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Abstract

New adaptive mesh refinement algorithms provide an opportunity to uti-
lize the same hierarchical tree-structures developed for multipole-based particle
simulations in grid-based simulations of both continuum and particle problems.
Representing both a multipole method simulation and an adaptive mesh simu-
lation with this same structure provides a natural formalism with which to unite
these two classes of solvers. This paper discusses how both methods exploit the
same basic principle of locality evident in many systems such as those governed
by Poisson’s Equation. The locality of the systems and the resulting algorithms
provide important benefits for implementations on massively parallel comput-

ers.






1. Introduction

Two basic types of simulations exist for modeling systems of many particles: grid-
based (point particles indirectly interacting with one another through the potential cal-
culated from equivalent particle densities on a mesh) and particle-based (point particles
directly interacting with a one another through potentials at their positions calculated
from the other particles in the system). Grid-based solvers traditionally model contin-
uum problems, such as fluid and gas systems, and mixed particle-continuum systems.
Many different physical systems, including electromagnetic interactions, gravitational in-

teractions, and fluid vortex interactions, all are governed by Poisson’s Equation:
V2¢ = —4nGp, (1)

for the gravitational case. To evolve N particles in time, the exact solution to the problem

requires calculating the force contribution to each particle from all other particles at each

timestep:
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The O(N?) operation count is prohibitive for simulations of more than a few thousand
particles commonly required to represent astrophysical and vortex configurations of in-
terest.

One method of decreasing the operation count utilizes grid-based solvers which trans-
late the particle problem into a continuum problem by interpolating the particles onto a
mesh representing density and then solve the discretized equation. Initial implementa-
tions were based upon Fast Fourier Transform (FFT) and Cloud-in-Cell (CIC) methods
which can calculate the potential of a mass distribution on a three-dimensional grid with
axes of length M in O(M? log M?) operations but at the cost of lower accuracy in the force
resolution. All of these algorithms are discussed extensively by Hockney and Eastwood
[14].

A newer type of grid-based solver for discretized equations classified as a multilevel

or multigrid method has been in development for over a decade [7,8]. Frequently the
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algorithm utilizes a hierarchy of rectangular meshes on which a traditional relaxation
scheme may be applied, but multiscale methods have expanded beyond any particular
type of solver or even grids, per se. Relaxation methods effectively damp oscillatory. error
modes whose wavenumbers are comparable to the grid size, but most of the iterations are
spent propagating smooth, low-wavenumber corrections throughout the system. Multi-
grid utilizes this property by re-sampling the low-wavenumber residuals onto secondary,
Jower-resolution meshes thereby shifting the error to higher wavenumbers comparable
to the grid spacing where relaxation is effective. The corrections computed on the lower-
resolution meshes are interpolated back onto the original finer mesh and the combined

solutions from the various mesh levels determine the result.

Many grid-based methods for particle problems have incorporated some form of lo-
cal direct force calculation, such as the particle-particle / particle-mesh (PPPM) method
or the Method of Local Corrections (MLC), to correct the force on a local subset of parti-
cles. The grid is used to propagate the far-field component of the force while direct force
calculations provide the near-field component either completely or as a correction to the
“external” potential. The computational cost strongly depends on the criterion used to
distinguish near-field objects from far-field objects. Extremely inhomogeneous systems
of densely clustered particles can deteriorate to nearly O(N?) if most of the particles are

considered neighbors requiring direct force computation.

A class of alternative techniques which have been implemented with great success
utilize methods to efficiently calculate and combine the coefficients of an analytic approx-
imation to the particle forces using spherical harmonic multipole expansions in three di-

mensions.
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where the multipole moments

Mg = [ o) e w0 @
V, are the disjoint spatial regions, and G(r) is the Green’s function. Instead of integrating

G over the volume V,,, one may compute the potential (and, in a similar manner, the gradi-

ent) at any position by calculating the multipole moments which characterize the density

distribution in each region, evaluating G and its derivatives at r — r,, and summing over

indices. Not only does spatially sorting the particles into a tree-type data structure provide
an efficient database for individual and collective particle information [20], but the various-
algorithms require and utilize the hierarchical grouping of particles and combined infor- .
mation to calculate the force on each particle from the multipole moments in O(N log V')
operations or less.

