Recovering an Optimal LP Basis
from an Interior Point Solution

Robert Bizby
Matthew J. Saltzman

CRPC-TR91184
October, 1991

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Revised March, 1992.

Recovering an Optimal LP Basis from an Interior
Point Solution

Robert E. Bixby
Department of Mathematical Sciences
Rice University
Houston TX
713/527-4305 bixbyGrice.edu

Matthew J. Saltzman
Department of Mathematical Sciences
Clemson University
Clemson SC
303/656-3434 mjsQclemson.edu

Keywords: Programming (linear programming, interior point
algorithms. simplex method. basis recovery): Analysis of algorithms
(data structures. algorithms for basis recovery).

Abstract

An important issue in the implementation of interior point algorithms for
linear programming is the recovery of an optimal basic solution from an
optimal interior point solution. In this paper we describe a method for
recovering sich a solution. Our implementation links a high-performance
interior point code (OB1) with a high-performance simplex code (CPLEX).
Results of our computational tests indicate that basis recovery can be done
quickly and efficiently.

In recent vears. interior point methods for linear programming have gen-
erated much excitement. High-performance interior point codes such as OB1
(OB1 is a trademark of XMP. Inc.) compete with advanced simplex codes
such as CPLEN (CPLEX is a trademark of CPLEX, Inc.) to solve problems
on a scale considered completely impractical only a few years ago. Currently.
each class of methods outperforms the other on some types of problems. and
neither has proved to be superior overall.

One important challenge in the implementation of interior point al-
gorithms is the development of methods to construct an optimal basis.
Whereas the simplex method naturally terminates with an optimal basic
pair of primal and dual solutions. interior point algorithms provide only a
“nearly” (strictly) complementary primal-dual pair. In fact. if multiple pri-
mal or dual optima exist. the interior point solution is likely be a point in
the ~middle” of the optimal face [3. 11]. This is a significant drawback in
some applications. since the current state of the art allows post-optimality
analysis to proceed only from a basic primal-dual optimal pair. (See (1] for
an investigation into the potential for post-optimality analysis in the context
of interior point methods.)

Of particular interest is the reoptimization of a modified problem, given
the optimal solution to the unmodified problem. This situation arises fre-
quently in integer programming, where branching or adding cutting planes
causes the last known solution to become infeasible. It is also an issue in
nonlinear programming methods that solve sequences of LPs. and in many
planning applications where problem structure remains the same, but coef-
ficient values change from one period to the next.

An additional difficulty with current implementations of interior point
methods is their numerical stability near the optimal solution. The linear
system solved at each iteration of the Newton barrier algorithm implemented
in OB1 is singular at a strictly complementary point, and as the solution
is approached. the system becomes progressively more ill-conditioned. This
may lead to problems such as difficulty meeting convergence criteria, or
unacceptably large residuals. Although future developments in interior point
techniques may eventually overcome these difficulties. recovery of a basic
optimum is currently the best method available to ensure accuracy when
the interior point methods encounter difficulties.

One earlv attempt to recover basic optima from interior optima by
~crossing over™ to the simplex method is described in [10]. This experiment
applied an extension to Marsten's XMP simplex code to handle “superba-
sic” variables and combat stalling to the solution generated by a dual affine

r‘—u:.

r..

e e 2ot

‘.m-.--.

interior point algorith. The dual affine algorithm produces a dual interior
solution and a nearby complementary primal solution, which may not be
primal feasible. The (then-current) extended XMP accepted a superbasic
solution (see below). and set up an all-logical basis. Variables near their
bounds were locked at their bounds, and the simplex method was started.
After an optimal solution was found, the locked variables were released. and
the problem was reoptimized. Finally, any remaining superbasic variables
were moved to their bounds or pivoted into the basis. This experiment
met with decidedly mixed success. Overall, the basis recovery phase took
about 45% of the interior point time and about 30% of the time required to
solve the problems from scratch using XMP's simplex algorithm. On some
problems. basis recovery took longer than the interior-point phase.

The approach described in this paper is philosophically similar to that
of [10], but it starts with the output of a primal-dual interior algorithm, gen-
erates an advanced starting basis, and uses different rules for choosing and
manipulating superbasic variables. We demonstrate that the combination
of simple crossover rules, switching from a primal-dual interior algorithm
and a robust simplex implementation yields a very effective basis recovery
method. The critical factors in designing a successful crossover are the iden-
tification of the positive variable in a primal-dual complementary pair, and
the construction of a stable starting basis.

We begin in Section 1 with a review of essential concepts. In Section 2,
we describe the rules for selecting variables to appear in a proposed starting
basis. In Section 3. we describe the techniques we apply to repair the initial
basis in case the proposed basis is invalid. Section 4 describes the pivoting
strategy to move to a basic optimum. Recent results by Megiddo [12] have
shown that. given a complementary primal-dual optimal pair, there is a
strongly polynomial algorithm for basis recovery. In Section 3. we describe
an interpretation of Megiddo’s result and compare this method with our
proposal. Finally, Section 6 describes a comprehensive set of tests on the
Netlib test set [3]. and Section 7 presents final remarks.

1 Basic Concepts

We consider the bounded-variable linear program (LP):

Minimize cTx
subject to Aa =0 (1)
[€x2<u

where A is an m x n matrix. Arbitrary bounds. including /; = —> and
uj; = oo, are allowed.

When presented with a problem in this form, OB1 transforms it into a
problem in which all variables satisfy 0 < z; < uj;, with u; = > allowed.
The problem is transformed back to its original form before it is handed off

to the crossover routine.

A normal basic solution to (1) is described by a partition of the index
set {1,...,n} into subsets B, L, U and F, such that the following properties
hold (for convenience. we define .V = LUU U F):

e |B] = 1 and the submatrix B of A. consisting of the columns {4.,] €
B} is nonsingnlar.

e LCH{jeN > —-x}
e UC{jEN < xXh
o F={jeN:l;=—oc0and u; = x}.

")
v

The variables are assigned the values

l; jeL
r; = wj jEU forall jeN
0 jerF

rg = B~Yb- Lxp —Uzy — Fzp) = B-l(b - Nzy)
(where L. U'. F and V are defined similarly to B).

A superbasic solution to (1) is described by a similar partition. with the
following modification:

e j € F is permitted for any j such that /[; < u;, and for j € F, any
value for «; is permitted, as long as [; < z; < u;j.
e the solution is specified by the sets B. L. U/ and F. and the value of

2p. The value of xp is computed as above.

