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Abstract

This research is concerned with the convergence of the iteration sequence generated
by a primal-dual interior-point method for linear programming. It is known that this
sequence converges when both the primal and the dual problems have unique solu-
tions. However, convergence for general problems has been an open question now for
quite some time. In this work we demonstrate that for general problems, under mild

conditions, the iteration sequence converges.
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1 Introduction

This paper considers linear programs in the standard form:

T

min c'z
s.t. Az =, (1.1)
z 2> 0,

where ¢,z e R*, b € R™, A € R™**(m < n) and A has full rank m.
The first-order optimality conditions for (1.1) can be written as the following 2n by 2n

nonlinear system with non-negativity constraints on the variables:

Az -b
F(z:,y)= By—Bc =0’ (z3y)201 (12)
XYe

where B € R{"™=™)*" is any matrix such that the columns of BT form a basis for the null
space of A, X = diag(z), Y = diag(y) and e is the n-vector of all ones.
The feasibility set of problem (1.2) is defined as

F ={(z,y) : 7,y € R", Az = b, By = B, (z,y) > 0}.

A feasible pair (z,y) € F is said to be strictly feasible if it is positive. In this work we
assume that the relative interior of F is nonempty, i.e., strictly feasible points exist. We

denote the solution set of problem (1.2) by

S ={(z"y"): F(z",y") =0,(z",y") = 0}.

The algorithms under consideration in this study are primal-dual interior-point algo- - -

rithms. These algorithms can be motivated in various ways, e.g., path-following or po- -

tential reduction, but in essence they are all variants of Newton’s method. The majority of

these primal-dual interior-point é.lgorithms are described by the following generic algorithmic = :

framework.






Algorithm 1 (Generic Primal-Dual Algorithm)
Given a strictly feasible pair (z°,y°). For k=0,1,2,... , do

(1) Choose o* € [0,1) and set u* = a"i—kﬂ.

(2) Solve the following system for (Az*, Ay*):

F'(z*,4*) ( iz ) = —F(c*,y%) + u* ( 0 ) .
] e

(3) Choose a step-length o* = min(1, 7*&*) for r* € (0,1) and

b _ -1

min((X*)~1 Ak, (VF)1AyR)’

(4) Form the new iterate
(@"*1,y™) = (a5, 4%) + o*(AzF, Ayh).

Note that the choice of step-length a* guarantees (z*+1, y**1) > 0. Moreover, it can be

easily verified that

(zk+1)Tyk+1 =(1- ak(l _ ak))(xk)Tyk < (zk)Tyk. '(1.4)

One of the first primal-dual interior-point algorithms was proposed by Kojima, Mizuno

and Yoshise (9] in 1987, based on an idea suggestéd by Megiddo [13] in 1986. Other early-

primal-dual interior point algorithms include Monteiro and Adler [14] and Todd and Ye [16]. " =7

A main feature of these algorithms is their polynomial complexity; or more specifically,

their polynomial bound on the number of iterations required to reduce the duality gap to a

specified tolerance.

While one group of researchers was mainly concerned with choices of the parameters |

in Algorithm 1 that led to good complexity bounds, another group was concerned with

choices of these parameters that led to numerically effective algorithms. Practical imple-

mentations and numerical experiments performed by Ma.cSha.ne, Monma and Shanno [12]
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and by Lustig, Marsten and Shanno [10], for example, demonstrated that primal-dual algo-
rithms can be computationally very effective. While these formulations exhibited reasonably
fast convergence in practice, theoretical convergence of the duality gap sequence, let alone
polynomial complexity, remains an open question.

