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SYSTEMS OF NONLINEAR EQUATIONS
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Abstract. This paper presents a QR update implementation of the successive column correction
(SCC) method and a column-secant modification of the SCC method, which is called the CSSCC
method. The computational cost of the QR update technique for the SCC method is much less than
that for Broyden’s method. The CSSCC method uses function values more efficiently than the SCC
method, and it is shown that the CSSCC method has better local g-convergence and r-convergence
rates than the SCC method. The numerical results show that the SCC method and the CSSCC method
with the QR update technique are competitive with some well known methods for some standard test
problems.
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1. Introduction. In this paper, we consider the system of nonlinear equations
(1.1) F(z)=0,

where F' : R* — R™ is continuously differentiable on an open convex set D C R". To
solve (1.1), we consider the following Newton-like iterative method:

(1.2) Tht1l = T — Bk—lF(.’Ek), k=0,1,...,

where By is an approximation to F'(zx). A well known approach to obtain a good
approximation to F'(zj) is to compute the columns of B; by finite differences, i.e.

F(zi + hiej) — F(zk)
hi ’

where e; is the jth column of the identity matrix. The finite-difference method is shown
to be locally ¢-quadratically convergent by properly choosing step length A (see Dennis
and Schnabel[3]). However, at each iteration n + 1 function values (F(z)) are needed
to form matrix By, which is quite expensive for many problems.

Another well known method is Broyden’s method (see Broyden [1]), in which By is
updated at each iteration by the update formula

(1.3) Bkej =

7=1,...,n,

—1 — Bi_155-1)sT
(1.4) By = Bi_1 + (¥e-s L. 1) k=1
Sk-15k-1

where sg_1 = Tx — Tk-1, Yk-1 = F(zk) — F(zk-1). It is easy to verify that the updated
matrix By satisfies the secant equation

(1.5) Bisk-1 = Yk-1.
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It is shown that Broyden’s method is locally g-superlinearly convergent (see Broyden,
Dennis and More [2]). The most attractive advantage of Broyden’s method is that at
each iteration only one function value is needed. Gill, Golub, Murray and Saunders
[5] proposed a QR update technique which can reduce the number of the arithmetic
operations for solving the linear system

(1.6) Bys = —F ()
from O(n®) to O(n?).

Polak [10] gave a successive column correction method for unconstrained optimiza-
tion. Feng and Li [4] studied the successive column correction (SCC) method for systems
of nonlinear equations. Liu and Li [7] further studied the SCC method and gave a secant
modification of the SCC method (SSCC) by using Broyden’s update.

In this paper, we introduce a QR implementation of the SCC method. Using this
QR update technique the number of arithmetic operations for solving linear system
(1.6) in the SCC method will be much less that in Broyden’s method. Our numerical
results also show that the SCC method with the QR update technique is better than the
finite-difference method and Broyden’s method for many well known test problems from
the execution time point of view. The main work of this paper is to give a column-secant
modification of the SCC method, which is called the CSSCC method. We will show
that the CSSCC method has a better g-convergence rate and a better r-convergence
order than both the SCC method and the SSCC method. Our numerical results show
that the CSSCC method behaves well for many well known test problems.

This paper is organized in the following way: In section 2, we briefly describe the
SCC method, the SSCC method and their convergence properties. In section 3, we
present the QR implementation of the SCC method. In section 4, we give the CSSCC
method and its local convergence results. In section 5, we give some numerical results
and some comparisons. In section 6, we give some concluding remarks.

In this paper, ||.||r denotes the Frobenius norm of matrix, and ||.|| denotes the
lo-norm of a vector.

2. The SCC method and the SSCC method. The basic idea of the SCC
method is that the columns of By are corrected by finite differences successively and
periodically. This correction can be formulated by the following formula:

T
(2.1) By = Bia(I — eieT) + %&k, ix = k(modn),
(2:2) gk = F(zk + pr) — F(z1),
P = hieqy,

where hj is a scalar. The SCC method can be formulated as follows:
ALGORITHM 2.1. Given matriz By and zo € R", do the following:
At the initial step:
2






