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Abstract

The ability to identify zero variables early on in an iterative method is of consid-
erable value and can be used to computational advantage. In this work we first give a
formal presentation of the notion of indicators for identifying zero variables, and then
study various indicators proposed in the literature for use with interior-point meth-
ods for linear programming. We present both theory and experimentation that speaks
strongly against the use of the variables as indicators; perhans the most frequently used
indicator in the literature. Qur study implies that an indicator proposed by Tapia in
1980 is particularly effective in the context of primal-dual interior-point methods.
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1 Introduction

This paper describes a study of various indicators proposed in the literature for the iden-
tification of zero variables in linear programming problems. Qur particular focus will be
on indicators that can be used in conjunction with primal-dual interior-point methods. Ve
consider the linear programming problem in the standard form

minimize clz
subject to Ar=15% (1.1)
20,

where c € R* , b € R™, A € R™*" (m < n) and A has full rank m. The first-order
optimality conditions for the linear program (1.1) are:

Az - b
Flz,y,\) = AT +y—-c | =0 (1.2)
XYe
and
(z,y) >0 (1.3)

where X = diag(z),Y = diag(y) and e is the n-vector of ail ones. A point (z,y, ) is said
to be strictly feasible if it satisfies Az = b, ATA + y = ¢ and (z,y) > 0. A solution pair
(z,y) is said to satisfy strict complementarity if in addition to complementarity XYe = 0,
it satisfles z +y > 0.

It is now well understood that the primal-dual logarithmic barrier function interior-
point methods can be viewed as damped and perturbed Newton’s method applied to the
nonlinear system of equations ( 1.2). For more details, see Zhang, Tapia and Dennis [33].
The algorithmic framework for such methods is the following

Algorithm 1.1 (Primal-Dual Interior-Point Method)
Given a strictly feasible point (z°,y°, A%). Fork=0,1,..., do

T,k

1. Choose o* € (0,1) and set p(z,y) = o*EL¥"

n

2. Solve the following system for (Az*, Ay*, ANF):

F'(*, g%, \)(Az, Ay, AX) = —F(a%, 3%, 0¥) + u(z*, y*)é (1.4)



3. Choose a step-length o = min(1, 7%&*) for 7% ¢ (0,1) and

~k -1

~ min((XF) 1Az (VR)-Tagh)’

4. Form the new iterate
(Z5+L yh+t, ALY = (% yx )+ o (Az*, Ay*, ANK.

Note that the choice of step-length o* guarantees (21, 4%+ > 0. In Step 2 é =
(0,...,0,1,...,1)7, with n + m zero components.
We use the notation

B(z)={i:z; =0, 1<i<n}

to denote the set of indices of zero variables at a feasible point z of problem (1.1). Notice that
B(z") may be différent for different solutions z* of the same linear programming problem.
However, Theorem 2.1 of Section 2 implies that B(z*) is invariant with respect to solutions
in the interior of the solution set of (1.1). Hence in this case we may denote the set of indices
of zero variables at any solution z* in the relative interior of the solution set by B~ and no
confusion will arise.

This paper is organized as follows. The structure of the solution set of the linear pro-
gramming problem is studied in Section 2. In Section 3, we define the indicator function
and list some properties that a good indicator should possess. In Section 4 we study one of
the earliest indicators proposed, and probably the most frequently used indicator, for iden-
tifying B(z*), namely the variables as indicators. We demonstrate both theoretically and
numerically that this indicator has serious disadvantages. The primal-dual indicator which
has been used recently by several researchers is investigated in the context of primal-dual
interior-point methods in Section 5. In Section 6 we study the Tapia indicator for the linear
programming problem and discuss its behavior in several interior-point methods. Numerical
experiments are given in Section 7. These numerical experiments include the study of the
usefulness of the variables as indicators as well as the usefulness of the primal-dual indicator
in primal-dual interior-point methods. They also include comparisons between the variables
as indicators, the primal-dual indicator and the Tapia indicator. Concluding remarks are
given in Section 8.



2 Structure of The Solution Set

The structure of the solution set of the linear programming problem will play an important
role in explaining the behavior of certain indicators. For this reason we begin this study
with an investigation of the structure of the solutjon set and in particular the distribution
of strict complementary solutions within the solution set. We establish our main result for
a larger class of problems, namely for monotone complementarity problems, since the proof
is essentially the same as that for linear programming.

First, we need some preliminary concepts. Following McLinden (16] and Giiler and Ye
(9], by the support o(v) for v € R™ we mean the set of indices of positive components of v,
ie.

7(v) = {i:v; > 0}.
In particular, the support of a vector with no positive components is the empty set. Consider
the partial order < on R™ defined by

vXu if o(v)Co(u)

Two vectors u and v are said to be equivalent, denoted by u ~v,ifu <vand v = u. An
element v € U C R" is said to be a X-mazimal element of [’ if

uelU and v<Xu=u~

It is obvious that any subset I/ of R™ has at least one <-maximal element. Giiler and Ye
(9] made the following straightforward but key observation concerning the structure of the
solution set 7.

Observation 2.1 [fU C R™ is convez, then all mazimal elements of U are equivalent.

In particular, the above observation implies that if U™ C U is the set of all maximal elements
of U, then the zero structure of the elements of U™ is invariant throughout U™.
A multivalued mapping T : R" — 2R" s said to be a monotone operator if

y€T(z) and FeT(Z)=> (y—-§)T(z—z)>0.

A monotone operator T is said to be mazimally monotone if the graph G(T) = {(z,y) €
R*xR":y € T(z)} is not properly contained in the graph of any other monotone operator.
The complementarity problem associated with a maximally monotone operator T is

Find (z,y) € G(T) such that z7y =0 and (z,y) > 0. (2.1)
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The set of solutions of problem (2.1) will be denoted by 7. Consider the set
M= {(z™y™) e T: (z™,y™) is mazimal}.
The following proposition is a consequence of Lemma 2.3 in Giiler (8]

Proposition 2.1 (Giiler) The solution set T for the monotone complementarity problem
(2.1) is convez.

The convexity of T implies, by Observation 2.1, that the zero structure of maximal solutions
(or solutions that satisfy strict complementarity if they exist) is invariant. The invariance
of the zero structure of solutions that satisfy strict complementarity (which are maximal in
complementarity problems) was proved for a special class of linear programming problems
by Charnes, Cooper and Thrall (3].