Implementations for three-dimensional problems frequently use an oct-tree —a cube

divided into eight octants of equal spatial volume which contain sub-cubes similarly di- - -

vided. The cubes continue to nest until, depending on the algorithm, the cube contains
either zero or one particles or a few particles of equal number to the other “terminal” cells:
Binary trees which subdivide the volume with planes chosen to evenly divide the num-
ber of particles instead of the space also have been used [3]; a single bifurcation separates
two particles spaced arbitrarily close together while the oct-tree would require arbitrarily
many sub-cubes refining one particular region. This approach may produce fewer artifacts
by not imposing an arbitrary rectangular structure onto the simulation, but construction
is more difficult and information about each cut must be stored and used throughout the
computation.

Initial implementations for both grid-based and multipole techniques normally span
the entire volume with a uniform resolution net in which to catch the result. While this
" is adequate for homogeneous problems, it either wastes computational effort and storage
or sacrifices accuracy for problems which exhibit clustering and structure. Many of the
algorithms described above provide enough flexibility to allow adaptive implementations

which can conform to complicated particle distribution or accuracy constraints.
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2. Adaptive Structures

Mesh-based algorithms have started to incorporate adaptive mesh refinement to de-
crease storage and wasted computational effort. Instead of solving the entire system with -
a fixed resolution grid designed to represent the finest structures, local regions may be
refined adaptively depending on accuracy requirements such as the density of particles.
Unlike finite-element and finite-volume algorithms which deform a single grid by shifting
or adding vertices, adaptive mesh refinement (AMR) algorithms simply overlay regions
of interest with increasingly fine rectangular meshes. Berger, Colella, and Oliger have pi-
oneered application of this method to hyperbolic partial differential equations [4,5]. Alm-

gren recently has extended AMR for multigrid to an MLC implementation [1].

Adaptive mesh refinement traditionally has been limited to rectangular regions. Mc-
Cormick and Quinlan have extended their very robust, inherently conservative adaptive
mesh multilevel algorithm called Asynchronous Fast Adaptive Composite (AFACQ) [16]
to relax non-rectangular sub-regions directly between two grid levels. The algorithmis a
true multiscale solver not limited to relaxation-type solvers. AFAC provides special bene-
fits for parallel implementations because the various levelsin a single multigrid cycle may
be scheduled in any convenient order and combined at the end of the cycle instead of the
traditional, sequentially-ordered V-cycle.

In the particle-based solver regime, the Barnes-Hut [6] method utilizes an adaptive
tree to store information about one particle or the collective information about particles
in the sub-cubes. Each particle calculates the force on itself from all of the other particles
in the simulation by querying the hierarchical database, descending.each branch of the
tree until a user-specified accuracy criterion has been met. The accuracy is determined
by the solid angle subtended by the cluster of particles within the cube from the vantage
point of the particle calculating the force. If the cube contains a single particle or all of
the particles in the cube can be approximated by the center of mass, the force is computed
using a multipole expansion; otherwise, each of the eight sub-cubes is examined in turn
using the same criterion. By utilizing combined information instead of the individual data
at the terminal node of each branch, the algorithm requires O(N log V) operations.

The Fast Multipole Method (FMM) developed by Greengard and Rokhlin [12] utilizes.
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new techniques to quickly compute and combine the multipole approximations in O(V)
operations. Initial implementations sorted the particles into groups on a fixed level of the
tree with the hierarchical pyramid structure providing the communication network used
to combine and re-propagate the multipole-calculated potential. Recent enhancements
include adaptive refinement of the hierarchy creating structures similar to a Barnes-Hut
tree [13].

Both Katzenelson and Anderson have noted the applicability of a variety of “tree
algorithms” to the N-body problem. Katzenelson utilizes the common structure of the
Barnes-Hut and FMM algorithms to study how this problem can be mapped to a variety
of parallel computer designs [15]. Anderson utilizes the multigrid framework as a basis
for communication in his FMM implementation which substitutes Poisson integrals for -

spherical harmonic multipole expansions [2].

3. Tree as Grid

We propose that the exact same hierarchical structure used by particle-based meth-
ods now may be effectively utilized in adaptive mesh refinement implementation. The
spatially structured cubic volumes into which the mass-points are sorted are inherently
situated, sized, and ordered as an efficient adaptive mesh representing the system of inter-
est. Instead of interpreting the hierarchy as a graphical representation of the tree-shaped
database, it can function as the physical mesh which links the grid resolution with the
particle density. Figures 1 and 2 represent a two-dimensional tree-structure from a parti-
cle simulation. Figures 3 and 4 show the same configuration represented by a composite
grid. The similarity between figures 2 and 3 demonstrates the convergence of these two
different methods.

