

0
F(z+ Az,) = 0 . (2.1)
AX Ay,
Writing (2.1) in further detail gives
A+ Az,)-b=0 (2.2)
ATA+AN)+(y+Ay)) —c=0 (2.3)
[z + Azlily + Ay, = —[Az,)i[Ay,); »i =1,...,n. (2.4)

By expanding (2.4) we see that (2.1) holds if and only if
[zlilyli + [W]i[Azp)i + [z):[Ayli =0, i=1,...,n. (2.5)

However, (2.2), (2.3) and (2.5) are exactly the defining relations for the Newton step.
a
While in Mehrotra (1989) no explanation for the predictor-corrector method is

given, in a more recent paper, Mehrotra (1990), Mehrotra offers an interpretation
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of a related, but somewhat different, algorithm. Following the lead of Monteiro,
Adler, and Resende (1988) he constructs a standard homotopy in a parameter, say 4,
between problem (1.7) and a problem which had the current iteration as its solution.
The primal-dual trajectory path parametrized by é gives the solution of problem (1.7)
for § = 0 and the current iterate for § = 1. He then views the iterate obtained from
the predictor-corrector method as a point on a quadratic path which approximates

the primal-dual trajectory path.

The equivalence represented by Theorem 2.1 was conjectured while listening to
Mehrotra discuss his predictor-corrector method in Asilomar, California earlier this
year. After proving Theorem 2.1 and while preparing this paper we received the recent
paper of Lustig, Marsten, and Shanno (1990). In this paper the authors describe
a comprehensive implementation of the Mehrotra predictor-corrector method and

present impressive numerical results.

Lustig, Marsten and Shanno (1990) present Mehrotra’s predictor-corrector method
in the following manner. Rather than applying Newton’s method to (1.7) to generate

correction terms to the current iterate, substitute the new iterate into (1.8) directly,

yielding
Alz+Az)=b (2.6a)
ATA+ AN - (y+Ay)=c (2.6b)
[z +Azlily+Ayli=p, i=1,...,n. (2.6¢)

Simple algebra reduces (2.6) to the equivalent system

AAz =b—- Az (2.7a)
ATAN=Ay=c-ATA+y (2.7b)
(={agh + 1Azl = 4= [llyl - [Az{Agh, i=1...n. (27
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Observe that (2.7) defines the step (Az, Ay, A)) implicitly, i.e., in a nonlinear
manner. In order to determine a step approximately satisfying (2.7) Mehrotra sug-
gests first solving (1.7) for the Newton predictor step (Az,, Ay,, A),) and then using
Az, and Ay, on the right-hand side of (2.7). The new step is then obtained by solving
(2.7) with this modified right-hand side.

It should be clear that presentation (2.7), with Az and Ay replaced by Az, and

Ayy, reflects the level-1 composite Newton method written in the form
F'(z1)Az = —[F(zi) + F(2k — F'(z:)" F(z))] ; (2.8)
while Mehrotra’s presentation reflects the slightly different form (1.5).

Lustig, Marsten and Shanno (1990) attempt an explanation of the predictor-
corrector notion in terms of tra.jectori.es parametrized by the parameter u. Their
explanation contains some ambiguity in that it is not clear to what trajectories they
are referring. Moreover, any explanation based on issues derived from g cannot give
a complete picture, since the predictor-corrector notion still makes sense even when
the problem formulation is free of g, i.e. # = 0 in all cases. However, implicit in these
authors’ comments is the understanding that the corrector step can be vfewed as a

perturbed simplified Newton step.