The fast convergence of the latter algorithms, in part, motivated the recent flurry of
papers concerned with establishing superlinear convergence of the duality gap to zero. For
linear programming applications. these papers include Zhang, Tapia and Dennis [20] and
Zhang and Tapia (19]. In addition, Ye, Tapia and Zhang [18], McShane [11] and Ye, Giiler,
Tapia and Zhang (17] recently studied the superlinear convergence of the Mizuno-Todd-Ye
predictor-corrector algorithm that takes ¥ = 1 and o* = 0 alternatively. For linear com-
plementarity problems, these papers include Zhang, Tapia and Potra [21], Kojima, Kurita
and Mizuno (8] and Ji, Potra, Tapia and Zhang [7]. In the context of the present work, it
Is important to observe that in establishing superlinear convergence of the duality gap (or
complementarity) to zero, all of the above authors, except Ye et al [17], assumed the con-
vergence of the iteration sequence. For the Mizuno-Todd-Ye predictor-corrector algorithm,
Ye et al [17] obtained the impressive result of quadratic convergence, when counting the
predictor and corrector steps as a single step, without the assumption of nondegeneracy or
the assumption of convergence of the iteration sequence. Whether such convergence can be
obtained for Algorithm 1 without these assumptions is an important question and is the
subject of current research. It is also of concern to us that while in practice the conver-
gence of the iteration sequence is always observed, there is, to our knowledge,'no theory in -
the literature implying that this should be expected for problems that do not have unique
solutions. It is the objective of the present paper to fill this conspicuous gap. -

This paper is organized as follows. Section 2 contains notation and some known results
that will be used in the development of this paper. In Section 3, we first establish several
technical results. These technical results then are used to derive a bound on the distance from - .-~
the (k+1)-th iterate to a solution point in terms of the distance from the k-th iterate'to this

solution point and the centering parameter ox. The parametric form of this inequality bears ™ ---:mzis



a striking similarity to the form of the bounded deterioration principle for secant updates
used by Broyden, Dennis and Moré [1] to establish convergence for several secant methods.
For this reason, we shall refer to the distance inequality established in Theorem 3.1 as the
bounded deterioration of the iteration sequence. We then derive Theorem 3.2, a useful bound
on the search steps of Algorithm 1, from the bounded deterioration of the iteration sequence
and the Hoffman lemma [6]. We present the main theorem of this paper, Theorem 4.1,
in Section 4. It states that, under mild assumptions, the iteration sequence generated by

Algorithm 1 converges. Finally, we make some concluding remarks in Section 5.

2 Preliminaries

In this section, we introduce notation and some known results. For brevity, we use the

notation z = (z,y) € R?", i.e,,
(2.1)

Let € = (0...0 1...1)T € R® where the numbers of zeros and ones are both n. Then

Algorithm 1 can be written as the following iterative process:
zk+l = zk _ ak[Fl(zk)]-l(F(zk) — #"é). (2.2)
A straightforward calculation gives : -

A0
F'(z,y)=| 0 B|. (2.3)
‘ Y X
The following proposition is known; however we could not locate a simple proof for the -

case of linear programming in the literature and therefore, for the sake of completeness;

we include a short proof. Observe that no assumptions are made on the solution set S of = . -

Problem (1.2). Recall that by the distance from a point z to a set'S, we mean ==~ .© /3 o

dist(z,8) =inf{]|]z — s|]| : s € §}.
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Proposition 2.1 Let {z* = (z*,y*)} be generated by Algorithm 1. Then
(i) {z*} is bounded.
(ii) If (z)Ty* — 0, then dist(z*,S) — 0.
Proof: (i) Since A(z* — 2% = 0, B(y* — y°) = 0 and ABT =0,

0= (z* -2 (y* - %) = (") Ty* + (22)7y° = (v°)T* — (=) Ty
From (1.4),

(@) " + (2)Ty* = (2*)Ty* + (2°)7y° < 2(=°)Ty".

The boundedness of (z*,y*) now follows from this inequality and the fact that both (z°,y°)
and (z*,y*) are positive.

(ii) Let £ denote the set of limit points of {z*}. Since the duality gap converges to zero,

L C S. Given any € > 0, cover £ with
Ble)= | {z:llz—=z"|| <€}
€Ll

Since {2*} is bounded, all but a finite number of z*’s are in B (¢); otherwise, {zF} would have
a new limit point that is not in £, and this would be a contradiction. Hence, there exists a
smallest number N such that z* € B(e) for all k£ > N. This implies that dist(z*,S) < ¢ for
all k> N and completes the proof. o o o

Lemma 2.1 below is Lemma 2 of Giller and Ye [4], tailored to fit the needs of this paper.