We denote the relative interior of a set U by ri U. See Rockafellar (22] for a definition of
relative interior. Now we state our main result concerning the structure of the solution set
T of problem (2.1).

Theorem 2.1 Assume that the solution set T of the monotone complementarity problem
(2.1) is nonempty, then
ri (T) = M.

Proof: By Theorem 6.2 of Rockafellar (22], ri (T) is nonempty and convex. Let ¢/ (7) and
0T = (cl (T))\(ri (7)) denote the closure and the relative boundary of 7, respectively.
There exists at least one maximal element (z™,y™) of T that lies in ri (T). Choose an
arbitrary point (z%,y%) € 8,7. Consider the convex combination

(2%9%) = ¢(=",s") + (1= $)(="y™) 0<o<1.
It follows directly from Theorem 6.1 of Rockafellar [22] that (z¢, %) € ri (T). We have
o(z® y*) = o(z*,y*) U a(z™y") = o(z™,y™),

which shows that
(z",y") €M, # €[0,1).

Now consider any point (z*, y') € ri (T). Convexity of T implies that (z',y*) lies on some
line segment connecting (z™, y™) and some point (z°,3%) € 3,7. But we have seen that all
these line segments lie in M. Thus (z',¥') € M. This proves that

riT C M. (2.2)
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Now we will show that any point in the relative boundary of 7 cannot lie in 4. Consider
(z%,9°) € 8,T. Suppose (z°.3°) € .M. Let (z'y') € ri (T). From (2.2), (z*,¥") € M and
hence (z,y') ~ (z%,3%). Without loss of generality, assume that

g(l‘i) = {1,...,7‘} =0'(1'b)

and

7(y°) = {s,...,2n} = o(y*),
where 7 < 3. Now any point on the relative boundary of 7T is the intersection of the graph
G(T) with at least one of the hyperplanes

or

yi=0 t=3,...,2n.

This contradicts the maximality of (z°, y*) and completes the proof 0.
It is known that the primal-dual formulation of the linear programming problem can be
stated as a monotone complementarity problem with graph

Gep(T)={(z.y): Az =b, ATA+y=c for some A€ R™.} (2.3)

For more details see Giler and Ye [9]. Consider the set & consisting of the solutions of
the linear programming problem that satisfy strict complementarity. Clearly any element of
S is maximal in 7. As an immediate consequence of Theorem 2.1, we can determine the
distribution of S within 7 for linear programming problems.

Corollary 2.1 Assume that there exists at least one point (z°,y°) € Gp(T)
such that (z°,y°) > 0. Then
ri(T) = S.

Proof: The well-known Goldman-Tucker theorem states that § # 0 for linear programming
problems'. The proof now follows directly from Theorem 2.1  O.
This result concerning the structure of the solution set of the linear programming problem can
also be derived from a study of the structure of the solution set of the linear complementarity
problem carried out by Jansen and Tijs [10]. _
Assume that an interior-point method generates iterates that satisfy
min(X*Y*e)
(z*)Ty*

28,
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where 3 is positive number. A straightforward implication of Theorem 2.1 and Lemma 2 of
Giler and Ye [9] is that {(z*,4*)} can not have limit points that lie on the relative boundary
of the solution set. In particular this means that interior-point methods that satisfy such a
bound cannot generate iterates which converge to a vertex solution of the linear programming
problem, unless of course the problem has a unique solution.

In Sections 3 and 4, we discuss the effect that the structure of the solution set has on the

behavior of certain indicators.

3 The Indicator Function : Definition and History

Following Tapia (23], we use the term indicator to denote a function that identifies constraints
that are active at a solution of a constrained optimization problem. Although indicators have
been used extensively since at least 1984 in the context of linear prograrnming, a unified
framework that includes a definition, desired properties, and general guidelines for their use
has not been provided. It is a main ob jective of this work to provide such a framework.
Throughout this paper we will consider iteratjve procedures of the generic form

~h+1 = :k +achzk

The majority of our discussion centers around primal-dual interior-point methods and in this
case our iterates have the form '
k k ok ok
% = (2%, y5, Ak,

In 2 primal method, e.g., the Karmarkar algorithm, we have z¢ = z*.

It is natural to
define the indicator as a function of z¥ and Az* and perhaps an auxiliary variable which
Mmay represent the step-length o* or other quantities. However, in the interest of conciseness
we will consider the auxiliary variable implicitly in the definition and not formally state itg
dependence.

Let (2%, Az*) be generated by an iterative procedure of the generic form discussed above.
By an indicator function I we mean any function which assigns to (z*, Az*) an n-vector of

extended reals J (z",Az") and satisfies the property that if z¥ — z* then for ; = l,...,n

®i, ifi € B(z")

8, ifig B(z") (3-1)

lim [;(z*, Az*) = {
k—co

for some 6; and é; satisfying min; 6; > max; ¢;.



Throughout this paper we use the terms indicator and indicator function interchangeably.
Whenever it is appropriate and no confusion will arise, we write I(z*), I(y*). or I(z*, y%)
instead of I(z*, Az¥).

It is desirable that an indicator function I possess the following ideal properties:
1. the sharp separation property

min §; >> max i;
1€8(z*) t€B(z*)

2. the uniform separation property
0; =9 ; t € B(z") and %i=¢; 1 € B(z7)

for some constants 6 and 6. In this case, it is also desirable that  and ¢ be independent
of both the solution and the problem;

3. the indicator is inexpensive to compute;

4. the indicator sequence {I(z*, Az%)) converges to its limit faster than z* converges to

-.'
“

5. the indicator gives reliable information early on in the iterative process;

6. the indicator is scale independent, i.e. it does not change if the variables are scaled by
any positive diagonal matrix.

Clearly, an indicator may be effective and not possess all these ideal properties. However,
it is our considered opinion that both the sharp and the uniform separation properties are
extremely important. Several numerical experiments demonstrating the importance of these
two properties are given in Section 7.

If some members of B(z"), for some solution z°, are identified early on in an iterative
procedure, then this information can be used to

1. reduce the dimension of the problem by dropping the columns of A corresponding to
the zero variables. This reduction may result in significant savings in computational
work.

2. help recover an optimal basis for the linear program using techniques along the lines
of Megiddo [18].



