A Subgradient Algorithm for
Nonlinear Integer Programming and
Its Parallel Implementation

Zhijun Wu

CRPC-TR91153
May, 1991

Center for Research on Parallel Com-
Rice University

P.O. Box 1892

Houston, TX 77251-1892

RICE UNIVERSITY

A SUBGRADIENT ALGORITHM FOR NONLINEAR
INTEGER PROGRAMMING AND ITS PARALLEL
IMPLEMENTATION

by

ZHIJUN WU

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

DOCTOR OF PHILOSOPHY

APPROVED, THESIS COMMITTEE:

John E. Dennis. .Jr., Director
Noah Harding Professor of Mathematical
Sciences

Robert E. Bixby, Co-DireSor
Professor of Mathematical Sciences

I\enneth w. Kennedy, Jr t i &/

Noah Harding Professor of Computer
Science

Panthn Lomgupin

Partha Sengupta
Staff Research Engineer
Shell Development Company

Houston, Texas

May, 1991

"

A SUBGRADIENT ALGORITHM FOR NONLINEAR INTEGER

PROGRAMMING AND ITS PARALLEL IMPLEMENTATION

ZHIJUN WU
ABSTRACT

This work concerns efficiently solving va. class of nonlinear integer programming
problems: min {f(z): z € {0,1}"} where f(z) is a general nonlinear function. The¢
notion of subgradient for the objective function is introduced. A necessary and suffi
cient condition for the optimal solution is constructed. And a new algorithm, callec
the subgradient algorithm, is developed. The algorithm is an iterative procedure.
searching for the solution iteratively among feasible points, and in each iteration
generating the next iterative point by solving the problem for a local piecewise lin-
ear model of the original problem which is constructed with supporting planes for
the objective function at a set of feasible points. Special continuous optimizatior
techniques are used to compute the supporting planes. The problem for each local
piecewise linear model is solved by solving an quiva.lent linear integer program. The
fundamental theory for the new approach is built and all related mathematical proofs
and derivations such as proofs for convergence properties, the finiteness of the al-
gorithm, as well as the correct formulation of the subproblems are presented. The

algorithm is parallelized and implemented on parallel distributed-memory machines.

The preliminary numerical results show that the algorithm can solve test problem’
effectively. “
To implement the subgradient algorithm, a parallel software system written i:
EXPRESS C is developed. The system contains a group of parallel subroutines tha
can be used for either continuous or discrete optimization such as subroutines for QR.
LU and Cholesky factorizations, triangular system solvers and so on. A sequentia.
implementation of the simplex algorithm for linear programming also is included.
Expecially, a parallel branch-and-bound procedure is developed. Different from di-
rectly parallelizing the sequential binary branch-and-bound algorithm, a parallel

strategy with multiple branching is used for good processor scheduling. Performance

results of the system on NCUBE are given.

ACKNOWLEDGEMENTS

First, I would like to thank my thesis adviser, John Dennis, to whom I am par-
ticularly grateful for his assistance, encouragement and for believing in me and m}
abilities. It is he who introduced me to the fascinating area of numerical optimizatior
and suggested this problem to me. With great patience, he spent much time discussing
my work with me, and read my papers even when they were not written carefully. He
showed interest in every bit of my progress and with his extensive research experience
and background in numerical optimization, he gave me many ideas about what migh:
be wrong in my work and where I could make improvements. Without his directior
and push, I could hardly hope to have developed my algorithm and its theory.

Second, I would like to thank my thesis co-adviser, Robert Bixby, for his valuable
advice on my thesis, expecially for the amount of time he spent listening to my report
and giving me suggestions. Ilearned most of my knowledge about linear programming
and combinatorial optimization from him and enjoyed all his classes. He also taught
me how to be both a good researcher and teacher.

I would like to thank my committee members, Kenneth Kennedy and Partha
Sengupta, for caring about the work contained in this thesis. Their presence on
my committee motivated me to work harder on the parallel implemetation of the
subgradient algorithm and on the possible application of my work in the optimization

of the gas-pipeline network operation.

r

[would also like to thank Richard Tapia who accepted me into the gradua:
program and taught me the fundamental theory on optimization. Many ideas c
constrained optimization in this thesis come from his class on optimization theor
I also thank Andrew Boyd for discussing the parallel branch-and-bound algorithr
and [thank Guangye Li for understanding and caring about me and teaching me tt
parallel algorithm for solving triangular systems.

I have special thanks to my wife, Qiying Fu, for her love, support and patience
She has been with me for almost 12 Srears since we met in college. She is definite!
one of the people who will be delighted most to see me receive a Ph.D. degree.

Finally, this research is supported by the Center for Research on Parallel Computa

Rice University.

TO MY PARENTS

Contents
1 Introduction
11 TheProblem
1.2 Combinatorial and Algebraic Methods
13 OurApproach,
1.4 Materialto Follow

2 The Subgradient Algorithm
2.1 A Necessary and Sufficient Condition
2.2 The General Algorithm

2.3 Convergence Properties

3 Computing Subgradients
3.1 The Method for Simple Problems

3.2 Mathematical Derivations

4 The Continuous Optimization Subproblems

Vi

)

Ne]

11
11
16

19

26
26
31

42

44

vi.

4.1 Nonlinear Least Square 4-
41.1 Backtracking 4
412 e-Approximation 4
4.2 Nonlinear Constrained Optimization 4
4.2.1 Structural BFGS Updating 4¢
4.2.2 Solving Partially Positive Definite Systems 5C
5 On Solving Integer Minimax Subproblems 52
5.1 The General Branch and Bound Procedure 33
5.2 Branching Strategies 56
5.3 Lowerand Upper Bounds 57
6 Parallelization and Numerical Experiments 59
6.1 NIPACKSystem v .. 59
6.2 BasicSubroutimes 63
6.2.1 Communication Subroutines 63
6.2.2 Matrix Computation Subrout;ines 64
6.3 Parallelization for Computing Subgradients 66
6.4 Parallelization for the Branch-and-Bound Procedure 67
6.5 Preliminary Numerical Results 71

7 Summary and Further Research 82

Bibliography

Appendix A Print-out for an Example Problem

1X

85

91

Chapter 1

Introduction

1.1 The Problem

In this work, we are interested in solving a class of nonlinear integer programmin

problems:
min f(z) (1.1
re B"={0,1}"
or its natural extension:
min f(z) (1.2
z € R* integral
where f : R* — R is a general nonlinear function.
This class of problems have important theoretical and practical applications. Fc
example, consider the problem that for any norm || |,
min || b— Az || (1.3
z € R® integral
where b € R™ and A is an m X n matrix with integer elements. This problem i:

called in integer programming the closest vector problem and has been proved to be

-

AV'P-hard even for simple norms such as I2 and I, (see Van Emde Boas (1981], Lovis
[1986], [1989)).

Another example is related to a class of more general problems, mixed-intege
nonlinear programming problems, which have found their important applications re
cently in the gas pipeline network optimization (see Percell [1987]). It turns out tha:
under some circumstances, problems of this class can be reduced to general nonlinear
integer programming problems. For instance, an unconstrained mixed-integer non-
linear progra.mming problem, min {g.(a:,y) ‘YER™, z€R = integral}, can be

formulated, under some appropriate assumptions, as the following problem:

min f(z) (1.4)

z € R* integral

with f(z) = min {g(z,y): y € R™}.

If z is bounded, Problem 1.2 can be equivalently transformed into Problem 1.1.
So we will concentrate only on solving Problem 1.1.

A lot of research have been done on solving Problem 1.1 since the end of the 1950’s.
In Section 1.2, we review three traditional approaches briefly. Section 1.3 contains an
outline of our approach. Section 1.4 introduces the material to be discussed in the

remainder of this thesis.

1.2 Combinatorial and Algebraic Methods

Several approaches to the solution of Problem 1.1 have been studied in the last 30
years. The main ones are enumeration, algebraic, and linearization approaches. They
all also apply to nonlinear constrained 0 —1 integer programming. Garfinkel and
Nemhauser [1972] and Hansen, Jaumard and Mathon [1989] have general descriptions.

Enumeration

The most simple way to solve Problem 1.1 is to enumerate all the feasible solutions
and then choose the best, i.e., the one. such that the objective value of the problem
is the minimum. Unfortunately, this method can only work for very small problems
for there can be 2" feasible solutions in total for an n-dimensional problem and it is
impossible to compute them all in a reasonable time for n large.

A practically better way is to enumerate only a “heuristically” selected subset of
feasible solutions and take the best solution in this subset as the approximation to
the optimal solution. Here the solution obtained is only a local optimal solution. We
can not guarantee it is also globally optimal.

