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1 Introduction

A simplified model which governs many physical processes such as seismic and acoustic wave
propagation is the following linear acoustic wave equation:

(cia—z—A—Va-V)u=f, (1.1)

where o = o(z) is the logarithm of the density, ¢ = ¢(z) is the sound speed of the medium,
and f = f(z,t) is the source term which introduces the energy to the problem. If o, ¢
and f are given along with appropriate side conditions, the forward (or direct) problem is
to determine u = u(z,t), the excess pressure. For appropriate choices of o,¢ and f, uis
determined uniquely by standard linear hyperbolic theory of partial differential equations
(p-d.e.). Thus the problem stated above defines a map from the coeficients to the solution
of the wave equation. In this paper, we study an aspect of the regularity of this map, or
rather its composition with the trace on a time-like hypersurface.

Throughout this work we shall restrict ourselves to the special case of constant velocity
¢, though we believe that the ideas in this work may be extended to cover some more general
cases.

To fix the ideas, write z € IR™ as (', z,), where 2’ € IR*"!, z, € IR. We assume that the
problem is set in the whole space R" and u = 0 in the past (¢ < 0). Take f(z,t) = 8(z,t)
as an ideal point source. This assumption seems reasonable when the spatial extent of
the source is much smaller than a typical wavelength and all frequency components to be
measured are present in f. More explanations on the validity of these assumptions may be
found in Symes [25]. Thus u is actually the retarded fundamental solution. We then have
the following simple model:

Ou — Vo-Vu=§(z,t), (z,t)e R* xR (1.2)
u =10, t<0, . (1.3)
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where O is defined to be 0} — A, and A is the Laplacian.
Define the forward map F as:

F:o— (¢u) |z=0, (1.4)

where ¢ € Cg°(IR™*!) is supported inside the conoid {t > |z|} and near{z, = 0}. The reason
for introducing this cut-off function, ¢(z,t), is that we want to make sure the restriction of
distribution u to the hypersurface {zn = 0} is well defined even though the equation (1.1)
has a singular right-hand side.

Because F' is nonlinear, one wants to work with the formal linearization (or formal deriva-
tive) DF, with respect to the reference state (00, uo), defined by first order perturbation
theory (Born-approximation). We then have the following linearized problem

Oéu — Voo Véu= Vo - Vu, (1.5)
bu = 0, t<0. (1.6)

The formal derivative DF(oy) is given by
DF(00)b0 = (¢pbu) |z =0 - (1.7)

It is our main goal in this work to determine the appropriate spaces of the domain and range

of F for which
the formal derivative DF is bounded.

We believe that similar analysis will lead to the continuity or even differentiability of F.

The study of this map is motivated by the inverse problem which arises in reflection seis-
mology, oil exploration, ground-penetrating radar, etc. Mathematically, the inverse problem
is to determine the coefficient o by knowing additional boundary value conditions of u. Since
the inverse problem is just to invert the functional relation F , we are naturally interested in
all the properties of this forward map.

To understand the problem, let us look at a simple exploration seismology experiment:
Near the surface of the earth, a seismic source is fired at some point (point source). The
seismic waves propagate into the earth. Since the earth’s structure varies (as do its physical
properties) part of the energy of the wave will be reflected back to the surface and can be
measured. The inverse problem is to deduce the interior properties of the earth from the
recorded data.

A simple model of this reflection seismic inverse problem in this context is: given data
Fiata(2', ), find a coefficient o(z) so that

F(U) = Fdata

or perhaps minimizing the error (Fy, — F(0)) in some norm.

A natural problem of mathematical and physical importance is to pursue the right models
so that the reflected waves they generate carry sufficient information for determining the
physical properties of the medium. By the theory of geometric optics, the models which are
too smooth (i.e., the coefficients o and ¢ are smooth) on the wavelength scale do not generate
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reflected waves. On the other hand, no energy penetrates extremely oscillatory media, hence
models that are too rough generate no reflected waves.

Another important reason that one wants to work with nonsmooth models comes from a
computational point of view. It is clear that to solve inverse problems numerically requires
efficient minimization algorithms. By far, the most efficient minimization algorithms are
Newton-type algorithms. According to the infinite dimensional optimization theory (see
e.g. Kantorovich and Akilov [14]), in order to formulate any effective convergent Newton-
type algorithm, one has to study the problem in a Banach space. Moreover, dealing with
minimization problems, the best available results are perhaps those for Hilbert spaces. Note
that even though C'*-topology induces countable semi-norms, it is not a Banach space. At
this point, we do not know any effective convergent Newton-type minimization algorithm in
a non-Banach space. Besides, it is natural to use the weakest norm and the biggest possible
space of models.

When the spatial dimension is one or ¢ and o depend only on z, (layered problem) there
is a large literature available. For a similar problem in which the medium was assumed to be
excited by an impulsive load on the surface {z, = 0} instead of point sources, the properties
of the forward map have been studied fairly satisfactorily by Symes and others (see Symes
[23] for references). It was shown by Symes that, for the constant wave speed case, the
forward map defines a C'—diffeomorphism between open sets in certain Hilbert spaces by
applying the method of geometrical optics together with energy estimates.

When the spatial dimension n > 1 and ¢, o depend on all space variables (nonlayered
problem), very little is known in mathematics. Symes [21, 22], Sacks and Symes [19], Rakesh
[17], and Sun [20] have some partial results. The difficulties are essentially due to the
ill-posed nature of the timelike hyperbolic Cauchy problem and the presence of nonsmooth
coeflicients. For the one dimensional wave equation, both coordinate directions are spacelike,
which indicates that the problem is hyperbolic with respect to both directions. Apparently,
this is not the case when the spatial dimension is larger than one.

Rakesh in [17] looked at a related linearized velocity inversion problem with constant
density and point sources. Assuming smooth background velocity, he obtained some results
on both upper and lower bounds for the linearized forward map. The essential observation in
Rakesh’s work is that DF is a Fourier integral operator (see also Beylkin [7]). Unfortunately,
the calculus of Fourier integral operators employed in Rakesh’s work is not applicable to the
nonsmooth reference velocity case since the linearized forward map is a Fourier integral
operator only when the reference velocity is smooth.

