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Abstract

The ParaScope Editor is an interactive parallel programming tool for developing scientific Fortran programs.
In addition to editing, it assists the knowledgeable user by displaying the results of sophisticated program
analyses and by providing a set of powerful interactive transformations. This paper summarizes the expe-
riences of a number of scientific programmers and tools experts using the ParaScope Editor. We describe
existing useful features as well as new functionality and paradigms that should be incorporated. These

results offer insights and application for the designers of a variety of programming tools.

1 Introduction

The complexity of constructing parallel programs is a significant obstacle to widespread use of parallel
computers. In the process of writing a parallel program, the programmer must consider the implications
of concurrency on the correctness of their algorithm. Ideally, the programmer could be freed from this
concern by an intelligent compiler that can automatically convert a sequential program to an equivalent
shared-memory parallel program. Although a substantial amount of research has been devoted to automatic
parallelization, such systems have not established an acceptable level of success [ABC*87, AK84, EB91a,
KKLW80, SH91].

Automatic parallelization depends on dependence analysis, which identifies a conservative set of potential
race conditions that make parallelization illegal. In general, an automatic system cannot parallelize a loop or
apply program transformations if doing so would violate a dependence and potentially change the program’s
semantics. The conservative nature of dependence analysis sometimes prohibits the compiler from uncovering
parallelism that may be obvious to the programmer. Unfortunately, in a batch system, there is no satisfactory

mechanism for the programmer to communicate this information to the compiler.
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The ParaScope Editor (PED) serves this purpose by enabling interaction between the compiler and the
programmer [BKIKX*89, KMT91a, IKMT91b]. The compiler provides the results of extensive analysis, but the
enormous volume of information computed may reduce its usefulness to the programmer. PED acts as a
sophisticated filter by displaying program dependences in meaningful ways. Furthermore, the tool assists the
programmer with parallelization and the application of powerful source transformations that have proven
themselves in practice. The programmer refines conservative assumptions by determining which dependences
are valid and by selecting transformations to be applied. The editor then updates depéndence information
and source code to reflect the programmer’s actions.

The ParaScope Editor, under constru.ction since 1987, has reached a level of maturity that has enabled it
to be used to parallelize many large, production Fortran 77 codes. One of the methods we used to evaluate
its effectiveness was a two day workshop in July 1991, sponsored by the Center for Research on Parallel
Computation (CRPC), an NSF Science and Technology Center. Eight researchers from research laboratories
and industry attended. Each participating organization contributed at least one Fortran program to be
parallelized using PED. Assisted by a member of the ParaScope research group, the attendees introduced
parallelism into their codes.!

This paper presents the experiences of ParaScope Editor users from the workshop and from two other
experiences. From these experiences, we derived valuable information about the process of constructing
parallel programs and how our tool can be improved to better support this process. To parallelize complete
applications, programmers need more extensive analysis, such as more precise array analysis across proce-
dure boundaries. They also desire more assistance in navigating through their applications, e.g., locating
important loops and subroutines and viewing information across procedure calls. They can understand
and use this information more effectively when displayed as an annotation on the program source, rather
than in a separate display. These results are clearly applicable to other programming tools assisting in the
construction of shared-memory parallel programs. Moreover, tools exposing compiler information to the
programmer are useful aids in achieving efficiency on other modern architectures such as superscalar and
distributed-memory machines.

The paper’s next section briefly describes the ParaScope Editor. In Section 3, we present a work model
for parallelizing a sequential Fortran code in PED. The following section then summarizes the experiences
of PED users, particularly workshop participants’ experiences. Section 5 describes research planned for the
ParaScope Editor inspired by the observations from Section 4. In Sections 6 and 7, we discuss related work

and conclude the paper.

1A similar workshop at Rice on PTOOL provided some of the inspiration for the current version of the ParaScope Edi-
tor (BBC*88, HHLS90].






2 The ParaScope Editor

The ParaScope Editor supports the “exploratory parallel programming” paradigm: the user converts a
sequential Fortran program into an efficient parallel version by repeatedly discovering and exploiting op-
portunities for parallelism [KMT91a, KMT91b]. In the process, the system analyzes the program, the user
interprets the results, and the system helps the user change the program. Using PED, a programmer selects a
particular loop to parallelize, and PED provides a list of dependences that may prevent parallelization. The
user may apply source code transformations, satisfying dependences or introducing parallelism, or override
the conservative dependence analysis. The editor automatically and incrementally updates the dependence
information after applying a transformation.

This section briefly describes PED’s features. In particular, we describe dependence analysis, which is
static analysis of memory accesses to disprove race conditions. We also present the three distinct forms of
editing supported by PED: source editing, dependence editing and variable classification. We conclude the

section with a brief outline of a new user interface currently being integrated into the existing tool.