The presentation given above of the Mehrotra predictor-corrector method implies

a general Newton predictor-corrector method. We now abstract this implication.
Consider the nonlinear equation problem
F(2) = (fi(2),-.., fa(2))T =0.
Suppose we have found gi such that
filz + Az) = fi(2) + fi(z)(A2) + gi(z,A2), i=1,...,n. (2.9)
Then using the notation G = (g,,... 19n)T we see from (2.9) that
F(z+Az)=0 (2.10)
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can be written equivalently as
F'(z)(Az) = = F(2) - G(z,Az2) . (2.11)

The general Newton predictor-corrector method therefore consists of first computing
the predictor step Az, as the Newton step, i.e., as the solution of F'(z)(Az) = —F(z),

and then computing the composite step Az, as the solution of
F'(z)(Az) = =F(z) - G(z, Azy). (2.12)

In the case of the Mehrotra predictor-corrector method for problem (1.7) we see

from (2.6) and (2.7) (or directly) that

0
G(z,Az) =. 0 . (2.13)
AXAy

Now, observe that if Azy, the Newton step for F at : exists, then necessarily
F(z 4+ Azny) = G(2,Azy) . (2.14)

This fact follows immediately from (2.9) and the fact that fi(z)(Azn) = —fi(2). By
‘substituting (2.14) into (2.12) we see that when the predictor step is the Newton step

(Az, = Azy) we can write (2.12) as
F'(2)(Az) = —F(z) — F(z = F'(2)"'F(2)) . (2.15)

Hence, our abstraction of the predictor-corrector notion is also no more than level-1

composite Newton.

We end this section with the following observation. From the development given
of the Mehrotra predictor-corrector method in terms of (2.6) and (2.7) we see that the

method was probably derived as a method which first identified the exact higher-order
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term G(z, Az) given by (2.13), and then used this representation of the higher-order
information in the computation of the corrector step, i.e., used G(z,Az,), where Az,
is the Newton predictor step, in this computation. We therefore find it noteworthy
that, in this sense, the level-1 composite Newton method uses exact higher-order
information in all applications, even though the representation of the higher-order
term G(z, Az) is unknown. It does this by working with F(z+Az) instead of G(z, Az),
see (2.14).

3 Cubic Convergence

As before we consider problem (1.7) and use the notation z = (z,y,A). Also, recall
that é = (0,...,0,1,..., 1)T where the number of zeros is n + m and the number of

ones is n. The pure Newton method can be written
N(z) =z — F'(2)7'F(z) (3.1)
and the predictor-corrector interior-point method can be written
N(z) = z — aF'(z)"'[F(z) + F(N(z)) né] . (3.2)
Therefore

N(z) =z = z—z.— F(z)"'[F(z) + F(N(z))]
+(1 = a)F'(2)"'[F(z) + F(N(2))] + apF'(z)"1é
F'(z)7[F'(2)(N(2)) = F(N(2)) — F'(z)(z.)]
+(1 = a)F'(z)[F(z) + F(N(2))] + apF'(z)~'é
= —F()H{[F(N(2)) = F(z.) = F'(z.)(N(z) = z.)]  (3.3)
+F'(2.) = F'(2)|(N(2) — z.)} |
+(1 = a)F'(2)[F(z) + F(N(2))] + apF'(z)" 1.
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Now, locally, i.e. in a neighborhood of the solution z., we know from standard

Newton’s method analysis that
IN(2) = z.]l = O(||z — =.|)?) .

See, for example, Dennis and Schnabel (1983) or Ortega and Rheinboldt (1970).
Hence, we can rewrite the four groups of terms on the right-hand side in (3.3) and

obtain
1¥(2) = 2.l = O(llz = zulI*) + O(llz = 2.|1*) + |1 — @|O(||z = =.]) + pO(1) ;
which simplifies to |
I¥(2) = =]l = O(llz = 2.|*) + |1 = alO(||2 — z.|) + #O(1) . (3.4)

In deriving (3.4) we used the fact that ||[F(z)|| = O(||z — z.||) and [|[F(N(2))|| =
O(llz = z.]I).

The term pO(1) can be made O(||z — z.||*) by the choice of u. Everything now
hinges on the term |1 — |O(]|z — z.||). We must therefore take a very close look at

the quantity 1 —a. Clearly, for cubic convergence, we need |1 — af to be O(|z — z.|?).