A more intelligent and sophisticated enumeration scheme is referred to as the
branch-and-bound procedure, or the divide-and-conquer method. In this method,
the original problem is divided into several subproblems such that the problem can
be solved if all the subproblems are solved. The process also is applied recursively
to all subproblems. It terminates for some subproblem if either the optimal solution

for the subproblem is found or the subproblem can be eliminated. The latter can be

determined by comparing the upper or lower bounds for the objective function with;
the optimal value for some other already solved subproblem. This method already*
is used for linear integer programming. But in most general cases, it may not be
effective without efficient subproblem elimination procedures.

Algebraic Method

The most studied algebraic rnet'hod is the Basic Algorithm described in Hammer,
Rosenberg and Rudeanu (1963, a.ﬂd Hammer and Rudeanu [1968].

The method exploits optimality coﬁdition_s as follows. The objective function is
first expressed in a multilinear form, i.e., a sum of distinct cross products of variables.

Then the problem becomes

min f(z) = i kT

ze{o1}» k=1

where

Tk= H Zj, Nk§N= {1,2,...,n},k=1,2,...,p.
JENK

Let f1, the function to be minimized, be written in the form
fi(z1, 72,00, 20) = 2144 (22, 73, . ..« 1Zn) + M(Z2, T3, ..., Zs)

where the function A, and M do not depend on z,. Clearly, there exists an optimal so-
lution of fi, say (z},z3,...,z2), such that zy = lif and only if A(z3,z3,...,22) < 0.
This leads us to define a function ¥1(z2, Z3,...,Z,), such that V1(Z2,Z3y...,ZTq) =

Ar(z2,23,...,2,) if Ay(z2,23,...,2,) < 0, and ¥Y1(Z2,23,-..,Z,) = 0 otherwise.

Assume that a polynomial expression of %; has been obtained. Letting f, = ¢; +
m reduces the original problem in n variables to the problem of minimizing f,,
which depends only on the n — 1 variables z3,z3,...,z,. Continuing this process
for z2,23,...,Tn_1, succesively, yields two sequences of functions fi, fs,..., fn and
¥1,%2,...,%n-1, Where f; depends on (n — ¢ + 1) variables. An optimal solution

(z1,73,...,2;) of fi can then be traced back from the minimizer z] of f,, using

recursion:
z; =1 if and only if ¥i(zi,,, 27 ;0,...,2,) <0 (:=1,2,...,n=1).

The efficiency of this procedure depends critically on how the polynomial expres-
sions of ¥y, %2, ...,%n-1 are obtained. Various methods to obtain these functions are
proposed in Hammer and Rudeanu [1968], and Crama, Hansen and Jaumard [1990].

Crama, Hansen and Jaumard [1990] show that the algebraic method described
above may work well for problems with special structures. But it is not promising
for general problems due to the work for the algebraic manipulations and to the very
large memory space usually required.

Moreover, to apply this method, the objective function is required to be in a
multilinear form. This form, in principle, can be obtained for any 0—1 nonlinear

function due to the fact that for any function g,

9(z)= 3" 9™ []=z; I (1-32j)

TeJ* j€T jeJ-T

where T C J = {1,2,...,n}, J" is the set of subsets of J and zT) is defined suct
that xﬁT) =1ifj € T and zg-T) = 0 otherwise. However, the computation involved ir *
achieving this formulation may be on the order of total enumeration of the 2" binary
n-vectors. For problems with complicated objective functions such as Problem 1.2
and Problem 1.4, this can be as expensive as solving problems themselves.

Linearization

In this approach, rules are invented to linearize the nonlinear ob jective function
and then reduce the problem to a linear 0— 1] integer program (see Danzig (1960
and Fortet [1959]). Generally, the problem is assumed to be in the multilinear form.
Then it is linearized by replacing each product of variables by a new 0—1 variable
and adding some linear constraints. Glover and Woolsey [1973], [1974] and Balas
and Mazzola [1984] propose special rules to obtain the linearization with fewer new
variables and constraints introduced.

The linearization approach seems successful for problems with a few products of
variables, but the linearization becomes prohibitive both in terms of space and time
when all or most possible products of variables are present and n increases. Hansen,
Jaumard and Mathon (1989] indicate that aggregating constraints to obtain a more
compact linearization also does not appear worthwhile, as the relaxations are then
less tight than in the original linearization. Moreover, as in the algebraic method, this
approach requires the objective function to be transformed into a multilinear form,

which is difficult for complicated ob jective functions.

In conclusion, all three approaches for nonlinear 0—1 integer programming work
both theoretically and pra.cﬁicallf for problems with special structures or problems
of relatively small dimension. But for general problems, they all have difficulties.
Directly applying the branch-and-bound procedure to a general problem usually pro-
duces too many subproblems. The algebraic and linearization approaches need the
objective function to be transformed into a special polynomial form, which does not

apply in general for problems such as Problem 1.3 and Problem 1.4.

1.3 Our Approach

In our approach, Problem 1.1 is considered for general cases. We are interested in
solving problems with general or complicated objective functions such as Problem 1.3
and Problem 1.4.

First, instead of looking at the problem combinatorially or algebraically, we con-
sider it as a nonsmooth problem over the set of all 0—1 integer points. We use the
notion of subgradient from the theory of nonsmooth analysis and then construct a

necessary and sufficient condition for the optimal solution, i.e.,

e A feasible solution for the problem is optimal if and only if a subgradient of the

objective function at this solution is equal to 0.

We use this condition as one of our optimality testing criteria. It was not considered in
the earlier approaches. For instance, in the branch-and-bound procedure, the optimal

solution can not be determined until all necessary feasible solutions are enumerated.

Second, our algorithm searches for the solution iteratively among feasible pointé
and in each iteration, it generates the next iterative point by solving the problem f*
a local piecewise linear model which is constructed with the supporting planes for t}
objective function at the set of iterative points already generated. The supportir
planes are computed by using special continuous optimization techniques. The prot
lem for the local piecewise linear model in each iteration is equivalent to an intege
linear minimax problem, which can be solved with any standard method for linez
integer programming.

Finally, our work also involves parallel computation. We implement the algorithr
on parallel distributed-memory machines to explore the use of supercomputing tool.
in solving large and hard problems.

Our approach differs from, but also relates to, traditional approaches described ir
the previous section. In our approach, there is an enumeration mechanism embeded.
but different from the genaral enumeration scheme, we do not apply it to the problem
directly. We only apply it to locally constructed linear subproblems for which the
enumeration procedure seems to be more effective.

We also try to approximate the ob jective function with a linearization technique.
But we do this in a different way and for a different purpose, compared with the

general linearization approach. In our approach, supporting planes are used to provide
piecewise linear approximation to the ob jective function. This approximation is used .

in each iteration of the algorithm for constructing the local model of the problem.

1.4 Material to Follow

There are certain aspects of our approach that require further discussion. For exam-
ple, we have only hinted at how the idea in nonsmooth analysis can be introducec
in solving our problem. But we have not given exact definitions for what we mear
by “subgradient” and “supporting plane”, etc. Also, we have not described in detai!
how to compute subgradients and how to solve the linear integer minimax problemr
that happens to be a subproblem in our algorithm. In Chapter 2, we present a for-
mal description of our algorithm. '\lVe.a.Iso discuss the optimality testing criteria anc
convergence properties.

Computing subgradients is very important in our algorithm for both the construc-
tion of the local piecewise linear model and the optimality testing. We discuss this
issue in Chapter 3. We first present an algorithm for simple problems, and then ex-
tend it to general cases. In our algorithm, the problem of computing subgradients is
reduced to several continuous optimization subproblems. We present all related math-
ematical derivations and describe strategies for solving these subproblems. Chapter
4 contains more details about this.

In Chapter 5, we present an implicit enumeration procedure for solving the linear
integer minimax subproblem generated at each iteration in our algorithm. While
the enumeration scheme is relatively effective for linear integer programming, we still
have difficulties in solving the linear integer minimax subproblems in general. We

discuss several strategies to speed up the enumeration procedure.

1
In Chapter 6, we describe a parallel software system to implement our algorithm ‘
The preliminary numerical results for testing our algorithm also are presented. Qu:"
system is written in EXPRESS C and it will run on several parallel distributed mem-
ory machines such as the NCUBE, SYMULT and MEIKO MK200. The system
contains a group of parallel subroutines used for either continuous or discrete op-
timization such as subroutines for QR, LU and Cholesky factorizations, triangular
system solvers, a parallel branch-and-bound procedure and so on. Performance results
of the system on the NCUBE are given.
Chapter T summarizes the material presented in Chapter 1 through Chapter 6. We
also discuss possible extensions and improvements in both our algorithm for nonlinear
integer programming and in our software system. Appendix A contains the print-out

from solving an example problem via the use of our system.

11

Chapter 2

The Subgradient Algorithm

2.1 A Necessary and Sufficient Condition

The algorithm we propose for Problem 1.1 will be called the subgradient algorithm
because subgradient information is used in the main procedure of the algorithm. In
this chapter, we give a formal description of the algorithm and present some of its
mathematical properties.