2.1 Dependence Analysis

Dependences describe a partial order between statements that must be maintained to preserve the meaning
of the original sequential program. A dependence between statement S; and S, denoted 51652, indicates
the source S; must be executed before the sink S», while, in a data dependence 51652, the same memory
location is accessed twice, with one access writing a new value. If these accesses are not synchronized, a race
condition occurs. A dependence is loop-carried, as opposed to. loop-independent, if the source and sink of the
dependence occur on different loop iterations. These dependences prevent the loop’s parallelization because
the memory accesses corresponding to the dependence may occur out of order if the different loop iterations
executed in parallel.

PED’s dependence analyzer conservatively locates dependences. In some cases, it produces a superset of
the actual dependences in the program. To perform dependence analysis, pairs of references are tested to
determine if they could access the same memory location. The analyzer applies a hierarchical suite of tests
on each pair of references to determine if the references can access the same memory location [GKT91]. One
of the distinguishing features of PED’s analyzer is the use of sophisticated interprocedural information when
loops contain procedure calls. The analysis techniques include more established techniques such as side-effect
analysis [CK'T86a] and constant propagation [CCKT86], as well as regular section analysis, i.e., determining
sections of arrays affected by procedure calls [CK87, HK90]. Symbolic analysis, exposing information about

symbolic expressions when their values are unknown, will soon be available.



2.2 Source Editing Features

An intelligent, hybrid text and structure editor supports PED’s editing functions. Fortran syntax and type
checking, performed interactively, provide the user with immediate notification of syntactic and type-related
semantic errors. In addition to standard graphical editing functions, e.g., scrolling and search/replace, the
editor uses its understanding of Fortran to provide a number of advanced features. Template-based editing
allows the user to select from a menu of Fortran language constructs to build a program in a structured
fashion. View filtering, a key interface feature, provides a means to selectively display certain types of
language or textual constructs [EEGS]. For example, source code view filter predicates can test whether a
line contains a specific word, whether the line contains a syntax or semantic error or whether the line is a

specification statement, an executable statement, a subprogram header or a loop header.

2.3 Dependence Viewing and Dependence Editing

The dependence display contains a table of dependences carried by the selected loop, showing each depen-
dence’s source and sink variable references and characterizations, such as exactness, required by program
transformations. An ezact dependence has been proven feasible by the analyzer, i.c., the race condition will
occur on a possible execution path through the program, while a conservative dependence exists when the
analyzer cannot disprove a possible execution path’s existence. A conservative dependence is false when the
analyzer cannot disprove its existence, but the pair of variable references do not access the same memory
location.

When a dependence is selected, the text of the source and sink are identified in the editing window. View
filtering allows the programmer to display only certain dependences in the loop, such as all dependences on
a particular variable. Users may also edit the dependence information by deleting dependences which may
have arisen from the analyzer’s overly conservative assumptions. Dependences can be deleted individually,
or by describing them using the view filtering mechanism. In some cases, dependence deletion will eliminate

all loop-carried dependences, allowing for loop parallelization.

2.4 Variable Classification

A private variable is defined and used during the same loop iteration. Thus, the variable’s value during one
loop iteration is independent of its value during other iterations. Correctly identifying these variables aids
loop parallelization. The compiler can locate private variables, such as loop index variables, using KILL
analysis [ASU86, Cal88], which, like dependence analysis, is conservative. A shared variable’s value during
one loop iteration does affect its value during other iterations.

The variable display allows the user another mechanism to communicate with the compiler. The variable
pane, displaying a table of variables, shows each variable’s name, dimension, common block if applicable, and

shared or private status. In addition, the variable’s definitions reaching the loop or uses outside the loop are



presented to understand its use in the rest of the program. The user, using his knowledge of the program,
may edit a variable’s shared or private status, possibly enabling parallelization by eliminating remaining

loop dependences.

2.5 Transformations

PED provides a number of interactive structured transformations enhancing or exposing a subroutine’s
parallelism. Transformations are applied according to a power steering paradigm: the user specifies the
transformations to be made, and the system provides advice and carries out the mechanical details. The
system advises whether the transformation is applicable (makes syntactic sense), safe (preserves the semantics
of the program) and profitable (contributes to parallelization). The transformations’ complexity makes their
correct application difficult and tedious. Thus, power steering provides safe, profitable and correct application
of transformations, incrementally updating the dependence information.

PED supports a large set of transformations proven useful for introducing, discovering, and exploiting
parallelism and for enhancing memory hierarchy use. These transformations are described in detail in
the literature [ACT2, ACK87, AK87, CCK90, KKLW84, KM90, KMT91b, Lov77, Wol86)]. Figure 1 shows a
taxonomy of the transformations supported in PED.