1. Set 1 =0.

2. Solve Bys = —F(zo).

3. Choose z, by £1 = o + s or by a global strategy.
At each step k > 1:

1. Choose a scalar hy.

2. Ifl<nsetl=1+1, otherwise set | = 1.

3. Set
F - F
23) Bee, = (zk + hier) (wk),
hi
and
(2.4) Bie; = Bi_1e;, 1 =1, ...,l— L,l+1,..,n.

4. Solve Bis = —F(zk).
5. Choose Ty4y by 41 = Tk + s or a global strategy.
6. Check convergence.
Note that to form Bj in the SCC method, only two function values are needed at
each iteration. To study the convergence properties, sometimes we assume the F'(z)

satisfies the following Lipschitz condition: For any 1 < ¢ < n there exists o; > 0 such
that

(2.5) |(F'(z) — F'(y))eill < asllz —yll, Vz,y € D.
Let a = (X%, o?)'/2, then (2.5) implies that
(2.6) |1F'(z) = F'(¥)llF < ellz —yll, Vz,y € D.

LEMMA 2.1. Let {z}, {Bx} be generated by the SCC method. Assume that F'(z)
satisfies Lipschitz condition (2.5) and that z € D and zx + px € D. Then

1
(B — F'(x))eill < ety lhel-
proof. Let
1
Je = / F'(ay + tpy)dt.
0
Then, from Lipschitz condition (2.5),

1(Bx = F@))eull = (Tt = F(2x)es|
= I [ (Fai+tpo) - Fl(a))dtes |

1 1
< aikllpkH/O tdt < §a='k|hk|-






LEMMA 2.2. Assume that F'(z) satisfies Lipschitz condition (2.5). Let {z;}r,
and {B;}5., be generated by the SCC method, with By satisfying ||Bo — F'(zo)||F < 6.
If {z;}*_; C D and {z; + p;}j=1 C D, then for k <m,

(2.7) ”Bk — F’(:I:k)up < a(2§k + }—lk) + 4,

and for k > n,

(2.8) |1 Be — F'(zi)l|r < a(ex + he),

where
ey = { 1 Be =3 {haes}
e = Jrax, Al - Th-illds he =5 e, Vhe-ihs

m(k) = min{k, n — 1} and ho = 0.

Proof. We prove (2.8) first. By lemma 2.2 and Lipschitz condition (2.5) for k 2> n,

k
IBs = F'(ei)lz = X (B — F'(z1))einl?
m=n—k+1
k
= > (Bn—F(z)enll®
m=n—k+1
k
< Y (I(Bm = F'(zm))eimll + I(F'(@m) = F'(z8))einll)?
m=n—k
k * 1
S Y (Gtnlhnl+ aigllo = o)
m=n—k+1
k
(2.9) < (ex+ flk)z Z a?m = (& + Bk)zaza
m=n-—k+1

which implies (2.8).
New we consider the case where 1 < k < n. In this case,

k n
Bk — F'(zi)llr = |l S_(Bk — F'(zx))eie] + > (Bo— F'(zi))eie] |r

=1 i=k+1

k
I 3-(Bi — F'(zi))eiei Ir + || Bo — F' ()l

=1

IA

Similar to (2.9),

k
|| S2(Bk — F'(zx))eiel l|r < (& + hi)-

=1






Thus,
IBe — F'(zi)llr < a(&x + ki) + [|Bo — F'(zo)llF + | F' (o) — F'(z)l|F
< ofek + ki) + af|lze — 2ol| + 6 < (28 + ki) + 6.

Applying Lemma 2.2, we have the following convergence results for the SCC method.
THEOREM 2.3. Assume that F(z) satisfies the following standard condition for
local convergence:

(2.10) Thereis z* € D such that F(z*) = 0 and F'(z") is nonsingular.

Also assume that F'(z) satisfies Lipschitz condition (2.5). Let {xx} be generated by the
SCC method. Then there exist €, §, h > 0 such that if 0 < |hg| < h and zo € D, By
satisfy

llzo — *|| < €, ||Bo — F'(zo)llF < 6,

then {xx} is well defined and converges g-linearly to z* . If limy_.o |hk| = 0, then the
convergence is q-superlinear. If there exists some constant C > 0 such that |hi| <
C||F(zk)|| then the convergence is n-step g-quadratic.
The proof of this theorem is similar to that of Theorem 4.2 in this paper.
THEOREM 2.4. Assume that F(z) and F'(z) satisfy the hypotheses of Theorem 2./
and that |hi| < C||F(zk)||, Then the r-convergence order of the SCC method is not less
that T , where T is the unique positive root of the equation

-t 1=0.