In [21], Symes gave a pair of examples, based on the geometric optics construction, which
show that both DF(1) and DF(1)! are unbounded for a slightly different problem. As the
examples show, within the Sobolev scales no strengthening or weakening of topologies of the
domain and range can make both DF and DF~! bounded. This fact also implies a strategy
of regularization: Change the topology in the domain so that DF becomes bounded, then
ask for optimal regularization of DF~! in the sense of best possible lower bound estimate
for DF. In both examples of Symes, the unboundedness was caused by rapid oscillation of
o in the z’-direction or the tangential directions, hence the problem is actually “partially
well-posed”, i.e., only more smoothness of the coefficients in tangential directions (essentially



grazing ray directions) will be required to cure the difficulty. This might be the main reason
the anisotropic Sobolev spaces H ™*(IR™) or Hérmander spaces, were introduced in [19] and
[20].

In Theorem 4.1 of [19] Sacks and Symes showed by using the method of sideways energy
estimates that for a linearized density determination problem with constant velocity and
plane wave sources, DF is bounded from H'! to H!, provided the reference coefficient is in
H'* for some s > n + 2. They also proved the injectivity of DF. However, as they pointed
out, the lower bound for DF was not that satisfactory. Our techniques and results are quite
different from theirs. We intend to assure the optimal regularity of the timelike trace under
weaker hypotheses. ‘

There remains an extremely important issue to be addressed, namely,

What is an appropriate space for the domain of DF ?

In 1983, Symes suggested that microlocal restrictions on the coefficients might regularize
the inverse problem (see [22] and [24]). In some sense, this was confirmed by Bao and Symes
[2] where we were able to prove a trace theorem for the solutions of general linear p.d.e. with
smooth coefficients. Roughly speaking, our theorem asserts that the solution will belong
to H* along a codimension one hypersurface if it belongs to H* in a neighborhood of the
hypersurface and to H*+! microlocally in those directions where the p.d.e. is not microlocally
strictly hyperbolic. Note that we gained back the half derivative from the standard trace
theorem. In a recent paper [3], we proved a similar time like trace regularity result for
a second order hyperbolic equation with nonsmooth coefficients. It is obvious that the
presence of nonsmooth coefficients will introduce new singularities to the solutions so that
only limited initial regularity can be propagated. A crucial step in [3] was to develop an
extended Beals-Reed theorem (Theorem 1 in [6]) on propagation of singularities.

The main result of this paper is a boundedness theorem for the linearized forward map
DF(0o) for the (sufficiently regular) nonsmooth ¢p. The main ingredients of our proof are
the method of energy estimates, a regularity study of the fundamental solution, results on
propagation of singularities, several trace regularity results, and a useful dual technique.

The plan of this paper is as follows. In Section 2, a regularity theorem for the solution
of the model problem is established by applying the method of progressing wave expansions
inside the characteristic surface. A simple energy identity plays a crucial role in our analysis:
It indicates that the regularity result can be established by analyzing the regularity of the
transport equations.

Section 3 is devoted to the proof of our main theorem. A crucial step is to analyze the
propagation of regularity for solution of a problem dual to the linearized problem. In this
process, a microlocal version of the classical trace theorem is introduced. It is also important
to derive an estimate out of the result on propagation of singularities.

Notation. Throughout this paper, the reader is assumed to be familiar with the basic
calculus of Pseudodifferential Operators (“ v.d.o. ") as stated in Taylor [26] or Nirenberg
[16]. A classical 1.d.o. P of order m is denoted as P € OPS™ with its symbol p € S™.
ES(P) stands for the essential support of operator P. W F(u) denotes the wave front set
of a distribution u. H* is the standard L?-type Sobolev space and H} . means a local
Sobolev space. (£) means (1 + |£|?)}/2. For a nice discussion on microlocal Sobolev spaces



H* 0 H ,(20,&0), we refer the reader to Beals [5], see also Rauch [18]. For simplicity, C
serves as a generalized positive constant the precise value of which is not needed.

Warning. When the reference density oy is smooth, most of the regularity results for
the forward map in this work will follow more easily from the calculus of Fourier Integral
Operators. For a standard text on F. I. O. we refer to Duistermaat [10] or Hérmander [12].
However, this technique fails with the appearance of the nonsmooth reference density, an
assumption important in this work.

2 Regularity of Fundamental Solution

Since the excess pressure u in the model equation is in fact the fundamental solution, in
order to study the regularity of the forward map, the regularity of the fundamental solution
must be understood. It is evident that the real obstacle here is the singular right-hand side
so that none of the propagation of singularity results could be applied to handle it directly.
A natural way to cure this difficulty is by employing the Hadamard theory of progressing
wave expansion. We refer the reader to Courant and Hilbert [9] or Friedlander [11] for
a detail study on the method of progressing wave expansions. According to Hadamard’s
construction, the fundamental solution may be represented as a sum of the principal part
and remainder. One can then study the remainder by the Beals-Reed type propagation of
singularity theorem. However, a great drawback of this idea is that additional regularity is
needed to regularize the remainder term. In this section, taking the special structure of the
model problem into account, we shall modify the above straightforward idea by introducing
an energy identity. The advantage of this technique is that with the energy identity, we
can essentially get rid of the remainder term in the expansion; therefore a refined regularity
result should be expected.

In order to get the regularity for the fundamental solution, it is also crucial to study
the transport equations, where with nonsmooth coefficients, the Rauch-type results will be
demanded.

2.1 Energy identity

Consider a problem obtained by integrating the model problem in the time variable,

n—1

(0 =Voao:-V)ve=6""7 (t)§(z), (z,t)e R "
(2.1)
vo=0, t<0.

Hadamard’s construction leads to the progressing wave expansion for vy,

vo = Y bkSk(t — 7(z)) + Ry (, 1) (2.2)
k=0
where 7(z) = |z|, S is the Heaviside function, S, = Sx_; (k > 1), and R,, vanishes at
t = 7(z). Moreover {b;} solve the transport equations, for k =1,- - -, s,

2VT Vb + (AT +V71-Vag)by = 0 (2.3)
2Vt - Vb + (AT +Vr. VO’o)bk = Abr_1+ Voo Vb, . (2.4)
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Since the boundedness of the energy norm will naturally lead to the regularity, we attempt
to bound the energy norm by recalling an energy identity stated in Symes [24].
Denote
Br={z:7(z) < T}, Cr={(z,t):t=1(z) < T}.

