Compiler Optimizations for
Fortran D on MIMD
Distributed-Memory Machines

Seema Hiranandant
Ken Kennedy
Chau-Wen Tseng

CRPC-TR91162
April, 1991

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Revised August, 1991.






REAL A(N,N)
ALIGN A(I,J)
with D(J-2,I+3)

DECOMPOSITION
D(¥,N)

P1
P2
i) P3
P2 il P4
L | B3y P1
sl | Pa D2
H p3
P4

i

DISTRIBUTE
D(CYCLIC,:)

DISTRIBUTE
D(:,BLOCK)

Figure 1: Fortran D Data Decomposition Specifications

dence [22] that unifies and extends previous techniques.

The rest of this paper presents the data decomposi-
tion specifications in Fortran D, basic compiler analy-
sis and code generation algorithms, and compiler op-
timizations to reduce communication costs and load
imbalance. We conclude with a description of the cur-
rent status of the compiler and comparison with related
work.

2 Fortran D Language

The data decomposition problem can be approached
by considering the two levels of parallelism in data-
parallel applications. First, there is the question of
how arrays should be aligned with respect to one an-
other, both within and across array dimensions. We
call this the problem mapping induced by the structure
of the underlying computation. It represents the min-
imal requirements for reducing data movement for the
program given an unlimited number of processors, and
is largely independent of any machine considerations.
The alignment of arrays in the program depends on
the natural fine-grain parallelism defined by individual
members of data arrays.

Second, there is the question of how arrays should .

be distributed onto the actual parallel machine. We
call this the machine mapping caused by translating
the problem onto the finite resources of the machine.
It is affected by the topology, communication mecha-
nisms, size of local memory, and number of processors
in the underlying machine. The distribution of arrays
in the program depends on the coarse-grain parallelism
defined by the physical parallel machine.

Fortran D provides data decomposition specifica-
tions for these two levels of parallelism using the
DECOMPOSITION, ALIGN, and DISTRIBUTE statements.
A decomposition is an abstract problem or index do-
main; it does not require any storage. Each element
of a decomposition represents a unit of computation.
The DECOMPOSITION statement declares the name, di-
mensionality, and size of a decomposition for later use.

The ALIGN statement is used to map arrays onto de-
compositions. Arrays mapped to the same decomposi-
tion are automatically aligned with each other. Align-
ment can take place either within or across dimensions.
The alignment of arrays to decompositions is specified
by placeholders in the subscript expressions of both the
array and decomposition. In the example below,

REAL A(N,N)
DECOMPOSITION D(N,N)
ALIGN A(I,J) with D(J-2,I+3)

D is declared to be a two dimensional decomposition
of size N x N. Array A is then aligned with respect
to D with the dimensions permuted and offsets within
each dimension.

After arrays have been aligned with a decomposi-
tion, the DISTRIBUTE statement maps the decompo-
sition to the finite resources of the physical machine.
Distributions are specified by assigning an independent
attribute to each dimension of a decomposition. Prede-
fined attributes are BLOCK, CYCLIC, and BLOCK_CYCLIC.
The symbol “” marks dimensions that are not dis-
tributed. Choosing the distribution for a decomposi-

_tion maps all arrays aligned with the decomposition to

the machine. Scalars and unaligned arrays are repli-
cated, i.e., owned by all processors.

In the following example, distributing decomposition
D by (:,BLOCK) results in a column partition of arrays
aligned with D. Distributing A by (CYCLIC,:) par-
titions the rows of D in a round-robin fashion among
processors. These sample data alignment and distribu-
tions are shown in Figure 1.

DECOMPOSITION D(N,N)
DISTRIBUTE D(:,BLOCK)
DISTRIBUTE D(CYCLIC,:)

Note that data distribution does not subsume align-
ment. For instance, the DISTRIBUTE statement alone
cannot specify that one 2-D array be mapped with the
transpose of another.



Compiler Optimizations for Fortran D on MIMD
Distributed-Memory Machines*

Seema Hiranandani

Ken Kennedy

Chau-Wen Tseng

Department of Computer Science
Rice University
Houston, TX 77251-1892

Abstract

Massively parallel MIMD distributed-memory ma-
chines can provide enormous computation power.
However, the difficulty of developing parallel programs

for these machines has limited their accessibility. This .

paper presents compiler algorithms to automatically
derive efficient message-passing programs based on
data decompositions. Optimizations are presented to
minimize load imbalance and communication costs for
both loosely synchronous and pipelined loops. These
techniques are employed in the compiler being devel-
oped at Rice University for Fortran D, a version of
Fortran enhanced with data decomposition specifica-
tions.

1 Introduction

It is widely recognized that parallel computing repre-
sents the only plausible way to continue to increase the
computational power available to computational scien-
tists and engineers. However, parallel computers are
not likely to be widely successful until they are easy
to program. A major component in the success of vec-
tor supercomputers is the ability of scientists to write
Fortran programs in a “vectorizable” style and expect
vectorizing compilers to automatically produce efficient
code [9, 32]. The resulting programs are easily main-
tained, debugged, and portable across different vector
machines.

Compare this with the current situation for program-
ming parallel machines. Scientists wishing to use such
machines must rewrite their programs in an extension
of Fortran that explicitly reflects the architecture of
the underlying machine, such as a message-passing di-
alect for MIMD distributed-memory machines, array
syntax for SIMD machines, or an explicitly parallel di-
alect with synchronization for MIMD shared-memory
machines.

The goal of the Fortran D project is to establish the
feasibility of a machine-independent parallel program-
ming model. It must be easy to use yet perform with
acceptable efficiency on different parallel architectures,

*This research was supported by the Center for Research on
Parallel Computation, a National Science Foundation Science
and Technology Center.

at least for a significant portion of scientific codes. Ad-
vanced language, compiler, and environment support
will be vital.

Of the different parallel architectures, MIMD
distributed-memory machines provide the most diffi-
cult programming model. Users must write message-
passing programs that deal with separate address
spaces, synchronizing processors using messages, col-
lective communication, and processor interconnection
topologies. The process is time-consuming, tedious,
and error-prone. Three to ten-fold blowups in source
code size are not only common but expected. Even
worse, the resulting parallel programs are extremely
machine-specific. Scientists are thus discouraged from
utilizing these machines because they risk losing their
investment whenever the program changes or a new
architecture arrives.

We propose to solve this problem by developing the
compiler technology needed to automate translation of
Fortran programs to MIMD distributed-memory ma-
chines. We find that selecting a data decomposition
is one of the most important intellectual steps in de-
veloping data-parallel scientific codes. Though many
techniques have been developed for automatic data de-
composition, we feel that the compiler will not be able

. to choose an efficient data decomposition for all pro-

grams. To be successful, the compiler needs additional
information not present in vanilla Fortran.

Current parallel programming languages provide lit-
tle support for data decomposition [25]. We have there-
fore developed an enhanced version of Fortran that in-
troduces data decomposition specifications. We call
the extended language Fortran D, where “D” suggests
data, decomposition, or distribution. We believe that
if a Fortran D program is written in a data-parallel pro-
gramming style with reasonable data decompositions,
it can be implemented efficiently on a variety of parallel
architectures.

In this paper, we describe the design of a proto-
type Fortran D compiler for the iPSC/860, a MIMD
distributed-memory machine. The goal of the com-
piler is to automate the task of deriving node programs
based on the data decomposition. For these machines,
it is particularly important to minimize both commu-
nication costs and load imbalance. We present a code
generation strategy based on the concept of data depen-



Dependence testing Dependence testing deter-
mines the existence of data dependences between array
references by examining their subscript expressions.
Dependences found are characterized by their depen-
dence level, as well as by distance and direction vectors.
This information is used to guide subsequent compiler
analysis and optimization.