Suppose we are given a nonlinear objective function f : R* — R. Consider its
restriction f : B® — R denoted by f7. It is a function over the discrete set of all
0—1 integer points, and therefore it is nondifferentiable, or in other words, nonsmooth.

We treat Problem 1.1 as a nonsmooth problem by writing it as

min f(z) (2.1)

ze B*={0,1}"

We call f the continuous objective function and f” the discrete objective function,

and introduce the following definitions for f":

Definition 2.1.1 A subgradient of frat Z € B™is a vector s € "

such that
sT(z—32) < f(z) = f(z) Yz e B™.

Definition 2.1.2 The subdifferential of fT at Z € B™ is the set of all

subgradients of f7 at z defined as:
f (Z)={seR": sT(z-3) < f(z) - f () Vz € B*}

Definition 2.1.3 A supporting planeof f"at z € B" is a hyperplane

defined by
92(z) = f7(2) + sI(z — z) where s € 8f7(z)

We say a supporting plane is “good” if it is tight as a bounding function. For
example, in Figure 2.1, we say B is better than A, and C is the best. Also, given
a subgradient, we can define a supporting plane and vice versa. So the notions of

subgradient and supporting plane are related.

f(x)

B "”” —
0 /// 1 X

Figure 2.1 Simple examples for supporting planes.

With these definitions, we can obtain the following easy, but important, facts:

Theorem 2.1.1 Suppose f is convex and differentiable, and let ¥V f(z)

be the gradient of f at Z, then Vf(z) € df(z) V£ € B™.
Proof: It suffices to show that for any I € B™,
Vi@ (z~5) < f(z) - f(B) Vze B (22)

For z = Z, inequality (2.2) holds obviously. So we only need to considerz £ z, z €
B". Since f is differentiable, the directional derivative of f at Z in the direction of

(z — %), defined as

lim JE Az = 2) - £(2)

A=0 A
exists and equals V f(Z)T(z — z).
Since f is convex, for A € (0, 1],

Af(z) + (1= Nf(F) - f(2)

> fOz+(1 —/\A)f)-f(f)
_ fE+N==-2) - f(3)
A

which implies

i LE+AG = 2) - £(2)
=0 A

V(&) (z - z).

flz) - £(z) 2

Theorem 2.1.2 The subdifferential 9f7(Z) of 7 at Z € B™ is a convex

set.

Proof: For any Z, let sy, s2 € 9f"(Z). We show that

As1 + (1= A)s2 € 9f7(2) for any A € [0,1].

Since s, s2 € 8f7(3),

sifz—2) < f(z)= f(3) Vz € B*, and
2(@=3) € f(z2)-F(E) VeeB"
So, for any z € B™ and \ € [0, 1],
()\81 + (1 - /\)Sg)(.’l: - 5)
= Asi(z—Z) + (1 = A)s2(z —)

< Mf(=z) = f(2) + (1 = N(f(=) - £(7))
= f(=z) - f(2)

which, by the definition for a subgradient, implies

Asi + (1= XA)s, € 3f7(3) for any X € [0,1].

Theorem 2.1.3 A necessary and sufficient condition for z* € B™ to be

the minimizer of f7 (and also f) over B™ is 0 € 3f"(z").

16

Proof: By the definition for a subgradient, 0 € df7(z") for z= € B™ if and only if)

EY

0(z —z7) < f(2) = f(z7) Vz € B",
which exactly means

f(z7) < f(2) Vz € B™.

Note that the subgradient of a function at a given point might not be unique.
Typiéally there can be infinitely many. There is no general methods, expecially
for nonlinear nonsmooth functions, to compute the whole set of subgradients. This
causes difficulties in using Theorem 2.1.3 to solve our problem. However, to determine
whether or not there is a zero subgradient in a given subdifferential, some special
techniques can be used that do not require the entire set. We will describe the

method used in our algorithm in the following sections.

2.2 The General Algorithm

- Algorithm 2.2.1 given below is an outline of the algorithm we propose to solve
Problem 1.1. In this algorithm, the discrete form (2.1) of Problem 1.1 is considered.
For simplicity, we will always refer to f7 as the objective function of the problem.
The algorithm carries out an iterative procedure from an injtial guess z(® as
follows. Let z() be the current iterative point at the ith iteration. At the beginning

of this iteration, if z() = z() for some j such that J <, (or in other words, z() has

17
been generated before in the whole procedure), or if the objective function f” has a
0 subgradient at z(*), the algorithm stops and z(9) is an optimal solution. Otherwise,
a supporting plane g, for the objective function at z(!) is generated. All generated
supporting planes g,(;) for j =1,2,...,7 define a local piecewise linear model p(z) =
maxigj<i{g-n(z)} for the objective function. Then, the algorithm solves the 0—1
integer programming problem for this local piecewise linear model, takes the optimal
solution for this local subproblem as the next iterative point z(*1) and goes to the
next iteration.

There are two optimality testing criteria in our algorithm. One is the necessary
and sufficient condition stated in Theorem 2.1.3. It is tested for an iterative point
by looking to see if there is a supporting plane defined by a zero subgradient. This
is done when the algorithm is generating supporting planes. The other test is if the
algorithm repeats some iterative point. We will prove in the next section that when-
ever this happens, the répea.ted point is then an optimal solution and the algorithm
can terminate. This criterion prevents cycling in the algorithm and guarantees that

the algorithm terminates in finitely many steps.

Algorithm 2.2.1 {4 subgradient algorithm)}

0 {Initialization}
T=¢,H=¢,1=0
pick up z() € B»
1 {Iteration}
do while i <m
1.1 {Optimality testing}
ifzd eTor0e af"(:;:(")) is known then
z) is the optimal solution, stop
1.2 {Generating supporting planes}
T=Tu{z®}
H=HU{g: gxo(z) = f(z) + s (z — 2), s, € 8 (D))
1.3 {Solving a linear integer minimaz problem}
find a solution z(*) for
mincepn {p(z)=max {g(z): g € H}}

1.4 {Updating}

i=1+4+1
20) = (=)
end do

a

19

2.3 Convergence Properties

As described in the previous section, instead of solving the original nonlinear integer
programming problem directly, our algorithm actually solves a sequence of linear inte-
ger programming subproblems. Each of them corresponds to an integer minimization
problem for a piecewise linear function p defined by a group of supporting planes
of the objective function. Let p{) and pli+!) denote the piecewise linear functions
generated in the ith and (i + 1)th iterations respectively, then, p(**1) is generated by
adding one more supporting plane into p(’). We now prove some useful results for our

algorithm.

Theorem 2.3.1 Let p{) be the piecewise linear function constructed
in the ith iteration of Algorithm 2.2.1, then for any i, p{)(z) < f"(z)

Vz € B".
Proof: As presented in Algorithm 2.2.1,

p(z) = max{g(z) : g € H}

= max{g¥(z): ¢ € H}

0<s<i

where ¢(9) € H is a supporting plane for the objective function f generated in the

Jth iteration of the algorithm. By the definition of a supporting plane,

g(i)(z) = fr(z(j)) + (S(J'))T(x - z(j))

.

where z(9) € B is the jth iterative point and s € df7(z1)). By the definition of -

subgradient,
(s (z = 2D < F(z) = f7(zD) Vz € B

So, g¥)(z) < f7(z) Yz € B™. Since this is true for all J, 0< 7 <4, we have also

max{g¥(z): g9 € H} < f(2) Vz € B"
SIS
which exactly means p()(z) < f7(z) Vz € B~ =

Theorem 2.3.2 Let z(9) and z(+1) be the optimal values of the linear in-
teger minimax subproblems in the ith and (¢+1)th iterations in Algorithm
2.2.1 respectively, then for any i, z() < z0+1), If in addition the optimal
solution z(*1) for the linear integer minimax subproblem in the ith iter-

ation of the algorithm is unique and z(i+1) = z(+2) then z() < Z(i+1),

Proof: First prove 2() < z(i+1),

As defined in Algorithm 2.2.1,

2

= min o
= minp“(z), and
Li+1) rninp“"'”(:c).

z€EB"
So, it suffices to show p()(z) < pli+1) vz ¢ Bn, By the definition of p(*), for any |,

z € B,

() — Dy .)
p(z) = gg;u;{y (z): ¢ € H}

Dy . 0)
< Osrl}gg_gl{g (z): ¢V e H}

= p(H—l)(I).
So, p(z) < pl*(z) Vz € B™ and z() < z0+1) follows immediately.