The task of predicting B(z*) has been considered in recent vears by many researchers and
various indicators have been proposed for this purpose. Gill etal (7], Karmarkar and Ra-
makrishnan (11], McShane. Monma and Shanno [17], Tone (28], Lustig, Martsen. and Shanno
[14], Dantzig and Ye [4], and Boggs, Domich, Donaldson and Witzgall (2], among others,
proposed the use of variables. either primal or dual, to predict members of B(z*). Tapia
(23] introduced two indicators in the context of identifying active constraints in nonlinear
constrained optimization problems. Kojima (12] proposed an indicator for use in Karmarkar-
type algorithms. Ye (30] and Todd [26] introduced two indicators for Karmarkar-type and
primal-dual algorithms. Tapia and Zhang [24] proposed an indicator that can be used in
primal, dual, or primal-dual interior-point methods. Kovacevic-Vujcic [13] introduced an
indicator that is superlinearly faster than the variables in Karmarkar-type methods. The
ratio between primal variables and dual slacks was used as an indicator by several researchers
including Gay (6], Ye (32], and Lustig [15]. Mehrotra [19] used an indicator based on the
relative change in the dual slack variables. Resende and Veiga [21] used the reciprocal of the
dual slack variables as indicators. Many of these indicators have been cataloged in Appendix

A along with some critical comments.

4 The Variables as Indicators

In both linear and nonlinear programming the use of the variables as indicators is a part
of the optimization folklore. In linear programming, Gill et al. [7] set primal variables with
very small absolute values to zero. Karmarkar and Ramakrishnan (11] suggested using the
dual-slack variables as indicators. McShane, Monma and Shanno [17] suggested setting those
variables with small absolute value and large dual slack to zero. Boggs, Domich, Donaldson
and Witzgall [2] used the primal slacks with large values to remove constraints from the
problem using an algorithm based on the method of centers. While this indicator is readily
accessible, it has serious disadvantages. It does not satisfy either the sharp separation or the
uniform separation property and is scale dependent. Another disadvantage is that in general
it does not give information soon enough to save computational work or improve the perfor-
mance of the algorithm. Some researchers were aware of the deficiencies of this indicator and
therefore tried to use it in a conservative manner. Unfortunately, the undesirable aspects
of this indicator, namely the lack of both the sharp and uniform separation prdperties, are
inherent in the convergence particulars of interior-point methods and in the structure of the
solution set of the problem. In the following, we demonstrate the detrimental effect that



these two factors can have on the behavior of the variables when used as indicators.

1. The effect of convergence particulars of interior-point methods:
A main difficulty in using an indicator function arises when a threshold sequence {¢%_ }
sero
is to be used in the identification test,

I(z") < 6y = 27 =0 (+.1)
Since for this indicator Ii(z*) = z¥, the sequence {6%...} must satisfy

max I; < 6,,.. < min Z,

i€B(z*) " T T Y japigey T
where 67, = lime_, 6%, and % is the approximate solution given by the algorithm.
In order to identify zero variables early on, the threshold sequence should satisfy

k k . k
max z; < 8% < mi :
‘68(:.) 3 zero IEB(:}') IX ’ (4'2)

for £ > K, where K is a relatively small positive integer. Since MaX;eg(z-) £; and
MiN;gp(.+) Z; are not known a priori, it is very difficult to construct a sequence {6%.
that satisfies these conditions. In our numerical studies we often found that there was
a large gap between components of the final approximate solution generated by the
interior-point method and the components of z*. In fact. we observed numerically the
annoying phenomenon that for a final approximate sol'ition generated by an interior-
point method, we may have

max Z; > min z,.
i€B(z*) igB(z*)

This shows that, in practice, a threshold sequence {6%_ } that satisfies (4.2) may not
exist.

o

The effect of the structure of the solution set:

An implication of Corollary 2.1 is that if (2%, 3%) is a point on the relative boundary of
7, then there exits at least one component, say 77, such that z% = 0, while z3 > 0 for
all z° € r¢(T). The convexity of 7 implies that zj is arbitrarily small for solutions z*
a.rbitraril& close to the boundary while the corresponding dual slacks are zero. So the
use of variables as indicators may be misleading even in the presence of both primal
and dual information. F inally, the geometry of the problem may be such that 7 is so
thin that some positive component z; has a very small value for all solutions in the

interior of 7.

Numerical experiments with the variables as indicator are presented in Section 7. These
experiments speak strongly against the use of variables as indicator.
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5 The Primal-Dual Indicator

Consider the indicator function
[(=%, A5 oF) = (YR~ ks, (5.1)

where z*%! = ¥ £ %A% V' = diag(y) and X = diag(z). We will call this indicator the
primal-dual indicator since it uses both primal and dual information. This indicator was used
recently by several researchers. e.g. Gay [6], Ye [32] and Lustig [15]. If strict complementarity
holds, then the primal-dual indicator satisfies both the sharp and the uniform separation
properties, namely

0 ifieB(z)

oo ifi g B(z7)

The primal-dual indicator does not require nondegeneracy or feasible iterates. Unfortunately,
it is scale dependent. Another disadvantage is that the identification test L(z%, AzF, %) <

lim I(z%, g%, a*) = {

8200 => 27 =0 is extremely sensitive to the choice of 0zero. Our numerical experiments
show that the primal-dual indicator gives reliable information only if the iterates are very
close to the solution. In fact in many cases this indicator could not identify all zero variables
even at the final approximate solution generated by the interior-point algorithm. These
observations motivated us to study in detail the structure of the primal-dual indicator in
primal-dual interior-point methods.

The Primal-Dual Indicator in Interior-Point Methods
In the framework of primal-dual interior-point methods, the behavior of the primal-dual

indicator can be explained using the following proposition.

Proposition 5.1 Assume that the sequence of iterates {(z*.y*, A\¥)} has been generated by
Algorithm 1. Then fori=1,....,n

zl'k+1 — (2 alc) ztk I{F +akd_k (Ik)Tyle (5 9)
y+! yitt oyt noykytt

Proof: The perturbation of the linearized complementary slackness equation gives
X(y+aldy)+Y(z+alAz) = (2-a)XYe + au(z,y)e.

