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Abstract. In this paper we show that mixed finite element methods for a fairly general second
order elliptic problem with variable coefficients can be given a nonmixed formulation. We define
an approximation method by incorporating some projection operators within a standard Galerkin
method, which we call a projection finite element method. It is shown that for a given mixed
method, if the projection method’s finite element space M), satisfies two conditions, then the two
approximation methods are equivalent. These two conditions can be simplified for a single element in
the case of mixed spaces possessing the usual vector projection operator. For any such mixed spaces
defined on a geometrically regular partition of the domain, we can then easily construct appropriate
conforming spaces M. We also present for several mixed methods alternative nonconforming spaces
M), that also satisfy the two conditions for equivalence.
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1. Introduction. In 1985, Arnold and Brezzi [1] showed that for a simple second
order elliptic problem, the mixed finite element method for the lowest order Raviart-
Thomas [10] space defined over triangles is equivalent to a modification of a standard
nonconforming finite element method (see Section 5.1 below). This equivalence can be
exploited to rearrange the computation of the mixed method solution. The noncon-
forming method yields a symmetric and positive definite problem (i.e., a minimization
problem); whereas, the original mixed formulation is a saddle point problem.

Arnold and Brezzi considered only the highest order terms of the elliptic problem,
and they required that the coefficients be piecewise constant over the finite element
mesh. In this paper, we consider a large class of mixed methods for a more gen-
eral second order differential problem with variable coefficients. We define for this
problem a nonstandard Galerkin-like method, which we will call a projection finite
element method, for some finite element space Mj. Much of the paper is concerned
with constructing appropriate M, spaces; that is, ones which make this projection
method equivalent to given mixed methods. Many of these are found, and they pro-
vide an alternate formulation for mixed methods. Our projection method is a Galerkin
method with the addition of some projection operators. For the same approximate so-
lution, it provides us a nonmixed, more standard formulation as an alternative to the
usual mixed form. This not only illuminates the mixed method as an approximation
technique, but it also has potential application in both computation and numerical
analysis.

The differential problem and the mixed and projection finite element methods
are defined below in this section. We develop in the next section two conditions on
My, that are sufficient to imply the equivalence of the two methods. In Section 3
we consider the problem of constructing finite element spaces that satisfy these two
conditions. We derive a simple local criterion that guarantees the equivalence in
the case of mixed spaces possessing the usual vector projection operator. With this
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2 T. ARBOGAST

criterion we can, in the last four sections, define some specific spaces for our projection
finite element method that that give rise to equivalent mixed methods. In Section 4 we
give a general theorem which defines a conforming space M}, for any mixed method
that satisfies a few conditions and is defined on a geometrically regular partition of
the domain. This theorem applies to the spaces of Raviart and Thomas (10], Nedelec
(9], Brezzi, Douglas, and Marini [5], Brezzi, Douglas, Durén, and Fortin [3], Brezzi,
Douglas, Fortin, and Marini [4], and Chen and Douglas (8] on simplexes, rectangular
parallelepipeds, and prisms in two and three space dimensions. Finally, in Sections 5
7, we construct some alternate, nonconforming spaces which fulfill the same properties
(thus more that one M}, may give rise to a given mixed method). We remark that Chen
(7], independently of the author, has recently also derived some specific conforming
and nonconforming methods that are equivalent to certain lower dimensional mixed
methods.

In the remainder of the introduction we introduce the mathematical problem and
the finite element methods. We consider the following elliptic problem for p on the
domain 2 C R", n = 2, 3, with boundary 62 = MU, I N =0

(1.1a) =V (a(Vp+bp—c))+dp=f inQ,
(1.1b) =-—g on ],
(1.1c) —(a(Vp+bp=c))-v=0 on Iy,

where a(z) is a uniformly positive definite, bounded, symmetric tensor, b(z) and e(z)
are bounded vectors, d(z) > 0 is bounded, f(z) € L¥(), g(z) € HY(R) (H¥(2) =
W*3(12) is the Sobolev space of k differentiable functions in L¥(R)), and v is the
outer unit normal to the domain. Let (-, -)s denote the L?*(S) inner product (we
omit S if S = £2). We assume that our problem is coercive in the sense that there is
a positive constant x such that for any v € (L2(£2))" and w € L} (),