3.1.2 Data Decomposition Analysis

The Fortran D compiler requires a new type of program
analysis to generate the proper program—it must de-
termine the data decomposition for each reference to a
distributed array.

Reaching decompositions Because data access
patterns may change between program phases, For-
tran D provides dynamic data decomposition by per-
mitting executable ALIGN and DISTRIBUTE statements
to be inserted at any point in a program. This compli-
cates the job of the Fortran D compiler, since it must
know the decomposition of each array.

We define reaching decompositions to be the set .of
decomposition specifications that may reach an array
reference aligned with the decomposition; it may be
calculated in a manner similar to reaching definitions.
The Fortran D compiler will apply both intra- and
interprocedural analysis to calculate reaching decom-
positions for each reference to a distributed array. If
multiple decompositions reach a procedure, runtime or
node splitting techniques such as cloning may be re-
quired to generate the proper code for the program.

3.1.3 Partitioning Analysis

After data decomposition analysis is performed, the
program partitioning analysis phase of the Fortran D
compiler divides the overall data and computation
among processors. This is accomplished by first parti-
tioning all arrays onto processors, then using the owner
computes rule to derive the functional decomposition of
the program. We begin with some useful definitions.

Iteration & index sets, RSDs An iteration setis
simply a set of loop iterations—it describes a section
of the work space. An inder set is a set of locations
in an array—it describes a section of the data space.
In many cases, the Fortran D compiler can construct
iteration or index sets using regular section descrip-
tors (RSDs), a compact representation of rectangular
sections (with some constant step) and their higher di-
mension analogs [14]. The union and intersection of
RSDs can be calculated inexpensively, making them
highly useful for the Fortran D compiler.

In this paper we will write RSDs as [k:ui:si,...],
where l;, u;, and s; indicate the lower bound, upper
bound, and step of the ith dimension of the RSD, re-
spectively. A default unit step is assumed if not explic-
itly stated. In loop nests or multidimensional arrays,
the leftmost dimension of the RSD corresponds to the
outermost loop or the leftmost array dimension. The
other dimensions are listed in order.

Global vs. local indices Because the Fortran D
compiler creates SPMD node programs, all processors
must possess the same array declarations. This forces
all processors to adapt local indices. For instance, con-
sider the following program and the node program pro-
duced when array A is block-distributed across four
processors.

{* Original program *} {* SPMD node program *}

REAL A(100) REAL A(25)

do i=1, 100 doi=1, 25
A(i) = 0.0 A(1) = 0.0

enddo enddo

The local indices for A on each processor are all [1:25],
even though the equivalent global indices for A are
[1:25], [26:50], [51:75], and [76:100] on processors 1
through 4, respectively. A similar conversion of loop
indices may also occur, with the global loop indices
[1:100] translated to the local loop indices [1:25).

Local index sets As the first step in partitioning
analysis, the Fortran D compiler uses the Fortran D
statements associated with each reaching decomposi-
tion to calculate the local inder set of each array—the
local array section owned by every processor. This cre-
ates the data partition used in the program.

We illustrate the analysis required to partition the
Jacobi code in Figure 3. For this and all future exam-
ples we will be compiling for a four processor machine.
In the example, both arrays A and B are aligned iden-
tically with decomposition D, so they have the same
distribution as D. Because the first dimension of D
is local and the second dimension is block-distributed,
the local index set for both A and B on each processor
(in local indices) is [1:100,1:25].

Local iteration sets Once the local index set for
each array has been calculated, the Fortran D com-
piler uses it to derive the functional decomposition of
the program. We define the local iteration set of a ref-
erence R on a processor to be the set of loop iterations
that cause R to access data owned by the processor. It
can be calculated by applying the inverse of the array
subscript functions to the local index set of R, then
intersecting the result with the iteration set of the en-
closing loops.

The calculation of local index and iteration sets is
vital to the partitioning analysis of the Fortran D com-
piler. When applying the owner computes rule, the set
of loop iterations on which a processor must execute an
assignment statement is exactly the local iteration set
of the left-hand side (lAs). The Fortran D compiler can
thus partition the computation by assigning iteration
sets to each statement based on its lhs.

To demonstrate the algorithm, we will calculate the
local iteration set for the assignment statement S; in
the Jacobi example. Remember that the local index set
of A is [1:100,1:25]. First we apply to it the inverse of



Because it has been designed to support program-
ming on both SIMD and MIMD parallel architectures,
Fortran D is the first language to provide both align-
ment and distribution specifications. It also supports
irregular data distributions and dynamic data decom-
position, i.e., changing the alignment or distribution
of a decomposition at any point in the program. The
complete language is described in detail elsewhere [11].

3 Fortran D Compiler

The two major steps in writing a data-parallel program
are selecting a data decomposition and using it to de-
rive node programs with explicit data movement. We
leave the task of selecting a data decomposition to the
user or automatic tools. The Fortran D compiler au-
tomates the second step by generating node programs
with explicit communication for a given data decom-
position.

The main goal of the compiler is to minimize load
imbalance and communication costs. It translates For-

tran D programs into single-program, multiple-data-

(SPMD) form with explicit message-passing that ex-
ecute directly on the nodes of the distributed-memory
machine. The compiler partitions the program using
the owner computes rule, by which each processor com-
putes values of data it owns [8, 27, 34].

The prototype Fortran D compiler is being developed
in the context of the ParaScope programming environ-
ment [7]. The compiler is subdivided into three ma-
jor phases—program analysis, program optimization,
and code generation. The structure of the compiler is
shown in Figure 2.

3.1 Program Analysis
3.1.1 Dependence Analysis

Dependence analysis is the compile-time analysis of
control flow and memory accesses to determine a state-
ment execution order that preserves the meaning of the
original program. A data dependence between two ref-
erences R; and R; indicates that they read or write a
common memory location in a way that requires their
execution order to be maintained [22]. We call R, the
source and R, the sink of the dependence if R; must
be executed before R;. If R; is a write and R, is a
read, we call the result a true (or flow) dependence.

Dependences may be either loop-independent or
loop-carried. Loop-independent dependences occur on
the same loop iteration; loop-carried dependences oc-
cur on different iterations of a particular loop. The
level of a loop-carried dependence is the depth of the
loop carrying the dependence [2]. Loop-independent
dependences have infinite depth. The number of loop
iterations separating the source and sink of the loop-
carried dependence may be characterized by a depen-
dence distance or direction [31].

Dependence analysis is vital to shared-memory vec-
torizing and parallelizing compilers. We show that it
is also highly useful for guiding compiler optimizations

1. Program analysis
(a) Dependence analysis
(b) Data decomposition analysis
(c) Partitioning analysis
(d) Communication analysis

2. Program optimization
(a) Program transformations
(b) Message vectorization
(c) Collective communication
(d) Runtime processing
3. Code generation
(a) Program partitioning
(b) Message generation
(c) Storage management

Figure 2: Fortran D Compiler Structure

for disti'ibuted-;mex-i‘xory machines. The Fortran D com-
piler incorporates the following ParaScope dependence
analysis capabilities [20].

Scalar dataflow analysis Control flow, control de-
pendence, and live range information are computed
during the scalar dataflow analysis phase. In addition,
scalar variables are labeled private with respect to a
loop if their values are used only within the current
loop iteration; this is useful for eliminating unneces-
sary computation and communication.

Symbolic analysis Constant propagation, auxiliary
induction variable elimination, expression folding, and
loop invariant expression recognition are performed
during the symbolic analysis phase of the Fortran D
compiler. The goal of symbolic analysis is to provide
a simplified program representation for the Fortran D
compiler that improves additional program analysis

_ and optimization. Consider the example below:

do ij = 1,1len
£(ij,n) = (£(ij,n)-tot(ij)) / B(n)
enddo

If constant propagation is able to produce a constant
value for n, the ownership of B(n) could be determined
at compile time to generate simple efficient code. If the
value of n cannot be discovered at compile time, analy-
sis can still identify n as a loop invariant expression for
the ij loop. The Fortran D compiler can then commu-
nicate B(n) with an efficient broadcast preceding the
loop, rather than individual guarded messages during
each loop iteration.