We can then introduce an energy identity for the solution of the wave equation.

Proposition 2.1 (Energy Identity) Suppose w solves the inhomogeneous wave equation

(D—VU'V)w=fs (x’t)EIRn+l

w=0, t<0. (2.5)
Define 5
- o1 9W 2 2
Br(t)= [ dee (1520 + [Vuf?).
Then the following identity holds
ow
t) = 7 —— 2 4 . .
Er(t) /CT dze lat V7 4+ Vuw| +//BT><[o,t] dzdte’ fw, (2.6)

Proof. We shall assume that o, f, w are smooth enough, and w has compact support in
for each t. The equation (2.5) may be rewritten as

efw—V - (e"V)w=ef .

Multiply both sides by w; and integrate over Br x [0, 1],

7 = -i g a_lu.z 2y _ o
//BTX[O,t] dadie” fu, = //BTX[O,t] dzdt{20te ( 0t| +IVul) = V- (e Vuw)} .

Integration by parts (divergence theorem) yields

ow
dzdte” =Et—/d”—V 2
/v/BTX[O,t] Tate fwt T() Cr ve lat T+vwl

O
Remarks on.the energy identity.

(1) Applying Proposition 2.1 to v, the remainder term is eliminated due to the fact
that R,, = 0 on C7. More interestingly, both the tangential and normal derivatives
of v are determined by the transport equations.

(2) After a simple calculation, we can deduce from (2.2) that

VUOIt—»‘r(J:)"‘ = Vb -5Vt

a’vo
5 @t = br.



Therefore

8?.)0

(—BTVT + Vvo)lt_.,(z)-p = Vbo ,
where the term &, is killed due to a cancellation. In fact this is true in general:
Given P a differential operator with constant coefficients of order k, it is easy to

show that bx does not appear in

(ano
ot

Vr+ vva)lt—»T(z)"’ )

the leading term is Vb;_;.

With Proposition 2.1, one can then examine the regularity of v in (2.1) in terms of the
regularity of the solutions to the corresponding transport equations.

Corollary 2.1 The solution vy of (2.1) belongs to H' inside {t = 7(z)} if and only if
b € H'=*, where by solves the k-th transport equation of (2.3), (2.4) and k =0,--- 1 —1.

Proof. From the above energy identity as well as the remarks it is obvious to show that
the Ly-norm of 8fvy can be bounded by the H*~*-norm of b; for i = 1,-- -,k — 1. Hence
it is sufficient to consider higher order z-derivatives. But this is not difficult either. Since
vo solves the differential equation, it is easy to see that the z-derivatives of vy solve some
inhomogeneous equations. Then the above energy identity and a use of Gronwall’s inequality
will lead to the desired estimates. o

2.2 Regularity of fundamental solution

In order to establish a regularity result with the presence of nonsmooth coefficients, we need
the following results. The first was originally established by Bony [8] and was extended by
Meyer [15]. See also Beals [4] for a different proof.

Proposition 2.2 Suppose that for some (zo,&) € T*(IR*)\0, v € H* N H; (z0,&0), n/2 <
s<r<2s—n/2, and g € C*, then

g(z,u) € H°N H; (z0,&) .

We also need a Garding’s type inequality concerning the microlocal ellipticity. See Bao
[1] Lemma 3.3 for the proof.

Lemma 2.1 Assume that @, € OPS™, Q, € OPS™, with my,my € IR. Furthermore
assume that Q, is elliptic on ES(Q:). Then for anyr € IR, Q and ' two open bounded sets
of R* with Q CC ', and u € CP(N),

1Quulls.0 < CllQ2ullstm;—ms,0r + Cllullrar -



Observe that all the transport equations in (2.3)-(2.4) have the same principal part
2V -V which is a smooth vector field. Therefore in order to understand the regularity of
the solutions to (2.3)-(2.4) it is essential to study the properties of this smooth vector field.

Introducing polar coordinates, we then get Vr-V = ;—/\ (A = |z|). Thus, A may be treated
as the “time” variable for a standard hyperbolic problem. The equation may be expressed

under the polar coordinates as
du

a =
Lemma 2.2 Let V be the smooth vector field Vr-V. Suppose that u is smooth and supp(u) C

{X > 6}, for V6 > 0 small. Then there ezists a Y.d.o. Q of order zero such that Q is elliptic
on Char(V) and [V,Q] € OPS~*. Moreover, for s € IR, the inequalities

lléulla < ClIEQVullsar + ClIgVulls-r 0 + Clidull, o (2.8)
IQullsa < ClIQVulls,a + Cllulla (2.9)

hold for any r € R, where ¢ € C°(Q) and ¢ € Ce(Y), Q=K x (5‘,T),~Q cc¥c{r>
6~} with K C R™™, Q and Q' are sufficiently big open bounded sets, and ¢ > 0 on supp(9).

(2.7)

Proof. The existence of operator Q follows from N irenberg’s construction which appeared in
the proof of Theorem 6 in [16], together with a local compactness argument. The assumption
on @ implies that it is elliptic on ~, a small conic neighborhood of Char(V). Thus, one may
construct another 1.d.o. R of order zero which has the properties:

e R+ Q is elliptic and
e ES(R) Ny =0.
Then Gérding’s inequality (see f.g., Taylor [26]) gives

lIgullse < ClI(R+Q)dulls + Clldull.a
S C||R¢u”a,9 + C”Q¢u||3,9 + C”¢u”r,ﬂ (2'10)

for any r € R.
Since V is elliptic on v* D ES(R), the Garding’s type result Lemma 2.1 yields that for
a bounded open set 2, with Q cc