Note that any feasible solution to (1) can be described as a superbasic solu-
tion involving any basis B (with B nonsingular), and suitably-chosen L.U.
F and xf.

1.1 The Interior Point Algorithm

The interior point code used in this experiment is OB1, which implements
a primal-dual barrier method with a predictor-corrector enhancement. The
details of the algorithm are described in [9], and the details of the Cholesky
factorization are described in [7]. Reordering of the rows of A to control fill-
in in the factorization of AAT is accomplished using the Multiple Minimum
Degree heuristic [8]. The only modification to OB itself was the substitution
of our own crossover routine for the routine which crosses over from the
interior-point phase to the XMP simplex code.

1.2 The Simplex Algorithm

The simplex code we use is CPLEX, modified to handle superbasic primal
variables. Tlese are treated as free variables, except that. if one is selected
to enter the basis. the appropriate bound participates in the distance com-
putation for selecting a leaving variable, and it may move to that bound
without requiring a pivot.

At the end of a simplex run, any remaining superbasic variables are
forced to move to a bound or enter the basis. and free variables are forced
to enter the basis or move to zero. CPLEX terminates with a normal basic
feasible solution.

Code to accept a starting superbasic solution and generate a usable start-
ing basis is included. and this is described in detail below. The superbasic
code uses partial/multiple reduced gradient pricing or a hybrid strategy
mixing Dever [6] and partial/multiple pricing, and handles structural or
slack variables between their bounds. Variables that violate their bounds
are permitted only if they are in the basis.

2 Selecting a Candidate Basis

The first step in our crossover process is to identify which primal variables are
to be considered away from their bounds. This is accomplished as follows:

e For each z; such that [< u;. we compute §; = min{z; — [j, u; — ¥}
The variables are sorted in decreasing order of s;. If z; is free. then
sj = |r;|. Fixed variables are excluded from consideration.

e Variables are examined in order of decreasing =j. A variable r; is
considered ro be between its bounds as long as s; > €1. where

€; = 10~? was used in all our computational tests.

e The first m such variables are marked as candidates for the initial
basis. Any remaining variables with s; > €; are marked as superbasic.
where ¢, = 10~* in our tests. The case where fewer than m candidates
are available is treated below. All variables with s; < € are marked as
being at the corresponding upper or lower bound. whichever is closer
to the current value.

The status lists thus constructed are used as a starting point in the con-
struction of rhe initial basis. Once an acceptable starting basis has been
generated. the remaining superbasic variables are checked again. and set at

the nearest bound il », <«

3 Forming the Starting Basis

As we have pointed out, any superbasic solution can be described in terms
of any basis. Our task is to choose a basis in which to describe the inte-
rior solution. This basis should contain a maximal set of variables strictly
away from their bounds. The difficulty is that when we compute zp as the
solution to Bag = ' = b — Nz, the resulting residual b’ — Bxg may be
acceptably small (since Gaussian elimination effectively minimizes the resid-
ual), but the computed xg may not accurately approximate the xp that is
passed from the interior algorithm. Even if the residual is within accept-
able limits. xg may be highly sensitive to perturbations caused by moving
nonbasic variables to bounds. (See [4], for example, for a discussion of these
issues.) An inaccurately-computed xp may appear to have large infeasibili-
ties (with respect to bounds), and may cause other numerical difficulties for
the simplex algorithm. Thus it is extremely important to construct a very
well-conditioned basis. even if this means rejecting variables that appear de-
sirable, and that would be acceptable in other circumstances. We construct
such a basis using the method described in this section.

The interior solution and the status list constructed above are used to
generate a candidate basis (partial basis, in case fewer than m candidates
are found). CPLEX attempts to factor this matrix. as described in [2] (see
also [14]).

One aspect of the factorization that is of interest here is the singularity
tolerance. . The LP is scaled by CPLEX as part of its initialization. so that
max; j |a;j| < 1. The singularity tolerance gives the minimum absolute mag-

(S]]

—

nitude of an acceptable pivot entry. For this initial factorization attempt.
we select T = 10~3 (compared to the default of = = 10~% for normal oper-
ation). Columns for which no acceptable pivot can be found are rejected.
Each of the remaining columns is said to cover the row in which its pivot
entry appears.

If the basis is incomplete, either because of an insufficient number of
candidates or because of rejected columns, it is extended as follows: any
non-basic slack variable that covers an uncovered row is included; other
candidates are taken from the list of variables initially marked superbasic
(not including rejected variables), if any, then from the variables at bounds,
according to criteria described in [2]. The factorization is attempted again.
Any uncovered rows after this pass are covered by artificial variables. The
factorization and addition of artificial columns may be repeated up to ren
times, if required to produce a complete, successfully factored basis.

Once a basis has been successfully constructed. the value of zp is com-
puted. and the resulting solution becomes the initial candidate starting su-
perbasic solution. If the total scaled infeasibility of this solution is greater
than 1.0. this is taken as an indication that the chosen basis is too ill-
conditioned to be acceptable. In this case. the entire process is repeated.
starting with the current candidate basis. with 7 = 10~1!.

The test for infeasibility after the first successful factorization
(with 7 = 1073) essentially approximates a test for the accuracy of the
computed zg. Although this test does not distinguish between infeasibilities
due to inaccuracy and infeasibilities due to superbasic variables being pushed
to bounds. it is quite effective in practice. If the infeasibility is small enough.
we accept the current basis. If not. we demand a better-conditioned basis. by
applving the selection process again with 7 = 10-1. If the new solution is still
not satisfactory. then the infeasibility is probably not due to ill-conditioning,
and we proceed using the solution in any case. An improvement to this
method would be to use large infeasibility as an indicator to adjust both 7
and €, i.e.. to attempt to control infeasibility due to ill-conditioning as well
as movement of nonbasic variables. These issues remain a topic for future
investigation.

4 Progress Toward a Normal Basic Optimum

After an acceptable basis has been constructed and variables moved to
bounds as described above. the remaining nonbasic variables are made su-

perbasic at their interior-solution values. Then zg and the reduced costs
corresponding to the current basis are computed. Because of the adjust-
ments to the values of z;, and zr/, the computed values of g may be slightly
different from their interior-solution values, and may even no longer be fea-
sible. Also. the reduced costs associated with the chosen basis may not
satisfy the optimality condition. Nevertheless, the superbasic solution we
have constructed can be used to start phase I of the simplex method.

