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Abstract. We discuss two algorithms for modeling elliptic equations on hypercubes:
multigrid and domain decomposition. Both schemes have been designed for cell-centered
finite differences. One of these approaches is a semicoarsening multigrid algorithm for
anisotropic non-self-adjoint elliptic partial differential equations; this scheme is an extension
[15] of earlier work of J. Dendy et al. [6] for symmetric problems. The second approach is a
domain decomposition procedure first introduced by Glowinski and Wheeler [8] for mixed
finite element methods and then later modified by Cowsar and Wheeler [3] to include
multilevel acceleration.

Performance of the codes has been compared on the Intel 1860 hypercube. Both pro-
cedures perform well for modeling the pressure or hydraulic head equation which arises in
flow in porous media problems. In both procedures in the hypercube implementation the
domain is decomposed into subdomains, with one subdomain being assigned to each pro-
cessor. We discuss numerical experiments performed with these methods. In particular we
emphasize scaling and parallel efficiencies.

1. Introduction. Let Q be a rectangular or box-shaped domain in 2 or 3 dimensions
with boundary I'. The equation to be solved is the following:

(1) u(z) = —A(z)Vp(z)
in Q,
(2) V-u(z) = f(z)

in Q, with boundary conditions
(3) u-n=0

on I', with the additional condition that, say,

(4) /n p(z)dz = 0
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to fix p uniquely.

A physical interpretation of this equation is that of a material balance. The pressure
or hydraulic head p induces a velocity or flux vector u with tensor coefficient matrix A,
according to, say, Darcy’s law. The divergence of the flux is equal by material balance to
the sources (and sinks) f(z), corresponding to well injection rates in reservoir simulation.
The boundary conditions u - n = 0 correspond to no flow into or out of the domain Q.

We solve (1) using a mixed finite element method. We choose appropriate finite dimen-
sional spaces V and W such that '

(5) V c H(Q, div) = {v e (LXQ))P | V-v e L} ()}
and
(6) W c L}(Q)

for a D-dimensional problem, where we require the inclusion

(7) div(V) C W.
Then the mixed finite element method finds U € V and P € W such that
(8) /A'IU-vdx=/PV-vdz—/qv-nds

Q Q r
for all v € V and
9) / V-dea::/ fwdz

Q Q .

for all w € W.

If we discretize by intervals in the coordinate directions in z = (z1,z2) or (z1,Z2,23),
choose W to be the space of piecewise constants on the resulting set of rectangular grid-
blocks, and choose each component of V to be the space of functions which are continuous
piecewise linears in the given component direction and piecewise (discontinuous) constants
in the other component directions, the lowest-order Raviart-Thomas mixed method [13]
results. If we further use approximate quadrature rules corresponding to tensor product
midpoint rules for all integrals except for the trapezoidal rule in the given component di-
rection for the [q AU -vdz term, the standard block-centered finite difference or finite
volume method is obtained [14,17]. The linear system is typically derived by pre-eliminating
the velocities in terms of the pressures, resulting in a linear system for one unknown pressure
per gridblock. :

The target area we have in mind is petroleum reservoir simulation. The linear systems
that arise in this area are characterized by several properties. They tend to be large (on
order of tens of thousands of gridblocks) and a different system needs to be solved for
each timestep (on order of thousands of timesteps). The coefficient matrices A tend to be
anisotropic, with much stronger coupling in the vertical than horizontal directions because of
the underlying “pancake-shaped” gridblock geometry, and strongly discontinuous functions
of = because of the variations in the permeability of the reservoir rock. Various linear
solution methods are in use in reservoir simulation, e.g., [1,7,16]. Among the methods
proposed in recent reservoir simulation literature, semicoarsening multigrid [6] and domain
decomposition (e.g., [12]) seem promising.

In Section 2, we describe the semicoarsening multigrid method. In Section 3, we describe
the domain decomposition method. In Section 4, we compare the two methods on three
test cases. In Section 5, we summarize our results.



a b c d
e a b f ¢ d
e a f c
g h i ] k1
m g h n i j o k 1
m g n 1 o k
P q b ¢ d
r p gqe a b f c d
T P e f c
g h i ] k1
m g h n it j o k I
m g n i o k
P q a
T p g e ab
\ TP e a )

F1G. 1. 2-d matriz nonzero structure (n1=3, n2=5).