[|Rdulls,0 < ClIVéulls-1,0, + Cl|dul|-a, ; (2.11)
hence

l¢ullse < ClIVoulls-1,0, + ClIQsullsg, + Clldull e,
< Cll¢Vulls-r,0, + ClléQullsg, + Clligrulls-1,0, + Clloull-0,
with ¢1 € C§°(€1), and ¢; > 0 on supp(#). Now we may apply a bootstrap argument. In
fact, same analysis leads to
I¢iulls-ia; < CllgiVullsmici0: + Cll$iQullsziuyy + Clldisiulls—icr iy,
+C”¢iu”r,ﬂi+1 ’ (212)



where ¢; € C§°(£2;), (% bounded open sets, and ¢;41 > 0 on supp(¢;),t = 1,2,---. Therefore,
a simple calculation yields

ll6ullon < CllIgVulls-ror + 16Qullsar + [Idull-0] - (2.13)
Thus it suffices to study the term ||Qu||s,q.. Observe that Qu € C*®(K) solves
VQu=QVu +[V,Qlu

which is a first order equation. That is,

dQu
— 5 = QVu+[V,Qu. (2.14)

Moreover, since supp(u) C {A > 6}, the pseudolocal property of Q yields that

1(Qu)(+» &)lls.xc < Cllullra -

Hence the method of hyperbolic energy estimates in Taylor [26] pages 73-75 may be applied
to (2.14) and leads to a simple estimate

1QuC- NIk < CllulEa+C [ 1@Vl Ml + IV, QUu- MIEJdA . (2.15)

or

IQu(-, MIlikx < Cllulllq + ClIQVulZg + ClI[V, Qlul2q
< CllRQVull2g + Cllull?q - (2.16)

Here we have used the fact that [V, Q] is a smoothing operator in getting the second estimate.
The estimate (2.9) follows from differentiating the differential equations and estimates which
are similar to (2.15).

Substituting the estimate (2.9) to (2.13), we eventually obtain that

llgullsn < Cll$Vullsrar + Cl|6QVul|sar + Clldullrar

which completes our proof. O

Until now, we have only considered the principal part of the transport equations. For-
tunately, our next proposition implies that the lower order terms may actually be absorbed
by the principal part, hence the whole analysis can go through.

Proposition 2.3 Assume that w, q solve
Vw= fand Vg=a, (2.17)
where again V denotes V- V. Then w = we™? solves the equation

Vo +aw = fe™?. (2.18)



Proof. Substituting w = we~? to the left-hand side of (2.18), one has by chain rule
Vb + a = Vwe™ + (=Vq + a)we™? .

Hence the assumptions in (2.17) verify the equation (2.18). o
Remark. We want to make the following observation: In the transport equations (2.3)
and (2.4),
q=00/2+qo

where go solves equation Vgo = Ar/2. Thus away from the origin, g is nothing more than a
smooth perturbation of o¢/2.

With the above preparations, we are now ready to state and prove the main result of this
section.

Theorem 2.1 Suppose that oo € H* N HY7Y(Char(Vr - V)) withl+n/4 < s < 21 —1.
Then for {bx} solving the transport equations (2.3) and (2.4)

vo =Y HSi(t—7(z))+ R, and R, € H(U),

k=0

where U = {(z,t): z€Q,t€[0,T] andt > 7(z)} is a compact set in R™.

Proof. By Corollary 2.1, it suffices to show that by € H'=%(Q), where by, is the solution of
the k-th transport equation of (2.3) and (2.4),for k=0,---,1-1.

We once again introduce a function ¢ = 00/2+qo with V7-Vgo = A7/2. Then according
to Proposition 2.3, the transport equations (2.3), (2.4) may be transformed to equations

V7r-Vbe! = 0 (2.19)
V7. .Vbe! = (Ab_1/2+ Vo, - Vbe_1/2)e? , (2.20)

for k =1,---,1—1. Recall that these transport equations are hyperbolic along the A direction
(A = |z[). Moreover, since vy is the fundamental solution, the Hadamard construction yields
that {é¢} (k=0,---,1—1) are constant near z = 0 (or A =0).

From equation (2.19), the assumptions on ¢y and [ clearly indicate that ||bo||;q <
Clloolliq-

Since Voo € H*-'NHZ;?(v), the assumptions imply that s —1 and 2/ —2 satisfy Rauch’s
condition, i.e.,

nf2<s—-1<21-2<2(s—1)—n/2,

hence Proposition 2.3 and the extended Rauch’s lemma, guarantee that all of the operations

involving Voo may be performed.
To simplify the arguments, we shall use Qo to represent all ¥.d.o. of order zero whose
essential supports are close to each other and possess the properties of Q in Lemma 2.2.
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Therefore by using (2.8) and (2.9) of Lemma 2.2 several times, after some similar simple
calculations, one can write down the following inequalities,

[|6bie|i—1.0 < C||61Qobolli+1.00 + Clld1bolli.a + C|ld100]|r.0r

[|pbrel|li—k0 < Cll$1Qobolli+k.a + C|ld1boll1.q + Cl|d100]|r0 ,

where k =1,---,1—1, ¢ € C§°(N), 1 € CL(Q) with Q cC ', r is any real number, and C
depends at most on ||¢1a0||§{g,_1,9,. Knowing the regularity of by, Lemma 2.1 then completes
the proof. )

We want to make some comments on Theorem 2.1. It is unpleasant to have extra n/4-
order derivatives on oo in the statement of the theorem. This defect cannot be avoided
because Rauch’s condition is necessary to get the conclusion of Proposition 2.2. At this
point, we do not know how to relax the hypothesis as long as the Rauch-type results are
employed.

It is known that in their applications to nonlinear wave equations, most of the results
based on Rauch’s lemma (or the method of Fourier analysis) are limited to relatively weak
singularities. This work exhibits that to some extent, strong singularities appearing in the
linear wave equation (e.g. the fundamental solution) can also be tackled by this Fourier
analysis method with the help of a simple energy identity and the progressing wave expansion.
The relation between the coefficients and solution with strong singularities remains to be
fully understood, especially when the coefficients are less regular.

3 Upper Bound for Linearized Forward Map

Our goal in this section is to determine the appropriate hypotheses under which DF (00),
the linearization of F' about a reference state oy, is bounded.

