A Multi-Grid Cluster
Labelling Scheme

John Apostolakis
Paul Coddington
Enzo Marinar:

CRPC-TR91155
June, 1991

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

SCCS-103
CRPC-TR9I1155

A MULTI-GRID CLUSTER LABELING
SCHEME

John Apostolakis, Paul Coddington

and Enzo Marinari(®

Physics Department,
Syracuse University,

Syracuse, N.Y. 13244, U.S.A.

June 6, 1991

Abstract

We introduce a simple multi-scale algorithm for connected compo-
nent labeling on parallel computers, which we apply to the problem
of labeling clusters in spin and percolation models. We show that it is
only logarithmically slowed down in the critical limit of bond perco-
lation and the Ising model. We also discuss, in light of the proposed
Teraflop computers optimized for lattice gauge theories and other lat-
tice problems, the minimum requirements for simple computer switch-
board architectures for which one can efficiently implement multi-scale
algorithms to fight critical slowing down.

(3); Permanent Address: Dipartimento di Fisica, Universita di Roma Tor
Vergata, Via E. Carnevale, 00173 Roma, Italy.

Our understanding of critical phenomena, connected to the divergence
of some typical length scale of a system, has benefited greatly from large
scale numerical simulations. Large computer power and memory allow us to
probe the theories deep into the critical region, allowing a new and better
understanding of renormalization group and scaling ideas. Critical slowing
down is the typical drawback of a large scale simulation close to criticality:
if the correlation length £ of the system is becoming large, a local dynamics
will have a correlation time (the number of iterations needed to generate a
statistically independent configuration) 7 ~ £*, where the dynamical critical
exponent z > 2 [1, 2].

The proposal of Swendsen and Wang [3] to combat critical slowing down
exploits the Fortuin-Kasteleyn representation [4] of the Ising spin model [5].
The partition function can be rewritten as a sum over percolation clusters
(or, according to the very illuminating language of ref. [6], as a joint spin-link
model). Using this equivalence we can implement non-local changes of the
system by updating whole clusters of spins at a time. Although in many cases
critical slowing down is not completely eliminated [7], the method is generally
effective because the maximum cluster size diverges where the correlation
length diverges, so we can make very large non-local changes at the critical
point.

The dominant computational aspect of this algorithm is the identification
of the clusters. This is the classic problem of connected component label-
ing [8, 9]: on a d-dimensional lattice of V = L¢ sites, we have links between
neighboring sites which can be on (a connection) or off (no connection), and
our goal is to end up with the same label on all connected sites, with different
labels for all disconnected clusters.

Let us define a computational exponent y for this problem, so that the
time to label the connected components scales asymptotically as LY. For a
Monte Carlo simulation, this cost is compounded by the number of iterations
needed to generate an independent configuration, which scales as L? at the
critical point [1, 2]. On a serial machine, labeling algorithms are known
which are guaranteed to scale not worse than VlogV, so that y = 0 (see
refs. [8, 10, 11, 12] for a discussion of sequential labeling algorithms). This
means that the overall computational cost of a Monte Carlo cluster updating
algorithm at the critical point will scale as L. For a general labeling
algorithm, the overall cost will also include a factor LY for the component
labeling. Hence if for some reason we cannot use a labeling algorithm for

1

which y is zero, the advantages of cluster update algorithms over traditional
local algorithms may be offset by the computational complexity of labeling
the clusters.

This could be the case if our computer were parallel rather than sequen-
tial, in which case the problem of component labeling is far more compli-
cated [10]. Here the information regarding the connectivity of a given phys-
ical part of the lattice is only contained in a single processor, and sending
information far away (on the lattice, and hence also on the computer) can
take a long time. Our aim is to find a parallel labeling algorithm with no
computational slowing down (i.e. y = 0). Because of our main interests,
which we will clarify in the following, we will consider here the case where
the parallel computer is a Single Instruction Multiple Data (SIMD) machine.