Symbolic analysis also recognizes reductions, opera-
tions that are both commutative and associative. Once
identified, reductions may be executed locally in par-
allel and the results combined efficiently using collec-
tive communication routines. Reduction operations are
tagged during symbolic analysis for use in later phases
of the communication analysis generation process.



are calculated in reverse order for statements in each
loop nest.

For instance, consider the loop in Figure 4. Because
QA is a scalar, the owner computes rule would assign
all loop iterations as the iteration set for statement
S,. However, since the only use of QA occurs in the
same loop iteration, it is classified as a private variable.
The Fortran D compiler can thus assign S; the same
iteration set as So, the only statement containing a
true dependence with S; as its source.

In other cases dependence analysis will have marked
the scalar assignment statement or a group of state-
ments as a reduction. Any iteration set that ensures
that the computation is partitioned exactly once across
processors may be selected. To reduce data movement,
the Fortran D compiler can assign an iteration set for
reduction statements using the iteration set of a dis-
tributed array variable on the right-hand side (rhs).

3.1.4 Communication Analysis

Once partitioning analysis determines how data and
work are distributed across processors, communication
analysis determines which variable references cause
nonlocal data accesses.

Computing nonlocal index sets In this phase, all
rhs references to distributed arrays are examined. For
each rhs, the Fortran D compiler constructs the in-
dex set accessed by each processor. The index set is
computed by applying the inverse subscript functions
of the rhs to the local iteration set assigned to the
statement. The local index set is subtracted from the
resulting RSD to check whether the reference accesses
nonlocal array locations. If no nonlocal accesses oc-
cur, the rhs reference is local and may be discarded.
Otherwise the RSD representing the nonlocal indez set
accessed by the rhs is retained.

If boundary conditions exist for the local iteration
set of the statement, the Fortran D compiler must com-
pute the index set for each group of processors assigned
different iteration sets. In the worst case the index set
for each processor must be calculated separately.

We show how index sets are computed for the Jacobi
example. We first consider the four rhs references to B
in statement S; . The iteration set boundary conditions
cause processors to be separated into three groups. The
group of interior processors, Proc(2:3), have the local
iteration set [1:time,1:25,2:99]. This derives the follow-
ing index sets:

B(i,j—1) = [2:99,0:24]
B(i-1,j) = [1:98,1:25]
B(i+1,j) = [3:100,1 :25]
B(i,j+1) = [2:99,2:26]

Since the local index set for B is [1:100,1:25],
B(i—1,j) and B(i+1,j) cause only local accesses and
may be ignored. However, B(i,j — 1) and B(i,j + 1)

access nonlocal locations [2:99,0] and [2:99,26], respec-
tively. Both references are marked and their nonlocal
index sets stored.

Computing the index sets using the local iteration
sets for the other two groups, Proc(1) and Proc(4),
does not yield additional nonlocal references. Exami-
nation of the index sets for the rhs reference to A(%,J)
in statement S, show that only local accesses occur.

3.2 Program Optimization

The program optimization phase of the Fortran D
compiler performs optimizations to improve the per-
formance of the resulting program. It is particu-
larly useful to identify cross-processor dependences—
dependences whose endpoints are executed by differ-
ent processors. In this section we concentrate on basic
optimizations, deferring discussion of advanced com-
munication optimization and program transformation
techniques to Section 3.4.

Communication selection A naive but workable
algorithm for introducing communication is to insert
guarded send and/or receive operations directly pre-
ceding each statement with a nonlocal reference. Un-
fortunately, this simple approach generates many small
messages that may prove inefficient due to communica-
tion overhead. Communication optimizations combine
these messages in order to achieve efficiency.

First the Fortran D compiler must determine what
communication optimization to use for each rhs refer-
ence accessing nonlocal data. It does this by comparing
the subscript expression of each distributed dimension
in the rhs with the aligned dimension in the lhs refer-
ence. Consider the following example.

DECOMPOSITION D(n,n)
ALIGN A, B with D
DISTRIBUTE D(BLOCK,BLOCK)

do j =2,n
doi=2,n
Sy A(,j) = A(3,j-1)+B(i-1,3)
52 A(i;J) = B(C)J)+B(j 31)
Sy A(i,3) = B(F@),3)
enddo
enddo

The arrays A and B are aligned identically and both
dimensions are distributed, so we need to compare the
first dimensions with each other, then the second. For
the rhs references A(i,j — 1) and B(i — 1,j) in S; we
apply message vectorization because simple expressions
of the same loop index variable appear in the aligned
dimensions of the lhs and rhs references.

For the rhs reference B(c,j) in Sp we apply col-
lective communication because a constant term in a
distributed dimension indicates the need for broad-
cast communication. For B(j,1) in S, we apply collec-
tive communication because different loop index vari-
ables appear in the aligned dimensions, indicating ei-
ther transpose or all-to-all communication. For the rhs



REAL A(100,100), B(100,100)
DECOMPOSITION D(100,100)
ALIGN A, B with D
DISTRIBUTE D(:,BLOCK)

do k = 1,time

do j = 2,99
do i = 2,99
S A(i,j) = (B(1,j-1)+B(i-1,j)+
B(i+1,j)+B(i,j+1))/4
enddo
enddo
do j = 2,99
do i = 2,99
S'.! B(lyJ) = A(i»J)
enddo
enddo
enddo

Figure 3: Jacobi

the subscript functions of the lhs, A(z, ). This yields
the unbounded local iteration set [:,1:25,1:100]. The
first entry is “:” since all iterations of the k loop access
local elements of A. The inverse subscript functions
cause the j and ¢ loops to be mapped to [1:25] and
[1:100], respectively.

Next we intersect the unbounded iteration set with
the actual bounds of the enclosing loops, since these are
the only iterations that actually exist. The iteration set

of the loop nest (in global indices) is [1:time,2:99,2:99].

Converting it into local indices for each processor and
performing the intersection yields the following local
iteration sets for each processor (in local indices):

Proc(l) = [1:time,2:25,2:99]
Proc(2:3) = [1:time, 1:25,2:99]
Proc(4) = [1:time, 1:24,2:99]

Similar analysis produces the same local iteration sets
for statement S2. Note how the local indices calculated
for the local index set of each array has been used to
derive the local indices for the local iteration set. The
calculation of local index and iteration sets is described
in greater detail elsewhere [17].

Handling boundary conditions Because align-
ment and distribution specifications in Fortran D are
fairly simple, local index sets and their derived itera-
tion sets may usually be calculated at compile time. In
fact, for most regular computations local index and it-
eration sets are identical for every processor except for
boundary conditions. When boundary conditions for
each array dimension or loop are independent, as in
the Jacobi example, the Fortran D compiler can store
each boundary condition separately. This avoids the
need to calculate and store a different result for each
processor.

We may summarize independent boundary condi-
tions for iteration or index sets as pre, mid, and post
sets for each loop or array dimension. The mid set

do 1l = 1,time
do j = 2,6
do k = 2,n
Sy QA = ZA(k,j+1)*ZR(k,j) + ...
S, ZA(k,j) = ZA(k,j)+.175%«(QA-2A(k,j))
enddo
enddo
enddo

Figure 4: Livermore Kernel 23

describes the interior uniform case. The pre and post
iteration sets describe the boundary conditions encoun-
tered and their positions. These sets are represented
in the Fortran D compiler by augmented iteration sets.
Instead of a single section, each dimension of the aug-
mented iteration set contains three component sections
for the pre, mid, and post sets as well as their positions.