Many interesting properties of interior-point algorithms follow from this siniple fact.

Lemma 2.1 (Giiler-Ye)
Let {z¥} = {(z*,y*)} be generated by Algorithm 1. Assume

Al (z*)Ty* converges to zero.
A2 min(X*Y*e)/(z*)Ty* > v/n for all k and some v € (0,1). -

Let z* be a limit point of {z*}. Then S ' P o



(1) 27 is a strictly complementary solution of Problem 1.2 and
(ii) limg—co inf 25 > 0 for every i such that z7 > 0.

Recently, El-Bakry, Tapia and Zhang [2] demonstrated that the relative interior of S
and the set of solutions satisfying strict complementarity coincide. Furthermore, the zero-
nonzero structure of solutions in the relative interior of S (equivalently solutions satisfying
strict complementarity) is invariant. Hence, under Assumption A2 of Lemma 2.1, the limit
points of the iteration sequence generated by Algorithm 1 have considerable structure.

For any z* = (z~,y") in the relative interior of S, define
IF={i:2;>0,1<i<n} and I} ={i:y] >0,1 <i<n). (2.4)

Since the zero-nonzero structure of the relative interior of S is invariant, the above two index

sets are independent of the choice of z*. By strict complementarity of z*,

IrUr ={1,2,..,n} and IJNOI} =0. (2.5)

3 Bounded Deterioration

We consider the following three matrices which were introduced in Zhang, Tapia and Den-

nis [20]:

P = I-X}Y-1AT(AXY'AT)1AXSY -, (3.1)
H, = (XY)"}P(XY)}, (32
H; = (XY)~¥(I- P)(XY)-}. (3.3)

It is worth noting that P and I — P are orthogonal projection matrices.

Lemma 3.1 Let H, and Hy be defined by (3.2) and (3.3), respectively, then

I XHyw
w dw



Proof: The proof follows from Proposition 2.1 in Zhang, Tapia and Dennis [20]. 0

Lemma 3.2 Let (z°,y") € S and (z,y) € F. Then

, Tz -z 0
F'(z,y) - F(z,y) = :
y—-y (X =X)(Y = Y")e
Proof: The proof follows from direct substitution. a

Lemma 3.3 Let 2" = (2",y") € S, z = (z,y) € F and z* = (z*,y™) be given by

2t =z = a[F'(2)] 7 (F(2) — pé).

o XHyw ,
YHdw

w=(X-X")Y -Y)e+(l—-a)XYe+ apue. (3.4)

Then

where

Proof: Using Lemma 3.2, we have

P —2" = z—z" = o[F'(2)] Y (F(2) — pé)

= [F'(2)7[F(2)(z = z°) = F(2) + (1 = a)F(2) + apé]

= (P ( ) ) .

Now the lemma follows from Lemma 3.1. : ' a

Lemma 3.4 Let P; be the i-th row (or column) of an orthogonal projection matriz P. Then
1Pz < 1.

Proof: Since I — P is symmetric and positive semi-definite, P; < 1. Now P? = P leads to
P} = Ps < 1. LT o
We now derive our bounded deterioration relationship between the distances from two

consecutive iterates, z¥ and z*+!, to any solution z*.
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Theorem 3.1 Let {z* = (z*,y*)} be generated by Algorithm 1 and let z* = (z*,y") be any

solution to Problem 1.2. Assume
Al (2%)Ty* S 0.
A2 min(X*Y*e)/(z%)Ty* > v/n for all k and some € (0,1).
Then there ezist constants B> 0 and 8 > 0 such that
|25 =27 < (1 + zEB)||2F — 27| + ZFBlek, i=1,2,...,2n. (3.3)

Proof: For simplicity, we will replace the superscript (k+1) by + and drop the superscript

k. Welet 2 =2+ Az Sincezt =z+aAzand a € (0,1], for every index i we have
z} € [min(z;, %), max(z;, £)].
Therefore, for z*
|28 = ]| < max(|z — 27|, |3 - =) (3.6)

Without loss of generality, let us consider ¢ < n, l.e., zi = z;, z7 = z and so on. The
proof for ¢ > n is the same.