Reordering transformations change the order in which statements are executed, either within or across
loop iterations. They are safe if all program dependences in the original program are preserved. Reordering
transformations are used to expose or enhance loop-level parallelism. They are often performed with other

transformations to structure computations in a way that enables useful parallelism to be introduced.

Reordering Transformations-

Loop Distribution Loop Interchange
Loop Skewing Loop Reversal
Statement Interchange Loop Fusion

Dependence Breaking Transformations

Privatization Scalar Expansion

Array Renaming Loop Peeling

Loop Splitting Loop Alignment
Memory Optimizing Transformations

Strip Mining Scalar Replacement

Loop Unrolling Unroll and Jam

Miscellaneous Transformations

Sequential « Parallel Loop Bounds Adjusting
Statement Addition Statement Deletion

Figure 1 A taxonomy of the transformations supported in PED.
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Figure 2 The ParaScope Editor.




Dependence breaking transformations eliminate specific dependences that inhibit parallelism. They intro-
duce new storage, eliminating storage-related dependences, and convert loop-carried dependences to loop-
independent dependences.

Memory optimizing transformations adjust a loop’s balance between computations and memory accesses
to make better use of the memory hierarchy and functional pipelines. These transformations have proven to

be extremely effective for both scalar and parallel machines.

2.6 The New PED User Interface

Early in PED’s development, a group consisting of experts in compilers, applications and human interfaces
designed a more powerful and effective interface to the program information [FKMW90]. The new interface,
implemented concurrently with changes to the editor’s analysis and transformations, is in the process of being
integrated with the rest of PED. Demonstrated but not used during the workshop, the interface addressed
many of the workshop attendees’ suggestions.

In the new interface, color and graphics convey dependences more visually. For example, red arrows
appear in the source code between the source and the sink of a dependence appearing in the dependence
pane. With the view filtering mechanism, the programmer may view an individual dependence or collection
of dependences in this way, such as all dependences involving a particular variable or a particular statement.
View filtering has been extended to filter information in the variable pane as well.

A new dependence marking feature allows the programmer to designate dependences as “accepted,”
“rejected,” or “pending,” with an opportunity for the programmer to provide a reason for the designation.
Thus, the system differentiates dependences that have already been considered, and programmer-supplied
comments remind the programmer why the designation was made. A sample screen from the new interface

appears in Figure 2.

3 The PED Work Model

Our work model to parallelize Fortran programs consists of four distinct steps: profiling the code, importing
the code, analyzing the code, and examining the analysis information to make modifications that expose

parallelism.

3.1 Profiling the Code

First, run-time profiling pinpoints the routines in which the program spends most of its time. This infor-
mation suggests the important loops in the program and the ones that should be parallelized if possible.
Many systems provide profiling facilities, although at present, PED does not. For most of the workshop

participants, the standard UNIX profiler provided sufficient information.



3.2 Importing Source Code

All code is entered into the ParaScope database in order to convert it into ParaScope’s internal abstract
syntax tree in preparation for analysis. During parsing, the code is automatically checked for syntactic
correctness. If there are errors, the user corrects them before analysis can be performed. These errors are
fairly common since the language recognized by Fortran 77 compilers varies greatly. The editor facilitates
error correction by emboldening incorrect lines and annotating them with a message.

After all of the program’s subroutines have been imported, they must be gathered together in a com-
position, a specification of the modules comprising an entire executable program [CKT*86b]. During the
building of the composition, the composition editor checks procedure calls to ensure that actual and formal
parameters are consistent in number and type, and that each procedure is defined by exactly one module.
If the composition editor finds any serious errors, the user edits the erroneous source to fix the error before

any dependence analysis takes place.

3.3 Analyzing the Code

Once a composition has been built and syntactic errors have been removed, the user requests dependence
analysis. PED includes a preliminary implementation of dependence analysis. In addition, dependence
analysis calculated by PFC may be obtained in PED [AK84]. PFC, a research tool developed at Rice
beginning in 1979, automatically converts sequential Fortran to parallel or vector form. The tool is more
mature and provides more precise and robust dependence information; for the most part, PFC analysis was
used during the workshop. When PED’s analyzer is completely implemented, analysis will be performed by
invoking ParaScope’s program compiler to perform dependence analysis on the whole program [CKT86a,
CKT+*86b, Hal91, Tor85].

3.4 Exposing Parallelism

The previous three steps in the work model are useful and necessary for the final stage, using the analysis
generated thus far inside PED to expose parallelism. At this point, the user invokes PED on subroutines
that profiling has indicated as a target for attention. The loops in these subroutines are prime candidates
for parallelization because of their significant effect on execution time. The user may use editor buttons to
iterate through each loop in the module or the mouse to select a particular loop. Either way, the current
loop’s dependences are displayed.To expose parallelism, the user may either delete dependences, reclassify
variables or perform source transformations.