Because boundary conditions for iteration and index
sets can be handled in the same manner, we will just
discuss an example case for iteration sets. When par-
titioning the Jacobi example, the following pre, mad,
and post iteration sets are calculated by the Fortran D
compiler:

pre =[2 :25]@p,
[1:time,{mid=[1:25] },2:99]
post = [1 : 24] @p,

In the augmented RSD representing the pre, mid, and
post iteration sets, “@” indicates the position for each
pre or post set. If an interior processor is causing a
boundary condition, processors between it and the edge
will not be assigned loop iterations.

The iteration set for each processor is calculated by
taking the Cartesian product of the pre, mid, and post
iteration sets for each dimension of the augmented it-
eration set. Unfortunately not all boundary conditions
may be succinctly represented by augmented iteration
sets. In the worst case the Fortran D compiler is forced
to derive and store an individual index or iteration set
for each processor.

Partitioning scalar assignments Statements per-
forming assignments to scalar variables also present a
special case for the Fortran D compiler. Since scalars
are replicated, naive application of the owner computes
rule would cause every processors to execute the as-
signment on all iterations. However, this is usually not
necessary.

In the majority of cases the value assigned to the
scalar variable is used only in the current loop iter-
ation. These situations are easily detected since the
scalar variable has already been labeled private by the
dependence analyzer. The Fortran D compiler assigns
to these statements the iteration set consisting of the
union of the iteration sets of all statements that use
the value of the scalar. These can be determined by
tracking all true dependence edges with the scalar as
its source. The process is simplified if the iteration sets



However, dependence analysis shows that the only
cross-processor true dependences incident on the rhs
references for statements Sy and Sz are loop-carried
dependences on the k loop from Ss and S4. The tags
for these references (labeled as carried) are inserted at
the header of the k loop. In the code generation phase
they will generate messages that are executed on each
iteration of the k loop.

For statements S3 and S4, dependence analysis will
show that the only cross-processor true dependences
incident on their rhs references are loop-independent
dependences from S; and Sz. Tags are placed in the
k loop because it is the deepest loop common to both
the source and sink of these dependences. We insert
tags (labeled independent) for all rhs references in S3
at its enclosing j loop, since it is the next loop deeper
than k enclosing S3. .

Similar analysis causes us to insert tags (labeled in-
dependent) for all r/ -eferences in S, at its enclosing
j loop. As an addit 1l optimization, we can move
these tags to the j lc  enclosing S to combine these
messages. This is legal since we are moving tags to a
statement that is at the same loop level and between
the source and sink of the dependence. In the code
generation phase these tags will cause vectorized mes-
sages to be generated before the j loop, to be executed
on each k loop iteration.

3.2.2 Collective Communication

Communication patterns such as broadcasts and trans-
poses are not well-described by individual RSDs, and
may be performed faster using special purpose collec-
tive communication routines in any case. To take ad-
vantage of these cases, we apply techniques pioneered
by Li and Chen to utilize collective communication
primitives [23].

As previously described, opportunities for utilizing
collective communication are recognized by the For-
tran D compiler during communication selection by ex-
aming both the array reference and data decomposition
information. Loop-invariant subscripts in distributed
dimensions correspond to broadcasts. Differences in
alignment between the lhs and rhs may lead to trans-
pose or broadcast calls. Reductions may also require
calls to collective communication routines. All such
cases are tagged for use during code generation.

3.2.3 Runtime Processing

The presence of complex subscript expressions, index
arrays, etc. mean that the Fortran D compiler can-
not always determine at compile time what commu-
nication is required for a particular reference. We
mark such references that do not cause loop-carried
true dependences as candidates for applying the in-
spector/ezecutor strategy to calculate nonlocal accesses
at runtime [24]. For references that may cause loop-
carried true dependences, the Fortran D compiler will
resolve the communication at runtime using previously
proposed runtime techniques 8, 27, 34].

3.2.4 Additional Optimizations

Other optimizations are being considered for the For-
tran D compiler. Communication may be further op-
timized by considering interactions between all the
loop nests in the program. Intra- and interprocedural
dataflow analysis of array sections can show that an as-
signment to a variable is live at a point in the program
if there are no intervening assignments to that variable.
This information may be used to eliminate redundant
messages. Calculating array kill information will also
be helpful in eliminating both redundant computation
and communication.

Replicating computations and processor-specific
dead code elimination will be applied to eliminate com-
munication. Data from different arrays being sent to
the same processor may also be buffered together in

. one message to reduce communication overhead.

The owner computes rule provides the basic strategy
of the Fortran D compiler. We may also relax this rule,

" allowing processors to compute values for data they do

not own. For instance, suppose that multiple rhs of an
assignment statement are owned by a processor that is
not the owner of the lhs. Computing the result on the
processor owning the rhs and then sending the result
to the owner of the lhs could reduce the amount of data
communicated. This optimization is a simple case of
the owner stores rule proposed by Balasundaram [4].

In particular, for computations performing irregular
data accesses it may be desirable for the Fortran D
compiler to partition loops amongst processors so that
each loop iteration is executed on a single processor,
such as in KaLI [21] and PARTI [24]. This technique
may improve communication and provide greater con-
trol over load balance, especially for irregular compu-
tations. It also eliminates the need for individual state-
ment guards and simplifies handling of control flow
within the loop hody.

3.3 Code Generation

Once program analysis and optimization is complete,
the code generation phase of the Fortran D compiler
utilizes information concerning local index and itera-
tion sets, RSDs, and collective communication to cre-
ate the actual SPMD node program.

3.3.1 Program Partitioning

Recall that during partitioning analysis, the Fortran D
compiler applied the owner computes rule to calculate
the local iteration set for each statement. In code gen-
eration, the compiler must modify the program to en-
sure that each processor only executes loop iterations
and statements in its local iteration set.

Loop bounds reduction and guard introduction are
the two program transformations used to partition the
computation among processors. We first reduce the
loop bounds so that each processor only executes it-
erations in the union of the local iteration sets for all
the statements within the loop. The Fortran D com-
piler generates conditional assignments to loop bound



reference B(f(¢),j) the unknown function f (possibly
an index array) requires runtime processing. We de-
scribe these communication optimizations below.

3.2.1 Message Vectorization

The most basic communication optimization per-
formed by the Fortran D compiler is message wvec-
torization. Message vectorization uses the level of
loop-carried cross-processor dependences to calculate
whether messages may be legally combined into larger
messages, enabling efficient program execution.

Algorithm We use the following algorithm from Bal-
asundaram et al. and Gerndt to calculate the appropri-
ate loop level for inserting messages for nonlocal refer-
ences [5, 13]. We define the commlevel for loop-carried
dependences to be the level of the dependence. For
loop-independent dependences we define it to be the
level of the deepest loop common to both the source
and sink of the dependence.

To vectorize messages for a rhs reference R with a
nonlocal index set, we examine all cross-processor true
dependences with R as the sink. The deepest comm-
level of all such dependences determines the loop level
at which the message may be vectorized. If the deep-
est dependence is a loop-carried dependence carried by
loop L, we insert a message tag for R marked carried
at the header for loop L. This tag indicates that nonlo-
cal data accessed by R must be communicated between
iterations of loop L.

If the deepest dependence is a loop-independent de-
pendence with loop L as the deepest loop common to
both the source and sink. We insert a tag for R marked
independent at the header of the next deeper loop en-
closing R at level L + 1, or at R itself if no such loop
exists. This tag indicates that nonlocal data accessed
by R must be communicated at this point on each iter-
ation of loop L. Additionally, the Fortran D compiler
may move this tag to any statement in loop L between
the source and the sink of the dependence in order to
combine messages arising from different references.