(1.2) (670, ) + (b, 9) + (dw, w) 2 K{l[vllZagap + (dw, w)),

and also that if It = 0, d(z) > 0 on some set of positive measure.
Problem (1.1) is recast in mixed form as follows. Let

H(div;2)={ve (L*(2)": V-ve L )},
V={ve H(div;?):v-v=0o0n I3},
W = L}(Q). ‘

Then the mixed form of (1.1) for the pair (u,p) €V x Wis

(1.3a) (a~'u,v) = (p, V - v) + (bp, v) =(c,v)+(g9,v-v)r, forallveV,
(1.3b) (V-u,w)+ (dp,w) = (f,w) forall we W.

Note that (1.3a) implies that u = —a(Vp + bp — c).

To define a finite element method, we need a partition 7}, of £2 into, say, simplexes,
rectangular -arallelepipeds, and/or prisms, where only edges or faces on 92 may be
curved. In ., we also need that adjacent elements completely share their common
edge or face; let £ denote the set of all interior edges (n = 2) or faces (n = 3) of 7;.
We tacitly assume that £, # 0. Finally, each exterior edge or face has imposed on it
either Dirichlet or Neumann conditions, but not both.



A REFORMULATION OF MIXED FINITE ELEMENT METHODS 3

Let Vi x Wy C V x W denote some standard mixed finite element space (for
second order elliptic problems) defined over 74 such that V -V = W}, (see, e.g., [3],
(4], [5], (8], [9], and [10]). This space is finite dimensional and defined locally on each
element T € T, so let V4(T) = Vi|r and Wi(T) = Wh|r. The constraint Vi C V says
that the normal component of the members of V, are continuous across the interior
boundaries in £x. Following [1], we relax this constraint on V, by defining

Vi = {ve Lz(.Q) :vlr € Va(T) for each T € T}.

We then need to introduce Lagrange multipliers to enforce the required continuity on
Vi, so define

Ly = {A € Lz( U c) M EVh - v, foreach e € 8;,}.
e€&n
The mixed finite element solution of (1.3) is (U, P) € Vi x W;, satisfying

(1.4a) (a~'U,v) = (P,V -v) + (bP,v) = (¢c,v) + (g,v-v)r, for all v € V4,
(1.4b) (V-U,w)+ (dP,w) = (f,w) for all w € Wj.

The unconstrained problem is to find (U, P,A) € V4 x Wy x L such that

(1.5a) @0, v) = > [(P,V-v)r — (A, v-vr)amaa] + (bP,v)
Teh
= (c,v) + (g,v-v)r, forallveVy,
(1.5b) Y (V- U,w)r +(dP,w) = (f,w) for all w € W,
TeTh
(1.5¢) > (U -vr,porren =0 for all p € La.
TeTn

Note that U and P are identical in the two formulations, since (1.5¢) forces U to be
in v;..

We now define the projection operators that we need to define our new new
method. Let Py, : L2(2) — Wj denote L?($2)-projection: For ¢ € L?(£2),

(1.6) (¥ = Pw, ¥, w) =0 for all w € Wi,

Similarly define P¢, : L?(Ucesne) — La to be L?*(Ueee,e)-projection. To handle
variable a(z), we introduce the weighted (L2(£2))"-projection P : (L2(£2))" — Vi
defined by

(1.7) (a~' (¥ = Py),v) =0 for all v € V4.

Note that each of these operators is defined locally on each T € Tj, or on each ¢ € &;,
since only V), has a continuity constraint.