Dependences that can be eliminatedusually result from conservative assumptions made during dependence
analysis. Using knowledge about the subroutine, the user can often delete conservative dependences and
locate variables that can be made private. Again, conservative analysis may mark a variable as shared

although the user knows its values during different loop iterations are independent.



Dependences that prevent parallelism can sometimes be avoided by transforming the source inside PED.
PED provides a number of structured source transformations that can be performed automatically. The
user need only select the transformation desired. PED then determines the safety of the transformation, the
expected profitability, and the degree to which the code should be modified (for example, in loop unrolling,
the editor computes the most profitable number of iterations to unroll).

If dependences still exist after all of the above techniques have been tried, the loop is probably not
parallelizable. At this point, the user can completely rewrite this section of code or continue to examine

other loops.

4 TUser Observations

4.1 Users and Their Programs

For the workshop, eight researchers from research laboratories and industry each brought at least one For-
tran program to analyze. The participants and their areas of interest are listed in the table below. Both
Doreen Cheng from NASA Ames Research Center and Marcia Pottle from Cornell Theory Center were fa-
miliar with PED and other parallelization tools. Doreen had evaluated many parallelization tools including
Forge [For90], an interactive parallelization tool produced by Pacific Sierra; the Cray fpp autotasker [Cra],
an automatic parallelization tool for Cray computers; and PED [CP91]. Marcia has taught training classes
for parallel programming tools. After attending a similar PTOOL workshop at Rice several years previously,

she developed a PTOOL presentation given at several user training workshops.

Mary Zosel
John Engle

Ralph Brickner

Doreen Cheng
Roy Heimbach

Marcia Pottle

Lo Hsieh
Steve Poole

Lawrence Livermore National Laboratory

Lawrence Livermore National Laboratory
Los Alamos National Laboratory

NASA Ames Research Center

National Center for Supercomputing Ap-
plications

Technology Integration Group, Cornell
Theory Center

IBM Palo Alto Scientific Center

IBM Kingston

parallel architectures and performance
parallel programming environments and
compilation

Connection Machine applications and
communication library

evaluating parallelization tools

software for parallel programming devel-
opment

mainframe coprocessing and parallelism
tools

designing parallel debugging tools

evaluating parallelization tools

Table 1 PED Workshop Participants, Their Affiliations and Their Interests.

The participants contributed the small to medium-sized Fortran programs shown in Table 2. Two pro-
grams neoss and nxsns were Fortran II codes containing Cray compiler directives to force parallelization. The
code for spec77 included both a vector version for IBM 3090 mainframes and a hand-coded parallel version.

The program arc3d is a three-dimensional version of a two-dimensional Perfect benchmark program.



Program Description Contributors Lines Modules

neoss thermodynamics code Mary Zosel, John Engle 350 5
nxsns quantum mechanics code Mary Zosel, John Engle 1400 11
pueblo3d hydrodynamics benchmark program Ralph Brickner 4000 50
arc3d 3-D hydrodynamics code Doreen Cheng 3600 25
slab2d 2-D severe storm fluid flow prototype Roy Heimbach 550 9
slalom benchmark program Roy Heimbach 1200 13
dpmin molecular mechanics and dynamics program Marcia Pottle 5000 52
spec?7 weather simulation code Lo Hsieh, Steve Poole 5600 67

Table 2 Programs Analyzed and Parallelized During the Workshop.

Two independent researchers also evaluated PED. Joseph Stein, a physicist from Hebrew University,
visited the CRPC at Syracuse University for a year to learn about parallel programming tools. Also,
Katherine Fletcher, a graduate student at Rice University, spent several weeks at NASA Ames Research
Center working with Doreen evaluating ParaScope, Forge, and the Cray fpp autotasker [CP91].

Joseph compared the ability of a large number of tools, including PFC and PED, to parallelize the
following programs:

hyd: a 500-line hydrodynamic code that simulates a shock tube;

[ ]

dyna: a 4000-line 1-dimensional astrophysical code;

o tfss: a 4000-line code that calculates thermodynamic parameters for a 2-dimensional Thomas-Fermi
quasi-molecule in hot plasma;

e kwech: a small code to compress ASCII data.

Katherine and Doreen tested PED on a fast Fourier transform code with 770 lines of source, a structural
mechanics code with 720 lines, and a computational fluid dynamics code with 3600 lines. Trying to generate
fast Cray parallel source code, they evaluated the tools’ dependence analysis, quality of the user interface,

and functionality. Joseph and Katherine’s experiences are incorporated with the others’ comments.