Recall the linearized problem corresponding to the reference state (uo, 00), for (t,z) €
Rz = (2, z,),
(D - VUO . V)&u = Véo - VUQ
bu=0, t<0,
where u is the solution of the model problem corresponding to the reference density op. The
linearized forward map can be defined as

DF(o9)éo = (¢6u) |z,=0 , (3.2)

where ¢(z,t) € Cg°(IR™*") is supported inside the conoid {t > |z|}, and near {z. = 0}.
Once again we consider a related problem,
(B=Voo-V)v=Véo- Vg
v=0, t<0,

(3.1)

(3.3)

n=1
where éu = 0, 2 v and v, solves

(O = Vao - V)ve = 6~ (t)(z)

‘00=0, t<0, (34)
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Observe that for | € IR,

IDF(o0)éa]l; Il (¢6u) |z=oll;

< Cll(¢v) len=o 1y, (3.5)

where [; denotes I + (n — 1)/2. Thus the real challenge here is to get an appropriate trace
regularity estimate for v on a time-like hypersurface {z, = 0}.
Throughout this section, we shall always assume that

(A) supp(éo) C {zn > ¢},

for € > 0 small. In some applications, this assumption is realistic, as the density can be
measured directly, near the location of receivers (i.e. z, =0).

3.1 Statement of theorem

We first state the main result of this section then give a brief description about the idea of
its proof. The theorem will be proved in the subsections which follow.

Let © C IR* be open and bounded, v C T*(Q). A constant C is said to depend on the
H* N Hy ,(7)-norm of w € C§°(IR*) if for any conic neighborhood T of 4 there exists a v.d.o.
Q of order zero with ES(Q) C T and ¢ = 1 on YN {(z,€) : |¢] > 1} such that C can be
bounded in terms of ||w||sq + ||Qw||, 0.

Theorem 3.1 Assume that maz{l +n — 1,3 + n/2} < s <24+n-2m>2) 0=
Char(Vr - V) = {(z,£) € T*(R"),Vr -£ = 0}, and K = {(z,€) € T*(R"), |&] < elél}.
Assume that 0o € H* N H,l,;("ﬂ)/z(l() N HYE""2(8). Then under the assumption (A), the
following estimate holds '

IDF(00)6ils < Clf$60]lynzs (3.6)

where ¢ € C§°(IR™) and the constant C depends on the H’ﬂH,I:Z(nH)/Z(K)ﬂH,ff}""'z(0)-norm
of ao but is independent of b .

An interesting special case of Theorem 3.1 is remarkable because the additional microlocal
smoothness along the tangential direction will then be absorbed.

Corollary 3.1 In addition to the assumptions in the statement of Theorem 3.1, assume that
the spatial dimension n > 3. Then under the assumption (A), the same estimate

IDF(c0)éoli < Cllpbol|ynzs

holds, where the constant C depends on the H* N HY"%(8)-norm of g but is independent
of bo.
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However, it still remains to see whether or not the additional smoothness along the charac-
teristic variety of transport equations can be removed.

Before getting into the details of the proof, let us first make the following general remarks
on this theorem:

The estimate (3.6) above has a similar form to a Rakesh’s theorem (Theorem 2.5 in
(17]). Actually a formal extension of our proof here could lead to an elementary proof of his
theorem. On the contrary, the principal tool of Rakesh’s proof, calculus of Fourier integral
operators, is not available when the reference density is nonsmooth.

Our approach here is based on the method of energy estimates associated with results on
propagation of singularities and various trace regularity results. The beauty of the method
of energy estimates is that it possesses useful information on various parameters involved in
the estimates.

To simplify the proof of Theorem 3.1, w. I o. g., we shall first assume that o is a
smooth function with (sufficiently big) compact supports. We then derive the estimates. It
is also important to see that the coefficient o¢ is smooth is not a necessary assumption for
employing all the techniques involved in our proof. The precise smoothness requirement for
oo can be determined easily from the dependence of the constants on o in the estimates.

In order to clarify the ideas, we prove the theorem in the following steps:

¢ Applying the trace theorem in [3], assumption (A), as well as results on propagation of
singularities, the estimate of ||(¢v) |z,=0 ||, may be reduced to the estimate of ||¢ov]|;,.

o We then decompose 6o into two pieces: Q160 (good part) and Q;60 (bad part), corre-
spondingly decompose v into v; + v, so that they can be studied separately and then
reassembled.

o We show that the good part actually leads to the desired estimate by the same technique
used in the preceding section.

e The most difficult part is to show that the trace of the bad part is actually smoother
than that of the good part. In order to do so, we introduce a dual problem. We show
that it suffices to analyze how the singularities (regularity) of the solution of the dual
problem propagate. The main ingredients in this step are an estimate derived from
the propagation of singularities theorem and a microlocal version of the classical trace
theorem.

Let ¢ € Cg° be supported inside the characteristic surface and the set {z, < ¢/2}. Multi-
plying ¢ to both sides of equation (3.3), we have

O¢v = ¢Voo - Vo + [0, ¢)v

v=0, t<0. (3.7)

Here we have used the fact that according to the assumption (A), ¢ and éo have disjoint
supports, so that ¢Véo - Vvg = 0.
Once again with I} we denote ! + (n —1)/2.
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Lemma 3.1 Assume that s > 3 + nf2,1 <l <s, and v solves problem (3.7) then there is
a ¢o € C5° supported near supp(¢) such that the following estimate holds,

1(¢v)lzn=0ll; < Cligovlls, , (3.8)

where C' is a constant depending on the H* N HAPY(K)-norm of 0o, but is independent of
bo.

Proof. This lemma is a direct application of Theorem 3.1 in [3] by taking into account of
the fact that ¢ and 6o have disjoint supports. m]

3.2 Regularity of v,
Construct two 3.d.o. Q1,Q2 € OPS(IR™), such that
* 1+Q:=1;
e ES(Q2) is a small conic neighborhood of {Vr . ¢ =0},
® Q2’s symbol g, = 1 near {V7-¢ =0} N {(,¢), |¢] > 1}.

An immediate consequence of this construction is that for any t.d.o. Q whose essential
support is near {V7 - ¢ = 0}, the operator QQ: is a smoothing operator. Accordingly, by
linearity, the solution to (3.3) may also be decomposed into two pieces,

v=v +2,
where v; (for i = 1,2) satisfies

(Q=Voo- Vv = VQibo - Vo, (z,¢) € R*!

v,=0, t<0. (3.9)

Therefore, in order to estimate ||¢ov||;,, it suffices to estimate [|#ovi||s, for ¢ = 1,2. We
shall proceed to estimate the two terms separately because of their different natures.