Thus
XY e £ YEX e = (2 — o) XFY e + o ke
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Multiplying both sides by (Y*)=1(Y*+1)=! completes the proof .
Examining equation (5.2), we believe that the undesirable behavior of the primal-dua]
indicator is due to one of the following situations.

o If z¥ — 27 > 0 for some i. then y? = 0. In this case

z* r*

1 1

yitt o yf

— X — 20,

which is essentially an undefined quantity; and it is not clear that the primal-dual
indicator will approach infinity fast enough to be of effective use.

o If z¥f — z7 = 0 for some 1, then y7 > 0. In this case each of the three terms on the
right-hand side of (5.12) tends to zero. However, if y* > 0, but has a small value (e.g.
10~*) then the denominator of the third term will be much smaller and could cause the
primal-dual indicator to have large values. This problem can be partially corrected if
we let oF — 0 fast. Unfortunately, if y; > 0 but has a very small value ,» which may
occur as argued in Section 2, then all three terms in (5.2) become small only when the
iterates are extremely close to a solution.

6 The Tapia Indicator

In order to identify active and inactive constraints for a nonlinear constrained optimization
problem, Tapia [23] suggested using the quotient of successive Lagrange multipliers and the
quotient of successive slack variables as indicators in the context of an iteratjve procedure
that enforces linearized complementarity.

For linear programming problems, the Tapia indicators are

Ip(z*) = (X*)~1 x*+, (6.1)
and
I(y*) = e = (Y*)~1yk+ie, (6.2)
where 2541 = zk 4 Az yk+1 = y* + Ay and as before e = (1,...,D)T.

El-Bakry (5] studied the behavior of the Tapia indicators in primal-dual interior-point
methods. He also used both indicators to identify and remove zero variables in primal-dual
interior-point methods. Some of these results are presented in Section 7. Mehrotra (20]
used the Tapia primal indicator I, in his perturbation method to identify vertex solution
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using interior-point methods. The properties and the behavior of these indicators in various
interior-point methods are discussed in detail in Section 6.1. For the sake of completeness
we present the following proposition which establishes the sharp and uniform separation
properties for the Tapia indicators. It is essentially a specialization to problem (I.1) of a
general result proved by Tapia [23].

Proposition 6.1 (Tapia) Assume that the sequence of iterates {(z*, y*, AV}, generated by
an iterative procedure, converges to a strict complementary solution {(z=,y~, A%)} of the first-

order necessary conditions for problem (1.1). Assume further that linearized complementarity
X*Ay* + YFRAZF = — Xk,

is satisfied. Then fori=1,....n

.zt 0 ifieB(z)
lerrolc 5 { 1 ifi g B(z") (63)
and .
im(1_ Y _ ]0 ifieB(z)
A=) { L ifigB(z), (6:4)

where zF*' = 2% + Az, and yit = yE 4 Ay

It is obvious from the above proposition that %’;: — 0 for 7 € B*, and %’_;f- — —1 for
¢ € B*. Hence, the relative change %‘;‘i, which is ‘a. restatement of the Taplia indicator,
can serve as an indicator. We emphasize that in general the relative change is not a good
indicator, a fact well-known from the elementary theory of sequences. In the context of
linear programming problems, it is the linearized complemen;arity and the additional con-
dition of strict complementarity that make the Tapia indicators (or equivalently the relative
change) effective. However, in the primal-dual interior-point methods, the iterates satisfy a
perturbation of the linearized complementarity equation, namely

XAy +YAz = -XYe + u(z,y)e,

where u(z,y) is the barrier parameter. The question as to whether the Tapia indicators can
retain their useful properties in that framework is addressed below.

The Tapia Indicators in Interior-Point Methods
It was observed, in our numerical experiments, that the Tapia indicator is more effective than

13



the primal-dual indicator in identifying zero variables in most test problems, see Section
7. This led us to investigate the structure of the Tapia indicators in the framework of
primal-dual interior-point methods for linear programming. As we shall soon see the fit is
surprisingly good.

Proposition 6.2 Let the sequence of iterates {(z*,y* \*)} be generated by Algorithm J.
Assume that

1. (Ik)Tyk -— 0-
2 M_'J._,_(’;f)f";") 2 2 for all k and some v € (0,1).
3. U"—»O aTldi—’l-

Then fori=1,...,n

[0 ifieB(z)
1 ifi g B(z*)
and
lim (1 - £ /e
1 ifi g B(z7)

e { 0 ifieB(z)
) —
k=0 Yi
where zF+! = zF L 3k Az and yerl = gk 4 B*Ay for any g% = [k, 1].

Proof: Consider
XAy +YAz = -XYe + u(z,y)e.

It is clear that
X(y+BAy)+Y(z+pAz) = (2=B8)XYe + Bu(z,y)e.
Hence .
(z*)Ty*
(Xk)—lzk-t-l + (Yk)-lyk+1 = (2 - ﬂk)e + Bkak - (X'kyk)—le. (65)
Very recently Tapia, Zhang and Ye [25] demonstrated that (Az¥, Ay¥) = 0; hence

* :
%—»o for i€B" and %—»o for i€ B (6.6)

t 1

It follows from (6.6) and the definition of &* that &* — 1. Hence af — 1 and therefore
B* — 1. The result follows now from (6.5) and assumptions 2 and 3 a.

14



The fact that asymptotically we have 3* — 1 motivated us to use B* = 1in the calculation
of the Tapia indicators. This proved to give superior results in our numerical experiments.

It is extremely satisfying to us that the conditions which guarantee the usefulness of the
Tapia indicators, i.e. conditions 1-3 in Proposition 6.2, are exactly the conditions which
guarantee fast local convergence. i.e. superlinear convergence of the duality gap sequence
to zero (see Zhang, Tapia and Dennis [25]). It is equally satisfying that we obtain this
pleasant behavior of the Tapia indicators without the assumption that the iteration sequence
converges, as Tapia [23] assumed in Proposition 6.1. ‘

It is clear from the proof of Proposition 6.2 that the assumption that o* — 0 is crucial
in obtaining the 0-1 separation property of the Tapia indicator.

Now we will discuss the use of the Tapia indicator in several interior-point methods. The

search directions in many interior-point methods satisfy the following system of equations
(see Ye [31])

zTy
D:Az+ DAy = o—e- XYe,
AAz =0,
ATAx+ Ay =o0.