Now we can define abstractly our projection finite element method. Let Mj
denote some as yet unspecified finite dimensional finite element space defined over T,
such that M|y, = 0. Then we seek Q € M), — g satisfying

(1.8) 3" (Pla(VQ +5Pw,Q — 0)], V€)1 + (dPw, Q, Pw, &)
TeTa

= (f,Pw,§) forall £ € Mj.
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Our goal is to define M}, so that

(1.9a) U =7P[a(VQ +bPw, Q - c)),
(1.9¢) A=7P.Q.

In the next section we derive two conditions on M) which give ( 1.9).

2. Two conditions for the equivalence of the methods. The first thing
that we require of the space M) is that it give rise to a legitimate finite element
method defined by (1.8); hence, we require that there exists a unique solution to the
problem. Since (1.8) is a square linear system, uniqueness implies existence. For
uniqueness, if Q € M, satisfies

Z (Pla(VQ + bPw, Q)], VE)r + (dPw, Q,Pw,§) =0 for all € € M,,
TeTh

then we need to show that Q = 0. Take £ = Q, note that by (1.7),

(P(aVQ),VQ); = (a~'P(aVQ),aVQ), = (a'P(aVQ),P(aVQ)),.,
(P(abPw, @), VQ), = (a~'P(abPw, Q), aVQ), = (6Pw,Q,P(aVQ)),,

and then apply (1.2) to see that ||73(aVQ)||(L:(n)). = 0 and (dPw, Q,Pw,Q) = 0.
The former requires that the ﬁ-projection of aVQ be zero on each T € Tj:

(a~'aVQ,v)r =0 forallve Vi (T).

We therefore require of the space M, the first condition:
(Cl) For £ € My, if (V€ v)r =0 for all v € Via(T) and all T € T3, and if
(dPw, &, Pw,§) = 0, then §=0.

We now consider the equivalence of the two schemes (1.5) and (1.8). It is con-
venient to take Q as given by (1.8) and let U, P, and A be given by (1.9). We then
show that (1.5) results.

By the definitions (1.9), definitions (1.6)~(1.7), and finally integration by parts,
we see that for any v € V4,

(2.1) @ 'W,v) = Y [(PV-v)r = (A v-vr)orvon] + (P, v)
TeTa

= —(a7'P[a(VQ + bPw, Q — ¢)], v)

=Y [(PwQ.V - 0)r = (P£Q,v - vr)oman] + (6P, Q, v)
TeTh .

==Y (VQ+tPw,Q—c,v),

TeT

- Y (.Y -v)r =(Q,v-vr)emen] + (4Pw,Q,v)

TeTa
= Z [-(VQ-c,v)r-%-(VQ,v)T] +(g,v-v)r,
TeTa
=(¢,v)+(g»”"’)n?
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this is (1.5a).
For (1.5b—c), we integrate the first term on the left side of (1.8) by parts to see
that for any £ € M,

22) Y (Pla(VQ+5Pw,Q-a), V&)= > (V-U.Or = (U-vr,Oor];

TeT TeTa

hence, introducing some projection operators, (1.8) becomes

(2.3) S (V U Pw&)r + (AP, Pwi&) = D (U -vr, Peylomnon
TeTh TeTh

= (f,Pw,&) forall{ € My,

where P, £ on OT is defined on the trace of £ from within T. To separate out the
effects on 8T, we require the following condition on Mj:
(C2) For £ € My, its projection P, € can be uniquely defined on each e € &a,
and for any (w, p) € Wx x La, there exist §;,82 € My, such that

PWAEZ =w,

(i) {'pwhél = 0,
P2 =0.

'Pc,.ix =4 and (“) {
The &, give us (1.5b) while the &; give us (1.5¢).

We have shown the following theorem.

THEOREM 1. For a given mized finite element method (1.4) or (1.5) such that
Wh = V - Vi, the projection finite element method (1.8) is well-defined and equivalent
to it by the relations (1.9) if My satisfies (C1) and (C2).

We remark that for a given mixed method, the choice of My, if it exists, is not
necessarily unique. Many examples are given in Sections 4-7 below.

We have the following converse to Theorem 1.