In order to handle critical slowing down, a parallel computer will need
some physical switching capabilities allowing fast and effective communica-
tions between regions that are far away in the physical space of the numerical
simulation. It does not seem possible, deep in the critical regime, to com-
pletely avoid all forms of non-local data transmission. But since elaborate
patterns of switching networks require complex hardware and increase the
cost and the potential failure rate of the system, we are interested in finding
algorithms which run on machines with simple communication networks, and
have good asymptotic scaling behavior.

Our effort is thus also aimed towards a better comprehension of the fea-
tures that will be required in the next generation of computers optimized
for lattice QCD. On machines with a speed of the order of a Teraflop (see
refs. [13, 14, 15, 16] for information on the different projects, some of which
are already at a very advanced stage), lattice QCD will be studied at very
large correlation lengths, for both the gauge interactions and meson masses.
It seems that the use of some non-local algorithms will be, at this point, quite
essential: effective multi-grid methods will be probably found for inverting
the quark propagators, and cluster algorithms could play an important role
in speeding up the pure gauge dynamics. Many of these machines will have
some kind of SIMD architecture, and the topology of the switching network
will be very important. For a dedicated machine, keeping the hardware as
simple as possible is a crucial goal, but on the other hand it should be capable
of supporting all the relevant algorithms.

The ideas which make cluster algorithms effective are shared by multi-
grid methods (see for example the Alan Sokal lecture notes [17], and the fact

2

that the same lower bound for the dynamical critical exponent z applies both
to cluster schemes and to the mixed cluster multi-grid schemes [18]). The
main problem is including what we know about the large distance behavior
of the system in the updating schemes.

In this note we propose a regular, completely synchronous, multi-scale
algorithm for cluster labeling. We show that it does not undergo any power-
law computational slowing down (i.e. y = 0) in the two cases of the 2-d bond
percolation and Ising models at their critical points. The algorithm is effec-
tive on a general SIMD machine with some very basic non-local connections.
In the following we will assume that the machine allows very fast communi-
cation between sites which are a distance of 2™ sites away in any direction
of the physical lattice. These are the only non-local connections we need
in order to build an algorithm which is not affected by power-law slowing
down. Note that these are the same connections that are required in order to
efficiently implement a Fast Fourier Transform algorithm. Such connections
would be provided, for example, by a machine with a hypercube topology.
We think that the results we present here strongly support the need for some
kind of effective non-local communication for the next generation of Teraflop
computers.

Our method has some similarities with the one proposed by Brower,
Tamayo and York [19], in that it is a SIMD, multi-grid style algorithm,
however it is much simpler, and seems to have better scaling properties. We
will report in a separate paper [20] on some variations and improvements to
this algorithm, and the performance of these different methods, along with
a more detailed comparison to the method of Brower et al.

The simplest local component labeling algorithm on a massively parallel
computer is based on label propagation [10, 19]. We start with a different
label on each site, and with a list of first neighbor connections which indicate
whether a given pair of sites is connected or not (these will be Boolean
variables in the following: off means no connection is present and on means
that there is a connection). Each site then looks to its left (and then above,
right and below), and if it is connected to this neighbor, then it takes the
neighboring label, if it is less then its own label. Eventually an equilibrium
situation is reached which gives a correct labeling of the clusters, with the
label of a cluster being the minimum initial label of all the sites in that
cluster. This algorithm suffers from computational slowing down, and in
the cases of interest (spin and percolation models at the critical point) its

3

performance degrades very fast with increasing volume, with y ~ 1. This is
because clusters at a second order phase transition are dominated by a large
cluster whose diameter is of order L, and for any local labeling algorithm,
the minimum label has to diffuse across this large cluster.

Our method is based on two main ideas. The first is to use a multi-scale .
approach in propagating cluster labels. Boolean connections at a distance
om for m = 1, ..., | —1 (where the lattice size L = 2'), are built in the z and
the y direction (in the d = 2 case) by a logical AND of connections at level
m — 1. For example, the distance 2 connection between sites ¢ and ¢ + 2% is
set on if sites ¢ and ¢ + £ and sites 1 + & and 7 + 2% are both connected. This
is done in all directions of the lattice, for all levels up to distance L/2. The
algorithm works for a lattice of any dimensionality.