Now we prove z(?) < z(i+1) if the solution to the subproblem

min p(z) (2.3)

is unique and z{*+1) £ z(i+2) The proof is by contradiction.
Suppose Problem (2.3) has an unique solution z(*1) and z() = z(+1), Since

20 = (41 pl)(Z(+1)) = pli+1)(£(+2)). But

(41 (gG+2)) = QIECDNNE)
prETT) = max {g7(z"Y): g7 € H}

= max {p(i)(x(i+2)), g(i+1)(z(i+2))}_
So, p) (1) 3 pli)((+2).
But pl)(z(+1)) < p()(z(+2)) by the uniqueness of z(*)) and the fact that z(+1) £
z(+2)_ Contradiction! Therefore, z() £ z(+1) and z{) can be only strictly less than

z(+1) by the first arguement of the theorem. a

Theorem 2.3.3 Let T = {z(¥) € B", j = 1,...,i} be a sequence of
iterative points generated by Algorithm 2.2.1 before the algorithm starting
the ith iteration. If 3j < ¢ such that z() = z(), then z(¥) must be a

solution for Problem (2.1).

Proof: let j be the integer such that j < ¢ and z(9) = z(®.

As defined in the algorithm, z() is the solution to the subproblem

min p(~Y(z).

z€Bn
So,
p(i-l)(z(t')) < P(t’-l)(z) Vz € B",
By Theorem 2.3.1,
@) < f(e) vzesBn
Thus,
PP < f (@) vzes

and particularly
p(t’-l)(z(t')) < ff(z(i))_
But

G=1) (.6 _ La® (@)Y . (R)
PrEY) = max {g9(e1): ¢® e &}

v

g(j)(z(i))

= gU)(zW)

fr(z(j))
= f(z9).

Then we have f7(z(9)) = pli=1)(z()),
M <f(=) VeeB
and z(!) is optimal for Problem (2.1). a

Theorem 2.3.4 Algorithm 2.2.1 is finite.

Proof: It immediately follows from Theorem 2.3.3 and the fact that there are

only finitely many distinct points z € B™. a

Corollary 2.3.1 Let T = {z() € B", j = 1,...,4} be the sequence
of iterates generated by Algorithm 2.2.1 up to the ith iteration. Let
z3) = fr(z(#)) be the minimal in T. Then for z*, the optimal value of
Problem (2.1), and z0(-V = pl=1)(z(), the optimal value of the linear

integer minimax subproblem in the (¢ — 1)th iteration of the algorithm,
2671 < g < LU0
and also
|20 — 20| =0 for 7 sufficiently large.
Proof: First we prove
201 < 7 < 200,
By Theorem 2.3.1,

pV(z) < f1(2) Vz € B".

So,

G=1) — min p0=V(z) < m; - -
z min ' (2) < min f(z) = =

The second inequality follows since any feasible point £ € B" yields an uppe
bound f(z) for the optimal value of fT.

Now we prove
|20 — =1 = ¢ for ¢ sufficiently large.

By Theorem 2.3.3 and Theorem 2.3.4, the algorithm stops when z() = zU)
for some j < i where z() is the current iterative point. Then as in the proof for

Theorem 2.3.3,
2071 = pli=1)(z) = fr(z0)) = o,

Since now 2z(%) = z* then z(i-1) = ;i) a

An interesting observation from Corollary 2.3.1 is that after the ith iteration, we
can get the best solution the algorithm is able to find in i + 1 iterations. As in
Corollary 2.3.1, if (%) is the function value for this solution and z* the optimal value,

the error between the two values is bounded by
|20 — (-1,
The bound is decreasing as i increases.

Finally, since it is not straightforward to test if there is a zero subgradient in *

applying Theorem 2.1.3 for the optimality testing in Algorithm 2.2.1, we state a

1o
(S]]

different, but equivalent, necessary and sufficient condition in the following theorem.

It turns out that this condition can be obtained more easily in our algorithm.

Theorem 2.3.5 A necessary and sufficient condition for z= € B™ to be

the minimizer of f” (and also f) over B™ is 3s € 8f7(z") such that

5i <0 Vi such that ;=1 (2.4)
and
si 20 i such that z; = 0. (2.3)

Proof: The necessity follows immediately from Theorem 2.1.3 and the fact that
s = 0 satisfies conditions (2.4) and (2.5). For the sufficiency, suppose 3s € 9f"(z")

satisfying conditions (2.4) and (2.5). Then
sT(z—27) < f(z) - f(z7) vz € B
and it is easy to verify that
0<sT(z -2 Vz € B".
So,

0(z—2z") < sT(z-2z")

< f@)-f(=") VzeB"

and then 0 € 0f7(z~). By Theorem 2.1.3, z~ is a solution. a

Chapter 3

Computing Subgradients

3.1 The Method for Simple Problems

In each iteration of Algorithm 2.2.1, if the iterate z(¥ is not optimal, the algorithm

must generate a supporting plane at z(9:
9:0(z) = fT(z9) + 5Ty (z = 29), s € af ()

to update the local piecewise linear model of the objective function. To do this, the
function value f7(z(") and a subgradient sz € 0f"(zV) are required. Since afm(z)
is a set and not given explicitly, it is difficult to compute a nontrivial subgradient in
afr(z1).

Let us consider problems whose continuous ob jective fﬁngtions are assumed to be
convex and differentiable. For a problem of this class, by Theorem 2.1.1, V f(z(®),
the gradient of f at z(9), is contained in 8 f"(z®). So, a trivial way to choose sy for

each 7 is to set
sz = V f(zD).

However, it happens that with this strategy, the piecewise linear function P generated

in Algorithm 2.2.1 may not be a good bounding function of f7. Geometrically, this is

o

[RV]
-1

because each function g, with s, = V f(z() might be too “steep” to be a “goo0d”
supporting plane for f7. We should have a subgradient s_. better than V(™) so
that each g is as “fat” as possible.

For simplicity, let us write 29, s and g, as 7, s and g respectively, and
9(z) = f7(Z) + sT(z — Z). Then our goal is to choose an s € 0f7(Z) such that g(z)
is as “close” as possible to f"(z) at all £ € B®. The way we try to achieve this is
to improve a given supporting plane successively, starting from the supporting plane
with s = Vf(Z). That is, s is first set to Vf(Z). Then it is updated such that
the corresponding supporting plane is “lifted” in the sense that it is “fatter”, or in
other words, “closer” to f7. The updated s remains a subgradient as long as the

corresponding new hyperplane still supports f7, i.e.,
g9(z) £ f7(z) Vz e B™. (3.1)

The “lifting” process continues until the best possible supporting plane is obtained.
But the problem here is that we can not check the condition (3.1) directly because it
involves 2" function evaluations. We proceed as follows.

For s € R*, consider S such that z € S if f(z) < g(z). We call S the projection
set of s with respect to f at Z. Geometrically, if f is a convex function, S is the convex
hull of the projection on R" of the intersection of g and f. Now the condition (3.1)

can be restated as follows:

o For any s € R", s is a subgradient of f if and only if the interior of its

projection set S does not contain 0—1 integer points.

2

(@g)

This statement implies that to update a subgradient s to a new s that remains a
subgradient, we only need to maintain the corresponding S to be a special convex °
body that does not contain any interior points in B™. In other words, given a new
updated s, we can determine if s is a subgradient by checking if the corresponding
S is a special integer lattice-free convex body. How to determine lattice-free convex
bodies has been studied by quite a few people (see Grétschel, Lovdsz and Shrijver
(1987], Kannan [1987] and Lovész (1986], [1989]), but a general algorithm to do so,
if we can get one, can be expensive. This leaves us an interesting further research
topic, which we will discuss in Chapter 7, for the improvement of our algorithm, but
we take a different approach in the current version of our algorithm. What we really
do is explained by a simple example shown in Figure 3.1. Generally speaking, we
update the subgradient to improve the supporting plane in such a way that to check
if the interior of a given S does not contain 0—1 points becomes more tractable and
less expensive.

Now let us look at the example shown in Figure 3.1. The continuous objective
function f is differentia.ble and strictly convex, and % is such that Z; =1, Vi. Let

A={z€eR": z; >0, Vi}.

‘ x3 o
) —

x2
— <y (1,1)
o B

g(2) (1,0)

x1
g(l)

g(0)

adients.
"Lifting" process for computing subgr
Figure 3.1

30

v

First, for s = V f(Z), we have the supporting plane 90)- Updating s to “lift” 9o
a little bit, we obtain the supporting plane 9(1) and projection set S).- We know the
updated s remains a subgradient as long as (1) does not contain 0—1 points in its
interior. We maintain this property for Sy by keeping S(;) inside of 4. We observe

that

¢ For any projection set S obtained in the above “lifting” process, the interoir of

S does not contain 0—1 points as long as S is contained in A.

To obtain better subgradients, we up(iate s further until we get a supporting plane
such that the corresponding projection set S hits the boundary of A (see 9(2) and Sy
in Figure 3.1). The supporting plane finally obtained may not be the best. However,
in each “lifting” step, to see if s still remains a subgradient, we only need to check if
S is contained in A, which can be done more easily.