The proof of this theorem is similar to that of Theorem 4.3 in this paper.

The basic idea of the SSCC method is to have a secant modification on By by using
the information F(zk-;) we already have to get a better approximation to F'(zx). The
SSCC method can be formulated as follows:

ALGORITHM 2.2. Given matriz By and zo € R™, do the following:

At the initial step:

1. Set I =0 and By = Bo.
2. Solve Bys = —F(zo).
8. Choose 1 by T, = zo + s or by a global strategy.
At each step k > 1:
1. Update By_y by Algorithm 2.1 to get B.
2. Update By by the Broyden update to get Bx.
8. Solve Bys = —F(zk).
4. Choose Tiy1 by Thy1 = Tk + 5 or by a global strategy.
5. Check convergence.

The following convergence results can be found in Liu and Li [7].

THEOREM 2.5. The SSCC method has at least the same local convergence properties
as the SCC method.






3. A QR update technique for the SCC method. In Algorithm 2.1, solving
the linear system needs O(n®) multiplications, which may be the main part of the
whole computational cost for many problems. In this section, we discuss a QR update
technique, which reduces the number of multiplications needed for solving the linear
system to O(n?). This technique is similar to the one given by Gill, Golub, Murray and
Saunders [5] for Broyden’s method. However, it is much cheaper than the latter.

For convenience, in this section, we omit subscripts k¥ in SCC update formula (2.1),
and rewrite it as

T
(3.1) B =B(I-eel) +LE.
Suppose we already have B = QR, where @ is an orthogonal matrix and R is an upper
triangular matrix. Now we want to obtain Q and R such that

(3.2) =QR.
From (3.1),
T, T
(3.3) B = QIR - eel) + L4,
Let
Q = QTq/h = (q-la sy q_n)T’
and
-7‘11 . . ql e e e Tin T
Rl — q,' e e Tin
Gi+v1 - - - Titin
L dn Tnn
Then (3.3) can be written as
(3.4) B = QR,.

For i < n, using n — ¢ — 1 Givens rotations, R; may be reduced to
R = Guni—1Gn-i-2..G1,

where
™1 .. . . . T]nT

é= q; e o« Tin







Using another n — 7 Givens rotations, we may reduce R to an upper triangular
matrix R i.e.,

R = Gan-2i-1Gan—2i-2...G2G1 Ry.
Let
A TAT AT
Q = QG Gy ...Gap_gi-1-
Then, @ is an orthogonal matrix and
B=QR.

Now we discuss the computational cost of the QR update technique mentioned
above.

Note that the number of multiplications for this QR update varies from iteration
to iteration. When the nth column of the approximate Jacobian is corrected, i.e. when
i =nin (3.1), then R, is already an upper triangular matrix, and the QR update costs
nothing. When the (n — 1)th column is corrected, only one Givens rotation is needed.

When the ith column (¢ > 1) is corrected 2n — 27 — 1 Givens rotations are needed, and
the number of multiplications for the QR update is

12n% — 1607 + 412 + 12n — 161 — 9.

Note that at each iteration only one column is corrected in the SCC method. Thus

the total number of multiplications needed for the QR updates in every n iterations for
the SCC method is

n—1
3" 12n? — 16ni + 4i® + 12n — 16i — 9.
=1
On the other hand, for Broyden’s method the number of multiplications for the QR
update at each iteration is fixed. It is equal to that when the first column is corrected
in the SCC method, i.e. it is 12n? — 4n — 21.
From the discussion above, we have the following results:
THEOREM 3.1. The total number of multiplications needed for the QR update in n
iterations for the SCC method is
37

l-6—n3 —2n2 - —n+09.

(3.5) = :

THEOREM 3.2. The total number of multiplications needed for the QR updates in
n iterations for the Broyden’s method is

(3.6) 12n® — 4n? — 21n.






Comparing (3.5) with (3.6), we see that in every n steps the computational cost for
QR updates in the SCC method is less than a half of those in Broyden’s method.