4.2 TUser Interface

Working with users enabled us to evaluate the strengths and weaknesses of the current PED user interface.
The primary strength is that PED reflects the results of compiler analysis with visual annotations in the
source code pane. Katherine contrasted PED’s interface with Forge’s, which provides a number of discrete
functions with separate interfaces that are difficult to relate to each other or the source code. The workshop
participants easily learned how to use the dependence editing facility. The view filtering capabilities, which

filter classes or instances of dependences and source level instructions, allowed the participants to concentrate

10



when the loop carried a large number of dependences. Finally, the easily accessed on-line help facility was
found to be especially useful for new users.

While the workshop participants were comfortable with editing dependences, they had difficulty finding
dependences in the source pane. They wanted dependences graphically displayed and better navigation
support, problems addressed by the new user interface [FKMW90]. However, the users requested graphical
presentations of the program’s call graph, interprocedural search/replace and interprocedural dependence

navigation, features that are not available in the new interface.

4.3 Analysis

The workshop participants were quite pleased with the dependence analyzer. Dependence analysis supports
source transformations. The participants agreed that the dependence information available was excellent,
and they found the fact classifying dependences as exact or conservative was extremely helpful.

In particular, they found the information and precision provided by interprocedural analysis to be very
useful. Interprocedural regular section analysis, which determines the subsections of arrays used and defined
across procedure calls [HK91], was essential in determining if loops containing calls could be made parallel.

The dependence analyzer can be improved. Array kill analysis would eliminate a number of false depen-
dences and could be used to determine if arrays can be made private. For example, in Figure 3, array THP
is completely redefined, i.e., killed, on each iteration of the outer loop. Thus, the user may parallelize the
outer loop and treat TMP as a private array.

Reduction operations that sum all elements of an array, or find the maximum or minimum value of an
array, occur frequently in scientific codes. PED’s current inability to recognize and parallelize such reduction
operations was problematic for several users. Analysis of index arrays and auxiliary induction variables needs
to be improved.

Much of the analysis is for internal use and is not intended for displaying. Several people expressed

interest in having better access to this existing analysis. An example is constant propagation. Users wanted

DO I=1, 1000
DO J=1, 100
TMP(J) = B(3,I) * C(3.])

D@ ,I) = TMP(J) + E(3.D)

ENDDO
ENDDO

Figure 3 Example of an array kill.

11



to know variable values, or ranges of possible values, when determined by symbolic analysis. This information
would allow the user to know the number of iterations a loop would execute. Some information could be
added to the variable pane, removing the need to check initial parameter statements in another module.

Similarly, some users wanted internal dataflow information in order to browse definition-use chains.

4.4 Dependence Editing

Joseph Stein discovered dependences unnatural paradigm for understanding parallel programs. A loop may
carry a large number of dependences. A large list is difficult for a programmer to work through, particularly
if little information describing the dependence is provided. For example, it would be useful to know under
which conditions two references result in a dependence. It may depend on the possible values of some input
variable, and the user may be able to provide knowledge proving the dependence does not exist.

A further problem with the dependence paradigm is it fails to capture the reasons behind the user’s belief
that a dependence does not exist. While the user can add a comment accompanying the dependence, this
information is not available to the system. Thus, after program edits and reanalysis, it is difficult for the
system to map deleted dependences in the previous code to calculated dependences in the current version.
As a result, many deleted dependences reappear and the programmer must delete them again.

Alternatively, Joseph suggests dependence deletion occur by using user-defined assertions. These asser-
tions are added to the program text, and the analyzer uses the assertions to rule out dependences during
reanalysis. He would also like the option to test the assertions at run-time, as a debugging strategy.

Joseph’s suggestions were presented in the introductory talks at our workshop. During their hands-on
sessions, most participants expressed a desire to utilize an assertion facility, and we are currently planning an
implementation. It is interesting to note that many assertions deal with variables and aggregate treatment

of arrays. While similar to dependences, the focus on variables provides a higher level paradigm.

4.5 Transformations

Overall, the workshop participants seemed impressed by PED’s support of a large number of powerful program
transformations. They appreciated the automatic approach that frees the user from the tedious details of
performing a transformation while indicating the applicability, safety, and profitability of a transformation.
However, the participants were not without suggestions for improvements.

One complaint that was echoed by most of the workshop participants was that, although PED has many
useful and powerful transformations, there was no guidance in selecting which transformations to apply. As
a result, only a few of the available transformations were actually used during the workshop. It would be
desirable for PED to provide a list of suggested transformations on demand.