The analysis of vy’s regularity is parallel to that in Section 2. From (3.9), Hadamard’s
construction again leads to the progressing wave expansion of vy,

v = i arSk(t — 7(z)) + R, (z,1) , | (3.10)
k=0

where 7(z) = |z|, So is the Heaviside function, St = Sk-1, Ry, vanishes at ¢t = r(z), and
{ax} solve the transport equations, for k = 0,---,8—1,

2Vt . Vao + (AT 4+ V7 - Vag)ag = —bVr - V@b (3.11)
2VT-Vary + (A~ +Vr- Voo)aks1 = Aax + Voo - Vag + VQ160(Vb — bryy Vr) (3.12)

and b as defined in subsection 2.1 solves the k-th transport equation (2.4) for vo.
In order to get the regularity for v; we attempt to bound the energy norm by the energy
identity Proposition 2.1 stated in subsection 2.1.
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Lemma 3.2 Suppose that l; + n/4 < s < 2l; — 1. Then
l|¢ovlliy < Clbay, (3.13)

holds, where constant C depends on the H* N H23~1(0)-norm of oo, and 8 is a small conic

neighborhood of {(z,¢) € T*(IR"), V- £ =0}. "

Proof. Since the proof follows the same pattern as in subsection 2.2, we shall only make the
following observation: Applying the same ideas as in subsection 2.2, one should expect an
estimate of the following form, for a suitable bounded open set Q C R",

lIgovr|ln, < Cli@1bolli0 + CllPQ160||21,0

where C' depends on g9, P is a ¢.d.o. of order zero, and ES(P) near {Vr-¢ = 0}. However
our construction of §); implies that PQ, is a smoothing operator which is why we call v; the
good part. ]

3.3 Microlocal version of trace theorem

In order to estimate the term [|@ov2||;,, 2 microlocal version of the classical trace theorem is
necessary.

The classical trace theorem in Sobolev spaces characterizes the regularity of a distribution
restricted to a hypersurface. Dealing with inverse problems, one always has to face a difficult
but crucial question: When does the restriction operator commute with another operator
of interest? The result in this subsection indicates that a simple microlocal trace theorem,
which not only works on the space restriction but also on the phase space restriction (i.e. a
trace theorem on cotangent bundles), may lead to a way to cure this difficulty. Let K be a
conic set in R", i : ¢ € R" — (z,0) € R™'. Define a semi-norm: for v a conic set of IR

and u € CF(RY),
Jubs = (f_ deli(©F (€)'

Then, a proof of the classical trace theorem (see e.g. in Taylor [26], pages 20-21) implies the
following inequality.

Proposition 3.1 Fors >1/2, u € CP(R™?),

li*u| g s—172 < Clulkxm,s -

Thus the map :* may be extended to be a bounded map from H?,(z x R, K x R) to
H:'*(z, K), provided s > 1/2.

m.
Let II, be the projection map to the frequency space (or the second factor). We may

reformulate this result in terms of ¥.d.o..
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Proposition 3.2 If P, is a ¢.d.o. of order zero in R™, with ILES(P) C K, then there
exists a Y.d.o. P, of order zero in R™!, and ILES(P;) C K x R, such that for s > 1/2,
u € Cg°(R) with Q an open bounded subset of R™*1,

HPli'UHs-l/z,Qo < C||P2U“s,ﬂ )

where ©* again denotes a restriction operator to a codimension one hypersurface and Qg =

Q.

The above results together with our Gaérding’s type result Lemma 2.1 yield a microlocal
version of trace theorem.

Lemma 3.3 Assume that E is an elliptic operator of order m in R™*!' x K xR, P ¢
OPS°(R™) and I, ES(P) C K. Then for s > 1/2, u € C5°(Q) where Q and Q' are open
bounded subsets of R™ with Q CC ', and Qo =1*Q,

[1Pi"ulls1/2.9, < CllEu||semar + C|lullr.qr

for anyr € R.

3.4 Dual problem

According to our previous trace regularity result (Theorem 3.1 in [3]), under some appro-
priate hypotheses (in particular, the assumption (A)), bounding ||(¢v;)|z,=0||i, is equivalent
to bounding [|¢ov;||;,. Moreover because of a claim which will be proven at the end of this
section, it suffices to bound |87 govs|.
Recall that v, solves
Ovy — Voo - Vv, = V@380 - Vg

vo=0 t<0. (314)

To simplify the arguments on its dual problem, we make use of the symmetric form of (3.14)
by introducing p(z) = e®. Then (3.14) becomes

Divy = [13? -V. (lV)]'vz = lVQz&f - Vg
p p p
vo=0 t<0.

(3.15)

Now let us look at a dual problem to (3.15),

Ojw = [%63 —V- AV =y

w=0 t>>1,

(3.16)

where 3 € C§°(Q) with Q an open subset of {IR* x [0, T3]} N {|¢| > |z|}.
Equivalently, we may reformulate (3.16) as

Olw = 0w + Vog - Vw = e

w=0 t>> T1 . (317)
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Thus if we can show that for any ¢ € C§°(Q2)

(8¢ v2, %) < Cllbo |l 1Mo , (3.18)

then it can be concluded that
183 v2llo.2 < Cll6alls, - (3.19)

Lemma 3.4 Suppose that [y +(n—1)/2 < § and 0 is a small conic neighborhood of {(z,¢) €
T*(IR"),VT-£ = 0}. Then the estimate (3.19) holds where the constant C depends on the
H? N HY71(0)—norm of oy.

Proof. Green’s identity and integration by parts lead to

(atllvhd)) = (’Uz, D; tllw)

— 11 _ l 8 Il — ll 8
= (Tlvz,a, w) .A=f(z) p[vg—anat w1 0, w——anvg]ds (3.20)
= (;VQgéa - Vg, O w) — / ( )ds;[vg(at’1+1 — V7. Vot )w — d*w(d,
t=7(z
—=V7-V)vy].