In practice, the number of iterations needed to reach the desired accuracy is gener-
ally not a factor of n. Specially, when n is large, the desired accuracy may be reached
in m iterations, where m is much less than n. Note that in the SCC method if we
reverse the column correction order, i.e. we correct By from the nth column to the first
column, then the convergence results will not be affected. If we do so, we may gain
some savings (sometime great savings) on the QR updates. Therefore, we suggest to
change column correction update formula (2.1) to

T
ql;le"‘, ir =n+1— k(modn).
k

Now the SCC method should be formulated as follows:
ALGORITHM 3.1. Given matriz By and zo € R", do the following:
1. Setl=n.
2. Solve Bys = —F(zo).
3. Choose 1 by 1 = zo + s or by a global strategy.
At each step k > 1:
1. Compute By by (2.3) and (2.4).
2. Solve Brs = —F(zy).
3. Choose k41 by Tr41 = zx + s or a global strategy.
4. If 1> 1 setl =1—1, otherwise set [ = n.
5. Check convergence.

Bk = Bk_l(I - e,-keT) +

ik

4. The column-secant modification of the SCC method. The numerical
results in [7] show that the secant modification of the SCC method using Broyden’s
update (SSCC) usually needs less number of iterations to get the solution, and therefore
it uses less function values than the SCC method. However, theoretically we could not
say that it is better than the SCC method. Moreover, the cost of the additional QR
update for Broyden’s update is significant, which makes the execution time longer than
the SCC method and Broyden’s method for many test problems. To overcome these
drawbacks, we consider a column-secant update here. The basic idea of this technique
is that after one column of By is corrected, the next column, which maintain the earliest
information, is updated to make the updated matrix B satisfies the secant equation

(4.1) Bysk—1 = Yk-1,

where sg_1 = T — Tk_1, Ys—1 = F(zx) — F(zk-1). The column-secant update is formu-
lated as follows: If

(4.2) & ,,5%-1 2 0||sk-1]loo
then
T
— k-1 — Bksk_ €;
(4.3) Bk — Bk+ (y 1 - 1) k+l.
€ix415k-1

8






Otherwise,
(4.4) By = Bx.

The column-secant modification of the SCC method (CSSCC) is as follows:
ALGORITHM 4.1. Given matriz By,zo € R* and a small scalar § > 0, do the
following: At the initial step:
1. Set | =n and By = By.
2. Solve Bys = —F(z).
3. Choose =, by z; = xo + s or by a global strategy.
At each step k > 1:
1. Compute By by (2.8) and (2.4).
2. Ifl—1>1 set m=1-1, otherwise set m =n.
3. If |eX sk—1]| > 0||sk-1]|c0, then set

(yk-1 — Bisk-1)el,
el sk—1

B = B +

’

otherwise, set
By = B.

Solve Bys = —F(zx).

Choose Tk41 by Try1 = zk + s or a global strategy.
Ifl > 1 setl=1-1, otherwise set l = n.

Check convergence.

It can be see from Algorithm 4.1 that the number of the function evaluations needed
to form Bj at each iteration in the CSSCC method is also two, the same as the SCC
method, and the additional cost of the column-secant update is mainly a multiplication
of a matrix and a vector plus the same QR update as that in the SCC method.

Now we study the convergence properties of the CSSCC method. The following
lemma shows that we may have a better approximation to the Jacobian by using Al-
gorithm 4.1 than that by Algorithm 2.1. Comparing the following lemma with Lemma
2.2, we see that m(k) is small here. This means that the current approximation to
the Jacobian obtained by Algorithm 4.1 only depends on the approximations in the
previous n — 2 steps in stead of n — 1 steps required by Algorithm 2.1.

LEMMA 4.1. Let {z;}5,, {Bj}i., and {B;j}:_o are generated by Algorithm 4.1.
Assume F(z), F'(z), Bo, {z;}¥_y, {z; + p;}io, satisfy the hypotheses of Lemma 2.2.
If (4.2) is satisfied for all i1, k = 0,1,2,..., then there exists a constant Ci > 0 such
that for k <n

XD S

(4.5) 1B — F'(zi)llF < aC1(26x + hi) + 6,
and for k > n,

(4.6) 1B — F'(zi)llr < aCi(éx + ha),
9






where

o 1
€ = 1<111<ax(k){||$k — 2 jll}, he= §0<H§ax(k){hk—a}
and m(k) = min{k,n — 2}, ho = 0.
Proof. We prove (4.6) only. Inequality (4.5) can be obtained by applying (4.6) and
using an argument similar to the second part of the proof of Lemma 2.2. Let

_ 1

(4.7) Joor = / F'(2p-1 + tse_1)dt.
0

Then

(4.8) Jk—18k—1 = Yk-1.