Letting @ = 1 in Lemma 3.3 and using the definition of H, and w, we obtain

& — 2} =z (ziy:) " Pj(ejy;) " w; = zi(S!+ S7), - (3.7
=1
where
St =Y (ziw:) " Pyj(z;95) ¥ (z; - z7)(¥;i — ¥5),
=
and

n T
Si=o Z(zi%)'épﬁ(z;’w)'%:—y»

i=1

In S we used the relation u = gzTy/n. Let us consider the above two sums. Notice that

. . vi(z; —z3), ifjeIf,
(zj — =5)(yi — ;) = ol i e s~ T4
zi(y; — y;), ifje I;.



By strict complementarity, for each index j either z7 > 0 or y; > 0. Therefore,

1
E:Pu (IJy]> ]:L" J+ E Pij (szJ) ny.y]}°
J J

Notice that

ziy5 _ 239i37y _n
ziyi Ty Ty Ty
is bounded above and {z;, j € I}} and {y;, j € I}} are bounded away from zero (see (ii)

of Lemma 2.1). Moreover, the matrix P is an orthogonal projection matrix; by Lemma 3.4,

its rows are bounded (independent of k). Therefore, we can find 8! > 0 such that
Sil < Billz — 27|
In addition, by Assumption A2 and Lemma 3.4 again, we can find 87 > 0 such that
" z y/n\? | zTy/n
" = P,
|5,| U(z,y.) ZJ( )

J=1 szJ
It follows from (3.7) that

< Blo.

|2: = 2| < z(ISi] + 1S7]) < z:(Billz = =7|| + Bo).

Finally, (3.5) follows from (3.6) and the above inequality. This completes the proof. a
The following inequality, a consequence of the bounded deterioration and the Hoffman

Lemma (6], will be a critical ingredient in the establishment of our convergence theory.
Theorem 3.2 Let {z* = (z*,y*)} and {Az¥} be’generated by Algorithm 1. Assume
Al (zF)Ty*k = 0.
A2 min(X*Y*e)/(z*)Ty* > v/n for all k and some v € (0,1).
Then there ezist constants §' > 0 qnd B" > 0 such that
laz8|| < B'(=*)Ty* + B"o*. (3-8)

and, in particular,

"zk+1 - zk" S ﬂ'(z")Tyk +,3"0’k. (39)
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Proof: Since z**! = z* + oFAzF and o* € (0,1], it suffices to prove (3.8). Notice that
the bounded deterioration (3.5) holds for any o* € (0, 1]. When of = 1, from bounded

deterioration (3.5) we have for any z* € S
IAZH < (= + A2%) = 27 + 128 = 2| < Bll=* = =7 + 8"o*. (3.10)

It follows from the Hoffman Lemma [6] that there exist a constant 3 > 0 and w* € S for
every k such that

12" — w¥|| < B(=*)Ty*.

Since z* € S is arbitrary in (3.10), it follows that (3.8) holds with 3’ = 83. This proves the
theorem. a

Observe that when o* = 0, Theorem 3.2 reduces to Lemma 3.2 and Theorem 3.1 of Ye et
al (17], i.e., a bound on the Newton step. Theorem 3.2 can also be proved using this bound

on the Newton step and the bound on |S¥| in the proof of Theorem 3.1.

4 Convergence Results

Theorem 4.1 below represents our main contribution to the convergence theory for the iter-
ation sequence generated by primal-dual interior-point methods for linear programming.

Given any z* in the relative interior of S, let
Iy={i:2;=0, 1<i<2n}.

From the remarks above, Ij is invariant with respect to the choices of z*.