The first term in (3.20) is easy to handle. Actually, integration by parts and a simple
use of Cauchy-Schwarz inequality lead to

1
|(;VQ250 - Vo, OPw)| = [(€77°V Q26001 Vg, Byw)|
< Cllem?°V Q2608 " Vuolloal|0cw||o - (3.21)

The energy estimate on w gives ||d,w||o < C||4||o. We may apply the generalized Schauder’s
lemma twice to obtain

177V Q28004 Vugllon < ClIVQa0]lw alle=*08 " Vo]log

<
< Clléa]lso+1llvolliy @ (3.22)

where so > n/2, and ||vo||;,,o can be handled by Theorem 2.1, provided that o, € H* N
HE71(0) with Iy + n/d < s < 21, — 1.

Thus it suffices to estimate the last two terms in (3.20). As usual, one may write down
the progressing wave expansion for v,. Actually, assuming that c; solves the i-th transport
equation (z = 0,1), we have

2VT -Veo+ (AT 4+ V1 - Vog)eg = —boVT - VQ,60 (3.23)
2VT-Ver 4 (AT 4 V71 Voo)ey = Ay + Voo - Vo + VQ260(Vho — V). (3.24)

Hence to control the last part of (3.20) we only need to analyze

Io= | IRICASEA R COUET (3.25)
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Since Q2 is symmetric in the sense that Q3 = @2, the Cauchy-Schwarz inequality deduces

(Lol < Clléelloll|Q2f (00)Tr(8: Prw)llo.x + 11Q29(00) Tr(8w)|Jo.x]
= 0”60'”011 N

with P, a first order differential operator (a linear combination of operators 8, and Vr - V),
Tr(u) = ult=r(z) a restriction (trace) operator, K = 1 N {t = 7(z)}, and f, g smooth
functions determined by (3.23) and (3.24). It is not difficult to see that f only depends on
0o, while g involves a¢, Doy and Adg,.

From Lemma 3.3, we know that there is a 1.d.o. Q2 of order zero whose essential support
is contained in a “cylindrical” conic neighborhood of ES(Q;) along w-direction, such that
IIsupp(§z) is near the characteristic surface and Ilsupp(qz) N supp(y) = 0. That is,

|I| < Cl|Q2f(00) Pyw iy 41/2.0 + Cl1Q29(d0)w|liy 41/2.0 - (3.26)

Thus an extended Rauch’s lemma and the estimates involved in the proof imply that for
h+1/24n/2<s0,l; —1/24n/2 < s,

“sz(UO)leHhH/z,n Cr(J|w|]y + [1Qow]|i, +3/2,0)
[1Q29(00)w|l1, +1/2.0 Ca(|lwlly + 1|Qow]|iy+1/2,0)

with Cy and C; depending on ||te00]|,, and |%000||s, respectively, Qo € OPS®, ES(Qo) is
near ES(Q:), and Isupp(go) N supp(y) = 0.
Hence to finish the proof of Lemma 3.4 it is sufficient to show that

[1Qowli, 43720 < Cll%|lo (3.27)

which can be proved by applying Lemma 3.5 below. a

IA A

3.5 Regularity for solution of the dual problem

A result on propagation of singularities, see Proposition 1.3.3 in Duistermaat [10] or Theorem
8.2.13 in HSrmander [13], demonstrates the relation between the wavefront of the restriction
of a distribution and the wavefront set of its own. Applying this result and Homander’s
theorem on propagation of singularities, it is easy to see that QgTr(at"le) is smooth for
smooth oo. However the result does not directly lead to any explicit bound. In this subsec-
tion, we shall derive the necessary estimates by using a bootstrap argument. Our idea here
is motivated by Nirenberg’s proof of Hérmander’s theorem on propagation of singularities
in [16]. In fact, the main purpose of this subsection is to obtain a real estimate out of his
proof. 3 )

From now on, a constant C is said to be depending on ||%a0lls, if for some 3 € C$°(IR™),
C depends on ||soy|[s.

Lemma 3.5 There exists an elliptic 1.d.o. B of order zero, such that ES(B) s contained
in Cy, a “cylindrical” conic neighborhood of

{(w,t,f,w) € T'IR,"H\O, 2 — |a:|2 =0,w=Vr-¢}
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along w direction, and the symbol of B, b satisfies

Msupp(b) N supp(s) = 0 .

Then, for any k € R, 3
[|Bw||k,a < Cill#lo, (3.28)

where k — 2 +n/2 < s and the constant C depends on ||thao||,.

The proof follows by showing two propositions below. Proposition 3.3 really gives an estimate
based on Nirenberg’s proof of Hormander’s theorem. It indicates that an estimate 'may be
formed near any bicharacteristic, hence near the characteristic variety of operator O = 92— A.
We then proceed in Proposition 3.4 to argue that the remaining part of the cylindrical
region, where the operator O is elliptic, causes no trouble at all. With a concern about
the nonsmooth oy, it should not be surprising that both propositions require a commutator
argument.
Let B8 be a null bicharacteristic contained in Cy.

Proposition 3.3 There ezists a .d.o. B of order zero such that B is supported in a conic
neighborhood of B, B is elliptic near B, and Ilsupp(b) N supp(y) = 0. If, furthermore,
k—2+n/2 < s, then the estimate

1Bwlle.a < Ckllillo
holds with Cy depending on ||V aol[,.

Proof. According to Nirenberg’s construction, one can find a v.d.0. By of order zero with
(1) bo supported in a small conic neighborhood of 3, B, elliptic near g3,
(2) IIsupp(bo) N supp(y) = 0, and
(3) [O,By] € OPS°.
Since w solves (3.17), the method of energy estimates yields
|lwlls < Cllllo

where C is a constant depending on |[{)Voy||; for § > n/2.
Observe that from (3.17),

0} Bow = [0, Bo]lw — [Bo, Voo - V]w + Boe®p .
Since 3 is supported inside the characteristic surface, IIsupp(b) N supp(yp) = @, we have
Boe”Yp =0.
Now energy estimates give

[|Bowllz.2 < |I[B, Bo]w|l1,a + ||[Bo, Voo - V]w||1,q) . (3.29)
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Since [3, By] is of order 0,
I8, BoJw|li,a < Cllwl|ly < Cl|¥|lo -

The third term in (3.29) may be estimated by applying the generalized commutator lemma,
Lemma 2.4 in [3] and the corresponding estimate. In fact, let 1 + n/2 < s, we then have

I[Bo, Voo - V]|l < Cllwlly < C|l#]lo,

where C depends on || Voy||s,.
Thus
|| Bowll2,0 < Col|¥]o , (3.30)

with Co depending on ||V aol|s,.