Suppose that the Ith column is corrected by the SCC method at the kth iteration then
the mth column is updated by (4.3), where m = [ —1if [ > 1, m = n otherwise. Let

Q={1,2,..,n},
and
Qn={j€Q: j#m}.
From (4.3) and (4.8),

_ _ 1 -
|(Bx — Jk-1)em|| = || Brem + ‘e_jsk_(yk—l“Bksk—l)_Jk—lem”
= |IBeem + 7 o (ch—l — By) Ze sk—1€j — Jk—1€m||
m =1
Tsk_
= 1 X Ghn = B
JEQm
1
(49 < 1S Ui - Bl
JEQm

Note that from (4.7) and Lipschitz condition (2.5), for j € €,

- 1
I(Fer = Feesll = I [ (F(@ies +tspmr) = F'(zi))esdt |
1 a
(410) < agllseall [ (1 - t)dt = Flisiall
Without loss of generality, we assume that § < 1. Thus, from (4.9) and (4.10),
- _ m
(B — F'(zk))emll < ||(Bk = Ji-1)em|l + - lIse-ll
a; U
< 3 E (I(F'(zx) = Bi)esll + S llsk-all) + < lisel

]Gﬂm
10






(4.11) (2 N(F (=) Bk)eall+—||8k 1IIZ%

JEQm Jj=1

lev—l

Note that the mth column is the only column which maintain the information of the
(k —n + 1)th step. Therefore, it can be seen from the proof of Lemma 2.2 that for any
J € Qm,

(4.12) I(F'(zx) — Br)esll < @i(éx + ha)-

Thus, from (4.11),

(B~ Fenenll < 556+ he) o < Statée + )

Let C, = (2% + 1)/2. Then from (4.12),

1Pz~ Bulle = S I(F(@) = Belesl?
= WP = Boeall + T I(F () - Boesl”
JEQm
< Clzaz(ék + i"k)za

which implies (4.6).
THEOREM 4.2. Assume that F(z), F'(z) satisfy the hypotheses of Theorem 2.3.

Let {zi} be generated by Algorithm 4.1 without any global strategy. Then there exist
€, 8, h > 0 such that if 0 < |hi| < h and zo € D, By satisfy

llzo — 2"l <€, ||Bo— F'(zo)llF < 6,

then {zi} is well defined and converges g-linearly to z*. If limy_.o |hx| = 0, then the
convergence is q-superlinear. If there exists some constant C such that |hi| < C||F(z4)||,
then the convergence is (n — 1)-step g-quadratic.

Proof. Since z* € D and D is an open convex set, we can choose € so that
S(z*,2¢) = {z: ||z — =*|| < 2¢} C D. Also, we can choose ¢, 6 and h so that

2BC(a(5+h)+6) <3, h<e

where C; is defined in Lemma 4.1, and 8 > 0 satisfies ||F'(z*)||r < 8. Without loss
of generality, we assume that C; > 1.
We first show by induction on k that

1 .
(4.13) loas = 2*ll < Sllox —27ll, £ =0,1,2, ..

It is easy to show that (4.13) holds for £ = 0. Now suppose (4.13) holds for k£ =
1,2,...,m — 1. We show that it also holds for k = m. By (4.13),

2m + pm — 2*[| < llzm — 2"l + Pl < |20 = 27|| + b < 2e.
11






Thus, {zt + pr}ie; C S(x*,2¢) C D. By Lemma 4.1, there exists an integer 1 < jo <
max{m,n — 2} such that

| B — Fl(zn)llr £ Ci(a(2|lzm - Tm—jo | +_7lm) +9)
(4.14) < Ci(a(4)lz” — zm—jo || + hm) + 6).