Different interior-point methods correspond to different choices of D, and D,. The first
equation is of particular interest in our analysis. If D,,D, > 0 then this equation can be
written Ty

D;'Az + DI'Ay = aTD;‘D;Ie - D;'DI'XYe. (6.7)

For the Tapia indicators to retain their effectiveness we should have:
D;'Az + D7'Ay —» X 'Az + Y~ 'Ay

and
=Ty -1 -1 -1 -1
o—=D;/ D" + D;'D;'XYe — —e.
n

Examining the different choices for D;, D, and o for the primal (or dual) affine scaling
algorithms, the primal (or dual) potential-reduction algorithms and the primal (or dual)
path-following algorithms, it is easy to see that it is extremely unlikely that the Tapia
indicators will retain their effectiveness in this context.

In conclusion, we believe that primal-dual algorithms where o* — 0 are the natural
setting for the use of the Tapia indicators. Moreover, in this case the Tapia indicators and
the primal-dual interior-point methods are an excellent match.
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Finally we list the properties of the Tapia indicators that make them effective in practice

as demonstrated in Section 7. These properties are as follows.
1. They are inexpensive to compute.

2. They satisfy both the uniform and the sharp separation properties. The indicator

parameters ¢ = 0 and 6 = 1 are independent of the problem.
3. From our numerical experience, the Tapia indicators give reliable information early.

4. They are scale independent when the variables are scaled by any positive diagonal

matrix.
5. They do not require feasibility or nondegeneracy.

6. They do not require convergence of the iteration sequence.

7 Numerical Experience

In this section we present several numerical experiments with three indicators: the variables
as indicators, the primal-dual indicator, and the Tapia indicator. The purpose of these exper-
iments is to demonstrate the undesirability of variables as indicators, to study the behavior of
the primal-dual indicator in primal-dual interior-point methods, and finally to compare be-
tween the ability of these indicators to identify zero variables in linear programming. These
experiments are performed on a subset of the netlib test set using a predictor-corrector
primal-dual interior-point code that was developed at Rice University. The code generates
a sequence of iterates that approach feasibility and drive the absolute duality gap ¥z — 6Ty
to zero. For numerical purposes the iterates are generated to drive the relative gap %’%,
rather than the absolute gap, to zero. We will say that a problem is solved to an accuracy

of 10~¢ for some positive integer d if the algorithm is terminated when

- (Ic’z"—bry"l | Az* — bl ||ATA*+y'=-clh) < 10-¢
THTTgH T+ flarlh 1+ I + ¥l ) =

The experiments were done on a Sun 4/490 workstation with 64 Megabytes of memory.
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7.1 The Undesirability of Variables as Indicators

The variables were probably the first indicators used to predict B*. In Section 4 we discussed.
in detail, the disadvantages of this indicator. In our numerical experiments, we observed that
in many test problems from the netlib collection it was extremely difficult, and sometimes
even impossible, to distinguish between zero and nonzero variables using only the values of
these variables. In the following we will investigate some ideas that have been proposed for

using the variables to determine B*.

o Set z; =0 if z¥ < 4,.,,.

Gill et al. [7] chose §,.,, = 10~2. In many cases the algorithm terminated with most of
the zero variables having values greater than 10-% » ¢.g. SHAREI1B and SCAGR?25 (in
fact some problems had zero variables of order 10~2 when the algorithm terminated,
e.g. SCAGR25). So, this choice is very conservative. If we use §,.., = 10~® some of the
nonzero primal variables in PILOT4 and some of the nonzero dual elements in CYCLE
have values less than this threshold. So, a good choice of §,.,, is extremely difficult to
find. We also observed that for a particular problem zero elements may have a wide
range of magnitude at the approximate solution generated by the primal-dual interior-
point method. For example in GREENBEA the zero variables have magnitudes in the
range (10~1,10-%).

o Set z; =0 if zf < §; and y¥ > §,.

From our experience with the netlib problems we observed that the final approximate
solution generated by a primal-dual interior-point method may not have enough sepa-
ration between the primal variables and the dual slacks. For example, the pair (z;, Yi),
for some values of i, is of order (108, 10=*) in LOTFI and BANDM, (10-2, 1071) in
SCAGR25 and (1074,10™*) in both SCAGR25 and FFFFFS00 which shows that choos-
ing effective thresholds &, and 6, for a given set of problems is practically impossible.
It is also worth mentioning that in SEBA the pair (z;, y;), for some values of i is of the
order (1072,107!) while for a different value of i it is of order (104,1072). This shows
that choosing these thresholds is practically impossible even for variables in the same
problem. It is interesting to observe that in problem NESM the algorithm terminated
with a certain pair equal to (1.543, 0.000015), which gives the impression that the dual
slack is zero and the primal variable is nonzero at the solution. Solving the problem
to an accuracy of 10™!° reduced the value of z; to 0.21 x 10~° while the value of dual
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slack remained the same. see Table 1. In Table 1, the letter N in the last row means
that we could not solve the problem to an accuracy of 107*¢. This example shows how

misleading the variables can be.

Table 1: NESM: A particular solution pair

relative I Yy TAPIA | PRIMAL
| gap B _ior z _I_DUAL
98] 10~ | 21.793 | 1.58D-5 | 0.878 | 0.12D+7 |
29| 107 | 17.905 |1.57D-3 | 0.784 | 0.10D+7
30| 10-7 | 7.946 |1.58D-5 | 0.443 | 0.50D+6
31| 108 | 1343 |1.59D-5 | 0.26D-2 | 0.13D+4

(@]
Ne)

32| 1078 0.2648 | 1.59D-5 | 0.14D-3 | 0.14D+2
33| 107° |0.35D-1 | 1.59D-5 | 0.57D-5 | 0.96D-1
34| 107" }0.13D-2 | 1.59D-5 | 0.25D-6 | 0.45D-3
35| 107'? | 0.44D-4 | 1.59D-5 | 0.19D-7 | 0.16D-5
36 | 107 | 0.18D-5 | 1.39D-5 | 0.26D-S | 0.47D-8
37| 10°' |0.21D-9 | 1.59D-5 | 0.19D-9 | 0.16D-12
38| 10°1 N N N N

Some authors propose choosing 6..r, adaptively. Although this idea may slightly improve
the results obtained by using the variables as indicators, we believe it will not account for
that much improvement. The reason is that, as mentioned in Section 4, at an approximate
solution of the primal-dual interior-point method the variables z; with i € B* have small,
but not zero, values. In fact, we observed that the algorithm may terminate with some of
these values relatively large. In several cases, some of these values were larger than values
of the positive variables, e.g. GREENBEA and NESM. This phenomenon implies that, at
least for these problems, the choice for §..,, is practically impossible. One may then suggest
that we solve the problem to a greater accuracy so that there is a clear distinction between
zero and nonzero variables. Although this idea is conceptually correct, it overlooks three

important issues.