We apply CPLEX's implementation of Wolfe’s piecewise-linear phase-I
algorithm [13] (if necessary), beginning with the constructed superbasic solu-
rion. When a primal feasible solution is reached. we apply CPLEX’s phase-II
aigorithm using partial/multiple pricing. A superbasic candidate to enter
the basis is treated the same way as a free variable. except that it may reach
a bound before any basic variable. in which case it is moved into £ or (4. as
appropriate, rather than entering the basis.

When all feasibility and optimality conditions are satisfied. there may
remain superbasic variables with reduced cost close enough to zero to be
considered optimal. The last phase of the algorithm moves each such variable
in turn to a bound: if the variable has only one bound, it is moved there;
if it has upper and lower bounds. it is moved to the nearest bound (or to
the opposite bound if the pivot is rejected). Free variables are moved to
zero. During each step of this process, if a basic variable reaches its bound,
it is exchanged in the basis with the superbasic variable being moved. This
step is performed last, because superbasic variables often move during the
reoptimization phase anyway. Every such movement results in the removal
of one superbasic variable from the list. Thus, there may be significantly
fewer superbasic variables at the end of the reoptimization process than at
the beginning.

5 Complexity and Megiddo’s Method

In [12], Megiddo describes a strongly polynomial algorithm for recovering an
optimal basic solution from any complementary primal and dual feasible pair
of solutions. He also shows that. if a strongly polynomial algorithm existed
for recovering a basic optimal solution from a primal or dual optimal solution
alone, then there would be a strongly polynomial algorithm for the general
LP problem.

Given an exact complementary pair of primal and dual optimal solutions.
Megiddo proposes inserting va bles into the basis one at a time, as follows

r'_.

(for simplicity. we assume in this section that 0 < 2; < x):

1. Insert positive primal variables until a maximal linearly independent
set of columns has been included. Each time a column corresponding
to a positive variable is found to be linearly dependent on columns
already in the basis, move the variable to zero or pivot it into the
partial basis if a basic variable goes to zero first. After this step all
positive variables have been inserted in the basis or set to zero.

2. If any zero-valued variables have duals equal to zero, include as many
as possible with columns linearly independent of those in the partial
basis.

3. Attempt to include each of the remaining variables until a complete ha-
sis has been constructed. For each zero-valued variable included with
positive dual. move the dual to zero. If a nonbasic dual (with respect
to the primal basis) goes to zero. pivot the corresponding variable into
the partial basis.

When these steps are completed, a complete basis has been constructed,
all basic dual variables are zero and all nonbasic primal variables are zero.
Since (under exact arithmetic), every step increases the size of the basis or
reduces the number of positive nonbasic variables, it follows that the number
of iterations is bounded by n.

Megiddo’s method differs from the method presented here in two ways.
First, rather than build the basis one column at a time. we construct a full
basis at the start and use the usual simplex pivoting mechanism to recover
our solution. Megiddo's algorithm can be easily modified to accommodate
this strategy. as described below. Second, our method does not make use
of the dual solution provided. We discuss the implications of each of these
differences next.

Megiddo’s method can be modified to start by constructing a full basis,
and then use normal simplex pivots. Starting with a complementary primal-
dual pair of solutions, perform the following steps:

1. Find a maximal linearly independent set of columns corresponding to
variables with positive primal values (i.e.. dual values of zero). Any
remaining positive primal variables will be superbasic.

[

Fill out the basis with any linearly independent columns from among
the remaining variables. First include variables with primal and dual
values both zero. then those with nonzero dual values.

[v 4]

3. For each of the remaining superbasic variables, move the variable to a
bound. or until a variable in the basis reaches a bound. If the latter
occurs, exchange the variables.

4. For each basic variable with positive dual value. move the dual value
to zero, or until a nonbasic dual variable reaches zero (as in the dual
simplex method). If the latter occurs, exchange the variables.

At the completion of Step 2. a basis matrix has been constructed, with re-
spect to which the original solutions are primal- and dual-superbasic, i.e.,
some nonbasic primal variables may be positive, and some basic dual vari-
ables may be positive. After each iteration in Step 3. there will be one
fewer nonbasic positive primal variable. If the exchange occurs. the in-
coming variable must replace a variable in the basis with a positive value.
since the basis contains a maximal linearly independent set of these. At the
conclusion of Step 3. the primal solution is basic and feasible, but the corre-
sponding reduced costs may violate the optimality conditions. At this point
the original dual solution may be viewed as a superbasic starting solution
for the dual simplex method. Each iteration of step 4 reduces the number
of nonzero basic dual variables by one, without sacrificing dual feasibility.
At the conclusion of this step, the algorithm will produce a normal basic
optimal solution to the LP. (Note: if there are nonbasic free variables, they
can be moved to zero or pivoted into the basis in Step 3.) The algorithm is
guaranteed to run in at most n iterations in Steps 3 and 4.

The other difference of our method from Megiddo’s method is that we
do not make use of the dual solution provided. Megiddo shows that a basis-
recovery algorithm using only primal or dual information could not have
strongly polynomial worst-case running time unless a strongly polynomial
algorithm for the general LP problem exists. Nevertheless, we will show
that our algorithm performs comparatively well in practice. Although we
have not implemented the superbasic dual simplex method, we can still
use Megiddo’s algorithm as a suggestive standard for comparison. This is
because once a starting basis has been constructed, the number of pivots
required by the algorithm (under the assumption of ideal arithmetic) can be
easily estimated. What cannot be estimated is the fraction of primal and
dual pivots that will require an exchange of variables in the basis. This can
have a significant impact on the total running time of the algorithm. since
pivots requiring an exchange are more costly. On the other hand, there is

[}

no a priori reason to expect this fraction to be lower than for our method.

9

It is unlikelv that Megiddo's method could be implemented in a way
that meets the guarantees of the analysis, for two reasons. The theoretical
analysis begins with an exact optimal primal-dual pair, and assumes that
the set of primal variables not at bounds can be identified precisely. Any
practical implementation will start with an interior solution that is only
approximately complementary (and perhaps only approximately feasible).
Adjusting values of primal and dual variables to achieve complementarity
may adversely affect primal or dual feasibility. The theoretical analysis also
assumes that linear independence is a strictly combinatorial notion. Again.
this cannot be true for linear systems represented as floating point numbers
on digital computers. The condition of the basis is a critical problem. and
nonsingular matrices can appear to be numerically singular or vice versa. If
incorrect decisions are made with regard to inclusion of variables in the basis.
a maximal set of linearly independent positive variables may not be included.
In this eventuality. reduction in the number of primal or dual superbasic
variables can no longer be guaranteed. If the basis is ill-conditioned, the
computed solution may not be accurate (or feasible) and ratio tests may not
be performed accurately.