Example 1: Jacobi We illustrate the message vec-
torization algorithm with three examples. First we ex-
amine the Jacobi code in Figure 3. In the commu-
nication analysis phase, we have already determined
that for the given data decomposition only the rhs
references B(i,j — 1) and B(4,j + 1) from S; access
nonlocal locations. The only cross-processor true de-
pendences incident on these references are loop-carried
dependences from the definition to B in S». These
dependences are carried on the k loop, so we insert
their tags (labeled carried) at the header of the k loop.
The code generation phase will later insert messages
for those references at the beginning of the k loop.

Example 2: Successive over-relaxation (SOR)
In the code for SOR in Figure 5, communication anal-
ysis discovers that the rhs references A(i + 1,j) and

REAL A(100,100)
DECOMPOSITION D(100,100)
ALIGN A, B with D
DISTRIBUTE D(BLOCK,:)
do k = 1,time
do j = 2,99
do i = 2,99
A(dL,j) = (w/4)*(A(di,j-1)+A(i-1,j)+
A(i+1,j)+A(i,j+1))+(1-w)=*A(4,])
enddo
enddo
enddo

Figure 5: Successive Over-Relaxation (SOR)

REAL V(n,n)
DECOMPOSITION D(n,n)
ALIGN V with D
DISTRIBUTE D(BLOCK,BLOCK)
do k = 1,time
{* compute red points *}
do j = 1,n-1,2
doi=1,n-1,2
S V(i,j) = (w/4)*=(V(i,j-1)+V(i-1,j)+
V(,j+1)+V(i+1,j))+(1-w)*V(i, )
enddo
enddo
do j = 2,n-1,2
doi=2,n-1,2
S, V(E,j) = (w/4)*«(V(i,j-1)+V(E-1,5)+
V(i,j+1)+V(i+1,3))+(1-w)*V(4i,])
enddo
enddo
{* compute black points *}
do j = 1,n-1,2
do i =2,n-1,2
Sy V(@i,j) = (w/4)*(V(i,j-1)+V(i-1,i)+
V(i,j+0)+V(E+1, )+ (1-w)*v [, )
enddo
enddo
do j = 2,n-1,2
doi=1,n-1,2
Se  V(E,j) = (w/a)*(V(@E,j-1)+V(E-1,5)+
V(i,j+1)+V(E+1, ) +(1-w)*v (i, 3)
enddo
enddo
enddo

Figure 6: Red-black SOR

A(i—1,7) bave nonlocal index sets. Dependence anal-
ysis shows that the reference A(i + 1,j) has a cross-
processor true dependence carried on the k loop, so
we insert its tag (labeled carried) at the k loop header.
The deepest loop-carried true dependence for reference
A(i — 1,j) is carried on the 7 loop, so we insert its tag
(also labeled carried) at the i loop header.

Example 3: Red-black SOR In the code in Fig-
ure 6, communication analysis discovers that all rhs
references except V/(i,j) possess nonlocal index sets.



and are therefore combined. This translates to proces-
sors 2 through 4 requiring nonlocal data from their left
neighbor at every iteration of the j loop.

Additionally, we can recognize that the send occurs
only after the last local 7 loop iteration, and the receive
occurs only on the first local i loop iteration. We may
thus move the receive before the i loop and the send
after the i loop. A similar process is applied to create
RSDs for reference A(i + 1,j) at the k loop, resulting
in the code shown in Figure 8.

Loop-independent messages For messages tagged
at loop headers for loop-independent cross-processor
dependences, the Fortran D compiler inserts pairs of
calls to send and receive routines preceding the loop
header. For messages tagged at individual references,
the Fortran D compiler inserts pairs of calls to send
and receive routines in the body of the loop preceding

the reference. All calls are guarded so that the owners .

execute the sends and recipients execute receives.

To calculate the data that must be sent, the For-
tran D compiler builds the RSD for the reference at
the loop level that the message is generated. This rep-
resents data sent on each loop iteration. This strategy
is used to generate messages for the loop-independent
dependences in the red-black code in Figure 6.

Collective Communication During communica-
tion optimization, opportunities for reductions and col-
lective communication have been marked separately.
Instead of individual sends and receives, the Fortran D
compiler inserts calls to the appropriate collective com-
munication routines. Additional communication is also
appended following loops containing reductions to ac-
cumulate and broadcast the results of each reduction.

Runtime Processing Runtime processing is ap-
plied to computations whose nonlocal data require-
ments are not known at compile time. An inspector
[24] is constructed to preprocess the loop body at run-

time to determine what nonlocal data will be accessed.

This in effect calculates the receive index set for each
processor. A global transpose operation between pro-
cessors is then used to calculate the send index sets.
Finally, an ezecutor is built to actually communicate
the data and perform the computation.

An inspector is the most general way to gener-
ate send and receive sets for references without loop-
carried true dependences. Despite the expense of addi-
tional communication, experimental evidence from sev-
eral systems show that it can improve performance by
grouping communication to access nonlocal data out-
side of the loop nest, especially if the information gen-
erated may be reused on later iterations [21, 24].

The inspector strategy is not applicable for unan-
alyzable references causing loop-carried true depen-
dences. In this case the Fortran D compiler inserts
guards to resolve the needed communication and pro-
gram execution at runtime [8, 27, 34].

3.3.3 Storage Management

One of the major responsibilities of the Fortran D com-
piler is to select and manage storage for all nonlo-
cal array references. There are three different storage
schemes.

Overlaps Overlaps are expansions of local array sec-
tions to accommodate neighboring nonlocal elements
(13]. For programs with high locality of reference, they
are useful for generating clean code. However, overlaps
are permanent and specific to each array, and thus may
require more storage.

Buffers Buffers avoid the contiguous and permanent
nature of overlaps. They are useful when storage for
nonlocal data must be reused, or when the nonlocal
area is bounded in size but not near the local array

" section.

Hash tables Hash tables may be used when the set
of nonlocal elements accessed is sparse, as for many
irregular computations. They also provide a quick
lookup mechanism for arbitrary sets of nonlocal val-
ues [18].

The extent of all RSDs representing nonlocal array
accesses produced during the message generation phase
are examined to select the appropriate storage type for
each array reference. If overlaps have been selected,
array declarations are modified to take into account
storage for nonlocal data. For instance, array decla-
rations in the generated code in Figures 7 and 8 have
been extended for overlap regions. If buffer arrays are
used, additional buffer array declarations are inserted.
Finally, all nonlocal array references in the program are
modified to reflect the actual data location selected.

3.4 Advanced Optimizations

3.4.1 Program Transformations

Shared-memory parallelizing compilers apply program
transformations to expose or enhance parallelism in sci-
entific codes, using dependence information to deter-

. mine their legality and profitability [2, 20, 22, 31]. Pro-

gram transformations are also useful for distributed-
memory compilers. The legality of each transforma-
tion is determined in exactly the same manner, since
the same execution order must be preserved in order to
retain the meaning of the original program. However,
their profitability criteria are now totally different. We
briefly describe some useful transformations in the For-
tran D compiler.

Loop Distribution Loop distribution separates in-
dependent statements inside a single loop into multiple
loops with identical headers. Loop distribution may
be applied only if the statements are not involved in a
recurrence and the direction of existing loop-carried
dependences are not reversed in the resulting loops
[20, 22].



REAL A(100,25), B(100,0:26)

lb1 =1
ub; = 25
if (Pocar = 1) 1by = 2
if (Ploca[ = 4) ub]_ = 24

do k = 1,time
it (P[ocal > 1) Send(3(2:99,1), PIG!‘)
it (Plocat < 4) send(B(2:99,25), Prigh:)
it (Plocai < 4) recv(B(2:99,26), Prignt)
do j = 1b;,ub;

do i = 2,99
A(i,j) = (B(i,j-1)+B(i-1,j)+
B(i+1,j)+B(i,j+1))/4
enddo
enddo
do j = 1bj,ub;
do i = 2,99
B(i,j) = A(i,j)
enddo
enddo
enddo

Figure 7: Generated Jacobi

variables to handle any boundary conditions that may
exist. For instance, consider the code generated for
Jacobi in Figure 7.