Thus,

IF ()7 (Bm = F'(z")llr < I1F' () |r(| Bm — F'l(wm)llF + | F'(zm) — F'(z")|IF)
< BCi(a(5e+ k) + 6) < 3"

Therefore, by Dennis and Schnabel’s Theorem 3.1.4 [3],

(4.15) I(Ba) ' IF < 28,

which shows that z,,41 is well defined. From (4.14) and (4.15),

lomsr = 2" < N(Bm) *lIFI1F(z*) = F(zm) = F'(@m)(e* = om)l|
]| B = F'(@m)lpll2" = 2ml]
< 2B[5llem = 27| + |Bm — F'(@m)lIFllle” — 2]l

(4.16) < 2ﬂ01[a(§€ £ 1)+ 8)lle" = 2l < llem — 2,

which completes the induction step. It follows from (4.13) that {zx} converges to z* at
least ¢-linearly. From (4.6) and (4.13), for k£ > n, inequality (4.14) is changed to

I1Bx = F'(zi)llF < Cre(llze = || + ll2* — Zrenaall + Bi)
and therefore, (4.16) is changed to

* '5 * T *
(4.17) 2k = 27|l < 2C10B(Flle™ = Tr-nsall + hi)llzx — 2.

Since {h4} is a sub-sequence of {k;}, hx — 0 implies Ay — 0. Therefore, by (4.17), {zx}
converges to * g-superlinearly if hy — 0. By Dennis and Schnabel’s Lemma 4.1.16 [3]

|he] < CIF (i)l
is equivalent to
|he| < Collzk — 27|,

where Cy > 0 is a constant. Therefore, if |hx| < C||F(zk)||, inequality (4.17) can be
rewritten as

(4.18) Ieesr — 2%l < Calle™ — zh-nizllllzr — 2*|| < Cslle” — Tr-nsall?,

where C3 > 0 is a constant, which implies that {z;} converges to z* at least (n —1)-step

g-quadratically.
12






THEOREM 4.3. Assume that F(z), F'(z) satisfy the hypotheses of Theorem 2.3. Let
{zx} be generated by Algorithm 4.1 without any global strategy. Then the r-convergence
order of {xx} is not less than T , where T is the unique positive root of equation

"l _n2 1 =0.

Proof. The desired results can be easily obtained by using (4.18) and applying
Ortega and Reinboldt’s Theorem 9.2.9 [9].

Comparing Theorem 4.2 and Theorem 4.3 with Theorem 2.3 and Theorem 2.4, we
see that the CSSCC method has a better g-convergence rate and a better r-convergence
order than the SCC method.

5. Numerical results. To see how our methods work in practizce, we computed
nine examples by the Finite-difference (FD) method, Broyden’s method, the SCC
method (Algorithm 3.3), the SSCC method with the reversed column correction or-
der and the CSSCC method (Algorithm 4.1).For Broyden’s method, the well known
QR update technique is used, and for the SCC method, the SSCC method and the
CSSCC method, the QR update technique mentioned in section 3 is used.

For Broyden’s method, the SCC method, the SSCC method and the CSSCC method,
the initial approximations to the Jacobian were computed by the FD method. The
‘global strategy’ used to force convergence from far away points is the line search with
backtracking (see Dennis and Schnabel [3, p.126]). If direction py = —B;'F(zy) is
not a descent direction, then we try —pi. According to Dennis and Schnabel [3, p.79],
instead of using a uniform step length Ay in finite differences at each step, we use

hi = \/macheps (z1);

to perturb each component of x , where is the machine precision. The stopping test we
used is given by Dennis and Schnabel [3], i.e.,

|(k41)i — (2r)il)
1%1%)% maz{(|(zk)i|), 1} =

and we choose steptol = 1076. For Algorithm 4.1, we choose § = 10~*. All tests
were run on the Jilin University Honeywell DPS-8 in double precision. We compare the
numerical results from the five methods in Table 1, Table 2 and Table 3, where N1 is the
number of iterations, NF is the number of function evaluations and TIME is the CPU
time in seconds. The number of function evaluations includes the number of function
values needed in line searches.

As we mentioned in section 3, the SCC method with the reversed column correction
order (Algorithm 3.3) may be more efficient than the SCC method with the natural
column correction order (Algorithm 2.1). To see this fact in practice, we compare CPU
times for solving the nine problems mentioned above from Algorithm 2.1 and Algorithm
4.1 in Table 4.