/ab c d \
e a b f ¢ d
e a f c
b p q c d
e a b r pq f ¢
e a T p f c
a b P g
e a b T p q
e a T P
g h k1 i
m g h o k I n i j
m g o k n o1
g h k1 i j
m g h o k 1 .n 1 3
\ m g o k n i)

F1G. 2. 2-d red-black matriz nonzero structure.

2. The semicoarsening multigrid method. Consider a two-dimensional problem
(1-4) with a discretization resulting in a nine-point operator. The resulting nine-diagonal
matrix is depicted in Figure 1. Let P be the permutation matrix ordering lines of unknowns
red-black. The resulting red-black matrix PT AP is depicted in Figure 2.

In block form, the red-black linear system is

(10) Az =b
or

Aer A Tr |\ _ b,
) (& 2)(z)-(5)

The nonzeroes in Figure 2 are labeled so that A,, nonzeroes are labeled e, a, b, A,y nonzeroes
are labeled 7,p,q, f,c,d, Ay, nonzeroes are labeled m,g,h,0,k,l, and Ay, nonzeroes are



labeled n,i,j. One way to solve (11) is to form and solve the smaller Schur complement
linear system

(12) Agzy = bs
where

(13) Ay = Ap — Apr AT A
and

(14) by = by — Apr A7 br,

and then backsolve
(15) z, = A7 (b — ArsZp).

Now consider a two-level multigrid method for the original system, where the black
unknowns are the coarse grid unknowns. The steps in such a method are:

i) smooth on the fine grid

ii) transfer the fine grid residual to the coarse grid and solve for the coarse grid correction

iii) transfer the correction back to the fine grid and add it in to the current solution

iv) smooth again on the fine grid.

In the black-box multigrid framework [5] it is customary to construct the coarse grid
system A.z. = b as follows:

(16) (Tbr Ibb)(ﬁ;: ﬁ::)(ir:)(zc):(Tbr Ibb)(:;)

Here b, and by denote the current residuals, and are only equal to the original right hand
side if the current iterate is zero. Iy, denotes the coarse grid identity matrix: Pure injection
is used for interpolating coarse grid unknowns to black unknowns on the fine grid.

If Ty = —Apr AL and Ty = — A5 Ars, then the coarse grid system for two-level multi-
grid is exactly the Schur complement system A,z, = b,. However, the Schur complement
matrix is much denser than the original matrix. Fill occurs for two reasons. First, A7} has
dense diagonal blocks, so Tsr and Trp have dense diagonal blocks. Second, extra fill occurs
in direction 1. For instance, the black unknowns corresponding to (i1,i2) = (2,1) and (4,3)
are both connected to the red unknown corresponding to (i1,i2) = (3,2) via Ty and Tir
terms. Elimination of red terms results in direct connections between (2,1) and (4,3) in A,
even though their indices differ by more than 1 in direction 1. The only way to avoid this
extra fill is to allow connections in T}, and Ty in direction 2 only. The locations in Figure
2 corresponding to connections in direction 2 only are the locations for diagonals ¢, g, k,
and p.

Some new notation must now be introduced to deal with connections in direction 2 only.
Let an “I” (resp. “r”) superscript appended to A, or Ap, denote the result of zeroing out all
entries except those corresponding to connection of a black unknown to a red unknown with
a smaller (resp. larger) index in direction 2. Then A,y = Af,b + A7, and Apr = A‘b,. + A,
For example, in Figure 2, Af,b may contain nonzeroes on diagonals c, d, and f, A7, may
contain nonzeroes on diagonals p, ¢, and r, Af,,. may contain nonzeroes on diagonals g, A,
and m, and A}, may contain nonzeroes on diagonals k, I, and o. Similarly, let diag!,(v)
(resp. diagl,(v), diag}(v), diag{,(v)) denote the matrix with the same nonzero structure as
Ay (resp. Arb, Abr, Apr) With the only nonzero entries obtained from vector v and put on



the diagonal corresponding to connections of black unknowns to red unknowns with lower
(resp. higher, lower, higher) index in direction 2 and with the same index in direction 1.
For example, in Figure 2, diag!,(v) (resp. diagZ,(v), diag}.(v), diag],(v)) puts nonzeroes in
the locations of diagonal ¢ (resp. p, g, k).