With multiple statements in the loop, the local iter-
ation set of a statement may be a subset of the reduced
loop bounds. For these statements we need to also add
explicit guards based on membership tests for the local
iteration set of the statement (8, 27, 34].

3.3.2 Message Generation

The Fortran D compiler uses information calculated in
the communication analysis and optimization phases
to guide message generation. Non-blocking sends and
blocking receives are inserted for the following types of
messages:

Loop-carried messages For messages tagged at =

loop headers representing rhs references with loop-

carried dependences, the Fortran D compiler inserts.

calls to send and receive routines at the beginning of

the loop body. To calculate the data that must be °

communicated, we build the RSD for each rhs refer-
ence at the level of the loop carrying the dependence.
The calls are guarded so that the owners execute the
sends on the loop iterations where nonlocal references
occur. As an additional optimization, if the send oc-
curs only on the last loop iteration, it may be moved
after the loop instead. Similarly, if the receive occurs
only on the first loop iteration, it may be moved before
the loop.

We illustrate message generation for two example
codes, Jacobi and SOR, and describe how the commu-
nication for these code are computed. For the Jacobi
code in Figure 3, recall that during message vectoriza-
tion we determined that cross-processor loop-carried

REAL A(0:26,100)

1bs = 1
ub; = 25
if (Pioeat = 1) 1bs = 2
if (Pocai = 4) ubs = 24

do k = 1,time
it (Plocal > 1) send(A(1’2:99)) PI!!!)
if (Plocai < 4) recv(A(26,2:99), Prigh:)
do j = 2,99
if (Plocal > 1) recv(A(O,j), Ple]t)
do i = 1by, uba
A(i,j) = (w/4)*(A(i,j-1)+A(i-1,j)+
A(i+1,j)+A(1,j+1))+(1-w)*A(d, )
enddo
it (Piocai < 4) send(l(25,j). Prt'ght)
enddo
enddo

Figure 8: Generated SOR

true dependences existed for the rhs references in S,
on the k loop. We thus tagged their messages at the k
loop header as carried.

Now we need to compute using RSDs what data
needs to be communicated. Boundary conditions cause
three RSDs to be generated for each rhs reference. Be-
low are the RSDs for the reference B(i,j + 1) at the &
loop level.

Proc(l) = [2:99,3:26]
Proc(2:3) = [2:99,2:26]
Proc(4) = [2:99,2:25]

We subtract the local index set from these RSDs to
determine the RSDs for the nonlocal index set. The
nonlocal RSD for Proc(1) and Proc(2:3) are both [2:99,
26] and are therefore combined. The RSD for Proc(4)
consists of only local data and is discarded.

The sending processor is determined by computing
the owners of the section [2:99,26] @ Proc(1:3) re-
sulting in Proc(2:4) sending data to their left pro-
cessors. To compute the data that needs to be sent,
we transpose the nonlocal RSD to obtain the section
[2:99,26—25] = [2:99,1]. Similar analysis is performed
to the other array references on the right hand side.
The communication generated is shown in Figure 7.

For the SOR code depicted in Figure 5, we perform
additional optimizations. Due to boundary conditions,
three RSDs are generated for each reference. Below are
the RSDs generated for the reference A(i — 1,j) at the
i loop level.

Proc(1l) = [1:24,j]
Proc(2:3) = [0:24,j]
Proc(4) = [0:23,j]

The local index set is subtracted from these RSDs to
determine the RSDs for the nonlocal index set. The
nonlocal RSD for Proc(1) produces the empty set. The
nonlocal RSD for both Proc(2:3) and Proc(4) are [0,]



Loop distribution is useful in separating statements
in loop nests with different local iteration sets. This en-
ables more opportunity for loop bounds reduction and
avoids evaluating guards at runtime. Loop distribution
" may also separate the source and sink of loop-carried or
loop-independent cross-processor dependences, allow-
ing individual messages to be combined into a single
vector message.

Loop Interchange Loop interchange swaps adjacent
loop headers to alter the traversal order of the itera-
tion space. It may be applied only if the source and
sink of each dependence are not reversed in the result-
ing program. This may be determined by examining
the distance or direction vector associated with each
dependence [2, 31].

Strip Mining Strip mining increases the step size
of an existing loop and adds an additional inner loop.
Strip mining is always legal. The Fortran D compiler
may apply strip mining in order to reduce storage re-
quirements for computations. It may also be used with
loop interchange to help exploit pipeline parallelism, as
discussed in the next section.

3.4.2 Pipelined Computations

In loosely synchronous computations all processors ex-
ecute SPMD programs in a loose lockstep, alternating
between phases of local computation and synchronous
global communication [12]. These problems are well
structured; they achieve good load balance because all
processors are utilized during the computation phase.
For instance, Jacobi and red-black SOR are loosely
synchronous. The Fortran D compilation strategy pre-
sented so far is well-suited to compiling such programs,
since it identifies and inserts efficient vectorized or col-
lective communication at appropriate points in the pro-
gram.

However, a different class of computations contain
loop-carried cross-processor data dependences that se-
quentialize computations over distributed array dimen-
sions. Synchronization is required and processors are
forced to remain idle at various points in the compu-
tation, possibly resulting in very poor load balance.
We call these computations, such as SOR, pipelined.
They present opportunities for optimization to exploit
partial parallelism through pipelining, enabling proces-
sors to overlap computation with one another (hence
the name). In this section we discuss how to identify
and optimize pipelined computations.

Cross-Processor Loops The Fortran D compiler
. identifies pipelined computations using cross-processor
loops. We classify loops in numeric computations as
either space-bound or time-bound. Space-bound loops
iterate over the data space, with each iteration access-
ing part of each array. These loops are usually parallel
in data-parallel computations, but may be sequential
if they cause a computation wavefront to sweep across
the data space.

Time-bound loops, on the other hand, correspond
to time steps in the computation, with each iteration
accessing much or all of the data space. They usu-
ally enclose space-bound loops and need to be executed
sequentially. The Fortran D compiler labels loops as
cross-processorif they are sequential space-bound loops
causing computation wavefronts that cross processor
boundaries (i.e., sweeps over the distributed dimen-
sions of the data space). Cross-processor loops may be
calculated using the algorithm in Figure 9.

Figure 10 illustrates cross-processor dependences
and loops. We denote cross-processor loops as do¥.
All loops in the example are space-bound loops that
sweep the data space. In Loop 1, the i loop is cross-
processor because the computation wavefront sweeps
the ¢ dimension across processors. There are no cross-
processor loops in Loop 2 because the computation
wavefront is internalized and does not cross processor
boundaries. In Loop 3 both the 7 and j loops are cross-
processor because the computation wavefront sweeps
across processors in both dimensions.

These examples make it clear how cross-processor
loops may be used to classify computations. Computa-
tions such as Loop 2 that do not possess cross-processor
loops are loosely synchronous, since all processors may
execute in parallel. Computations such as Loops 1 &
3 that do possess cross-processor loops are pipelined,
since processors must wait in turn for computation to
be completed.

Improve Partial Parallelism Parallelism may be
exploited in pipelined computations through message
pipelining—sending a message when its value is com-
puted, rather than when its value is needed [27].
Rogers and Pingali applied this optimization to a
Gauss-Seidel (a special case of SOR) computation that
is distributed cyclically.