Let s be any updated subgradient with S the corresponding projection set. We
measure the distance d; between S and z; = 0, the boundary of A, for each i. As
we will prove in next section, if the continuous ob jective function f of the problem is
differentiable and strictly convex, given each s, there is a group of uniquely determined
d;’s, and therefore the function d = (dy, ds, ..., dn) is a well defined. With this result,
our process to compute subgradients can be formulated mathematically as solving an

optimization problem:
min || d(s) || (3.2)

st. di(s)>0 i=1,2,....,n

31

This problem can be attacked using some nonlinear continuous optimization methods.
It is also not hard to solve in the sense that for our particular purpose, a good feasible
solution is what we really want while the optimal solution is not that important.

Now there remains the problem of how to compute d(s) for each s. If f is dif-
ferentiable and strictly convex, and S is closed and bounded, then we can compute
extreme points of S along all z; directions. Then d;(s) can be obtained by calculat-
ing the distance between an extreme point of S along z; direction and the boundary
z; = 0 of A. The problem to compute an extreme point for S can be formulated
as a continuous optimization problem with a linear objective function and nonlinear
constraints. As we will describe in next chapter, this problem has special structures
and it is not very expensive to solve.

Finally, the process for computing subgradients is used also in our algorithm for
optimality testing. In each “lifting” step, if a subgradient s is obtained, theq the
algorithm checks for Z the necessary and sufficient condition stated in Theorem 2.3.5.
If the condition is satisfied, the algorithm stops and Z, the current iterative point, is

an optimal solution by Theorem 2.3.5.

3.2 Mathematical Derivations

The last section introduces the method we use to compute subgradients. In this
section we give a formal description about the “lifting” process and discuss in detail

the formulation of Problem (3.2).

We assume until next section that our problem can be formulated in such a wa
that its continuous objective function f is strictly convex. This, at least in principle -
can be done for most problems as we will show in next section.

With this assumption, from a given point £ € B™, our goal is to compute th
subgradient that defines a “good” supporting plane for f7 at Z.

Let g(o) be the supporting plane of 7 at # such that
9o () = f1(z) + V()T (z - 2).

Definition 3.2.1 Foranyi > 0, let 9(i-1) be a supporting plane of f" at
T and g(;) the supporting plane of f7 obtained by updating the gradient of
9(i-1)- Then, g(; is said to be lifted from 9(i-1y if gy () = gi-1)(z) Vz €

B™ and there exists at least one point z € B" such that 96 (z) > g(o)(z).
Definition 3.2.2 For any s € R™, the following set
S={zeR": f(z) < g(z)}

is called the projection set of s on R™ with respect to the function f at Z,

where g is defined such that g(z) = fr(Z) + T (z -).

Theorem 3.2.1 For any s € R" and convex function f, the projection

set S of s with respect to f at 7 is convex.
Proof: Let z, ' € S. We show

Az+(1=-XNz'eS VA e [0,1].

33
This follows immediately from
fAz+(1=N)z") < Af(z) + (1 - V) f(z)

< Ag(e) +(1-A)g(=)

= g0z +(1-),

where the first inequality is from the fact that f is convex, the second inequality is

from that z, z’ € S and the equality holds because g is linear. a

Theorem 3.2.2 For any s € R*, s € 0f"(Z) if and only if
zgS° Yz € B®

where S° is the interior of the projection set S of s with respect to f at

Z.

Proof: First we prove the sufficiency:
IfzgS° Vze B, f(z)2g(z) Vz € B*, where g(z) = f(£) + sT(z — z). This
is equivalent to

F(z) 2 f(3) + 5 (z - %) Vz € B".

So, s € 0f7(Z) by the definition of a subgradient.
Now we prove the necessity:

If s € 8f7(z),

sT(z—3%) < f(z) - f1(8) Yz e B™

So,
9(z) < f(z) = f(z) Vz € B™,

implying that z ¢ S° vz € B". a

As introduced in the last section, computing a subgradient in our algorithm i:
done by a “lifting” process: starting from the supporting plane 9(0), the subgradient
is updated successively such that the supporting plane is lifted unti] a good enough
supporting plane is obtained. Here, in each step of the process, the algorithm needs
to check if the supporting plane is still valid. This is equivalent to checking if the
gradient s for this supporting plane is still a subgradient. Theorem 3.2.2 gives a
necessary and sufficient condition to check if s € 0f7(Z). Although this condition can
not be tested directly, the sufficient condition presented in the following theorem is
used in our algorithm.

Define a constant vector & such that each of its components ¢; = 1 — % i =

1,2,...,n. Let A be a set of z € R™ such that

Ti <& Vi suchthat & =1
and

Z; 2¢& Vi suchthat ¢& =0.

Theorem 3.2.3 For any s R, s € 0f7(Z) if S C A, where S is the

projection set of s with respect to f at Z.

35
Proof: It is easy to see that Z is the only point in B™ contained in A°, the interior
of A. Since S C A, Z is also the only possible point in B™ that can be contained in

S°, the interior of S. But Z is a boundary point of S. So, z & S° Vz € B™ and

To verify if a given projection set S is contained in A, for S, a closed and bounded
convex body, we look at the distance between S and the boundary of A along each
direction z;, ¢+ = 1,2,...,n. Let the distance be d;, : = 1,2,...,n. Then S C A if
and only if d;’s are nonnegative. Let d = (dy,ds,...,d,). Then d depends on s € R®
that defines the projection set S. The “lifting” process to compute a subgradient in

our algorithm is formulated as the problem:

min || d(s) || (3.3)

st. di(s) 20 :=1,2,...,n,

where d(s) fs the distance vector that depends on s.

For any i = 1,2,...,n, the distance d;(s) is computed by first finding an extreme
point of the convex body S along the z; coordinate direction and then calculating the
distance between this extreme point and z; = &, the boundary of A.

Problem (3.3) can be attacked by standard continuous optimization techniques
and the work for finding an extreme point of a convex body in computing d;(s) can

be done by solving a problem

36

min z; — 2¢;z; (3.4)
st. z€S,
or equivalently,
min z; — 2G;z; (3.5)

st. f(z) —g(z) <0,

where f is the continuous ob jective function of our problem and g is a linear function
defined by g(z) = f7(z) + sT(z - 3).

Problem (3.5) is not a very hard problem. Its objective function is linear and
there is only one nonlinear constraint. As we will show below, the solution of this
problem is unique and the first order necessary condition is also sufficient. Therefore
the problem can be solved actually by solving only a system of nonlinear equations.
More details about solving this problem as well as Problem (3.3) are discussed in the
next chapter.

In the remainder of this section, we show that given any s, the function d(s) in
Problem (3.3) exists and well defined. For each ; and s, let y;(s) be the optimal
value of Problem (3.5) for s. Then it suffices to show that the function y with

¥ = (¥1,¥2,--.,Yn) always exists and well-defined for s.

37
For the simplicity, assume in the following statements that Z; = 1 Vi . Then

Problem (3.5) is reduced to

where f and g are defined as in Problem (3.3).

Lemma 3.2.1 Given s € 3f7(Z) and its projection set S with respect to
fat Z,if S is closed and bounded, Problem (3.6) to compute an extreme

point of S along the z; direction has an unique solution.

Proof: The existence can be proved by the fact that the objective function is
continuous and S is closed and bounded.

Now we prove the uniqueness. The proof is by contradiction.

Suppose z' and &' are both solutions of Problem (3.6), then z = Az‘ + (1 — A)#*
for any A € (0,1) is also a solution, because # = z{ and 2z} = Az} + (1 — M) =
Azi+ (1 = Nzl =zt

However, since f is strictly convex a.nd i, # e S,

f(z) < Af(') + (1= N F(&)
< Ag(z') + (1= A)g()
= g(z")
which implies that z* is an interior point of S. This is a contradiction to the fact that

any solution of Problem (3.6) is an extreme point of S. a

Lemma 3.2.2 For Problem (3.6), define Lagrangian function
Hziu') = o+ u'(f(z) — g())

where v’ is a scalar. Then, for any 7, 0 < : < n, a necessary and sufficient
condition for z* to be an optimal solution to Problem (3.6) is that Jui > 0

such that
Vi li(zhu') = 0
w(f(z') - @y -sT(z - %) = 0
f) - f(&)-sT(z*-2) < o

which, with V_ I{(z%; u') written explicitly, is equivalent to

I
o

W' (ff,(z%) - 1)

u'(fr,(c) —s2) = 0

W(fh, () = sima) = 0

(3.7)

I
o

1+ u'(fl(z') = s:)

U (fa (2) —six1) = 0

u(fr(z)) =sn) = 0
u(f(z') - f(&) - sT(z' = 3) = 0
(f(z') = f(z) = sT(z = %)) < 0

39

Proof: The necessity follows directly from the first order necessary condition for
a nonlinear constrained optimization problem.