THEOREM 2. If a given projection finite element method (1.8) with projection
space Vi, (and Wy, and Ly defined from V) satisfies (C1), (C2), and the property that
for any £ € My, such that Pc € =0,

(24) sup ZTERTVENT 5 i ez

vewar{o}  IIvllzacays

for some kp > 0, then V4 gives rise to an equivalent mized method (1.4) or (1.5)

in which V and Wy satisfy the inf-sup condition [2] for the constant xp: For any
w € Wh,

(w’ V- v)

sup = > Kal|lwl|z3(a).
vewa\{0} lIVllcz2cay~ &

Moreover, if (2.4) holds uniformly in h, i.e., Ky = & is independent of h, then also
the inf-sup condition holds uniformly in h.

Proof. For w € Wj, we can choose by (C2) £ € M such that Pw,§ = —w and
Pc.& = 0. For this £, (2.4) is the inf-sup condition after an integration by parts. J
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3. On the local construction of M. It is not yet clear whether an appro-
priate M} can be constructed for a given mixed method. In this section we consider
the question of how to construct such an Mj. We do not discuss problems associated
with the outer boundary of the domain, but instead concentrate on the local spaces
defined on some T € T, with edges or faces e € &;.

We begin by noting that dimensional considerations for satisfying (C1)-(C2)
easily show the following corollary of Theorem 1, wherein Mu(T) = My|r and
La(e) = Lale. ~

COROLLARY 1. If a given mized finite element method (1.4) or (1.5) (with Wy, =
V-Vh) is equivalent to the projection finite element method (1.8) by the relations (1.9),
then, for each T € Ty, such that 6T NHN = 0,

dim(Wi(T)) + Y, dim(La(e)) < dim(Ma(T)) < dim(Va(T)) + 1.
eCaT

This result can be used to bound the dimension of M #(T); it may even show that
M(T) cannot exist for some novel mixed methods.

We now localize the condition (C1) as follows:

(C1") For £ € My(T), if (V&,v)r =0forallv e Vi(T'), then & is constant on T.

LEMMA 1. Suppose that Vy x W is a mized finite element space such that W) =
V -V, Po(T) C Wh(T) for each T € Th, and Po(e) C Ln(e) for each e € Ex. If M,
satisfies (CI') for each T € Ty, and (C2), then M, satisfies (C1).

Proof. For some §& € M), suppose that (V&€ v)r = 0 for all v € Va(T) and
T € Th, and (dPw, &, Pw, ) = 0. We conclude from (C1’) that £ is constant on each
T. Since (C2) requires a unique definition of Pc, &, in fact £ is a constant on all of £2.
Finally, either It # 0 or d > 0 implies that §=0.(0

The mixed method spaces that we consider have the property that there exists a
projection operator [T, : (H*(T))" — Vi(T) such that

(3.1a) V- (Iyv) = Pw, (V -v),
(3.1b) (IThv) -v =P (v-v).

We shall exploit this fact in the following way.

THEOREM 3. Suppose that T is convez and that Vi(T) x Wi(T) is a mized finite
element space such that Wy(T) = V- V4 (T), Py(T) C Wi(T), Po(e) C Ln(e) for each
e C 0T, and there erists an operator ITj : (HY(T))™ = Va(T) satisfying (3.1). If
Mi(T) is a space of functions such that

dim{Mn(T)} = dim{Wa(T)} + 3 dim{La(e)}
eCaT

with (unisolvent) degrees of freedom described by
(DF1) (§,w)r for all w in a basis of Wi (T),
(DF2) (&, A)e for all X in a basis of La(e), for each e C AT,
then Mu(T) satisfies (CI') and (C2).
Proof. The hypothesis (DF) gives (C2), so we need only show (C1’). Let As(¥) =
(¥,1)s/(1,1)7 denote a type of average of a function ¥(z) on S CT. For £ € Mx(T),
if(=§ - Ar(€) and

(3.2) (V& v)r =(Vo)r ==V v)r+ Y (C,v-v)e=0
eCaT
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for all v € V4(T'), then we need to show that { = 0.
Given any w € Wh, there is some ¥ € V}, such that V-3 = w. Solve the problem

Ay = Asr(P-v) inT,
Vy-v=9-v on T,

and set v = ¥ — II4)Vy € V. Then (3.1) implies that v- v =0on 8T and V - v =
w — Agr(¥ - v). As a consequence, (3.2) implies that Pw, { = 0.