A few additional transformations should be incorporated, including array ezpansion and reductions. Just
as a scalar may be expanded into a one-dimensional array, any array should be able to be expanded into

an array with one more dimension. More importantly, PED should locate reduction operations, followed by

12



either automatic or user-driven handling of these reductions when it is possible for them to be removed from
a loop. Such a transformation could be explicit or implicit, simply by marking the reduction statement,
hiding its dependences, and transforming the code before output.

Transformations to assist the conversion from Fortran II and Fortran 66 code to structured Fortran 77
syntax would have been useful. Simply changing IF-GOTO constructs into the appropriate IF-THEN-ELSE or
DO-ENDDO would significantly aid the user in understanding code written in other versions of Fortran. Also,
since the dependence analyzer can become confused by some of the old syntax, such transformations could

improve dependence detection.

4.6 Profiling

Many of the workshop groups examined run-time performance profiles to identify the principal computational
procedures. This focused the parallelization efforts on less than five procedures within each program, each
generally containing only one or two loop nests.

Doreen Cheng, having analyzed arc3d using FORGE, brought some of FORGE’s profiling information to
the workshop. It included such things as the number of iterations of each loop during the profiling run and
the total amount of time spent in each loop. We agreed that such information would be very useful to have
available in PED, especially with navigational support to automatically visit the most important loops or
other annotated locations.

Although they found FORGE’s profiling information useful, Katherine and Doreen disagreed with the
assumption made by FORGE’s code generator that parallelism should be introduced whenever possible. This
assumption does not consider that the overhead associated with parallelizing a loop may significantly increase
the execution time of the loop. They suggested the addition of either compile-time performance estimation
or run-time tests, in order to introduce only profitable parallelism.

To effectively parallelize a program for a specific architecture, the new PED must have some facility for
estimating the program’s performance of a program on the target ~machi_ne. Performance estimation requires
that the user specify a target and it’s'performance model to be used in deciding which transformations to
suggest to the user. Over the past year, we have been experimenting with performance estimation following

this guideline, and we are currently incorporating it into PED.

5 Improvements and Additions: A Summary

As a result of the workshop, we have developed design goals for a new version of PED, which should be
substantially more usable than the current tool. In addition to the completion of projects that are in
progress, such as the complete dependence analysis implementation, the recognition of reductions and the

production of a manual, we believe the following features should be included:
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5.1 Improved Analysis

An important part of determining whether a loop can be run in parallel is identifying variables that can be
made private to the loop body. The dependence analysis performed by PFC during the workshop identified
private scalar variables using KILL analysis. The consensus of the workshop was that it is also necessary
to identify private array variables. Other experience also suggests that KILL information on arrays, both
interprocedural and intraprocedural, is important in parallelizing existing applications (EB91b, SHI1].

Computing KILL information is more complex for arrays than for scalar values. In practice, some simple
cases arise in loops that are easier to detect than the general case. For example, many initialization loops
have the property that they define every element of an array A, and no element is referenced before its
definition. In this case, the compiler can conclude that A is killed by the loop. If the loop either contains a
procedure call or is called from within a loop where the KILL information would be useful, then the compiler
needs interprocedural KILL information. We plan to explore methods for approximating both kinds of KILL
sets, based on interprocedural regular section analysis.

Proper handling of reduction operations is very important in any parallelizing compiler or tool. We plan
to add this capability to PED in two steps. First, PED will identify reduction operations by analyzing cycles
in the dependence graph. All dependences that originate from a reduction will have a special indicator
signifying that they can be removed by a reduction transformation. View filtering will be enhanced to allow
these dependences to be masked out. Second, when the user requests a reduction transformation, PED will
privatize the scalar involved in the reduction, and then generate a separate loop to combine the results of
all the private copies. Alternatively, the reduction transformation will be applied implicitly when a user
attempts to parallelize a loop whose only loop-carried (i.e., parallel preventing) dependences arise from a
reduction operation.

Currently being implemented in PED is a robust symbolic analysis system. This system will provide more
precise dependence testing of array subscripts that contain symbolic expressions. The analysis will also be
used in answering user queries on the value of variables and expressions.

Finally, regular section analysis will be made more precise. Not only will the analysis be enhanced by
using improved algorithms and the symbolic analyzer, but the regular sections will be marked as exact
or conservative. Exact fegular sections will be very important in performing KILL analysis for arrays. In
addition, interprocedural dependence analysis will be markedly improved by using more precise regular

sections.

5.2 Guiding Program Transformation

In addition to dependence analysis and transformations, PED users need guidance to know where to focus
their attention when introducing parallelism. Performance information, supplied by performance estimation,

profiling or performance visualization, identifies computationally intensive loops. As described in section 4.6,
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most users relied upon sequential profile information to find these loops. Internally, PED will have access to a
static performance estimation facility based on the training set methodology [KMM92, BFKK91]. Although
the static estimate is less precise than using run-time profiling, static estimation eliminates the need for
cooperation between the run-time system and the compiler, and the results are independent of input data
sets. With performance estimates annotating the loops in the program representation, PED will direct the
user to the important loops in the program.