For each of the problems we solved, we estimated the number of Megiddo
pivots to be expected under ideal conditions. The estimate was computed.
after a satisfactory initial basis had been constructed. as the number of su-
perbasic primal variables plus the number of superbasic dual variables. This
number is reported together with the times and number of pivots required
by our algorithm. in Table II. We observe that on only 14 problems does the
number of actual pivots performed by our method exceed the number pre-
dicted. Overall. the number of pivots predicted exceeds the number actually
performed by about 37%. If we assume that the average cost of an iteration
is the same for both methods on each problem. the projected total solution
time from Megiddo's method is higher by 47% than the actual time. As
the predictions are for ideal conditions. we can expect that the actual cost
for an implementation of Megiddo's method using the same starting basis
would be even higher.

It is apparent that. in most cases, our algorithm requires significantly
fewer pivots than the Megiddo method. We might take this to be another
instance of a familiar syndrome in linear programming: that algorithms with
worst-case behavior that is polynomial often exhibit their worst-case behav-
ior, whereas more daring algorithms may perform better on most practical
problems, even if their worst-case behavior is not guaranteed to be good. On
the other hand. there are likely to be certain problems for which Megiddo's

10

method will outperform our method by a significant margin (in our test
set, woodlp is a potential example). It is not apparent how to make the
distinction a priori.

6 Computational Tests

We tested the proposed basis recovery algorithm on the problems in the
Netlib test set [3]. Tests were run on a Sun 4/490 with 64 megabytes of
RAM, running SunOS +.1.1. OB1 was compiled using the Sun £77 com-
piler, version 1.3.1. and the command line performance options -04 -cg89
-dalign -libmil. CPLEX was compiled with the Sun cc compiler supplied
with the operating system. using the same command line options.

Two complete sets of tests were run. using different termination criteria
for the interior point phase. In both tests. the default settings for OB1's
parameters were used. except:

e The problem fit?p could not be solved using a reasonable amount of
memory without resorting to a technique for handling dense columns.
We used the OB1 parameter dense 10, which effectively removes all 25
colurnns in this model with more than one nonzero element from the
Cholesky factorization, and handles them separately using a Schur
complement technique [9].

e In the first set of tests, OBl was terminated when the relative dual-
ity gap reached the default tolerance of 10-8. To test the effect of a
more accurate interior solution, the second set of tests was run un-
til the duality gap reached 10~12. OBI occasionally terminated the
high-accuracy run due to numerical difficulties encountered before the
desired accuracy was achieved. In problems perold, fff800 and nesm.
the objective function values differed from the standard-accuracy run
by 10-%.

In all cases, the CPLEX parameters were left at their defaults, except for the
choice of pricing strategy. The results of comparisons among these choices
are discussed below.

Table I lists the vital problem statistics and the results of the OB1 runs.
The original number of rows, columns and nonzeros in the constraint ma-
trix is given. as well as the number of rows, columns and constraint nonzeros
after preprocessing by OB1’s crush procedure. The total CPU time for pre-
processing includes the crush phase plus the time for reordering rows of

11

the constraint matrix to control fill-in in the Cholesky step. The number
of iterations. CPU seconds, objective function value, and a measure of how
strict the complementarity of the solution is, is given for the standard accu-
racy run. Individual problem statistics are not given for the high-accuracy
run. The results are summarized below. The complementarity measure is
computed by calculating the largest p such that the floating point value
@ + 10-Pb = a. where a and b are the larger and smaller of s; and z; (the
reduced cost), respectively. The ratio of the minimum 10~? to machine ep-
silon is given in the table. Values close to one indicate difficulty determining
whether s; or z; should be considered nonzero.

Table Il lists the results of the CPLEX phase. Times are divided be-
tween “setup time.” which includes loading and scaling the problem and
constructing the starting basis. and -~solve time.” which includes phase [
and II pivots, plus the pivots to eliminate remaining superbasic variables.
The pivot counts are given, as well as the number of pivots which involved
an exchange of variables in the basis and the number which involved mov-
ing a nonbasic variable to a bound, for the simplex and superbasic cleanup
phases. The estimated number of Megiddo primal and dual pivots is also
listed. For the setup phase, the number of factorizations is listed. Where two
numbers are listed in this column, the first is the number of factorizations
with 7 = 10-3, and the second is the number with 7 = 10-1.

The total time for OB1 for the entire test set at default accuracy (in-
cluding setup and solution time) is 6063 seconds, and the total CPLEX time
(including setup and solution time) is 584 seconds, or 9.6% of the total in-
terior point time. For the high-accuracy interior point run, the total OB1
time is 7426 seconds and the total CPLEX time is 432 seconds or 5.8% of
the interior point time. The overall times are 6647 seconds for standard ac-
curacy and 7848 seconds for high accuracy. Thus. the more accurate interior
point solution is helpful for the basis recovery phase, but the additional cost
of obtaining the high-accuracy solution to begin with more than offsets the
savings in the basis-recovery phase. Note that almost half the CPLEX time
is due to one problem. stocfor3. If this problem is dropped from the test set,
basis recovery time drops to only 3% of interior point time. Our experience
with stocfor3 is described below.

These results can be contrasted with the results of [10] on a subset of 26
of these problems. The overall cost of basis recovery in that paper was 46%
of the total interior point time. For the same subset of problems, the method
presented here takes 13% of the interior point time. Furthermore. the dual
affine interior algorithin and quotient minimum degree reordering heuristic

12

of [10] are significantly slower than the implementation in OB1. In fact. it
is interesting to see that the total dual affine time for the tests in (10] was
8075 seconds. and the total recovery time was 3731 seconds (on a VAX 3600
with no floating point accelerator). The same test on the Sun 4/490 using
OB1’s primal-dual predictor-corrector ran in 383 seconds and the CPLEX
basis recovery time was 57 seconds. Although the effect of the change of
machine is not clear, the total test now runs almost 27 times faster than the
earlier version. The interior point portion of the test is 21 times faster, and
the recovery portion is over 65 times faster.