1. It is not, generally, known a priori to what accuracy a particular problem should be

solved. For example, we solved problem D2Q06C to an accuracy of 10~!! and we still
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had some pairs (z;,z;) of order (107%,107%) and even (10~%,10~%). Another example
is problem CYCLE which we solved to an accuracy of 1072 and we had pairs of order
(107°,107%), (1078,107%), (10~%,10"7) and (10~7,107).

(A

Since the linear systems we are solving are necessarily singular for degenerate problems,
in some problems these systems may become very ill-conditioned near a solution so that
we cannot solve the problem to the desired accuracy. An example of this is problem
NESM. We solved this problem to an accuracy of 107'%. We observed that some pairs
(zi,yi) were of the order (10=7,10~7). Unfortunately, we cannot ask for more accuracy

with the given precision.

3. Finally, even if we know the required accuracy and we are able to solve the problem
to that accuracy, we miss one of the main objectives of the indicators. This objective

is to predict zero variables as early as possible in order to save computational work.

7.2 The Behavior of Several Indicators

This experiment compares the ability of three indicators, the variable as indicator, the Tapia
indicator and the primal-dual indicator, to identify zero variables. Naturally, the number of
zero variables predicted by each indicator will depend on the indicator’s threshold é; in the
identification test

Li(zF) < 6r =z = 0.

For this experiment we choose Syariasies = 1078, é1apic = 0.1 and Oprimai-duat = 0.1. The
choice of this value of §primai—duar is based upon our own experience that if dprimai—duar > 1,
the primal dual indicator predicts the wrong set of zero variables more often. In Table
2, the first column shows the problem name. Corresponding to each problem the second
column gives the name of the indicator used to predict members of B*. Columns 3 to 9
gives the quotient IEI(;Tl;ﬂ , i.e. the percentage of the zero variables correctly identified at
the corresponding iteration. These columns correspond to the last 7 iterations before the
algorithm terminated. Here M is the total number of iterations required to solve the problem
to an accuracy of 1078. We stress that we count the predicted zero variables only when the
set B* C B*, i.e. B* does not have any member i with the corresponding z? positive at the
solution.

For the set of problems given in Table 2, the Tapia indicator shows a better ability to

predict zero variables. It is also clear that the ability of the variables to determine B* early is
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minimal. An obvious example is problem GROWT. where the variables, used as indicators,
were able to determine only one element of 5* when the algorithm terminated. All the

problems in Table 2 are solved to an accuracy of 1073. It is worth mentioning here that at

Table 2: Comparison between indicators

PROBLEM [ INDICATOR | M=6 | M=5 | M—4 M=3[M-2]M-1] M
AFIRO VARIABLES 0 0 0 0 | o 0 | 100
(M=8) PRIMAL-DUAL| 0 | 0 0 | 0 | o | 100 |100
TAPIA 0 | 0 3 | 14 | 93 | 100 | 100
ADLITTLE | VARIABLES 0 | o0 0 7 | 78 | 100
(M=12) PRIMALDUAL| 0 | 0 0 0 | 0 |100
| TAPIA T | 9 [ 52 [ 79 | 94 | 100 |100]
SCSD1 [ VARIABLES 0 | o 0 0 0 | 100 | 100
(M=12) PRIMAL-DUAL| 0 | 0 0 | 0 | 0o | 100 |100
TAPIA o | o | 2 | 90 | 100 [ 100 | 100
SHIPO4L | VARIABLES 0 | o | 11 ] 11 | 11 | 98 [100
(M=17) PRIMAL-DUAL| 0 | 0 0 | 0 | 0 | 0 |100
TAPIA 0 | 0 | 97 | 10 | 100 | 100 | 100
SHARE2B | VARIABLES 0 | 0 0 o | o | 73 [100
(M=12) PRIMALDUAL| 0 | 0 | 69 | 76 | 8L | 100 | 100
TAPIA 3 | 30 | 63 | 79 | 97 | 100 | 100
GROW7 | VARIABLES 0 0 0 0 0 0 | 2
(M=14) PRIMAL-DUAL| 0 | 0 0 0 | 0 | 98 |100
TAPIA [0 [ 0 0 | o [ 11 [ 9 [100

iteration 10 in problem SCSD1 the set B'° that is determined by the primal-dual indicator
contains all correct zeros as well as two nonzero variables. This shows that one should be
cautious when using the primal-dual indicator. This behavior is observed in other problems
as well.

Examples of the undesirable behavior of the primal-dual indicator for some variables
in problem SCSDI is shown in Figures 1 and 2. In Figure 1, the variable is not zero at

the solution. The corresponding primal-dual indicator has very small values (less than 1.0)
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for 9 iterations (the algorithm terminated at iteration 12) giving the impression that this
variable is zero at the solution. In Figure 2, the variable is zero at the solution. The
primal-dual indicator has very large values (values larger than 300) until iteration 11. Note
that this problem is very well behaved in the sense that the variables start approaching
their optimal values reasonably early. Figure 3 shows the behavior of the Tapia indicator
for all the variables in the same problem. Although a few of the indicators converge to
their terminal values late, most indicators do give the correct information early. Figure 4
gives an example of the Tapia indicator when a positive variable has a very small value ,
i.e., 107, where the solid line represents the variable and the dotted line represents the
corresponding Tapia indicator. The indicator accurately predicts, starting from iteration
6, that the terminal value of this variable is not zero. Finally, we do not mean to imply
that the primal-dual indicator always follows the pattern seen in Figures 1 and 2. In fact,
Figure 5 shows an example in which the primal-duaj indicator performs very well, again
here the solid line represents the variable and the dotted line represents the corresponding
primal-dual indicator. However, from our numerical experience, we believe that much care
should be taken when the primal-dual indicator is used. Finally, Table 1 gives an example
in which both the variables and the primal-dual indicator fail fo give the correct information
when the algorithm terminated. The first column of that table gives the iteration count.
The second and the third columns give the relative gap and the absolute gap, respectively.
The last four columns give the values of the variable, the corresponding dual slack, the Tapia
indicator and the primal-dual indicator, respectively, for a given variable in problem NESM.
This variable is zero at the solution. We note that when the algorithm stops at iteration 31,
the primal-dual indicator has a very large value. So, it fails to give the correct information
at this iteration. Note that the Tapia indicator, at the same iteration, correctly indicates
that this variable is zero at the solution. We had to take two more iterations in order for

the primal-dual indicator to give the correct information.