Note the ith equation of (3.7) implies ' > 0 and V2/i(z';u’) = w'V2f(z') is
positive definite. So, the necessary condition is also sufficient by the second order

sufficient condition for a nonlinear constrained optimization problem. a

Lemma 3.2.3 Given § € R" and its proj_ection set 5 with respect to
f at Z, let ' be an extreme point of S along the z; coordinate direction
computed by solving Problem (3.6), then 3 a neighborhood N(3, ¢) of §
and a function z' : R™ — R" continuous and differentiable in N (3, ¢)

such that

Proof: Rewrite (3.7) in the following way:

Fi(shus) = wi(fz,(e) =) =0
F(ahiuis) = wi(fr,(s') —s2) =0
Fia(zhulis) = u'(fl,_(z') = sim1) =0
Fi(z';u';s) = 1+u'(fl(z') —s:)=0 (3.8)

F't'+1(zi;u€; 3) = ui(fll-'i+1 (zi) - Si+1) =0

40
Fu(#'5u5s) = w(f] (%) = s,) = 0

H(zus) = (f(z') = f(z) - s¥(z — 2))=0

where the last equality holds because ' > 0 from the ith equality and

w(f(z) = £(8) = sT(zF - 2)) = .
So the inequality in (3.7) is removed.

Let F = (Fy, F, vy Fh,H). Then (3.8) is equivalent to

F(z*;u; s)=0

By Lemmas 3.2.1, 3.2.2, given §, 3#' and @' such that F(#%4%35) = 0. And ATs

are also unique.

Differentiate F' with respect to zi and uf,

(V (zizuiy F1 \
Vaisui Py
Vigiwi)FT =
V(zisui) Fn

\ V(zi;ui)H)

41

2f i 3 i 32f i
FESEED u tt 9119z u *** 8z10zn u 0
s i 8%f i 8%f i ’ .
3zidz; u *** 9oz u e Bxgaznu z; — Si
2f i 3f i 8f i
3zndz; u Tt Ozrnadz; u e 8.1:n3=..u 0
\ 0 ven ;_.', -8 ... 0 0)
([ive f Vh
\ VAT 0

where VA= (0, ..., fl. =5, 0, ..., 0)7.

Using the fact that V2f is positive definite and V& # 0, since fi.—si=—=1/u',itis
not difficult to prove V,i.,i)F is nonsingular at (2%; @'; §). So by the implicit function

theorem, the lemma is proved. a
From Lemmas 3.2.1, 3.2.2, 3.2.3, we can get the following theorem,

Theorem 3.2.4 Given § € R" and its projection set 5 with respect to
f at %, let £ be an extreme point of S along the z; coordinate direction
computed by solving Problem (3.6), and let y = (v1, ¥2, --., ¥a)? and
§ = (21,23, ..., 28)7. Then, 3 a neighborhood N(3, €) of § and a

function y : R® — R™ continuous and differentiable in N (3, €) such

k=

that
¥y = y(3).

Proof: Simply set y;(s) = zi(s) as derived in Lemma 3.2.3. i

3.3 Extension to General Problems

Now, let us consider a problem (1.1) whose continuous objective function f is non-
convex. One way to deal with this situation is given in the following algorithm. The
idea here is to first perturb the function f with a penalty function to make it strictly
conveX, and then apply the method discussed in previous sections.

In Algorithm 3.3.1, g(z) =0 Vz € B~ implying f and f agree on all z €
B™. So, using f as the continuous objective function does not change the discrete
objective function f" and gives the same solution to our problem as using f. Since
q is strictly convex, f is strictly convex when p is sufficiently large. Therefore, the
method discussed in previous sections can apply after f is replaced by f.

Algorithm 3.3.1 shows theoretically that most problems can be reformulated so
that their continuous objective functions are strictly convex. But in practice, choosing

p in the algorithm appropriately is still a problem and requires further research.

43

Algorithm 3.3.1 {Computing subgradients for general problems}

0 {Define the function q: R* — R}
q(z) = T (zi = 1/2)%* —n/4F for some k

1 {Choose p > 0 and update f}

-~

f(z) = f(z) + pq(z)
where p = 0 if f is strictly convex and p > 0 otherwise.

2 {Solve the problem with f replaced by f}

Chapter 4

The Continuous Optimization Subproblems

4.1 Nonlinear Least Square

In this chapter, we discuss algorithmic details for solving two classes of subproblems
introduced in last chapter for computir.ig subgradients. They are formulated typically
as in Problem 3.3 and Problem 3.3 respectively. If we choose the /; norm, a problem of
the first class becomes a nonlinear least square problem. Two methods are described
in this section for this special class of nonlinear least square problems. Section 4.2

explores structures for the second class of problems and discusses its efficient solution.

4.1.1 Backtracking

As discussed in the last chapter, we do not have to solve Problem 3.3 exactly. As
a matter of fact, a “good” subgradient can be obtained by only solving either of

following two relaxations of Problem 3.3:
1. keep the feasibility while making the objective function as small as possible but

not necessarily optimal;

2. minimize the objective function while keeping the amount of infeasibility as

small as possible but not necessarily zero.

45
In this section, we discuss how to solve the first relaxation. The method we use for
the second relaxation is described in Section 4.1.2.

Algorithm 4.1.1 is used to solve the first relaxation. In the first step of the algo-
rithm, s is set to an initial value. In the second step, a “better” s is computed by
adjusting back and forth each component of s. If d(s) > 0, s is adjusted such that the
corresponding supporting plane can be “lifted”. Otherwise, some components of s are
adjusted to.“lower” the supporting plane. The algorithm can stop whenever a good
enough feasible s is obtained. Furthermore, anytime s is infeasible, the algorithm
actually starts a generalized bisection procedure which can eventually converges to a
feasible s.

The disadvantage of the algorithm is that it may converge slowly and in a limited

time, it can only provide a relatively “good” solution.

Algorithm 4.1.1

0 {Initialization}
for:=1,...,ndo
set initial values for s, s;, and 3;
1 {Updating}
if di(s) >0 Vi then
if || d(s) || small enough, stop
fori=1,...,ndo
8 =8
si=s; + (3 — s;)/2
else
for \ﬁ such that d;(s) < 0 do
S =s;
i =i — (s — /2
2 {Backtracking}

goto 1

a

4

47
4.1.2 € -Approximation

Another approach to Problem 3.3 is to solve the problem without considering the

constraints. The problem becomes
min || d(s) | (4.1)

which, for the case of I, norm, can be solved by using any standard methods for
nonlinear least squ;.re problems (seg Dennis and Schnabel [1983]).

Let s be the solution to Problem 4.1 and € =|| d(s”) || be the optimal value. Then
we say s is an e-approximation to the solution for Problem 3.3 in the sense that it

solves exactly the following problem:

min || d(s) || (4.2)

st. di(s)+a@>0 i=1,...,n

where « is a positive constant.
With this approximation, the total amount of infeasibility caused by s* is always

bounded by a quantity in order of O(¢). The smaller the ¢, the better s* might be.

4.2 Nonlinear Constrained Optimization

In this section, we discuss two issues in solving the constrained optimization problems
introduced in Section 3.2 for computing extreme points of a convex body. Typically,

a problem of this kind is formulated as follows:

min z; (4.3)

st. f(z)-g(z) <0

where i =1,2,... or n, and f(z) and g(z) are as defined in Section 3.2.

Solving a constrained optimization problem can be expensive. But Problem 4.3
has its own structure. It is a problem with a linear objective function and there is
only one nonlinear constraint. As shown in Section 3.2, this problem can be solved

by equivalently solving a system of nonlinear equations:

Vzl(z;u) |
F(z;u) = =0 (4.4)
h(z)
where {(z;u) is the Lagrangian function of Problem 4.3, uis the Lagrangian multiplier

and A(z) = f(z) - g(z).

Note that the Jacobian of function F(z;u)is

2l(z:u z
VF(z;u)T = Val(ziv) V@) (4.5)

VTh(z) 0

solve system (4.4), we can apply the Quasi-Newton method with structural BFGS
updating (see Tapia [1988] and Dennis, Martinez and Tapia [1989]). Also, in com-
puting the Newton step, we can take advantage of this special property to solve each

linear system more efficiently. We discuss all these issues in the following sections.

4.2.1 Structural BFGS Updating

By a secant method for solving the system of nonlinear equations:
F(z)=0
where F': R* — R", we mean the iterative procedure

Bs = -F(z)
Ty = T+s

B, = B(z’svva)

where s is the Quasi-Newton step, y = F(z4+) — F(z) and B, is required to satisfy

the secant equation
B.s=y.