6.1 Pricing

CPLEX's superbasic support is integrated with both partial/multiple pric-
ing and Dever pricing. We tested both partial/multiple pricing and a hy-
brid pricing strategy using Devez and partial/multiple pricing. Applying
the hybrid strategy did not result in significant reductions in the number of
iterations. In particular. the reduction in iteration counts did not compen-
sate for the increased cost per iteration. We conjecture that the improved
direction-selection criteria of the hybrid algorithm produces little or no ben-
efit since the starting solution is already on the optimal face. Also, the
number of iterations required in the basis-recovery phase is small enough
that the setup cost for Devex pricing will not be amortized over the pivots.

6.2 Perturbation

Of the total 534 seconds reported in the previous section for basis recovery
on the Netlib set, 288 seconds are attributable to two problems. Degen3
took 934 iterations and 27 seconds and stocfor3 took 2240 iterations and 262
seconds. With these two problems removed, the total basis-recovery time
would have been 322 seconds. and the total OB1 time would have dropped
only slightly to 5701 seconds.

The behavior of stocfor3 can be explained as follows (degend is similar).
The crushed version of this model has a basis of size 16643. Taking the result
of our accurate run. the OB1 solution has 13351 primal variables (including
slacks) with values greater than 10-3. All other variables have values less
than 10~1°. and only 1322 have dual values less than 10~2. Thus, ignoring
artificial variables and using any reasonable tolerances for primal and dual
zeroes. there will be at least 16643 — (13351 + 1322) = 1770 basic variables
with positive dual values. Using Megiddo’s procedure. these would take a

13

Pre—,

—

minimum of 1770 iterations to correct, worse than the 1565 iterations that
our algorithm actually took using the accurate solution as input (there were
no artificials left in the basis at optimality). For the standard run. the
selection of the initial basis can be expected to be even more difficult.

One approach for dealing with this problem is to introduce a pertur-
bation, as follows. For each structural variable z;, we replace the bounds
on z; by l; — Lje and uj + Uje, respectively. where L; and U; are inde-
pendent uniform [0, 1]-random variables, and ¢ is some specified tolerance
(say 10=%). The resulting perturbed problem. LP, is then given to OBL,
solved, and the solution passed to CPLEX. Basis recovery is carried out for
LP using this solution. The recovered basis. 5 is used as the starting point
for a simplex solution of the original problem. The expectation is that this 5
will be already be optimal for the original problem, and that no additional
iterations will be required. The idea of the perturbation (which is essentially
that already used in CPLEX for dealing with stalling in the normal simplex
method) is not only to make the optimal solution a vertex, but to put the
vertices in one-to-one correspondence with the basic feasible solutions. This
approach differs from that proposed by Mehrotra [13]. who perturbs only
the objective, thus producing a unique vertex solution. but not a unique
basic optimal solution.

For stocfor3 this perturbation approach reduces the basis recovery time
to 64 seconds (and 324 iterations). For degen3 it reduces the time to 5.7
seconds (and 104 iterations). However, for several other problems that were
tested, perturbation led to significant numerical difficulties for OB1, which
could not then solve these problems to acceptable accuracy. This latter

behavior has vet to be explained.

7 Concluding Remarks

We have described an effective method for recovering an optimal basis from
an optimal primal/dual interior point solution. In tests on the Netlib prob-
lem set, this method was able to recover an optimal basis in 5% of the
interior point solution for mnost problems. Although highly primal degener-
ate problems such as stocfor3 appear to be intrinsically difficult, we have
also indicated that perturbing the problem may effectively eliminate this
difficulty. More experimentation is warranted. both in this area and in the
selection of a robust starting basis. Nevertheless, it is clear that, in general.
basis recovery can be done in reasonable time. For problems where the inte-

14

rior method is indicated. the requirement for an optimal basic solution need
not be considered a significant drawback.

Acknowledgements

This research was supported in part by the Center for Research on Parallel
Computation through NSF Cooperative Agreement No. CCR-8309615.

References

(1]

2]

I. Adler and R. D. C. Montiero. A geometric view of parametric linear
programming. Unnumbered technical report, Dept. of Industrial En-
gineering and Operations Research. University of California. Berkeley
CA. 1989.

R. E. Bixby. Implementing the simplex method: The initial basis. Tech-
nical Report TR90-32, Dept. of Mathematical Sciences, Rice University.
Houston TX, 1990.

D. M. Gay. Electronic mail distribution of linear programming test
problems. COAL Vewsletter, 13:10-13, December 1983.

P. E. Gill. W. Murray, and M. H. Wright. Numerical Linear Algebra
and Optimization. volume 1. Addison Wesley, Redwood City CA, 1991.

O. Giiler and Y. Ye. Convergence behavior of some interior-point al-
gorithms. Working Paper Series 91-4, Dept. of Management Sciences,
The University of Iowa, Iowa City IA, 1991.

P. M. J. Harris. Pivot selection methods in the Devex LP code. Math-
ematical Programming, 5:1-28, 1973.

H.-W. Jung, R. E. Marsten, and M. J. Saltzman. Numerical factoriza-
tion methods for interior point algorithms. ORSA Journal on Compui-
ing, 4, 1992. forthcoming.

J. W.-H. Liuv. Modification of the minimum-degree algorithm by
multiple elimination. ACM Transactions on Mathematical Software.
11(2):141-153. June 1935.

—

(9]

[10]

[11]

[12]

[13]

(14]

[13]

I.J. Lustig. R. E. Marsten. and D. F. Shanno. On implementing Mehro-
tra’s predictor-corrector interior point method for linear programming.
Technical Report SOR90-03, Dept. of Civil Engineering and Operations
Research. Princeton University, Princeton NJ. 1990.

R. E. Marsten. M. J. Saltzman, D. F. Shanno, G. S. Pierce, and J. F.
Ballintijn. Implementation of a dual affine interior point algorithm for
linear programming. ORSA Journal on Computing. 1(4):287-297, 1989.

N. Megiddo. Pathways to the optimal set in linear programming. In
N. Megiddo. editor. Progress in Vlathematical Programming—Interior
Point and Related Methods. pages 131-153. Springer-Verlag, New York
NY, 1939.