With this notation, we define the following transfer operators due to Steve Schaffer at
the New Mexico Institute of Mining and Technology [4]:

(17) Ty = —(dzagrb(ArrlAlbe) + dzagrb(A 1Arbe))
(18) Tir = —(diagy, (T A, A7) + diagf, (eT AL ATY)

where e is the vector of all ones.
We use (17) and (18) for transfer operators. We take the initial guess for the solutlon
to (10) on a given grid to be

bTe .
T = ——
0~ eTAe

rather than zero. For our smoother we use red-black line Gauss-Seidel with lines oriented
in direction 1. This completes the specification of the basic two-level two-dimensional semi-
coarsening multigrid method. The adjective semicoarsening is used because the coarse grid
is only coarsened in direction 2, while usual “full coarsening” multigrid involves coarsening
in both directions 1 and 2 simultaneously.

The method works particularly well for strongly anisotropic problems [15].

Now consider a three-dimensional model problem with a 15-point operator (a 3 point
operator in direction 3 tensored with a 5 point operator in directions 1 and 2). Let P be
the permutation matrix ordering planes of unknowns red-black.

Again the same two considerations cause fill in the Schur complement matrix. Our
notation to deal with connections in direction 3 is similar to the two-dimensional case.

We would again like to use transfer operators (17) and (18). However, now 4., is a
5-point operator which is expensive to invert. Hence, following Schaffer [4], we use one
cycle of our two-dimensional semicoarsening multigrid method to approximately solve the
A,, systems needed in constructing Ty and Tj,.

We use (19) for initial guesses and approximate red-black Gauss-Seidel plane relax-
ation for our fine-grid smoothing step, where the two-dimensional semicoarsening multigrid
method approximately solves the plane Gauss-Seidel equations. This completes the speci-
fication of the basic two-level three-dimensional semicoarsening multigrid method.

Note that a fine grid three-dimensional 7-point operator forms 15-point operators on the
coarser three-dimensional grids, and a fine grid two-dimensional 5-point operator forms 9-
point operators on the coarser two-dimensional grids. Again this method works particularly
well for strongly anisotropic problems [15].

We use two standard multigrid cycling approaches. The “V-cycle” (Figure 3) starts
on the finest grid with a two-level method and solves the resulting coarser grid system
recursively with another two level method, and so on until the coarsest grid system with one
unknown is solved directly. The “FMV-cycle” or full multigrid V-cycle (Figure 4) generates
an initial guess for the fine grid system by preceding the fine-grid V-cycle recursively with
another V-cycle on the next-finest grid, and so on so that the very first calculation is a
direct solve on the coarsest grid.

We parallelize the semicoarsening multigrid method on the Intel i860 hypercube using
domain decomposition [15]. We assign a rectangular subdomain to each processor. Pro-
cessors exchange boundary information with neighboring subdomains as needed. A special

(19)



F1G. 3. V-cycle.

F1G. 4. FMV-cycle.

tridiagonal solver handles the line Gauss-Seidel solves — it consists of 2-level cyclic reduc-
tion coupled with burn-at-both-ends (BABE) elimination within each subdomain [11]. We
use special techniques for grids “below C-level”, that is, grids that are so coarse they have
no gridblocks for some processors (cf. [2,10]).

3. The domain decomposition method. We use a nonoverlapping Dirichlet domain
decomposition method (3,8,9]. Assume the original linear system is symmetric and positive
definite. To motivate the method, consider the grid depicted in Figure 5, with p’s repre-
senting pressures at the centers of gridblocks and \’s representing pressures in thin interface
blocks. Let the widths of the interface blocks shrink to zero. Then the Lagrange multipliers
{\} enforce continuity of fluxes across interfaces, and the solution of the augmented system
is the same as the solution of the original system without interfaces.

The resulting linear system for p’s and X’s is of the form

o (3 3%:)(2)- (%)

and )\ satisfies the Schur complement system

(21) M\=b

where

(22) M = My — MM My
and ‘
(23) b= by — M\, M 'b,.

M is symmetric and positive definite since the original matrix is. Moreover, the condi-
tion number of M is proportional to h~!: there exist Co,C1 > 0 such that

(29) CollM? < 323 < SHIA?
where
(25) A2 = /u.. 1T Anx3ds

and n is the outer normal to T; [3,9].



P P A P P
p p pY P
P P A P P
P P A P P

FIG. 5. Pressures and Lagrange multipliers.

We solve the system M = b by multigrid on interfaces. We never form M explic-
itly, just apply it. Our current multigrid method obtains coarse grid systems by harmonic
weighting of fine grid coefficients. The injection operator used is piecewise constant aver-
aging, and the prolongation operator used is piecewise constant assignment. The smoother
used is the conjugate residual method [7], and the subgrid solver is nested factorization with
Orthomin acceleration [1]. The multigrid cycle procedure used is one FMV-cycle followed
by subsequent V-cycles. On the Intel hypercube, two kinds of communication between
processors take place — calculation of residuals on interfaces, and communication of dot
products occur across processors during computation of smoothing on the interfaces.