7.3 A Generic Procedure

In the following we introduce a generic procedure to identify zero variables in linear pro-
gramming problems. It is our considered opinion that any effective procedure of this kind

should have three features

e An effective indicator.

e A good way of handling the information from the indicator.
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e A mechanism to detect and recover if an error is made in predicting members of 5.

It is always beneficial to use more than one indicator (if they are not expensive).

Procedure 7.1

At iteration k,
(i) Test for errors in B(z*). If yes, recover.
(ii) Test indicators I;,1 € {1,...,n} — B(z*) using the identification criterion

I; < 6. (7.1)

(iii) Use information from (ii) to update the estimate of B(z*).

For step (ii) we use two indicators, the sum of the Tapia indicators

k+1

3 L 1
Tik = % + )l - L y
Ty y|
and the primal-dual indicator
k $f+1
PDi = T
where zf*! = z¥ + Azf and yf*!' = yF + Ayk. For step (iii), we adopted the strategy

proposed by Tapia [23]. This strategy was implemented by Vardi [29] in the context of
nonlinear programming problems. The idea is to divide the set {1,...,n} at iteration &
into three categories, B(z¥) of indices corresponding to variables that are predicted to be
zero, N'B(z*) of indices corresponding to variables that are predicted to be nonzero, and a
third category U(z*) = {1,...,n} — (B(z*) U N'B(z*)) consisting of indices corresponding
to variables that we feel we do not have enough information to decide to move them to one
of the first two categories. There are several ways to specify each of the three categories
and the rule to move a variable from one category to another. In our implementation we
start with A'B(z°) = B(z°) = 0 and U(z°) = {1,...,n}. An index i is moved from U(z*)
to B(z*) if the identification criterion (7.1) is sa.tlsﬁed for the two indicators T; and PD;
for two consequent iterations. If (7.1) is not satisfied for at least one of the two indicators
for more than one iteration then i is moved from U(z*) to N'B(z*). An index i € N B(z*)
moves to U(z*) if the two indicators satisfy (7.1) at the same iteration. This procedure was
tested on a subset of the NETLIB set of LP test problems. The results were satistying.
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Without any recovery technique the procedure predicted the wrong set of zero variables in
only 12 problems out of the 33 problems tested. If a simple recovery technique was used
the procedure failed only on one problem, NESM, where the procedure predicted only some
members of B(z"). The performance of our procedure, for some problems from the netlib.
is given in Table 3. The first column of this table gives the names of the problem solved
while columns 2 to 10 give the number of positive variables at the corresponding iteration
after the zero variables have been identified and removed. Here M is the total number of
iterations required to solve the problem to an accuracy of 10~8. We stress that for the
results in Table 3, the procedure was activated when the relative gap was smaller than 10-".
However, some experiments were conducted using the procedure from the first iteration and
the results were also promising, although in this case we had to be more conservative in

choosing the thresholds 874, and Oprimai—-duai- The total ﬁumbers.qf iterations required by

Table 3: Identifying zero variables for some test problems

PROBLEM | M—3[M=7]M—6|M—5| M—4 | M—3 | M—2 | M—1] M
FINNIS 985 | 545 | 503 | 482 | 469 | 407 | 394 | 390 | 390
PILOT4 1181 | 899 | 840 | 840 | 756 | 667 | 667 | 611 | 607
SCRSS 1275 | 1204 | 1141 | 1096 | 553 | 379 | 329 | 325 | 325
DEGEN?2 595 | 595 | 595 | 355 | 543 | 436 | 70 | 53 | 53
GFRD-PNC 1149 | 1149 | 1149 | 1011 872 842 426 407 407
CYCLE 2139 | 2139 | 2139 | 1865 | 1655 | 149 | 1360 | 1265 | 1260
MAROS 1906 | 1906 | 1906 | 1832 | 1806 | 634 | 493 | 480 | 476
WOODIP | 2395 | 2288 | 2181 | 2151 | 1767 | 1418 | 52 | 39 | 39
SHIP12L 5533 | 5533 | 5528 | 5528 | 5306 | 5306 | 3590 | 726 | 726
GREENBEA | 5283 | 5283 | 5051 | 1790 | 1639 | 1543 | 1429 | 1384 | 1375

the ten listed problems are as follows: for FINNIS M=27, PILOT4 M=35, SCRS8 M=26,
DEGEN2 M=14, GFRD-PCN M=18, CYCLE M= 26, MAROS M=24, WOOD1P M=14,
SHIP12L M= 17 and GREENBEA M=44.

The following remarks are of interest

e If the procedure is used very early in the iterative process, the algorithm may converge
to a point on the relative boundary of the solution set, i.e. a solution with more
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zero variables than the ones in the relative interior of that set. An example of this
phenomenon is problem SCSD6. When the identification procedure was activated
when the relative gap was less than 107!, the final approximate solution had 1168 zero
variables. When we used the identification procedure from the first iteration the final

approximate solution had 1198 zeros.

e We noticed that identifying and removing zero variables early may actually reduce the

total number of iterations required. Some examples are given in Table 4.

Table 4: Saving iterations by removing zero variables

PROBLEM Total number of iterations Total number of iterations
" | without removing zero variables | if zero variables are removed

CYCLE 26 23

SCSD6 12 10

GREENBEA 45 44

WOODI1P 15 14

8 Concluding Remarks

The main results of this study are Theorem 2.1, Proposition 5.1 and Proposition 6.2. An
immediate implication of Theorem 2.1 is that the detrimental behavior that results from
using the variables as indicators cannot be avoided. Proposition 5.1 pinpoints the source of
the undesirable behavior that the primal-dual indicator exhibits in interior-point methods.
Proposition 6.2 states that the Tapia indicator retains its useful properties when used with
primal-dual interior-point methods, under the same conditions that guarantee fast local
convergence of the duality gap sequence. We emphasize that convergence of the iterate
sequence is not required for this result. Our numerical results are interesting and present a
solid case against the use of the variables as indicators, and motivate the use of the Tapia
indicators over the so-called primal-dual indicator. In conclusion, we strongly believe that

the use of indicators can be an extremely useful and powerful tool and deserves further study.
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Figure 1: The primal-dual indicator for a nonzero variable.
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A Existing Indicators

In this appendix we catalogue various indicators that appear in the literature.