N. Megiddo. On finding primal- and dual-optimal bases. ORSA Journal
on Computing. 3(1):63-65. 1991.

S. Mehrotra. On finding a vertex solution using interior point methods.
Technical Report 39-22, Dept. of Industrial Engineering and Manage-
ment Sciences. Northwestern University, Evanston IL. 1990.

U. H. Suhl and L. M. Subl. Computing sparse LU factorizations for
large-scale linear programming bases. ORSA Journal on Computing,
2(4):325-335. 1990.

P. Wolfe. The composite simplex algorithm. SIAM Review, 7(1):42-54,
1965.

16

Table [: Test problem dimensions and interior point performance.

il Betore crush | After crush Prep Solve
Name I/ mn 1 nZj m n nz| secs Secs ILer objval compl]
afiro ' 23 32 33 25 32 SIT 0.0 0.07 97 —31.647535130e+uZ Te-UT1
sc50b 50 48 118 48 48 118] 0.03 0.14 8| —7.00000000e+01 le+05
sc30a 30 43 130 49 43 1301 0.02 0.14 10| —6.45750770e+01 le-+05
scl05 105 103 280 104 103 280(0.03 0.30 10| -5.22020610e+01 le<+03|
kb2 43 41 236 43 41 286 0.03 027 15 —1.74990010e+03 le+02
adlittle 56 97 383 53 97 33801 0.05 0.26 12 .25494960e+05 le+03
scagr’ 129 140 420 95 140 385 0.06 040 12 23‘3108960e+06 le+03
stocforl 117 111 447 106 111 433 0.06 0.65 19| —4.11319760e+04 le+0
blend T4 83 491 2 33 489| 0.04 0.46 14—3.08121300e+01 le+06
sc205 205 203 5510 203 202 5501 0.10 0.63 11]-5.22020610e+01 le+02
recipe 9 Is0 065 iy L0 6031 U.03 0.06 I0]—-2.06010000e+02 [e=+0U1
share2b 96) 694 93 79 691 0.06 0.51 12| —4.15732240e+02 le+00,
vipbase 198 203 903 33 194 4441 0.07 0.36 13] 1.20831460e+05 le=0-l
lotfi 1533 308 rsl 134 308 1045 0.1l 1.15 16]-2.52647060e+01 le+00"
sharelb 11y 225 L5l 110 225 11421 0.10 1.13 20} -=7.65393190e+04 le+00
boeiny? L66 143 11961 125 143 301| 0.10 0.96 14| -3.15018730e+02 le+02
scorpion 388 353 1426) 292 353 1312 0.17 1.34 14| 1.37812480e+03 le+01]j
bore3d 233 315 1429] 140 304 1165| O0.17 1.14 18] 1.37308040e+03 le-+02]
scagr2) 471 300 1334| 347 300 1429 0.21 201 16| —-1.47534330e+07 le-+0l
sctapl 300 480 1692] 284 480 16381 0.1V 1.75 15] 1.41225000e+03 le=03
capri AR EE 1YY 259 504 I3I6] 0.25 9.0 IS 2.09001290e+U3 Ie-:—UZ,
brandy 220 249 2143 126 247 2084| 0.22 2.04 19 1.51850990e+03 le+021
israel 174 142 2269 163 142 2253| 0.42 9.46 23] -—3.96644820e+05 le+00
finnis 497 614 2310 386 607 2082) 0.33 4.37 24| 1.72791070e+05 le+00
giffpin 616 1092 2377| 590 1092 2341f 0.29 3.43 18| 6.90223600e+06 le+03
scsdl 7T 760 2333 T 760 2388| 0.15 1.15 11| 8.66666670e+00 le-'r-O:')l
etamacro 400 638 2409| 334 669 2139| 0.34| 10.13 29]|-7.55715230e+02 le—OL
agg 488 163 2410 327 163 1890f 0.29 6.08 23|-3.59917670e+07 le-0L
bandm 305 472 2494| 254 467 2397 0.24 2.51 17| —1.58628020e+02 le+01
e226 223 282 2578 161 281 2472f 0.23 2.70 22| —1.87519290e+01 le+04|
sctxml BR 49 25591 282 Iov 2916f U.2¢ 2.93 T7] 1.54167590e+04 le+U31
arow’ 140 301 2612] 140 301 2612 0.18 1.89 14} —4.77878120e+07 le-+02
standata 360 1183 3139] 310 1064 2915| 0.28 3.08 15| 1.25769950e+03 le+07
scrsd 490 1169 3182 450 1165 3086(0.33 6.69 27| 9.04296950e+02 le<+02
beaconfd 173 262 3375 113 262 3286| 0.27 0.98 10| 3.35924860e+04 le+0l
shell 336 1775 3536| 496 1775 3476| 0.33 5.50 21| 1.20882530e+09 le+04
boeingl 351 384 3435(308 384 2822| 047 5.07 24| -3.35213570e+02 le-OL
standmps 467 1075 3679| 409 1064 3563 0.38 5.77 24| 1.40601750e+03 le+0T
stair 356 467 3856| 336 473 3874| 0.35 7.00 14|-2.51266950e+02 le+02
degen2 444 534 3978| 444 534 3978) 1.74 8.05 14|-—1.43517800e+03 le+03
aggl 210 JUZ 4294 129 oUZ 4110 U.00 10.40 I8 —2.02392520e+0U/ le—-Ul
agg 316 301 4300 438 302 4126| 0.54 9.99 17| 1.03121160e+07 le+0G
scsd6 147 1330 4316| 147 1350 4316 0.22 2.43 12| 5.05000000e+01 le+02
ship04s 402 1458 4352 241 1458 4157 0.4l 3.09 15| 1.79871470e+06 le--03
seba 515 1028 4352| 449 994 4205| 2.06{ 78.32 19| 1.57116000e+04 le+03
tuft 333 537 4520 284 53383 4406| 0.54 5.46 19| 2.92147770e—01 le=+0C _
forplan 161 421 4563 133 421 4538 0.28 3.78 21| -6.64218960e+02 le+00
bnll 643 1175 5121 364 1172 4976| 0.70] 13.00 27(1.97762960e+03 le+0L1l
pilocd 110 1000 5141] 397 1088 T190| 1.07| 21.26 35|-2.53113930e+03 le—0l
sctxm? 660 914 51831 564 914 50371 0.42 6.57 19| 3.66602620e+04 le+-00
17 i