Now for e C 9T, take any A € Lx(e) and then any ¥ € Vi such that 5-v =X on
e. Solve the problem

AYy =V -5 —=Ap(V - 9)+ Asm\o(V-v) inT,
Vy.-v=9-v ondT\e,
Vy.-v=0 one,

and againset v =9 — [I4Vy € V4. Then (3:1) and (3.2) imply that P;,{ =0 on e.
By the unisolvence of the degrees of freedom, we conclude that ( = 0. J

4. General projection finite element spaces. We now establish a theorem
which defines, for a given mixed method in a fairly general class, a space M, which
gives rise to an equivalent projection method. We assume that each T € 73 is a
simplex, rectangular parallelepiped, or a prism, although it is enough to assume that
T is convex and has flat edges or faces. Let m denote the number of edges (if n = 2)
or faces (if n = 3) in 8T, and for each i = 1, ..., m, let £;(z) denote the affine function
which is zero on e; C T and (say) one on the opposite face, edge, or vertex. Define
the bubble functions

By(T)=]]4 and B(T)=[]4 fori=1,..m.
=t izl
pE 1

THEOREM 4. Suppose that V4(T) x Wi(T') is a mized finite element space such
that Wi(T) = V-W(T), Po(T) C Wi(T), Po(e) C Ln(e), and there ezists an operator
Oy : (HYT))" — Va(T) satisfying (3.1). Define

M) = (Bomr() @ (3 BUTIER(en ).

i=1

where Ly(e;) is extended to T as a constant in the direction perpendicular to e;. Then
dim{Mx(T)} = dim{Wh(T)} + L=, dim{Lx(e:)} and the degrees of freedom defined
by (DF) in Theorem 8 are unisolvent.

Proof. The dimension of My(T) is easily verified since Bo(T)Wh(T') consists of
functions which are zero on each edge or face, while the functions in each B;(T")Lh(e:)
are zero on e; # ¢; but nonzero on e¢; (unless the function is identically zero).

Let v € Mu(T) be chosen so that the (DF) are zero. Decompose v into Bo(T)w+

iz, Bi(T)); for some w € Wy(T) and \; € La(e;). Then (DF2) shows that

0= (v, /\i)e.' = (B.(T)Ax, /\i)en
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which implies that A; on e; is zero, and thus also its extension to T. Finally, (DF1)
shows that

0 = (v,w)r = (Bow, w),
sow=v=0.

We remark that these spaces are conforming in the sense that when they are pieced
together to form My on £2, the resulting functions are continuous. This theorem
applies to several known mixed methods.

COROLLARY 2. The mized methods for second order elliptic problems using the
spaces of Raviart and Thomas [10], Nedelec [9], Brezzi, Douglas, and Marini [5],
Brezzi, Douglas, Durdn, and Fortin [3], Brezzi, Douglas, Fortin, and Marini [4],
and Chen and Douglas [8] on simplezes, rectangular parallelepipeds, and/or prisms
in two and/or three dimensions can be formulated as equivalent projection finite ele-
ment methods.

We end the paper with three sections in which we construct some additional (and
nonconforming) spaces that give rise to equivalent mixed methods. In each case, the
mixed spaces satisfy the conditions of Theorem 3, so it remains only to define M, (T)
of the correct dimension and prove the unisolvence of (DF). Throughout, we let Py (T)
denote the space of polynomials of total degree less than or equal to k defined on T,
and we let Qg ¢,m(T) denote the space of polynomials of degree less than or equal to
kin z;, £in z3, and m in z3 (where m and z3 are absent if T C le).