The second idea is that inter-site connections can be improved. This
means that a connection (between two sites at a generic distance M) which
was originally off can be declared to be on if at any time during the labeling
process the two sites are found to have the same label, in which case we know
that they must belong to the same connected cluster. Clearly a connection
between two sites at a distance M can in this way be on even if the direct
path between the two sites contains sites belonging to different connected
components: the existence of an on connection between two sites only im-
plies that a connected path joining the two sites exists. Using connection
improvement greatly reduces the number of iterations needed to converge to
the final values of the labels.

Thus, during one multi-scale label updating cycle each site will look in
turn at each of its 2d neighbors at all levels m of the multi-scale connections.
It will update its label when necessary and update its connection, by merging
the level m — 1 connections, and also using connection improvement. A full
cycle of the algorithm sweeps all ! connection levels, and a single full cycle
solves the trivial case where all connections are on.

Clearly at the beginning of the dynamical procedure the long distance
connections are all off, and due to the fractal structure of the connections, it
will take many iterations before a significant number of long distance connec-
tions are improved. It is thus very useful to tailor the number of multi-grid
levels as a function of the cycle number [20]: a lower depth is useful at the
beginning, while using longer distance connections is more useful towards the
end of the procedure. Here we just show results for the simplest case, where
the depth is constant. What eventually happens is that some of the appropri-

4

ate long distance connections are set on since the sites have been recognized
to belong to the same cluster, and they become fast long distance commu-
nication channels (displaying the labels using color graphics shows dramatic
changes due to merging of large precursor sub-clusters as these channels are
opened up). ‘

We have implemented our code on the Connection Machine, which is a
typical massively parallel SIMD computer [21]. Here the mapping of the
hypercubic connections to the physical structure of the lattice does provide
some specific power of 2 communications, which are are executed at half
the speed of local communications. These are just the type of fast non-
local communications which we need for the efficient implementation of our
algorithm.

In order to test the algorithm we have analyzed two typical and physi-
cally relevant cases: the bond percolation model (sites are connected with
probability p), and the Ising model, both in two dimensions. The worst case
behavior of the labeling algorithm is not relevant for these problems - what
we are really interested in is the average time to label physically realistic
configurations which occur in the simulation of these models. This time is
greatest at the critical points of the models [19], which are at p = for the
percolation model, and the Curie temperature for the Ising model. We have
obtained our data by averaging over a large number of different realizations
of the site connections, taken from configurations at the critical points of the
two models, in order to get statistically significant results from which we can
obtain the scaling behavior of our algorithm.

In Fig. 1 we show the average number of iterations needed for labeling
as a function of log, L for the case of bond percolation (circles) and the
Ising model (squares). The logarithmic slowing down is very clear. We do
not see any sign of power-law behavior (so y = 0), or of a higher power of
the logarithm. Since each iteration of the algorithm involves a multi-grid
cycle of log, L steps (each step taking the same amount of time), the total
computational complexity goes as L(log L)?. Hence this algorithm adds only
a (log L)? term to the overall slowing down of a spin model cluster algorithm.

We have experimented with many variations and optimizations of the
algorithm (see ref. [20]). These can greatly increase the performance of the
algorithm, and make a substantial difference in a realistic simulation using
large lattices.

Our algorithm is very general, and can be applied to any of the cluster

5

algorithms which have been shown to reduce critical slowing down in many
different systems (for reviews of cluster algorithms, see refs. [1, 2, 22, 23]).
The algorithm could also be used in other applications of component la-
beling, such as image analysis [9]. As an example, the issue of component
labeling is relevant to the next generation of high energy physics experiments,
since on-line reconstruction of traces will demand fast labeling algorithms.
This problem is being studied, for example, in relation to the design of the
Superconducting Supercollider (SSC) detectors [24].