This relationship stems from the grid-based algorithms reliance on the locality of the
discrete operator and the particle-based schemes similar utilization of locality to efficiently
collect, combine, and redistribute the multipole moments. In the Poisson case, the locality
stems from the regularity of harmonic functions which allow accurate approximation of
the smooth, far-field solution by low-order representations [1]. Barnes-Hut requires the

locality of the tree not just as a framework for the algorithm but to provide the ability to
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selectively descend into sub-cubes as needed during the computation allowing Salmon to
create “locally essential” datasets per processor [17]. Locality is common to and useful for
many loosely synchronous parallel algorithms [11].

This union of hierarchies provides opportunities beyond similar programming struc-
ture [2,15]: it allows easier synthesis of combined particle and mesh algorithms and allows
hierarchy-building developments to benefit both simulation methods. An additional ad-
vantage of the oct-tree over the binary tree (recursive bisection) for dividing spaée is ev-
ident when combining particle and mesh algorithms: the spatially divided oct-tree al-
lows for easy alignment with a mesh while the the binary tree does not easily overlay a
mesh or another tree [19]. The parallel implementation of the Barnes-Hut code by Salmon
[17], including domain decomposition and tree construction, provides insights applica-
ble to adaptive mesh refinement on massively-parallel multiple instruction multiple data -
(MIMD) computers. The locality of the algorithms precisely provide the structure neces- -
sary for efficient parallel domain decomposition and ordered, hypercube-like communi-
cation on MIMD architectures.

An astrophysical model combining a smooth fluid for gas dynamics with discrete -
particles representing massive objects can occur entirely on a mesh or using a mixed sim-
ulation. The block structures available in the AFAC algorithm allow arbitrarily-shaped,
nested regions of rectangular meshes to be used as the relaxation grid for a multilevel al-
gorithm; these regions can directly represent the partially complete sub-cubes present in
oct-tree data structures frequently used in three dimensional particle simulations. When
combining both methods, the density of mass points is no longer sufficient as an estimate
for necessary grid resolution, so additional criteria based upon acceptable error in other.
aspects of the simulation, e.g. accurately reproducing shocks, will affect the construction
of the mesh. But the grid can adapt to these constraints and the hierarchy still provides
the multipole information at points of interest.

If the Method of Local Corrections is incorporatéd to provide greater accuracy for
local interactions, the neighboring regions requiring correction can be utilize the Barnes-

Hut test of opening-angle or the Salmon test of cumulative error contribution [18] instead

of a direct proximity calculation. The correction can be calculated using a multipole ex-.
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pansion instead of the direct particle-particle interaction which improves efficiency for
the worst-case scenario of dense clusters. While the same machinery can be used to solve
the entire particle problem with a multipole method, some boundary conditions may be

much harder to implement, necessitating the use of a local correction grid method.

4. Conclusion

Grid-based particle simulation algorithms continue to provide an effective technique
for studying systems of point-like particles in addition to continuum systems. These meth-
ods are a useful alternative to grid-less simulations which cannot incorporate fluid inter-
actions or complicated bbundary conditions as easily or effectively. While the approach
is quite different, the tree-structure and enhanced accuracy criterion which are the bases
of multipole methods are equally applicable as the fundamental structure of an adaptive -
refinement mesh algorithm. The two techniques complement each other well and can
provide a useful environment both for studying mixed particle-continuum systems and
for comparing results even when a mesh is not necessitated by the physically interesting
aspects of the modeled system. The hierarchical structure naturally occurs in problems
which demonstrate locality such as systems governed by the Poisson Equation.

Considerations such as the efficiency of a deep, grid-based hierarchy with few or
even one particle per grid cell need to be explored. Current particle-based algorithm
research comparing computational accuracy against grid resolution, i.e. one can utilize
lower computational accuracy with a finer grid or less refinement with higher computa-
tional accuracy, will strongly influence this result. Also, the error created by interpolating
the particles onto a grid and then solving the discrete equation must be addressed when

comparing grid-less and grid-based methods.
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Figure Captions

Figure 1. A two-dimensional example of a small Barnes-Hut tree showing parent-

child relationships.

Figure2. A flattened representation of a more extensive two-dimensional Barnes-Hut

tree containing 32 particles.
Figure 3. The flattened tree in figure 2 interpreted as a composite grid.

Figure 4. Another view of the composite grid in figure 3 showing the individual grid

levels from which it is constituted.
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