Assuming strict complementarity, z. is a nondegenerate vertex solution, and z is

‘feasible. Zhang, Tapia and Dennis (1990) obtained the useful expression

1- Tk — O'kgk

T
1 _ akak + O(zk yk) (3'5)

l—ak=

for the Newton interior-point method. See (3.7) of Zhang, Tapia and Dennis (1990).
In (3.5), 7% and oy are as in Algorithm 1, 6; € (1,1] and O(z7ys) is not necessarily
zero and is exactly first order. Observe that O(z7yi) = O(||z — z.||), since for feasible

zx we have z7y, = | F(z)|1-

For the present purpose of studying 1 —ay, the Newton predictor-corrector interior

point method and the Newton interior-point method are philosophically the same, i.e.,
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both can be viewed as perturbed Newton. Ix_1 the former case the perturbation to the
right-hand side of the defining relation is pé — F(z— F'(z)"1F(z)), while in the latter
case the perturbation is merely ué. Observe that these two perturbation terms differ
by a term which is order O(||z — z.||?) or equivalently O((z¥yx)?). Hence (3.5) is
also valid for the Newton predictor-corrector interior-point method. It can now be
seen from (3.5) that independent of the choices for 7, and Ok, the term |1 — q;| is at
best O(]|z — z.||) and the Newton predictor-corrector interior-point method, even for
nondegenerate problems, cannot be shown to be cubically convergent by the standard
approach. However, by choosing a; = 1 near the solution and Be = O((zTyi)?) we
see from (3.4) that it is possible to obtain cubic convergence. We formally state these

observations as the following theorem.

Theorem 3.1 Let {zx,yx, \x} be produced by Mehrotra’s predictor-corrector interior-

point method with zo strictly feasible. Assume

(i) strict complementarity,
(ii) z. is a nondégenerate vertez, and
(i11) {(zk,yk, \k)} converges to (Zay Yy Ad).

If the choices of ot and 7, satisfy
0 < o < min(o, c1(zyx)) (3.6)

and
0<1—7 < min(l —r1,c27 i) 3.7
where o € [0,1),7 € (0,1) and ¢, c; > 0, then the convergence is Q-quadratic, i.e.
there ezist v, > 0 such that for k large
I(zk+1, Yo, Akt1) = (Tuy ¥y Ad)|| < 72l (25, 9k, Ak) — (2., 3, AP
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On the other hand, if instead of (3.6) we have
0 < ok < min(o, c1(z] yi)?) (3.8)
and instead of (3.7) we have that for large k

ar =1, (3.9)
then the convergence is Q-cubic, i.e. there erist Y3 > 0 such that for k large

”(1'k+1y Yi+1, /\k+1) - (13-7 y-,/\-)” < “/3”(-7"k, Yk, /\k) - (-T-a Ya /\-)”3 .

Proof.  The proof follows from combining the discussion given above with details

given in Zhang, Tapia, and Dennis (1990) for the proof of Theorem 4.1. m

4 Concluding Remarks

In this paper we have abstracted the Mehrotra Newton predictor-corrector philosophy

‘and demonstrated that it is equivalent to the level-1 composite Newton philosophy.

We were intrigued by the discovery that, while the level-1 composite Newton
method is known to be cubically convergent, this standard convergence rate proof
applied to the predictor-corrector interior-point method gives at best quadratic con-
vergence. The limitation of the standard proof results from the constrictive steplength
choice forced on the method by the interior point philosophy, i.e., requiring the iterates
to remain feasible with respect to the nonnegativity constraints. We demonstrated
that if one drops the interior-point aspect of the predictor-corrector method locally,
i.e., in a neighborhood of the solution steplength one is selected, and also chooses the
barrier parameter to be of the order of the duality gap cubed, then cubic convergence

can be attained for nondegenerate problems.
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The research presented in Zhang, Tapia, and Dennis (1990), in Zhang, Tapia
and Potra (1990), and the present research leads us to conjecture that we should
implement Newton interior-point methods and their variants in a manner which near
the solution sets the barrier parameter to zero and takes steplength one, i.e., as old-
fashioned Newton. Our preliminary numerical experiments employing this idea were
impressive and motivated the more general study described in the companion paper
El-Bakry, Tapia and Zhang [2]. The reader is referred to that paper for numerical

results.
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