B, is the approximation to the first order information for F(z..). It is obtained by
updating B with a process called a secant update. Among various kinds of secant
updates, the BEGS update is in some sense the most effective one. However it requires
the Jacobian of F(z) to be symmetric positive definite.

Often, in practice, a part of the first order information is available and we need only
to approximate the remaining part. This kind of secant approximation is referred to
as the structural secant update, for the special structure of the problem is taken into
account. The structural BFGS update approximates the unknown part of the first

order information using the BFGS update and computes the available part exactly.

50

Now let us consider system (4.4). Part of its first order information Vh(z) can)
be computed exactly, while V2I(z;u) needs to be approximated. Since Vii(z;u) is
symmetric positive definite, we can apply to it the structural BFGS update. So, the

secant method for solving system (4.4) can be formulated as the following iterative

procedure:

BI Vh(:z:)
Given B =

Vh(z)T 0
solve Bs = —F(z;u);
set (T45us) = (z3u) + 5;

T T
vy Biss? B,
set B,.=2-B - ;
= ot yTs sTBs '’

B, Vh(zy)
B+ =

Vh(z+)T 0
4.2.2 Solving Partially Positive Definite Systems

Note that in the secant method for solving system (4.4), there is a linear system to

be solved in each iteration:

Bs=-F (4.6)

3

where

B Vh
B =
VRT 0
and B, is symmetric positive definite. We can solve this system using the Cholesky
factorization in the following way. Remember that VA € R™.

First, let s = (z;)T and —F = (y; 8)T where z,y € R" and « and 3 are scalars.

Rewrite the system as

Biz + Vha

I
<

VhTz = 8.
Solve this system for z and «a as follows:

z = B['(y-Vhe)

o VARTB 'y — 8
VhTB'Vh
This is equivalent to:

Bla = Vh _ (4.7)
Bb =y (4.8)
z = b-Vha (4.9)

VrTh -3
a —-VW (4.10)

Note that B is symmetric positive definite. So it can be decomposed with the

Cholesky factorization.

Ut
o

System (4.6) can be solved by using formula (4.7) to (4.10). The total computation

is in the order of O(n3/6), which is only half of the work for solving the system directly

with LU factorization.

Chapter 5

On Solving Integer Minimax Subproblems

5.1 The General Branch and Bound Procedure

In this chapter, we discuss-how to solve the integer minimax subproblem in Algorithm

2.2.1. The problem is formulated as

minzegn {p(‘)(z) = max {gz(J)(z)v 7=0,..., z}} (51)

and is equivalent to

min 7 (5.2)
st. 72 gxn(z) 17=0,...,1 (5.3)
12z >0, z integral (5.4)

where g.j) is the jth linear supporting function generated by the algorithm and :
indicates that the problem is the one in the ith iteration.

The problem above is a linear integer programming problem with only one con-
tinuous variable and can be solved with an enumeration procedure (see Balas [1970]).
Also, one may observe that p(i+1) is generated by adding one more supporting plane

to p(¥), which implies that problems in the ith and 7 + 1lth iterations are almost the

D-

same except the problem in the i + Ith iteration has one more constraint. So, in solv-
ing the (¢ + 1)th problem, results from solving the 7th problem can be used to reduce *
the total computation. In this section, we present a branch-and-bound procedure for
the integer minimax problem. In the remaining sections, we discuss the branching
strategy and the bounding process.

Consider the problem formulated in (5.2) to (5.4). We solve this problem with a
special branch-and-bound procedure as shown in Algorithm 5.1.1. The general idea is
the following. First, a relaxed problem, the problem without integrality constraints,
is solved. If a 0—1 integer solution z is obtained, the algorithm terminates with z
optimal. Otherwise z; for some Jis set to 1 or 0 and two corresponding subproblems
are generated. Recursively, for any subproblem. again. the relaxed problem is solved.
If the optimal value of the relaxed problem is larger than some upper bound for the
optimal value of the original problem, the subproblem is eliminated and not considered
any more. If a 0—1 integer solution is obtained, the solution is locally optimal to the
original problem. Otherwise the subproblem is divided and two more subproblems
are generated. The process goes until all subproblems are either eliminated or solved.
Among all local solutions obtained, the optimal solution is the one that yields the

smallest objective value.

Algorithm 5.1.1 {Solving Integer Minimaz Problems}

0 {Initialization}
p=(AA,...,A), P = ¢, push(p, P)
z{) = —o0, 71 = minog;j<i {f(z)}
1 {Iteration}
do while P # ¢
1.1 {Problem selection and relazation}
solve p = pop(P)
let gf,‘) be the optimal value
let :z:g") be the optimal solution
1.2 { Prunning}
if z{) > 79, go to next loop
if z{)) is integral, Z) = min (29, z{!)) and go to next loop
1.3 {Branching}
pick up z; for some j with p; = A
set p; = 0, push(p, P)
set p; = 1, push(p, P)
end do
2 { Termination}
the solution z{) for some p that yields z(*) is optimal

a

(3]}

Ot

(@]}
(@)

Define a relaxed problem as follows:

min 7
st. 72 g.h(z) 1=0, ..., 1 (5.3)
1220

In Algorithm 5.1.1, p = (py, po, . . ., Pa) represents the problem that is almost the

same as the relaxed problem (5.5) except some z;’s are set to 1 or 0, where

pi = 1 if and only if z; issetto 1
pi = 0 ifandonlyif =z; issetto 0

pi = A otherwise

In Algorithm 5.1.1, P is a stack, and push and pop are standard stack manipu-

lations.

5.2 Branching Strategies

In Algorithm 5.1.1, each time when a local solution is found, an upper bound for
the optimal value is obtained. Let the upper bound be denoted by (). Then since
a solution that provides an objective value better than z(®) is always desired, the
strategy to pick a branching variable is to try the variable that may reduce the

current objective value if it is set to 1.

[@]]
-1

Write problem p in the following form:
min 7

st. 7 2 bj+apTi+...+ajmTm

7=0,...,1
1 >2z 20,
assuming pr = A Vk =1, ..., m. Then a branching variable z; for this problem is

chosen such that & solves the problem:

Jin {ggg. {b; + aje}}.

5.3 Lower and Upper Bounds

In Algorithm 5.1.1, lower bounds for the optimal value are obtained by solving lin-
ear relaxed problems, and upper bounds are the objective values for local solutions
obtained.

Linear relaxed problems can be solved by using the dual simplex method. Let p(*)
and p(i+1) be the relaxed problems for the ith and i+1th integer minimax problems. As
we mentioned before, p(i+!) is the same as p(?) except that it has one more constraint.
The dual optimal basis for p(*) is dual feasible for p(*+1). So, p(+1) can be solved with
the dual optimal basis for p*) as its initial basis. Also, if P is a subproblem generated
in Algorithm 5.1.1 and S is its subsubproblem, S and P have the same relationship

as p(+1) and p(): S is the same as P except it contains one more constraint z; = 1/0

3
for some j. Again, to solve S, the dual optimal basis for P can be used as the initia ~
basis. In the simplex method, this is called the warm start. It generally speeds ur ¢

the computation (see Bixby [1990] and Chvatal (1980]).

Chapter 6

Parallelization and Numerical Experiments

6.1 NIPACK System

NIPACK is a soft';va.re system developed to implement the subgradient algorithm.
The system is written in EXPRESS C and runs on paralle] distributed-memory ma-
chines. It contains a group of parallel subroutines used for either continuous or
discrete optimization. These include subroutines for LU, QR, and Cholesky factor-
izations, triangular system solvers, the branch-and-bound procedure and so on. In
this chapter, we discuss implementation issues such as parallel strategies and per-
formance analysis. The preliminary numerical results for testing our algorithm are
presented. Performance results of the system on the NCUBE are given also.

There are 10 program modules in NIPACK, each of which contains a group of
subroutines used for a special purpose. Below, we describe briefly the function of

each module. The relationship among all these modules is shown in Figure 6.1.

MAIN PRCOGRAM

(nipak)

SUBGRADIENT OPTIMALITY MINMAX
SYSTEM TEST SYSTEM
(sbgrd) (fndin) (mnmax)

— —
NONLINEAR BRANCH &
SYSTEM : BOUND
SOLVERS PROCEDURE
(nlslv) (bchbd)
LINEAR LINEAR
SYSTEM PROGRAMMING
SOLVER SOLVER
(lnslv) (lnpgm)
l l l I | l
SUPPORT 'USER
FUNCTIONS FUNCTIONS
(suprt) (usrfn)

Figure 6.1 NIPACK system structure.

61

<module 1> nipak: The main program for the subgradient algorithm. The pro-
gram asks from users an initial guess, carries out the main loop of the subgra-

dient algorithm, and outputs the optimal solution.