For pipelined computations, transformations such as
loop interchange and strip mining may also be needed
to balance computation and communication. The al-
gorithm for loop interchange is simple—in the case of
a cyclic distribution, move cross-processor loops as far
out as possible. For a block distribution, interchange
cross-processor loops as deeply as possible. Strip min-
ing the loop may also reduce communication over-
head. Legality is determined in the same manner as for
unroll-and-jam [20]. The strip size is machine depen-
dent and will be determined empirically. These values
will be fed into the compiler to enable calculation of
the strip size.

Figure 11 depicts how loop interchange and strip
mining may be used in conjunction to exploit pipeline
parallelism. It also shows the tradeoffs between com-
munication and computation that must be considered
when compiling pipelined computations. Note that
in this example message pipelining is insufficient—the
computation order must also be changed.



INPUT:

Loop nest with index variables {iy,...,in}
List of all loop-carried true dependences
Data decomposition of all distributed arrays in loop nest

OUTPUT:
Loops = List of cross-processor loops
Loops — 0
for each loop-carried true dependence between references A(f1,..., fm) and A(g1,...,9m) do
for each distributed dimension k of A do
{* fir and g; are subscripts in dimension k, and i; € {i1,...,in} *}
if fi # g or fi is not of form ai; + 3 then
for each index variable #; present in either fi or g do
if loop #; contains both references (i.e., perfectly nested) then
Loops — Loops U {i1}
endif
endfor
endif
endfor
endfor . )
Figure 9: Algorithm to Calculate Cross-Processor Loops
Loop 1 Loop 2 Loop 3
DECOMPOSITION A(N,N) DECOMPOSITION A(N,N) DECOMPOSITION A(N,N)
Data REAL X(N,N) REAL X(N,N) REAL X(N,N)
Decomposition ALIGN X(I,J) with A(I,)) ALIGN X(I,J) with A(I,J) ALIGN X(I,J) with A(I,J)
DISTRIBUTE A(BLOCK,:) DISTRIBUTE A(:,BLOCK) DISTRIBUTE A(BLOCK,BLOCK)
Loop Nest do* i =2, N doi=2,N do* i =2, N
& doj=1,H8 doj=1,N do* j =2, N
X(@i,j) = X(i-1,3) X(i,j) = X@i-1,j) X(i,j) = X(i-1,j)+XE,j-1)
Cross-Processor enddo enddo enddo
Loops enddo enddo enddo
] —
P1
>— IDIPIP SN
& N ” N NN dh N
n P2 p3 P4
Cross-Processor Z - Z Z Z Z Z
D d
ependences ) } ) D > D ” /TN e
P4 f A

Figure 10: Examples of Cross-Processor Dependences and Loops




overhead. Loop jamming (fusion) and strip mining are
applied when writing array elements to exploit paral-
lelism through pipelining. Global accumulate (reduc-
tion) operations are recognized and supported. Unlike
other systems, program partitioning produces distinct
programs for each node processor.

Crystal is a high-level functional language com-
piled to distributed-memory machines using both au-
tomatic data decomposition and communication gen-
eration [23]. Program analysis and optimization is
simplified because it targets a purely functional lan-
guage. CRYSTAL pioneered the strategy of identify-
ing collective communication opportunities used in the
Fortran D compiler.

ASPAR is a compiler that automatically generates
data decompositions and communication for Fortran
programs with BLOCK distributions [19]. ASPAR. per-
forms simple dependence analysis using A-lists to de-
tect parallel loops performing regular computations on
distributed arrays. A micro-stencilis derived and used
to generate a macro-stencil to identify communication
requirements.

Kali is the first compiler that supports both regu-
lar and irregular computations on MIMD distributed-
memory machines [21]. Since dependence analysis is
not provided, programmers must declare all parallel
loops. Instead of deriving a parallel program from the
data decomposition, KALI requires that the program-
mer explicitly partition loop iterations onto processors
using an on clause.

PARTI is a set of runtime library routines that
support irregular computations on MIMD distributed-
memory machines. PARTI is the first to propose and
implement user-defined irregular distributions [24] and
a hashed cache for nonlocal values [18]. PARTI has also
motivated the development of ARF, a compiler that
automatically generates inspector and ezecutor loops
for runtime preprocessing of programs with BLOCK,
CYCLIC, and user-defined irregular distributions [33].

4.1 Comparison with Fortran D

The Fortran D compiler integrates more compiler op-
timizations than the first generation research systems
described, and in addition possesses two main advan-
tages. First, dependence analysis enables the compiler
to exploit parallelism without functional specifications
(e.9., CRYSTAL, ID NOUVEAU) or explicitly parallel
loops (e.g., KALI, ARF). Precise analysis also allows
the compiler to perform more optimizations. For in-
stance, only SUPERB and ASPAR possess the depen-
dence analysis capabilities needed to discover the par-
allelism in red-black SOR. However, their use of con-
tiguous overlaps prevents them from exploiting the par-
allelism.

Second, the Fortran D compiler performs its analy-
sis up front and uses the results to drive code genera-

tion, unlike transformation-based systems (e.g. PARA-
ScopE, ID NouvEAU, SUPERB) that begin by insert-
ing guards and element-wise messages, then apply pro-
gram transformations and partial evaluation in order
to produce more efficient code. The Fortran D ap-
proach is simpler and provides greater flexibility. For
instance, the compiler may apply program transforma-
tions without the possibility of introducing deadlock
due to message reordering.

5 Conclusions

A usable yet efficient machine-independent parallel
programming model is needed to make large-scale par-
allel machines useful for scientific programmers. We
believe that Fortran D, a version of Fortran enhanced
with data decompositions, provides such a portable
data-parallel programming model. Its success will de-
pend on the effectiveness of the compiler, as well as
environmental support for automatic data decomposi-
tion and static performance estimation 5, 6, 16].

The current prototype of the Fortran D compiler per-
forms message vectorization for block-distributed ar-
rays. Though significant work remains to implement
other optimizations presented in this paper, prelimi-
nary results lead us to believe that the Fortran D com-
piler will generate efficient code for a large class of data-
parallel programs with only minimal user effort.

6 Acknowledgements

The authors wish to thank Vasanth Bala, Geoffrey Fox,
Marina Kalem, and Uli Kremer for inspiring many of
the ideas in this work. We are also grateful to the
ParaScope and Fortran D research groups for their as-
sistance in implementing the Fortran D compiler.

References

[1] E. Albert, K. Knobe, J. Lukas, and G. Steele, Jr. Com-
piling Fortran 8x array features for the Connection
Machine computer system. In Symposium on Paral-
lel Programming: Ezperience with Applications, Lan-
guages and Systems, New Haven, CT, July 1988.

[2] J. R. Allen and K. Kennedy. Automatic. translation.of -
Fortran programs to vector form. ACM Transactions
on Programming Languages and Systems, 9(4):491-
542, October 1987.

(3] F. André, J. Pazat, and H. Thomas. Pandore: A sys-
tem to manage data distribution. In Proceedings of the
1990 ACM International Conference on Supercomput-
ing, Amsterdam, The Netherlands, June 1990.

[4] V. Balasundaram. Translating control parallelism to
data parallelism. In Proceedings of the Fifth SIAM
Conference on Parallel Processing for Scientific Com-
puting, Houston, TX, March 1991.

(5] V. Balasundaram, G. Fox, K. Kennedy, and U. Kre-
mer. An interactive environment for data partitioning
and distribution. In Proceedings of the Sth Distributed
Memory Computing Conference, Charleston, SC, April
1990.