Recall that a set in R" is said to be a continuum if it is closed and cannot be written
as the disjoint union of two proper closed subsets. In R! the continua are closed intervals.
Clearly, a continuum is uncountable.

The following assumptions will be selectively used in Theorem 4.1. Their compatibility

will be demonstrated in Proposition 4.1.
Al (z¥)Ty*F = 0;
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A2 min(X*Y*e)/(z*)Ty* > v/n for all k and some v € (0, 1).
A3 of = 0.

A4 of — 0 at least R-linearly.

A5 of = O((z%)Ty*).

A6 % > 1 for some r € (0,1).

Theorem 4.1 Let {zF = (z*,y*)} be generated by Algorithm 1. Then
(i) Under Assumptions A1-A2, {z¥} — 0 for each i € I,.
(ii) Under Assumptions A1-A3, either

o {z*} converges to some z* in the relative interior of S, or

o the limit points of {z*} form a continuum.

(iii) Under Assumptions A1, A2, A{ and A6, {z*} converges to some z* in the relative

interior of S.

(iv) Under Assumptions A1, A2, A5 and A6, any Q or R convergence behavior present
in the convergence of {(z*)Ty*} to zero is reflected as R-convergence behavior in the

convergence of {z*} to z*.

Proof: (i) Consider the component sequence {z¥} for i € Io. It is bounded from (i) of
Proposition 2.1. By Lemma 2.1 and El-Bakry, Tapia and Zhang [2], all limit points of {z*}
are in the relative interior of S and have identical zero-nonzero structlire; thus all limit points
of {zF} are zero. This leads to zF — 0 for all i € I,. '

(ii) Again let £ denote the set of limit points of {z*}. Clearly, £ is compact. It is
obviously closed and it is bounded since {z*} is bounded by (i) of Proposition 2.1. If £ is
the singleton set {z*}, then {z*} converges to z* since it is a bounded sequence with only

one limit point.
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Now suppose that £ has more than one point and is not a continuum. Then we can
write £ = £, J £; where £;, 1 = 1,2, is nonempty and compact. By Hausdorff separation we
can find sets O;, i = 1,2, such that O; is open, £; C O; and the closures of O: and O, are
disjoint. Clearly, O; contains an infinite number of z* ’s, or else, £; would be empty: also only
a finite number of z¥’s are not in O, U O,. This latter statement follows from the observation
that if an infinite number of z*’s are not contained in O, U O,, then they would have a limit
point not in Oy |JO,; and therefore not in £. This would be a contradiction. It follows that
we can select a subsequence {z*/} with the property that z¥ € O, and z5+! € ©,. We can
choose a thinner subsequence, which we also call {z*i}, with the property that z¥ — 2 for
some z* € £; and z5*! € O, for all j. However, this contradicts our bounded deterioration
inequality (3.5) of Theorem 3.1.

(iii) Since the assumptions of Theorem 3.2 hold, we have inequality (3.8) at our disposal.
It is known (see Zhang, Tapia and Dennis [20], for example) that A2 and A6 imply o* > a > 0
for all k and some . From (1.4) it follows that the duality gap sequence converges Q-linearly
to zero. It now follows from (3.8) and A4 that there exist positive constants n and 6§ < 1

and a positive integer K such that
1252 = ¥ < né*, k2> K. (4.1)
In a standard manner, (4.1) implies that for all positive integers N
J4 - 24 < < 7 =8, k2K (4.2)

Hence, {z*} is a Cauchy sequence and is therefore convergent.
(iv) The proof of (iv) follows from the derivation of the appropriate mequahty analogous
to (4.2) and letting N — oo. This proves the theorem. : a
It is worth pointing out the implications of Theorem 4.1 on the superlinear and quadratic
convergence theory of Zhang, Tapia and Dennis [20]. First, (iii) implies that the nondegen-
eracy assumption for quadratic convergence is no longer necessary. Second, (ii) implies that
the assumption of the convergence of the iteration sequence made for superlinear convergence .

of the duality gap to zero is no longer necessary, due to the fact that in order to establish
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superlinear convergence one only needs ||z¥*! — z¥|| — 0. These facts will be documented in
a subsequent report currently in preparation.