Applying Nirenberg’s construction once again, we can find a .d.o0. By such that ES (B1) C
ES(Bo)(strictly), By also has properties (1) and (2) above; moreover [0, B,] € OPS-! and
By is elliptic near ES(B;). From (3.17) and B,e®y = 0,

D;Blw = [D,Bl]w - [Bl, VO’Q . V]w .
If we write down the energy estimates, after a simple t.d.o. cut-off on B, we will find
[Biwllzq < Cllwl2 + C||Ai[B1, Voo - V]w||oal|Biwllsa ,

where A, € OPS®, ES(B,) C ES(4,) C ES(B,), By is elliptic on ES(A;), and a; =1 on
ES(By) N {(z,§), €] > 1}.

Now since w € H' N H2,(ES(B,)), Lemma 2.4 in [3] again implies that [B1,Voo-V]w €
H'N H2,(ES(A,)) and

141[B1, Voo - V]wllae < C(l|wlh + | Aiw]l20) -

Here C depends on || Voy|s, for 2+ n/2 < s,.
Because of our construction, By is elliptic on ES(A;); therefore Garding’s type inequality
Lemma 2.1 leads to, for any real r and Q CcC Q,

lArwlz.0 < Cl|Bow||2.0, + Cllwll- < Cll%lo

by (3.30).
Therefore we have shown that

[|Biw||sa < Cil|¥]lo ,

where C; depends on ||¥Voyl,,.
We can continue this process by constructing a sequence of ¥.d.o. B; and A; :=1,--
-,k — 2), such that

e B; has properties (1), (2), [0, B;] € OPS~,
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e ES(B;—1) C ES(Ai-1) C ES(B;), and
e B; is ellipticon ES(A;_;), a;i-y =1 on ES(Bi—1) N {(z,§), |¢| > 1},

e Also
l|Biwl|i+2,0 < Cill¥lo ,

where C; depends on || Voo, for i + n/2 < s;.

Eventually we conclude by choosing B = Bj_; so that, for k — 2 4+ n/2 < s,

|Bwllx.a < Cllsllo
with C' depending on ||¥Voy||s. O

Proposition 3.4 Let P be a v.d.o. of order zero with the following properties: The wave
operator O is elliptic in a small conic neighborhood of ES(P) and Isupp(p) N supp() = 0.
Then

1Pwllea < Cllsllo,
where C depends on |[{)Voy||, for k—2+n/2 < q.

Proof. The proof is based on the same type of bootstrap arguments as in the proof of last
proposition.
Recall (3.17)
Ow + Voo - Vw = e . (3.31)

From the support assumption on p, we see that Pe“y = 0. Hence, by applying P to both
sides of (3.31), we find

OPw = [0, Plw — [P,Va, - V|w— Vo, VPw . (3.32)

Now since O is elliptic in a small conic neighborhood of ES(P), there exists a .d.o. Py of
order zero, such that ES(P) C ES(R,), P is elliptic near ES(P), and O is elliptic in a small
conic neighborhood of ES(F). From the ellipticity of Po0 on ES(P), Proposition 3.3 gives,
for any real number r and Q CcC ¥,

|Pwllka < CllROPw||k-2,0' + Cllw|l. ,
or from (3.32)
1Pwllka < C(||Fo[Q, Plwllk-2.0 + || Po[P, Voo - V]w||k-2,0 + [|[PoVoo - VPwllk-20) -
Therefore an application of Lemma 2.4 and the generalized Rauch’s lemma in [3] yields

[|[Pwlle < CillPow|lk-1.00 + Co(||w]]z + || Pow||k-2,2)
+Cs([|lwlly + || Pow||k-1,0)
< Cllbllo + CllPow]|k-1,9- -
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Here constants C; and C3 depend on Hl,Z)VO'QHq fork—2+n/2<q.

Thus the bootstrap arguments on P, will accomplish the proof. a

A combination of Propositions 3.3, 3.4, and Garding’s type Lemma 2.1 assures the exis-
tence of an elliptic operator B with properties stated in Lemma 3.5. Now let us look at the
cylindrical region: Near the characteristic variety of O, Proposition 3.3 and an extension of
Lemma 3.2 may be used; while away from its characteristic set operator 0 is microlocally
elliptic, hence Proposition 3.4 becomes applicable.

We conclude this section by proving an earlier claim.

Proposition 3.5 Assume that v, solves equation (3.14), h € R, , —3/2+n/2 < s. Then
the following estimate holds:

llv2lzn=0llis.00 < Cl10, v2lz,=0llos, + Cllba|ls, , (3.33)

wher‘e~ Qo and Q, are bounded open sets in R™ with Qo CC O, and the constant depending
on |[$aoll,.

Proof. We first construct a 1.d.o. A € OPS® such that a, the symbol of A, is equal to one
on |w| > €|¢|, for £ = (¢,&,), and ES(A) C {|w| > €o|¢’'|, with € > ¢;}. Denote Tr as the
restriction operator to {z, = 0}; then we have

Tr(v2) = valza=0 = ATT(v3) + (I — A)Tr(v,)

or
ITr(v2)llngo < [JATT(v2)ll1.00 + (1 = A)Tr(v2) 1,0, -

Since the operator 8! is elliptic on ES(A), a simple use of Lemma 2.1 leads to
IATr(v2)ll1.00 < ClI0 Tr(v2)llo.0, + ClITr(2)]]r,0,

for any r € IR.

On the other hand, the microlocal trace theorem implies that there exists a 1.d.o. A
of order zero such that ES(A) C a cylindrical neighborhood of {|w| < €|¢’|} along the
&,-direction, and

(I = A)Tr(v2)lly 0 < CllAvalliyg1/2.0

where (2 is an open set in IR™*! and its restriction to {zn = 0} contains the set €.
Therefore similar arguments as in the preceding subsection yield

”1‘102“11“/2,9 < Clléall,

with the constant C' depending on ||¢oy||,, for I; — 3/2 + n/2 < s.
Combining the above discussions, we have proved the claim. a
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