<module 2> fndin: The program for optimality testing. This program tests if the
current iterative point has been looked at before. If it has, the program reports

to the main program, and an optimal solution is found.

<module 3> sbgrd: The program for computing subgradients. The program car-
ries out a “lifting” process, updating subgradients and finally reaching one that
is good enough. It also reports to the main program when a subgradient is
found that satisfies the necessary and sufficient condition. In this case, an

optimal solution actually is determined.

<module 4> nlslv: The program for solving a system of nonlinear equations. It is
used to compute extreme points of a convex body. A Quasi-Newton method

with structural BFGS updating is used.

<module 5> Inslv: The program for basic matrix computation. Subroutines for

LU, QR, and Cholesky factorizations as well as lower/upper triangular system

solvers are contained.

<module 6> mnmax: The main program for solving linear integer minimax sub-
problems. The program formulates the dual problem and calls a branch-and-

bound procedure to find the optimal integer solution.

62

<module 7> bchbd: The program for branch-and-bound enumeration for linear
integer programming. It is a recursive procedure, searching the optimal solution
around a branching tree and recursively, in each node, solving a linear relaxed

problem and generating subproblems.

<module 8> Inpgm: A linear programming solver. It is used in the branch-and-
bound procedure for solving each linear relaxed problem. The program imple-

ments a simplex algorithm.

<module 9> suprt: Utility subroutines used in the whole system. All high level
communication subroutines are contained such as global broadcasting, sum-
mation, concatenation, sorting, and finding the processor that contains the

minimum element and so on.

<module 10> usrfn: The program used by users to define subroutines for user

functions and their gradients.

Programs in NIPACK use p processors with p varing from 1 to n2, where n is the
problem dimension. All subroutines for matrix computation are restricted to use only
less than or equal to n processors. In the parallel implementation of the subgradient
algorithm, these subroutines are called for solving subproblems for which only less
than or equal to n processors are assigned.

In NIPACK, except some I/0 fuuctions, only two machine-specific communica-

tion functions exread and exwrite are used. All other high level communication

63

functions are written by using only these two functions. So, the whole system is quite
transportable.

NIPACK assumes in general a processor mesh embeded. The mesh is passed
around to all subroutines. Each subroutine takes its own processors mapped from this
mesh. For instance, in computing subgradients, there are n subproblems to be solved
in parallel. Generally, the subroutine for solving each subproblem takes one column
of processors from the processor mesh. Each subroutine for matrix computation uses
only a processor ring, while each of communication subroutines should be efficient for

a processor tree.

6.2 Basic Subroutines

In this section, we list a group of subroutines in NIPACK that are used frequently.
They are divided into two classes, one for high level communications among proces-

sors, and the other for the basic matrix computation.

6.2.1 Communication Subroutines

The following subroutines are written for high level communications in NIPACK.
Each of these subroutines is written in such a way that the communication cost is in

the order of O(log(p)), where p is the number of processors.

<subroutine 1> expass(buf,n,src,num,ndlist): Broadcasting n numbers in buf

from processor src to num processors listed in ndlist.

-

6

<subroutine 2> exmin(x,min,num,ndlist): Comparing x in all num processors
listed in ndlist to find the minimum. min is set to the processor number that

contains the minimum.

<subroutine 3> exsum(buf,n,num,ndlist): Summing up numbers in buf among

num processors listed in ndlist. n numbers in buf are used.

<subroutine 4> excon(bufO,bufl,n,nurn,ndlist): Concatena.ting numbers in buft
among num processors listed in ndlist. n numbers in bufo are used. The con-

catenated array is sent to bufl.

<subroutine 5> exorder(buf,order,num ndlist): Having numbers in buf sorted
among num processors listed in ndlist. The order of processor numbers ac-

cording to the sorted numbers in buf is set to order.

6.2.2 Matrix Computation Subroutines

Matrix computation on parallel distributed-memory machines has been studied exten-
sively in recent years (see Bischof (1988], Geist and Heath [1985], Geist and Romine
(1988], Golub and Van Loan (1989], Li and Coleman (1988] and Li and Coleman
(1989]). We implemented for distributed-memory machines the parallel algorithms
for LU, QR, and Cholesky factorizations as well as the Li and Coleman algorithm
for solving triangular systems. They all are used in the implementation of the sub-

gradient algorithm. But they can also be improved further for more general usage.

65
The algorithms here are basically those presented in Golub and Van Loan [1989]. A

processor ring is used for each of these subroutines. The matrix is distributed by rows

in a wrap fashion.

<subroutine 1> lufac(A,ipvt,n,pmesh): A parallel LU factorization subroutine
for matrix A. Both L and U are stored in A. The integer array ipvt is the
pivoting vector. A row of processors in the processor mesh listed in pmesh is

used.

<subroutine 2> qrfac(A,Q,n,pmesh): A parallel QR factorization subroutine for
matrix A. The triangular matrix R is stored in A and @ in Q. A row of pro-

cessors in the processor mesh listed in pmesh is used.

<subroutine 3> chfac(A,n,pmesh): A parallel RT R factorization subroutine for
matrix A. The triangular matrix R is stored in A. A row of processors in the

processor mesh listed in pmesh is used.

<subroutine 4> ltrsl(L,b,n,pmesh): A parallel lower triangular system solver. L
is the lower triangular matrix. The array b is the right hand side. The solution
is stored in b. A row of processors in the processor mesh listed in pmesh is

used.

<subroutine 5> utrsl(U,b,n,pmesh): A parallel upper triangular system solver.

U is the upper triangular matrix. The array b is the right hand side. The

66

solution is stored in b. A row of processors in the processor mesh listed in

pmesh is used.

6.3 Parallelization for Computing Subgradients

As presented in Chapter 3 and Chapter 4, in each step of the “lifting” process for
computing subgradients in our algorithm, n subproblems (m systems of nonlinear
equations) need to be solved, where n is the problem dimension. The parallelization
of this work is trivial: since all n suh;problems are independent and have almost
the same size, they can be solved in parallel with a good load balance and a low
communication cost.
If there are p processors available with p dividing n, n subproblems are solved in
the following process:
fori=1,...,n/p do
solve, with processor Jrythe (i =1)p+3j)th problem,
where 0 < 7 < p. |
If the number of processors p is greater than the problem dimension n with n
dividing p, p/n processors are assigned to each of n subproblems. In this case, the
parallelization for solving each subproblem is involved also. Suppose p processors are
arranged into a p/n by n process mesh. Then each processor column in the processor

mesh is responsible for solving one of n subproblems.

67
6.4 Parallelization for the Branch-and-Bound Procedure

Branch-and-bound procedures are frequently used in integer programming. Work has
been done to parallelize the procedure since the early 1980’s (see Pruul [1988], Karp
and Zhang [1988] and Rushmeier [1990]).

The simplest way to implement a parallel branch-and-bound procedure is to paral-
lelize directly the sequential algorithm, or particularly for our purpose, the algorithm
presented in Chapter 5. Generally, to do this, a global stack is kept in each processor
to store all generated subproblems. Ea..ch time all processors are available, subprob-
lems in the stack are selected for processors, one for each. Then, all processors solve
their own subproblems, generate new subproblems, and update the global stack with
new subproblems added. This process continues until all subproblems are solved,
i.e.,‘the stack becomes empty. This kind of parallelization requires frequently pass-
ing around data among all processors to update the global subproblem stack, which
involves a large amount of communication. Expecially, when information such as the
optimal basis in the parent node is requested, it is hard for a processor to find out
where the information can be obtained.

A better processor scheduling is achieved in our implementation using a multiple
branching strategy. Instead of using binary branching as described in the sequen-
tial algorithm in Chapter 5, in each step, the branch-and-bound procedure, with p

processors, makes p branches, in other words, generates p subproblems, and solves

68

all of them immediately using p processors. As seen in below Algorithm 6.4.1, this

branching strategy has a number of advantages for a parallel implementation.

1.

[

Each processor does not have to keep a global subproblem stack. In each step
of the procedure, each processor can find out easily the subproblem it will solve
in next step. A local subproblem stack is kept for each Processor, but the size

is relatively small.

. Each time after p subproblems are solved, the branching is made recursively

by first, processor 1, second, processor 2, and so on and so forth. So, when-
ever p subproblems are generated in P processors, all processors know exactly
which processor contains the problem that the p subproblems belong to. So,
any information about the old problem can be delivered easily using a global

broadcast.

While the strategy for choosing branching variables as described in Chapter 5
can still apply, a local best-first strategy can be used for selecting branching
subproblems. Each time after P subproblems are solved, processors can be
sorted according to the optimal values they have for the subproblems. Then

the processor that has the smallest optimal value can branch first.

Finally, The algorithm can be coded into a recursive procedure. The program-

ming structure is simple.

69

Algorithm 6.4.1 {4 Paralle<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>