5. Some additional spaces on triangles. In this section we consider finite
element spaces for which T is a triangle. We make use of the barycentric coordinates
&, i= 1,2,3, defined to be the unique affine functions that take the value one at
vertex i, and the value zero on the opposite edge. (Thus ¢; = ¢; in Section 4, where
e; is opposite vertex i.) '

5.1. The Raviart-Thomas spaces on triangles. These spaces (10] are defined
for each k£ > 0 by

VE(T) = (Pu(T))’ @ ((21, 22)Pe(T)),
Wi(T) = Pu(T),
Li(e) = P(e).
We first recall what was previously known for the lowest order space. An My (of
dimension 4) for this space is (1], [6]
Mi(T) = P(T) ® Bu(T),
where we define B, (T') to be the span of either the Ps-bubble function,
By(z) = £1(z)éx(z)f3(2),
which vanishes on each edge, or the P;-bubble function,
By(z) = 2 - 3(8(=) + (=) + &(2)),
which vanishes at the two quadratic Gauss points on each edge (recall that the Gauss
points on [-1,1] are at +1/1/3).

For { € M, we can write § = & +&; for §; € Pi(T) and &; € By(T), and then
the degrees of freedom for the element are normally given as the value of:

@ [ &@az
(i) &1 at the midpoint of each edge e C 8T
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(Note that (i) holds for & if Bx(T) = span{Bs}.) An equivalent set of degrees of
freedom can be given by the value of (i) and

(i) / &(z) do(z) for each edge e C OT.

That (ii) and (ii’) are equivalent is easily seen since midpoint quadrature is exact for
linear functions. These degrees of freedom are (DF1) and (DF2), and their unisolvence
is known.

For the family as a whole, we define

ME(T) = { {v € Prs3(T) : vle € Prya(e)} if k is even,
BT {v € Pesa(T) : vle € Pile) @ (Prsale) \ Pele))} if k is odd.
We first show that M ,,(T) has the correct dimension. The dimension of Py 43(T)
is 3(k + 5)(k + 4), which is exactly six more than dim{Whx(T)} + 3dim{Lx(e)} =

1(k+8)(k +1). For simplicity, assume that k is even; the odd case is similar. For any
€ € Pr4+3(T), we can write that

fz)= Y- aijfi(2)8(z)
0<i+j<k+3

for some constants a; ;. If now § € M5(T), then €., € Piy1(e1) implies that ag x+3 =
aok+2 =0, and €., € Pi41(e2) implies that ax4+3,0 = Gk42,0 = 0. On e3, eo =1- ll,

so
flo= Y. aijfi(1 =LY € Pryies)
0<i+j<k+3
implies that Z (=1Ya;; = 0 and Z j(—=1)Ya;j = 0. These six conditions
i+j=k+3 i+j=k+2

are clearly independent, so M%(T') has the correct dimension.

Now we consider the unxsolvence of (DF). Suppose that § € M h(T) has degrees
of freedom (DF) equal to zero. The (DF2) imply that on each edge ¢, £ is a Legendre
polynomial of degree k + 1 if k is even and k + 2 if k is odd, i.e., of odd degree. Since
the odd degree Legendre polynomials are odd functions, traversing 9T, we see that §
must vanish identically on the boundary. As a consequence, we write that § = by brbzw
for some w € Pi(T). Now (DF1) shows that (é14283w, w)r = 0, which finally gives
that £ = 0.

We remark that if ¥ = 0 we obtain the nonconforming method of Arnold and
Brezzi.

5.2. The Brezzi-Douglas-Marini spaces on triangles. These spaces [5] can
be defined for each k > 1 by

VE(T) = (Pu(T))?,
WE(T) = Peoa(T),
LE(e) = P(e).