ALIGN X(I,J) with A(I,J)

Data Decomposition
DISTRIBUTE A(BLOCK, :)

Loop 1 Loop 2 Loop 3
do* i =2, N doj=2, N do j =2, N, B
Cross-Processor {coqlmunicate entire row} do* i =2, N do* i =2, N
Loops & do j =2, N {communicate element} {communicate block}
Communication X(i,j) = X(@,j) = do j$ = j, j+B-1
X(i-1,j)+X(d,j-1) X(i-1,j)+X(,j-1) X(,js) =
enddo enddo X(@i-1,j$)+X(,j%$-1)
enddo enddo enddo
enddo
enddo
] —
,} S o | P n i C P
Data Space ; :
& — P2
Traversal Order — >
- _ P3

(I
c—

Elapsed Time
—_—

Figure 11: Examples of Pipelined Computations

4 Related Work

We view the Fortran D compiler as a second-generation
distributed-memory compiler that integrates and ex-
tends analysis and optimization techniques from many
other research projects. It is related to other
distributed-memory compilation systems such as AL
[30], CM ForTrAN [1], DiNo [28], MIMDIzER [15],
PANDORE [3], PARAGON [10], and SpoT [29], but
mostly builds on the following research projects.

SUPERB is a semi-automatic parallelization tool
that supports arbitrary user-specified contiguous
BLOCK distributions [13, 34]. It originated overlaps as
a means to both specify and store nonlocal data ac-
cesses. Ezsr statements are inserted in the program
to communicate overlap regions. Data dependence in-
formation is then used to apply loop distribution and
vectorize these statements, resulting in vectorized mes-

sages. SUPERB also performs interprocedural analysis
and code generation.

ParaScope is a parallel programming environment
that supports a prototype distributed-memory com-
piler [8]. User-defined distribution functions are used
to specify the data decomposition for Fortran pro-
grams. The compiler inserts load and store statements
to handle data movement and then applies numerous
program transformations to optimize guards and mes-
sages.

Id Nouveau is a functional language enhanced with
BLOCK and CYCLIC distributions [26, 27]. Dependence
analysis is avoided through the use of write-once arrays
called I-structures. Initially, send and recetve state-
ments are inserted to communicate each nonlocal ar-
ray access. Message vectorization is then applied to
previously written array elements to reduce message



(6]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(18]

(19]

(20]

V. Balasundaram, G. Fox, K. Kennedy, and U. Kre-
mer. A static performance estimator to guide data par-
titioning decisions. In Proceedings of the Third ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, Williamsburg, VA, April 1991.

D. Callahan, K. Cooper, R. Hood, K. Kennedy, and
L. Torczon. ParaScope: A parallel programming envi-
ronment. The International Journal of Supercomputer
Applications, 2(4):84-99, Winter 1988.

D. Callahan and K. Kennedy. Compiling programs for
distributed-memory multiprocessors. Journal of Su-
percomputing, 2:151-169, October 1988.

D. Callahan, K. Kennedy, and U. Kremer. A dy-
namic study of vectorization in PFC. Technical Report
TR89-97, Dept. of Computer Science, Rice University,
July 1989.

A. Cheung and A. Reeves. The Paragon multicom-
puter environment: A first implementation.’ Technical

Report EE-CEG-89-9, Cornell University Computer

Engineering Group, Ithaca, NY, July 1989.

G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel,
U. Kremer, C. Tseng, and M. Wu. Fortran D lan-
guage specification. Technical Report TR90-141, Dept.
of Computer Science, Rice University, December 1990.

G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon,
and D. Walker. Solving Problems on Concurrent Pro-
cessors, volume 1. Prentice-Hall, Englewood Cliffs,
NJ, 1988.

M. Gerndt. Updating distributed variables in local
computations. Concurrency—Practice & Ezperience,
2(3):171-193, September 1990.

P. Havlak and K. Kennedy. An implementation
of interprocedural bounded regular section analysis.
IEEE Transactions on Parallel and Distributed Sys-
tems, 2(3):350-360, July 1991.

R. Hill. MIMDizer: A new tool for parallelization.
Supercomputing Review, 3(4):26-28, April 1990.

S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer,

and C. Tseng. An overview of the Fortran D program-
ming system. In Proceedings of the Fourth Workshop

on Languages and Compilers for Parallel Computing,

Santa Clara, CA, A-ugust 1991.

S. Hiranandani, K. Kennedy, and C. Tseng. Com-

piler support for machine-independent parallel pro-
gramming in Fortran D. In J. Saltz and P. Mehrotra,
editors, Compilers and Runtime Software for Scalable
Multiprocessors. Elsevier, Amsterdam, The Nether-
lands, to appear 1991.

S. Hiranandani, J. Saltz, P. Mehrotra, and H. Berry-
man. Performance of hashed cache data migration
schemes on multicomputers. Journdal of Parallel and
Distributed Computing, 12(4), August 1991.

K. Ikudome, G. Fox, A. Kolawa, and J. Flower. An
automatic and symbolic parallelization system for dis-
tributed memory parallel computers. In Proceedings
of the 5th Distributed Memory Computing Conference,
Charleston, SC, April 1990.

K. Kennedy, K. S. McKinley, and C. Tseng. Analysis

(21)

(22)

23]

(24]

28]

(29]

(30]

(31]

(32]

(33]

(34]

and transformation in the ParaScope Editor. In Pro-
ceedings of the 1991 A CM International Conference on
Supercomputing, Cologne, Germany, June 1991.

C. Koelbel and P. Mehrotra. Compiling global name-
space parallel loops for distributed execution. IEEE
Transactions on Parallel and Distributed Systems,
2(4), October 1991.

D. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. J.
Wolfe. Dependence graphs and compiler optimiza-
tions. In Conference Record of the Eighth Annudl
ACM Symposium on the Principles of Programming
Languages, Williamsburg, VA, January 1981.

J. Li and M. Chen. Compiling communication-
efficient programs for massively parallel machines.
IEEE Transactions on Parallel and Distributed Sys-
tems, 2(3):361-376, July 1991.

R. Mirchandaney, J. Saltz, R. Smith, D. Nicol, and
K. Crowley. Principles of runtime support for parallel
processors: In Proceedings of the Second International
Conference on Supercomputing, St. Malo, France, July
1988. :

C. Pancake and D. Bergmark. Do parallel languages
respond to the needs of scientific programmers? IEEE
Computer, 23(12):13-23, December 1990.

K. Pingali and A. Rogers. Compiling for locality. In
Proceedings of the 1990 International Conference on
Parallel Processing, St. Charles, IL, June 1990.

A. Rogers and K. Pingali. Process decomposition
through locality of reference. In Proceedings of the
SIGPLAN ‘89 Conference on Program Language De-
sign and Implementation, Portland, OR, June 1989.

M. Rosing, R. Schnabel, and R. Weaver. Expressing
complex parallel algorithms in DINO. In Proceedings
of the 4th Conference on Hypercube Concurrent Com-
puters and Applications, Monterey, CA, March 1989.

D. Socha. Compiling single-point iterative programs
for distributed memory computers. In Proceedings of
the 5th Distributed Memory Computing Conference,
Charleston, SC, April 1990.

P.-S. Tseng. A parallelizing compiler for distributed
memory parallel computers. In Proceedings of the SIG-

PLAN -’90 Conference on Program Language Design —

and Implementation, White Plains, NY, June 1990.

M. J. Wolfe. Optimizing Supercompilers for Supercom-
puters. The MIT Press, Cambridge, MA, 1989.

M. J. Wolfe. Semi-automatic domain decomposition.
In Proceedings of the 4th Conference on Hypercube
Concurrent Computers and Applications, Monterey,
CA, March 1989.

J. Wu, J. Saltz, S. Hiranandani, and H. Berryman.
Runtime compilation methods for multicomputers. In
Proceedings of the 1991 International Conference on
Parallel Processing, St. Charles, IL, August 1991.

H. Zima, H.-J. Bast, and M. Gerndt. SUPERB: A
tool for semi-automatic MIMD /SIMD parallelization.
Parallel Computing, 6:1-18, 1988.