Performance estimation can also guide the user in transformation selection. The current PED uses a
paradigm that might be referred to as “power steering.” The user selects a transformation and the system
then performs that transformation correctly. The system provides no assistance to the user in the form of
suggestions about which transformations to try. To correct this deficiency we plan to build a prototype au-
tomatic source-to-source parallelizer for shared-memory multiprocessors. Using performance estimation and
other interprocedural information to guide transformation selection, the parallelizer will apply a combination
of interprocedural transformations and parallelism-enhancing transformations to produce an initial paral-
lel program [McK92, KMM91, KM92]. If the user requires additional performance they may interactively
transform the code using information collected during automatic code generation. The compiler’s loop-based
algorithms and static performance estimates will also be available as program annotations to help find the
best combination of transformations to apply.

In addition to performance estimation, we are also investigating incorporating performance visualization
into ParaScope, to present profiling information to the user in a visual manner. We have incorporated
one such package into ParaScope, upshot by Rusty Lusk at Argonne National Laboratories. We are also
collaborating with Dan Reed at University of Illinois at Urbana-Champaign to interface with the Pablo
system. These systems require that ParaScope provide an interface for users to indicate what code to

visualize and then instrument the source code with calls that trace the events of interest at run-time.

5.3 Assertions

In the current PED, the user explicitly deletes dependences. This mechanism is awkward because it does not
convey to PED the reasons behind the user’s belief that a dependence does not exist. Two problems with
this paradigm that became visible during the workshop are: redeletion of dependences after general editing
and reanalysis, and tedious deletion of multiple dependences for the same reason.

A better system would be to have assertions that annotate the source code and eliminate dependences.
Under this scheme, the user would be prompted to produce a reason for eliminating dependences, this reason
could often be tested at run time. Further, by making the assertions part of the program, the system may
derive the information necessary to recover dependence deletions following edits. The user is held responsible
for maintaining the validity of the assertions.

Joseph Stein suggested that we incorporate the following user assertions in PED:

e variable_is_defined((s)): scalar s is always defined by the current loop.
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o variable_in_range ({s.7)): range of a scalar s is r.

o array.is_defined({a.r)): range r of array @ is defined.

e array_is_undefined({a.r)): initial values for array a in range r are not needed by the current loop.

o error_exit: placed before a loop exit, this suggests a path that should not be considered by analysis.

These assertions provide a higher level interface to dependence deletion. Through them the user can convey
to PED the reason for deleting a dependence. This information may then be used automatically to refine
other dependence tests, avoiding repetitive deletion by the user.

We intend to build a facility in ParaScope to enable users to make assertions that can be incorporated
into dependence testing. The assertion language should include information about variables, such as value
ranges, and will use the new symbolic analysis system being built for ParaScope. In addition, the language
will allow a description of the interprocedural information used to support the annotation. This is discussed

further in the following section.

5.4 Supporting Whole Programs

One of the distinguishing features of Parascope is the extensive interprocedural analysis information provided.
We would like to further exploit this advantage by enabling PED to be invoked on a module in the context

of a containing program. The power of this mechanism is illustrated with three examples.

Interprocedural navigation. PED’s approach of associating all analysis information with its correspond-
ing source code provides a convenient way of making changes when parallelism-inhibiting code is located. A
particularly useful feature is the ability to navigate between endpoints of a dependence, a feature added in
PED’s new interface. However, it is still only possible to navigate within the body of the module.

With the program context and interprocedural information available, the tool can navigate dependences
that reach other procedures. This feature allows the user to see the actual statements causing the dependence,
greatly simplifying code understanding and changes. This same approach could be used in displaying other

interprocedural information, such as the previous definition or next use of a variable.

Interprocedural transformations. ParaScope’s existing interprocedural compilation system provides in-
line substitution as a source transformation to replace a call with the body of the invoked procedure (CHT91].
An prototype version of ParaScope contains an implementation of procedure cloning, another source trans-
formation that replicates a procedure and reassociates its callers in order to tailor optimizations on the
procedure body to different calling environments [CHK92]. Recent research has established the usefulness
of interprocedural transformations other than inlining and cloning [HKM91, McK92]. In particular, moving
a loop into or out of a procedure invocation may enable application of parallelizing transformations such as

loop interchange and loop fusion.
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Since all of these transformations cross procedure boundaries, it is difficult for the user to apply them. The
program context provides the necessary information to apply the transformations automatically. Moreover,
interprocedural information can indicate whether these transformations will enable further parallelization;

the system can often detect what transformations are applicable and guide the programmer in their use.