Let us define
ME(T) = { {v € Prsa(T) : vle € Prya(e)} if k is even,
BT\ {v € Pesa(T) : vle € Pile) @ (Pesa(e) \ Pie))} if k is odd.
Since dim{'PH.g(T)} 1(k + 4)(k + 3) is exactly three more than dlm{Wh(T )} +

3dim{La(e)} = 3(k + 6)(1: + 1), an argument as above shows that MX(T) has the
correct dxmensxon The unisolvence of (DF) is also shown as above.
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6. Some additional spaces on rectangles. We now consider problems in
which T is a rectangle; for simplicity assume that T = [-1,1]2. We will make use
of the Legendre polynomials pp,(z;) of degree m defined on the interval (-1,1]. We
should also define the spaces

k
Afn(T) = {Z[ai,lpmﬂ(l’l) + a.',2Pm+2(31)]Pi(22) ta;j € IR},

i=0

k
Brl:z(T) = { ZPi(-"—‘l)[”i,ll’mﬂ(zz) + bi,2Pm+2(1»'2)] thij € IR}.

i=0

6.1. The Raviart-Thomas spaces on rectangles. These spaces [10] are
defined for each £ > 0 by

VE(T) = Qes1,6(T) x Qi k41(T),
WE(T) = Qix(T),
Lk(e) = Pi(e).

We define
ME(T) = Qu+2,4(T) ® Qi k42(T) = Qua(T) ® AX(T) © BE(T).
We remark that if £ = 0, then
MRU(T) = {a1 + asz) + a3zs + a4z +asz?:a; € R} = My (T) @ span{B,},

where
MY*(T) = {a1 + azzy +azzz + a4(z] - z3) : a; € R},

and now the Pr-bubble function By(z) on T = [-1,1]% is

Ba(z) = 4 - 3(z? + z3),
which vanishes at the two quadratic Gauss points on each edge. Also, VM(T) C
V(T).

We need to show that the degrees of freedom (DF) are independent. It is trivial
to verify that dim{Mx(T)} = dim{Wh(T)} + 4dim{Lx(e)}. Assume that the (DF)
are zero for some § € M5(T) = & + & + €3, where £ € Qi x(T), &2 € AX(T), and
§3 € BE(T). By the orthogonality of the Legendre polynomials, (DF1) is zero for
Af(T) and BX(T), so (DF1) implies that &1 = 0. On the two sides where z; = +1,
(DF2) for Bf(T) is zero, but for AX(T) we have

k 1
Z/ 1[a,-,lpk.,.l(:i:l) + @i,2Pk+2(£1)]pi(z2)A(z2) dz2 = 0 for all A € Pe([—1,1]),

i=0Y "~

and 80 @;,1pk+1(%1) + @; 2pk+2(+1) = 0 for each i. Since the Legendre polynomials
are alternately even and odd, we conclude that ai,1 = a; 2 =0 for each i, i.e., £, = 0.
Similarly on the sides where z2 = +1 we conclude that €3 =0, and so £ = 0 and we
have our unisolvence.
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6.2. The Brezzi-Douglas-Marini spaces on rectangles. These spaces [5]
are defined for each £ > 1 as

Vi(T) = (Pk(T))z espan{curl:r:'f“z:z,curlzlz.’_i“},
WE(T) = Pe-i(T),
Li(e) = Pe(e),

where curlw = (=0w/0z2,0w/8z,). We define Mﬁ(T) = Pa(T)® A’,:_I(T) e
Bf_,(T), and argue as above to verify the unisolvence of (DF).

6.3. The Brezzi-Douglas-Fortin-Marini spaces on rectangles. Also called
reduced Brezzi-Douglas-Marini spaces [4], they can be defined for each k > 0 as

VET) = (Pepr(T) \ {z5*1)) x (Pean(D) \ {z1*')),
Wi (T) = P(T),
Ei(e) = P(e).

Now we define M%(T) = Pe(T)® A} (T)® BE(T). Again, we argue as in Subsection 6.1
to verify the unisolvence of (DF).