4. Numerical results. We made runs with three test cases on the Intel iPSC/860
using the PGF77 compiler with the -O3 optimization option. The convergence tolerance
was a reduction in the L2 norm of the original residual by a factor of 108.

Problem 1 is posed on the unit cube on a 48 by 48 by 8 grid, with A = diag(1,1,100),
sources f(z) = §(1,1,1) — §(0,0,0) and boundary conditions v -n = 0 on I'. This problem
represents a model with anisotropy, as would arise from a 10 to 1 ratio of horizontal to
vertical grid block size in a reservoir simulation model.

Problem 2 is posed on the unit cube on a 24 by 24 by 24 grid, with A = diag(a,a,a),
a=1 except a=.00001 at simple flow barriers (Figure 6). The boundary conditions are
o(z1,22,1) = 1, p(z1,22,0) = 0, and u -n = 0 on the other four faces of I'. This problem
represents a model with discontinous coefficients without a preferred direction of flow.

Problem 3 is posed on the unit square on an 80 by 80 grid, with A = diag(a,a,a), a
ranging from .6 to 12.7 (Figure 7). The boundary conditions are p(0,z2) = 1, p(1,z2) =0,
and u-n = 0 at z2 = 0,1. This problem represents a model with more strongly discon-
tinous coefficients, as arises in reservoir simulation models of unfavorable mobility ratio
displacement.

CPU time results are indicated in Tables 1-3. The numbers of processors in the three
coordinate directions are indicated by (nproc;)x(nprocs)x(nprocsz). MG, MGNC, and DD
refer to the multigrid method, the multigrid method excluding CPU time for interprocessor
communication, and the domain decomposition method, respectively.

The results indicate that the domain decomposition method scales much better than
the multigrid method as the number of processors increases. This is because domain de-
composition requires less interprocessor communication per iteration. Previous results with
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TABLE 1
Problem 1 CPU times

1x2x2 | 2x2x1 | 2x2x2 | 3x3x1 | 4x4x1
MG 12.4 20.7 18.1 18.2 19.2

MGNC 6.5 8.5 5.6 4.1 4.1
DD . 18.6 10.2 9.2 4.8

TABLE 2
Problem 2 CPU times

1x1x1 | 1x1x2 | 1x2x2 | 2x2x2 | 1x4x4 3x3x3

MG 13.9 10.8 11.6 16.9 11.3 17.5
MGNC | 13.9 9.6 74 6.6 3.6 3.1
DD . 34.6 14.0 7.3 3.9 3.2
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TABLE 3
Problem 8 CPU times

Ixl | 1x2 | 1x4 | 2x2 | 1x8 | 4x4 | 2x8
MG 1112 ]11]18]09 19|15
MGNC|1.1] 10|06 |09 |04 ]|04]|04
DD . 13.11531]73 |38 23

the multigrid method on the Intel iPSC/2 indicated better speedups [15] - the slowdown on
the i860 is due to the increased ratio of communication time to computation time. Relative
results on the IPSC/2 would be closer to the MGNC rows than the MG rows. Multigrid is
faster than domain decomposition with a small number of processors, because domain de-
composition reverts to nested factorization on one processor, which requires more iterations
than multigrid for a fine grid. Domain decomposition requires relatively more time for the
problem with more strongly discontinuous coefficients. This is predominantly due to more
iterations being required by the nested factorization subgrid solver. Both methods require
few outer iterations to solve all three problems.

5. Summary. A semicoarsening multigrid method and a domain decomposition
method for solving elliptic equations are presented. Both methods converge fast in terms of
outer iterations for anisotropic models and models with strongly discontinuous coefficients.
The advantages of the multigrid method are that it is defined for nonsymmetric models,
has a systematic procedure for generating transfers and coarse grid operators, has an opti-
mal convergence rate with one processor, and seems more robust than nested factorization
as a subgrid solver for problems with discontinous coefficients. The advantages of the do-
main decomposition method are that it requires much less interprocessor communication
per iteration, much less storage, and requires no special tridiagonal solver.

Based on these relative advantages, we propose for future investigation a hybrid method
in which semicoarsening multigrid is used to determine transfer operators, coarse grid linear
systems, and subgrid solvers within the context of domain decomposition with multigrid on
interfaces.
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