We believe that algorithms of this kind, together with SIMD computers
with a simple but effective communication network, will be crucial tools
in future studies of critical phenomena and of lattice field theories in the
continuum limit.

Acknowledgements

This work was done using Connection Machines at the Northeast Paral-
lel Architecture Center at Syracuse University, Sandia National Laboratory,
Rice University, and the Advanced Computing Laboratory at Los Alamos
National Laboratory. Work supported in part by the Center for Research on
Parallel Computation with NSF cooperative agreement No. CCR-8890615,
and a grant from the IBM Corporation.

References

[1] A. D. Sokal, in Computer Simulation Studies in Condensed Matter
Physics: Recent Developments, eds. D. P. Landau et al. (Springer-
Verlag, Berlin-Heidelberg, 1988).

[2] A.D. Sokal, How to Beat Critical Slowing Down - 1990 Update, in Proc.
of Conference ‘Lattice 90’, Tallahassee, October 1990, to be published
in Nucl. Phys. B (Proc. Suppl.).

[3] R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 58, 86 (1987).

6

[4] C. M. Fortuin and P. W. Kasteleyn, Physica 57, 536 (1972).

[5] See for example B. M. McCoy and T. T. Wu, The Two-Dimensional
Ising Model, (Harvard University Press, Cambridge, Mass., 1973).

[6] R. G. Edwards and A. D. Sokal, Phys. Rev. D 38, 2009 (1988).
[7] X.-J. Li and A. D. Sokal, Phys. Rev. Lett. 63, 827 (1989).

(8] E. M. Reingold, J. Nievergelt and N. Deo, Combinatorial Algorithms:
Theory and Practice (Prentice-Hall, Englewood Cliffs, N.J., 1977);
E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms,
(Computer Science Press, Rockville, Maryland, 1978).

[9] A. Rosenfeld and A. C. Kak, Digital Picture Processing, (Academic
Press, New York, 1982).

[10] C.F. Baillieand P. D. Coddington, Cluster Identification Algorithms for
Spin Models - Sequential and Parallel, to be published in Concurrency:

Practice and Experience.

[11] R. G. Edwards, X.-J. Li and A. D. Sokal, Sequential and Vectorized

Algorithms for Computing the Connected Components of an Undirected

Graph, in preparation.

[12] E. Marinari and C. Rovelli, in preparation.

[13] N. Avico et al., A 100 Gigaflops Parallel Computer, Roma La Sapienza
preprint 733 (Roma, Italy, April 1990).

[14] S. Aoki et al., Proposal for a Lattice Gauge Theory Teraflops Computer,
1991 (unpublished).

[15] M. Fischler et al., Nucl. Phys. B (Proc. Suppl.) 17, 263 (1990).
[16] Y. Iwasaki et al., Nucl. Phys. B (Proc. Suppl.) 17, 259 (1990).

[17] A.D. Sokal, Multi-Grid Monte Carlo for Lattice Field Theories, lectures
given at the Winter College on “Multilevel Techniques in Computational

Physics”, ICTP, Trieste, January 1991.
[18] X.-J. Li and A. D. Sokal, to be published.
[19] R. C. Brower, P. Tamayo and B. York, J. Stat. Phys. 63, 73 (1991).

[20] J. Apostolakis, P. Coddington and E. Marinari, in preparation.

[21] D. Hillis, The Connection Machine, (MIT Press, Cambridge, Mass.,
1985).

[22] U. Wolff, Nucl. Phys. B (Proc. Suppl.) 17, 93 (1990).
[23] J.-S. Wang and R. H. Swendsen, Physica A 167, 565 (1990).

[24] R. Rusack, private communication.

25 —

percolation

N
o
|

Average number of cycles
.—L
(9)]
I L)

10 -

Figure 1. Number of multi-grid cycles needed to converge as a function of
log, L for the case of bond percolation (circles) and the Ising model (squares),
both at the critical point in two dimensions. The lines are x? fits to the points.
The number of configurations ranges from 100 to 1000 for the different values

of L.