The test problems are:

1. Discrete boundary value function in[8].
13
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TABLE 1

Algorithms Problem 1 Problem 2 Problem 3
NI | NF | TIME [ NI | NF | TIME | NI | NF | TIME
FD 3 | 52 | 0577 | 3 | 52 | 1.391 | 17 | 290 | 3.026
BROYDEN | 4 | 21 | 0445 | 4 | 21 | 0.783 [ 23 | 40 | 1.925
SCC 5126 0320 | 5 | 26 | 0.739 | 73 | 162 | 3.341
SSCC 4 | 24 |1 0403 | 4 | 24 | 0.784 | 23 | 62 | 1.924
CSSCC 4 12410321 4|24 ] 0705 23] 62 | 1.456

TABLE 2

Algorithms Problem 4 Problem 5 Problem 6
NI | NF | TIME | NI | NF | TIME | NI | NF | TIME
FD 5 | 8 | 0.878 | 6 | 103 | 1.295 | 15 | 168 | 2.397

BROYDEN | 9 | 26 | 0.815 | 15| 32 | 1.352 | 20 | 61 | 1.646
SCC 12 ] 40 | 0594 | 19 | 54 | 1.076 | 76 | 698 | 3.064
SSCC 9 | 34 | 0.744 | 18 | 52 | 1.697 | 20 | 85 | 1.392
CSSCC 9 | 34 | 0551 | 18 | 58 | 1.372 | 19 | 80 | 0.935

Discrete integral equation function in [8].
Trigonometric function in [8].
Variably dimensioned function in [8].
Broyden tridiagonal function in [8].
Broyden banded function in [8].
Example 6.2 in [6].
Example 6.3 in [6].

9. Example 6.4 in [6].

The starting points for the first six examples are the standard ones which can be
found in Moré Garbow and Hillstrom [8], and the starting points for the last three
examples are the first ones in Li [6], i.e. 29 = —2. The dimension of all test problems
is 16.

From Table 1, Table 2 and Table 3, we can see the following facts:

(1). The SCC method takes less execution time than the FD method in five out of
nine cases, and it takes less execution time than Broyden’s method in seven out of nine
cases though sometimes it takes more iterations than the FD method and Broyden’s
method. This is due to the savings from the QR update technique mentioned in section
3.

0N 3o W

(2). The CSSCC method takes the least execution time in seven out of all nine
cases, it takes less execution time than Broyden’s method in eight cases, and it takes
less execution time than the SSCC method in all nine cases.

(3). The CSSCC method takes much less number of function evaluations than the
FD method in eight cases, and it takes the least function evaluation number in two
cases.

(4). The CSSCC method and the SSCC method take less iterations than the SCC
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TABLE 3

Algorithms Problem 7 Problem 8 Problem 9
NI | NF | TIME [ NI [ NF | TIME | NI | NF | TIME
FD 17 1297 | 3.002 | 32 | 598 | 5.927 | 18 | 3156 | 3.373

BROYDEN | 78 | 184 | 6.460 | 79 | 180 | 6.570 [ 119 | 337 | 10.15
SCC 77 | 538 | 4.641 | 66 | 308 | 3.656 | 71 | 428 | 4.285
SSCC 54 | 199 [ 4.704 | 46 | 164 | 4.036 | 53 | 174 | 4.650
CSSCC 54 | 192 | 4238 | 33 | 114 | 2.319 | 33 | 133 | 2.424

TABLE 4

Algorithms | Prob.1 | Prob.2 | Prob.3 | Prob.4 | Prob.5 | Prob.6 | Prob.7 | Prob.8 | Prob.9
Alg. 2.1 0.481 | 0.893 | 3.627 | 0.874 | 1.096 | 3.107 | 6.228 | 10.87 | 6.147
Alg. 3.1 0.320 | 0.739 | 3.341 | 0.594 | 1.076 | 3.063 | 4.641 | 3.565 | 4.285

method for all nine examples.

From Table 4, we see that the SCC method with the reversed column correction
order (Algorithm 3.1) always takes less execution times than the SCC method with the
natural order (Algorithm 2.1). This is mainly due to the QR update technique.

6. Concluding remarks. We have given a QR update technique for the SCC
method, and our analysis and our numerical results have shown that this QR update
technique may gain some savings from the computational cost. We have also given a
column-secant modification for the SCC method (CSSCC method). We have shown
that the CSSCC method has better local convergence rates than the SCC method. Our
numerical results have verified this theoretical result.

When the function evaluation is not very expensive, one may consider a variation of
the SCC method or the CSSCC method such that instead of correcting just one column
of the approximate Jacobian, two or more columns may be corrected at each iteration.
This technique may reduce the number of iterations needed for convergence. Of course,
it will increase the number of function evaluations at each iteration than the SCC and

the CSSCC method.
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