R

Table [: Test problem dimensions and interior point performance

(cont.).
Before crush After crush Prep Solve
Name m n nz m n nz| secs Secs 1ter objval compl
growls 300 645 0201 300 o640 26201 U.al 7T 16| —1.065/0940e+U5 le+0UJ
perold 625 1376 6018; 600 1453 7101 0.92 32.31 36 9.38075520e+03 le—01
fIfff300 524 854 6227T| 484 854 6170| 0.95| 15.81 28 5.55679570e+05 le—01
ship04l 402 2113 6332 317 2118 6101} 0.69 450 15| 1.79332450e+06 le-01
sctap2 1090 1880 6714| 1033 1880 6489| 0.71| 10.03 20 1.72480710e+03 le+05
ganges 1309 1681 6912| 1137 1681 6740 0.84| 16.60 16 —1.09585740e+05 le+00
ship08s 778 2387 T114| 326 2387 6305| 0.64 4.01 14| 1.92009820e+06 le+04
sierra 1227 2036 7302| 1212 2036 7272| 0.65| 12.02 18 1.53943620e+07 le+00
scfxm3 990 1371 7777| 846 1371 7338| 0.70| 10.66 20 5.49012550e+04 le+02
shipl2s 1151 2763 $178| 417 2763 73537| 0.73 6.04 18] 1.48923610e+06 le+03
grow22 14U 240 RyEYi 140 Y40 3252 U.99 .00 10| —1.0033¥34Ue+U8 le-+Us
stocfor2 2157 2031 &343| 2141 2031 8319| l.14} 20.73 22 —3.90244090e+04 le+04
sesd8 397 2750 §3384| 397 2750 8384 047 4.30 10| 9.05000000e+02 le+05
sctapd 1480 2480 S&7T4| 1408 2480 8395 091} 1223 17 1.42400000e+03 le+02
pilotwe 792 2789 9126| 705 2863 9601| 0.96| 32.00 44 —2.72010750e+06 le~01
maros 346 1443 9614| 680 1412 38653 1.05| 17.07 31 —5.80637440e+04 le+00
fitlp 627 1677 9868| 627 1677 9868| 4.02| 446.95 16 9.14637810e+03 le+03
25fv47 §21 1571 10400| 780 1571 10360| 1.15] 33.36 25 5.50184590e+03 le+00
czprob 929 3323 10669| 689 3521 10126| 231} 16.36 35 2.18519670e+06 le+03
ship03l 778 4283 12802| 520 4283 11614 1.29 3.56 16| 1.90905520e+06 le+03
pilotnov v 2072 1305 ST0 2115 12514 1.186] 5135 20|—+.4912:620e+03 Ie+UU
nesm 662 2923 13288| 646 2914 13256| 0.91| 31.09 30 1.40760370e+07 le—01
fitld 24 1026 13404 24 1026 13404| 0.53 6.25 18|—9.14637310e+03 le+03
bnl2 2324 3489 13999| 2113 3483 13690| 2.76| 161.39 32 1.81123650e+03 1le+00
pilotja 040 1988 14698| 831 2017 15354 2.13| 119.31 43 —6.11313650e+03 1e+00
ship12l 1164 3427 16170| 687 53427 14913| 1.36| 12.73 18 1.47018790e+06 le+00
cycle 1903 2857 20720| 1528 2799 17293 2.68| 68.08 30| —5.22639300e+00 le—0l
80bau3b || 2262 9799 21002| 2020 9768 20646 4.27| 89.32 35| 9.87224190e+05 le—01
degen3 1503 1813 24646| 1503 1818 24646| 48.91| 138.76 18| —9.87294000e+02 le+01
greenbea || 2392 5405 30877 1951 5206 28075| 6.83| 81.17 41|-—7.25552480e+07 le+00
sreenbeb T 23092 5405 3087 | 1947 5293 2//46| G.rv| 0o.ll 34 —4-30226030e+06 [e-Ul
§2q06c 2171 5167 32417| 2098 5167 32344| 4.06| 415.54 31 1.22784210e+05 le-01
woodw 1098 8405 37474 711 8285 32695| 2.63| 36.72 20 1.30447630e+00 le+00
pilot 1441 3632 43167 1391 3631 42974| 11.90| 568.91 29 —5.57489730e+02 le-01
fit2p 3000 13525 50284| 3000 13525 50284| 2.22 76.27 18 6.84642930e+04 le+01
stocfor3 ||16675 15695 643875 |16643 15695 64319 9.53| 267.09 35|—3.99767840e+04 le—0l
woodlp 244 2504 70215| 171 2594 69422| 3.11| 25.72 14 —1.44290240e+00 le+00
pilot87 2030 4883 73152 1991 4859 72967| 34.97|2596.14 41 3.01710350e+02 le-0l
fit2d 25 10500 129018 25 10500 120018| 5.38| 84.85 24|—6.84642930e+04 le+02
[total 1 | L T190.06]5373.03 []

Table II: Basis recovery performance.