Reanalysis after global changes. PED’s current incremental analysis is designed to support updates in
response to changes during a single editing session. This approach does not address the more difficult issue
of updating after global program changes. The user might make an editing decision based on interprocedural
information when designating a loop as parallel, adding assertions, or applying transformations.

The compiler can sometimes verify a loop designated as parallel if the sequential version contains no
loop-carried dependences. However, in most cases it is impossible for the system to understand what in-
terprocedural information might have been used by the programmer. For this purpose, we could include
in the assertion language assumptions about interprocedural information. In this way, the user informs the
system what interprocedural information is important, and the system warns the user when this information
changes. In determining the safety of program transformations, the system may rely on interprocedural
information to make decisions. The system should record any interprocedural information used to prove
transformation safety. Then on a subsequent editing session, the system compares the current interproce-
dural information with that stored from the previous session and warns of any changes that might have
invalidated transformations. The programmer is responsible for determining the effects of these changes on

the meaning of their program.

6 Related Work

The interactive tool FORGE also assists conversion of a sequential Fortran program into a parallel version.
Distributed by Pacific Sierra, the tool generates a run time profile and then performs dependence analysis.
Using the profile information, the user assists the compiler by removing false dependences and parallelizing
loops. In the resulting parallel version, all parallel loops are converted to DO ALL loops.

Several other research groups are also developing advanced interactive parallel programming tools. PED is
distinguished by its large collection of transformations, the expert guidance provided for each transformation,
and the quality of its program analysis and user interface. Below we briefly describe SiaMacs [SG90], PAT
[SA88], MiMDIzER [Hil90], and SuPERB [ZBG88], placing emphasis on their unique features.

SIGMACS is an interactive emacs-based programmable parallelizer in the FAUST programming environ-
ment. It utilizes dependence information fetched from a project database maintained by the database server.
Sigmacs displays dependences and provides some interactive program transformations. Work is in progress
to support automatic updating of dependence information after statement insertion and deletion. FAUST

can compute and display call and process graphs that may be animated dynamically at run-time [GGJ*+89].
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Each node in a process graph represents a task or a process, which is a separate entity running in parallel.
FAUST also provides performance analysis and prediction tools for parallel programs.

PAT can analyze programs containing general parallel constructs. It builds and displays a statement
dependence graph over the entire program. In PaT the program text that corresponds with a selected portion
of the graph can be perused. The user may also view the list of dependences for a given loop. However, PAT
can only analyze programs where only one write occurs to each variable in a loop. Like PED, incremental
dependence analysis is used to update the dependence graph after structured transformations [SAS90].
Rather than analyzing the effects of existing synchronization, PAT can instead insert synchronization to
preserve specific dependences. Loop reordering transformations such as loop interchange and skewing are
not supported.

MIMDIZER is an interactive parallelization system for both shared and distributed-memory machines.
Based on FORGE, MIMDIZER performs dataflow and dependence analysis to support interactive loop trans-
formations. Cray microtasking directives may be output for successfully parallelized loops. Associated tools
graphically display control flow, dependence, profiling, and call graph information. A history of the trans-
formations performed on a program is saved for the user. MIMDIZER can also generate communication for
programs to be executed on distributed-memory machines.

Though designed to support parallelization for distributed-memory multiprocessors, SUPERB provides de-
pendence analysis and display capabilities similar to that of PED. SUPERB also possesses a set of interactive
program transformations designed to exploit data parallelism for distributed-memory machines. Algorithms
are described for the incremental update of use-def and def-use chains following structured program trans-

formations [KZBG88].

7 Conclusions

This paper has reported experiences using the ParaScope Editor, an interactive tool for constructing shared-
memory parallel programs. As a result of these efforts, we learned what features provided by the tool were
important and exposed further areas of improvement.

Several interesting research issues came to light during this process. In particular, we learned that
making assertions about variable values is more natural and useful than explicit dependence deletion. Second,
transformations are difficult to use without more guidance about when they are applicable. Third, in addition
to the extensive compiler ahalysis currently in ParaScope, array kill analysis and reduction recognition also
need to be incorporated. The users also wanted access to more of the compiler analysis, presented in the
context of the corresponding source code.

An interactive programming tool such as PED can be a powerful program development aid if it is able
to filter the large volume of information computed by the compiler to a form that a knowledgeable user

can exploit. Although the ParaScope Editor focuses on optimizing programs for shared-memory parallel
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architectures, the notion of exposing compiler analysis to the programmer can enhance performance tuning

for a variety of architectures.
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