It is perhaps interesting to observe that in the proof of (ii) by partitioning £ so that £,
is a singleton set we have established that either {z*} converges or £ has no isolated points.
In analysis, a closed set in which every point is a limit point of the set is called a perfect
set. Clearly, £ is a perfect set in the case of nonconvergence. It is known that in a separable
metric space, every perfect set must be uncountable. See Gelbaum and Olmsted [3] for a
discussion and see Hausdorff [5] for a proof and further discussion. The interval [0,1] is a
perfect set in R!. One might conjecture that a perfect set in R! contains a continuum, or at
least has positive Lebesgue measure. However, in R! the celebrated Cantor set is a perfect
set of Lebesgue measure zero; hence it contains no continuum. It follows that this line of
reasoning would produce a weaker result in (ii).

It is also interesting to note that (ii) of Theorem 4.1 has the flavor of a result established
by Ostrowski [15] in the context of the gradient method.

The quantities 7* and o* are under direct control of the algorithm designer. This is an
extremely important point and often missed by some readers. Even without the knowledge
of (iii), it seems that it would be quite pathological for one to choose o* — 0 in any manner
that did not reflect R-linear convergence.

We now demonstrate the compatibility of Assumptions A1-A6 by showing that choices

for o* and o* exist such that these assumptions are simultaneously satisfied.

Proposition 4.1 For Algorithm 1 there ezist parameter sequences {o*} and {*}, and the

corresponding iteration sequence {(z*,y*)} such that Assumptions A1-A6 are satisfied.

Proof: It suffices to demonstrate that Assumptions A1, A2, A5 and A6 are simultaneously

satisfied. Let

o* = min(o, p(z*)7y") (4.3)

where o € (0,1) and p > 0. For each k choose 7% so that o* = 7*&F is the largest number
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in (0,1] such that
R+ ket

Yi .
Sy <I, :=12,...,n, (4.4)
for some fixed constants v € (0,1/2) and I' € (2,n). It has been shown (see Lemma 3.4 of

Zhang and Tapia [19]) that

k(. k\T, k
ks oo o (") y"/n .
a® > min (I’QmaXIAz:f‘Ayf‘] (4.5)

The proposition will be proved if we can show that {a*} is bounded away from zero.
When o* = o, it is known that o* = Q(2) (see [19], for example). Otherwise, o* =
p(z*)Ty*. By Theorem 3.2, |Az¥Ay*| = O((z*)Ty*)?). Hence it follows from (4.5) that o*

is also bounded away from zero. This completes the proof. a

5 Concluding Remarks

The main result of this paper is Theorem 4.1. Among other things, it says that o — 0
will guarantee that the step z**! — ¥ converges to zero; but this alone does not imply the
convergence of the iteration sequence. However, this convergence is guaranteed if the step
converges to zero fast enough, i.e., at least R-linearly, and this in turn is guaranteed if o*
converges to zero R-linearly. This requirement can be viewed as saying that in order to
ensure the convergence of the iteration sequence, eventually any commitment to the central
path should be phased out in an effective manner.

We now argue the mildness of the assumptions made in Theorem 4.1. Assumption Al, the

convergence of the duality gap sequence to zero, is necessary if we are to consider convergence

to a solution. Assumption A2 is a crucial ingredient for polynomial convergence of the -

duality gap seqﬁence to zero. Moreover, Assumptions A2, A3 and 7¥ — 1 are fundamental
in establishing Q-superlinear convergence (see Zhang, Tapia and Dennis [20]).

In summary, we find it extremely satisfying that the only price one pays for obtaining
" convergence of the iteration sequence, in addition to superlinear convergence of the duality -

gap to zero, is to guarantee at least R-linear behavior while making o* = 0. This is indeed -
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very mild. If this simple requirement is not implemented, then, at least in theory and at this
Juncture, the iteration sequence could (but seems to be highly unlikely) exhibit the unusual

behavior that it generates a continuum of limit points.
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