Setup Solve Pivot type Megiddo

~ pivots simplex cleanup est. pivots
Name secs fact secs [ph. I ph.2Z cleanup|exch pushjexch push|primal dual
afiro 0.00 21 0.00 0 0 2 U U 1 1 2 {
sco0b 0.02 Ly 0.02 0 0 0 0 0 0 0 0 0
scd0a 0.02 2 0.05 0 1 0 l 0 0 0 0 3
scl05 0.05 27 0.02 0 1 0 1 0 0 0 0 11
kb2 0.04 1| 0.00 0 0 0 0 0 0 0 0 0
adlittle 0.05 2| 0.02 0 9 16 9 0 9 T 25 3
scagri 0.02 1} 0.00 0 2 0 0 2 0 0 2 0
stocforl 0.04 2} 0.03 0 8 0 8 0 0 0 0 T
blend 0.07 2} 0.02 0 1 2 l 0 2 0 2 6
sc205 008 21 0.0 0 2 0 2 0 0 0 0 11
recipe 0.04 21 0.03 U 3 BY] B 0 1y 1l bYY) 3
share2b 0.02 21 0.05 0 6 6 6 0 5 1 6 9
vipbase 0.02 2{ 0.00 0 0 o] 6 0 0 0 0 1
lotfi 0.06 21 0.07 0 T 28 v 0 10 13 30 8
sharelb 0.03 1 0.02 0 1 0 0 1 0 0 0 0
boeing?2 0.06 21 0.07 0 15 13 15 0 3 5 1330
scorpion 0.11 21 0.13 0 30 0 30 0 0 0 0 22
bore3d 0.05 21 0.U5 0 6 0) 0 0 0 2 10
scagr2d 0.lr 2 0.18 0 32 0] 30 2 0 0 3272
sctapl 0.0Y 20 0.25 0 26 101 26 0 43 58 104 33
capri 0.09 21 0.I5 U 12 39 12 0 II 24 41 [
brandy 0.11 21 0.13 1 2 5 3 0 2 3 7 9
israel 0.10 21 0.13 1 10 19 11 0 3 11 30 11
finnis 0.13 2y 037 0 42 65| 39 3 39 26 69 91
giffpin 0.21 2 1.05 0 193 0 193 0 0 0 T 233
sesdl 0.05 2y 0.20 0 61 121 61 0 3 9 12 46
etamacro 0.10 2] 0.23 0 33 211 32 1 17 4 24 46
agg 0.08 2| 0.10 0 21 b) 2 0 5 31 3
bandm 0.14 2| 0.00 0 0 0 0 0 0 0 0 2
€226 0.11 2] 0.08 0 5 4 3 0 2 2 4 8
sctxml 0.12 2] 0.0s U 9 12 Y 0 4 d 225
growT 0.22 20 0.83) 48 97 16 38 067 30 151 6
standata 0.13 2] 0.08 0 3 12 3 0 0 12 12 212
scrs8 0.22 27 0.18 0 B 16 3 0 16 0 16 111
beaconfd .05 2f 0.05 0 2 4 2 0 2 2 6 1
shell 0.19 2| 0.42 0 35 1| 35 0 0 1 3 146
boeingl 0.13 2] 0.27 0 22 15 22 0 10 5 18 32
standmps| 0.15 2] 0.22 0 19 4] 19 0 6 8 14 209
stair 0.78 2] 0.28 0 0 1 0 0 1 0 1 1
degen2 0.12 2 1.92 0 250 0| 250 0 0 0 0 171
agge 0.15 2 U.oU + 94 39 L Sl 12 2l 131 14
aggd 0.13 21 047 9 65 34 13 61 15 20 107 12
scsd6 0.14 21 0.32 0 44 T8 44 0 12 66 80 40
ship04s 0.20 2] 0.15 0 11 1 11 0 0 1 1 27
seba 0.17 2] 0.08 0 l 0 1 0 0 0 0 9
tuff 0.15 21 0.27 0 24 51 24 0 16 35 51 113
forplan 0.10 2! 0.10 0 15 0f 15 0 0 0 2 26
bnll 0.27 2 1.53 41 37 227 T 1 76 151 292 7
pilot4 0.77 3 1.22 37 36 341 33 40 4 30 42 19

19

Ty

Table II: Basis recovery performance (cont.).

Setup Solve Pivot type [Megiddo

pivots simplex cleanup | est. pivots
Name secs fact secs [ph. I ph. 2 cleanup|exch pushjexch push]primal dual
scixm?i 0.25 27 0.9 U 23 23 23 U 3) §5) 31 41
growld U.71 3 2.1 Iy B) 2331 22 U 1ol 21 Zo4 S
perold 0.99 4 3.33 19 142 37 67 94 19 18 by} 29
fIftf800 0.17 2 0.47 2 33 51 25 10 19 32 7 89
ship04l 0.26 2 0.40 0 29 1 29 0 1 0 1 45
sctap2 0.31 2 1.45 0 47 230 47 0 34 196 230 249
ganges 055 3] 293 136 3 147 139 0 87 60| 286 0
ship08s 0.28 2 0.38 0 30 0 30 0 0 0 0 68
sierra 0.38 2 0.90 0 64 12 62 2 1 11 26 234
scfxm3 0.36 2 0.62 0 21 34 21 0 12 22 34 46
shipl2s 033 21 043 0 37 0 37 0 0 0 0 76
grow?Z? I.15 3 1.52 20 U 109 20 0 29T IIs 129 U
stocfor2 0.38 2 2.70 0 176 0 176 0 0 0 0 195
scsd8 0.33 2 1.45 0 47 177 47 0 83 94 205 39
sctap3 0.42 2 2.87 0 92 277 92 0 42 235 277 425
pilotwe 0.87 3 3.68 29 106 0} 116 19 0 0 47 90
maros 0.33 2 1.23 3 105 14| 108 0 2 12 18 241
fitlp 0.27 1 0.03 0 0 0 0 0 0 0 0 1
25fv4T 0.59 2 1.35 3 43 18 46 0 6 12 26 67
czprob 045 2| 0.78 0 33 60| 33 0 17 43 93 34
ship08! 032 2| 0.77 0 46 0] 46 0 0 0 0 91
ptlotnov 0.53 371 1035 103 0 1190] 103 0 442 953 1293 2
nesm 0.57 4 9.72 37 1503 229| 249 1341 96 133} 1498 98
fitld 0.17 1} 0.03 0 0 0 0 0 0 0 0 0
bnl2 0.83 2 7.25 0 44 504 43 1 167 337 519 297
pilotja 1.20 4 4.78 35 67 99| 115 T 42 57 133 48
ship12l 0.68 2| 137 0 65 1| 65 0 0 1 1 223
cvcle 0.3 2 5.85 0 117 410 117 0 157 253 410 370
80baulb 1.61 2| 38.33 10 380 94| 336 4 48 46 161 650
degen3 0.68 21 26.13 0 932 2| 932 0 1 1 3 628
greenbea 2.17 2/4) 1348 69 375 235| 440 4 61 174 289 992
greenbeb 259 3741 12.98 33 301 220 348 1T oY 1ol 324 9606
d2q06¢ 2.00 2 3.03 2 142 31| 141 3 13 18 44 253
woodw 1.06 2 3.97 121 120 320 196 45 0 320 40 129
pilot 13.51 4] 14.42 3 37 54 48 12 19 35 37 40
fit2p 2.83 3 3.58 4 b} 0 9 0 0 0 4 9
stocford 5.55 2|255.82 195 2045 012240 0 0 0 364 3191
woodlp 090 2| 3.70 43 183 0} 231 0 0 0 0 54
pilot87 45.59 3| 44.38 11 57 28 54 8 T 21 41 21
fit2d 221 2 1.58 1 6 3 T 0 1 2 6 2
[total T101.00 118230 [[