7. Some additional spaces on rectangular parallelepipeds. We now con-
sider problems in which T is a rectangular parallelepiped in three dimensions. For
simplicity, assume that T = [-1, 1]3. We will again make use of the Legendre polyno-
mials pm(z;) of degree m defined on the interval [—1,1].

7.1. The Raviart-Thomas-Nedelec spaces on rectangular parallelepi-
peds. These spaces are the three dimensional analogues of the Raviart-Thomas spaces
on rectangles, and they are defined [9], [10] for each k£ > 0 by

VE(T) = Qua1,6,6(T) x Qi k+1,6(T) X Qi k,k+1(T),
WE(T) = Quk x(T),
Li(e) = Qr x(e)-

We define
ME(T) = Qr2,6.,6(T) © Qi k+2,6(T) © Qi b, k+2(T)
= Qr.kx(T) © AX(T) ® B*(T) & C*(T),
where
Eok
A1) = { 3 S lossapranten) + ausapeea(elpeapy(es) s0use € =},
1=0 ;=0
k ’ k
B*(T) = { Z Zp.'(zx)[bi,j,xmn(rz) + b; j, 2Pk +2(22)]Pi(23) : bije € ]R}»
i=0 j=0
k .
CHT) = { Z >~ pi(1)pi(z2)lei1pe+1(23) + Cij,2Pr42(z3)] - Cijit € IR}-

..
[}
o

.
[}
o
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If k=0, then M}(T) = M}™(T) @ span{B,}, where
M:"(T) = {A) + A2z + Azzs + Aszz + As(z'{’ - z%) + As(zf - ::2,) : 4; € R},
and now the P.-bubble function By (z) on T is
By(z) =5 - 3(z} + 23 + z3),

which vanishes at the four tensor product quadratic Gauss points on each face.

To see the independence of the degrees of freedom (DF), note that dim{M%(T)} =
dim{W}(T)} + 6 dim{L%(e)} and argue as in Subsection 6.1 for the case of Raviart-
Thomas spaces on rectangles.

7.2. The Brezzi-Douglas-Duran-Fortin spaces on rectangular paral-
lelepipeds. These spaces [3] are the three dimensional analogues of the Brezzi-
Douglas-Marini spaces on rectangles. They are defined for k >1lby

VE(T) = (P;c(T)):3 @ span{curl(0,0, z{+'z,), curl(0, z,25+1, 0), curl(z5+1z3,0,0),
curl(0, 0, zlzf_,"'l::g"), cu;l(O, a:‘i“zg"'zg, 0), curl(z’f"zgzg"’l, 0, 0)},

Wi(T) = Pe_y(T),

Lii(e) = Pe(e).

We define
MR(T) = Pe_y(T) © Af_,(T) ® BE_,(T) © CE_,(T),
where
AR(T) = { Y [%i51Pmer(z1) + @i.j,2Pm+2(%1)]pi(z2)pj(23) s ai j e € IR}:

0<i+j<k

BL(T)= { Y pil@1)[bis1Pmer(22) + bij,2Pm+2(22)]pj(23) : bi j.e € IR},

0<i+j<k
Co(T) = { > Pilz1)pi(22)[6i,5,1Pm1(23) + cij 2pma(23)] : cige € IR}-
0<i+j<k
We can argue as above to verify the unisolvence of (DF).

7.3. The Brezzi-Douglas-Fortin-Marini spaces on rectangular paral-
lelepipeds. These spaces [4] are also called reduced Brezzi-Douglas-Duran-Fortin
spaces, and they can be defined for each k > 0 as

WD) = (P {k)fz’;““"z;}) x (P {Iilzf“"zz;}) x

i=0 =0

k+1
x (P T) \ zk+1—izi ,
( k41 {; 1 2})
Wi(T) = P(T),
L,':(e) = Pi(e).

We define M;(T) = Pi(T) @ AL(T) @ BE(T) ® CE(T), where A§(T), BE(T), and
CE(T) are defined in the previous subsection, and again we argue as in Subsection 7.1
to verify the unisolvence of (DF).
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