A.1 The Kojima Indicator

Kojima [12] proposed a method to be used in Karmarkar-type methods for identifying posi-
tive variables. The Kojima indicator is defined as the piecewise linear function:

k . Tk 1 . . . '
I.'(I ,p)=rmn{c§'+—n—+(P.~‘j+;)p:]#z}, z=l,...,n, (1-1)
where P is a specific matrix of the form

P=1-(AD)TM —(1/n)eT,

where e = (1,...,1)T, M is a specific m x n matrix, z¥ is a strictly feasible point, ¢® = P D¢
where D = diag(z*), and p is a parameter. Kojima proved that I;(z*,p) > 0 is a sufficient
condition for z] to be positive for any solution with nonpositive objective function. On
the other hand, it is not clear that the Kojima indicator satisfies the sharp or the uniform
separation properties. It also depends on an auxiliary parameter p and it is not obvious how it
should be chosen. It was noted by Kojima that this indicator requires primal nondegeneracy.
The test proposed by Kojima to identify zero variables costs O(mn) arithmetic operations
for each variable.

A.2 The Ye-Todd Indicators

Todd [26] proved that all dual optimal solutions are contained in ellipsoids that can be
generated as a by-product of the Karmarkar algorithm. Using this information, he proposed
an indicator to that can identify a subset of primal variables that are zero at every primal
optimal solution. Ye [30] rigorously studied this idea and proposed a closely related indicator
in a closed form. The Ye-Todd indicator is

I(y*, &) = y* — & (D*)7'¢* (1.2)

where D* a positive diagonal matrix with d* as its diagonal (usually d* = z*), ¢* is the
diagonal of the projection matrix D* AT(A(D*)?AT)-'AD* and €* > 0 is a parameter of the
dual-slack ellipsoid

{y: 1D*(y —v")Il < &}
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that contains all the optimal dual slacks y". The parameter ¢* is set equal to the duality
gap at each iteration. Ye proved that I(y*, ef) > 0 implies that z; = 0 in a] optimal
solutions of that problem. The Ye-Todd indicator has interesting theoretical properties.
Unfortunately, it is not clear that it satisfies the uniform and sharp separation properties.
Also it is expensive to compute and finally, it requires primal nondegeneracy. Anstreicher
(1] proposed a modification to the Ye-Todd approach to extend it to problems with primal
degeneracy.

Using a similar approach, Ye and Todd (27] described a path-following algorithm for
convex quadratic programming problems which uses a sequence of ellipsoids. Each of these
ellipsoids contains all of the primal and dual-slack solutions. They propose an indicator,
using these ellipsoids, to identify zero variables in the course of an interior-point algorithm
for linear programming. Although their indicator has very nice theoretical properties, it is
expensive to compute at each iteration. It also requires nondegeneracy if it is desired that

all zero variables be identified.

A.3 The Kovacevic-Vujcic Indicator

In an attempt to accelerate the convergence of Karmarkar-type methods, Kovacevic-Vujcic
[13] introduced the following indicator

I(z*, .'_\;:") = z* + o (z*+! = %), (1.3)
where .
o = min —=
sh+i_zhgo ¥ — !

Kovacevic-Vujcic proved that this indicator is superlinearly faster than the variables,

namely

lim | I(z*, Az%) - T Il —0,
k—oo ||z — x|

where

I'= klirg I(z*, AzF).
On the other hand, this indicator satisfies neither the sharp nor the uniform separation
property. It also requires dual nondegeneracy. Finally we note that while the Kovacevic-
Vujcic indicator may be of use in Karmarkar-type methods; it is not clear that it is of use in
the context of the recent primal-dual interior-point methods. The reason is that in the more
effective implementation of these methods the step is taken to the boundary asymptotically,
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see Zhang, Tapia and Dennis [33]. This means that the indicator, asymptotically, will
coincide with the iterate.

A.4 The Mehrotra Indicator

Mehrotra [19] consider the quantity
k1 _ ok
L(y*, Ay*, o) = '%Ty,_l’ (1.4)

which measures the relative change in the dual slack y¥, as an indicator. Mehrotra used this
indicator to drop constraints when implementing a dual affine scaling method.

A.5 The Tapia-Zhang Indicator

In an attempt to uncover an optimal basis of the linear program (1.1), Tapia and Zhang [24]
introduced the indicator:

I1(d*) = diag[D* AT(A(D*)* AT)~' AD*] (1.5)

where D* is the diagonal matrix with d* as its diagonal. The vector d* can be z*, y* or
(Y*)-'X*e. Assuming primal and dual nondegeneracy Tapia and Zhang proved that this
indicator satisfies both the sharp and the uniform separation properties, namely

0 if:eB(z")

1 ifi¢B(z") (18)

fim Ii(") = {
They also proved that it is quadratically faster than the variables, i.e.
17(z*) = || < O(ll=* — z"||?)

where
I" = lim I(z%)
k—oco
This indicator can be used for primal, dual, and primal-dual methods. For some interesting

theoretical properties of this indicator see [24]. The disadvantages of this indicator are that
it requires primal and dual nondegeneracy and is expensive if evaluated at each iteration.
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A.6 The Resende-Veiga Indicator

Resende and Veiga [21] used the reciprocal of the dual slacks as indicators, namely

I(y*) = (Y*) 2, (1.7)

where Y = diag(y). This indicator satisfies
52 M =
lim f(y4) = | 9 i€ B()
k—co oo if i g B(z*)

They used the identification criterion

Ly ) <1072 ¢ = zF =0

where € is the geometric mean of the arithmetic and harmonic means of (1/93,...,1/93).
The use of this indicator requires strict complementarity. Unfortunately,

this indicator sat-
isfies neither the sharp nor the uniform separation property.
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