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Abstract

A new numerical method for.studying one dimensional fluid flow through
pipelines is presented and analyzed. This work extends in a certain direction
the collocation method described by Luskin[“An Approximation Procedure for
Nonsymmetric, Nonlinear Hyperbolic Systems with Integral Boundary Condi-
tions”, SIAM J. Numer. Anal. 1976.]. The pressure and velocity of an isother-
mal fluid in a pipeline can be described by a coupled pair of nonlinear first order
hyperbolic partial differential equations. When thermal effects are important a
third equation for temperature is added. While Luskin’s method works well for
the isothermal situation he discussed, it does not apply in certain common cases
when thermal effects are modeled. The analysis of this new method shows how
the difficulties that come from the application of standard collocation can be
overcome. Experiments indicate that this method is a substantial improvement
over standard collocation. It also describes an approach to analyzing nonlinear
evolution equations with smooth solutions which produces convergence theo-
rems about the nonlinear system from the corresponding linear theorems with
relatively little extra work. This technique also yields an H! estimate in the
isothermal case.
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1 Introduction

Thermal modeling of fluid flow through pipelines is increasingly necessary as prac-
tical engineering applications demand greater fidelity between model and reality.
When pipeline simulators are used for leak detection, for instance, real time ther-
mal modeling may be required to distinguish leaks from pressure changes due to
heat exchange with the environment. Thermal modeling may also be important in
attempting to optimize pipeline usage for maximum economic utility.

Isothermal fluid flow in pipelines is described by a pair of coupled first order
nonlinear hyperbolic partial differential equations for pressure and velocity. In 1978
Mitchell Luskin[2] described and analyzed a numerical method applicable to a large
class of systems, including the isothermal pipeline case. The method relies upon the
fact that the eigenvalues of the matrix which determines the characteristic directions
are both bounded far away from zero. In its simplest version, the method uses
piecewise linear approximations in space and time and can be described as box
centered collocation.

Thermal effects in pipeline flow introduce a third coupled equation for temper-
ature and a resulting third eigenvalue which is small or possibly zero. It can be
shown that straightforward application of collocation methods to problems with
small eigenvalues produces numerical instability. This work presents a generaliza-
tion to straightforward collocation which allows the inclusion of thermal effects. We
approximate the temperature with velocity upwinded piecewise constants in space,
which rectifies the stability problems but substantially increases the complexity of
the resulting analysis.

We begin with formal statements of the problem, the method, the theorems and
some numerical results. The proofs are postponed to Section 8.

2 The Partial Differential Equations

We remark that the thermal pipeline equations are but one instance of a more
general set of coupled first order hyperbolic partial differential equations which may
be solved using the methods indicated below. In particular, Luskin’s method applies
to systems with large eigenvalues, and my method applies to systems with several
large and one small eigenvalue.

The primary subject of the investigation here is the numerical approximation of
the solution. There does not yet exist a complete theory for the system of nonlinear
partial differential equations describing the thermal pipeline model. Therefore, we
make certain assumptions about the nature of the solutions which appear reasonable
for pipelines. In particular, we assume that the flow speed is much smaller than the
speed of sound and that no shocks are present.



Luskin and Blake[3] have demonstrated the existence of smooth solutions for
systems such as the isothermal equations.

We state the equations for the Plug Flow model of pipeline fluid flow; we are
outside the region of laminar flow but in a regime where shocks are not generally
observed. These equations have been known for a very long time; Bernoulli described
versions in the 1800’s.

The three dependent variables are the pressure p = p(z,t), the velocity v =
v(z,t), and the temperature T = T(z,t). Here z € (0, E] and t > 0, where E is the
length of the pipeline. We will restrict attention to a rigid horizontal pipe, though
extensions incorporating gravitational effects are straightforward. To be precise, we
measure the pressure and temperature at the center of a cross section of the pipe,
while the velocity is averaged over the cross section.

From these three variables we also compute the density p = p(p,T), and the
specific internal energy £ = £(p, T), from tables of thermodynamic constants or an
equation of state for the fluid of interest.

Three partial differential equations connect the three independent variables.
First is the Conservation of Mass equation,

Pt + (pv)z = 0.

The subscripts denote partial differentiation. This states that no fluid is created or
destroyed.
Next is the Conservation of Momentum equation, which is Newton’s law of force

balance: flol
v|v
(pv)e + (P”z)z +p: + p2_D =0.
Here f is a dimensionless positive constant called the coefficient of friction; other
forms could also be used for the frictional dissipation term. The parameter D is the
internal diameter of the pipe.
Finally we have the Conservation of Energy equation, which refers to the total

kinetic and internal energy of the fluid:

(€ + pv*/2)e + ((0€ + pv?/2)v); + (pv): — g = 0.

Here ¢ is a function of z and ¢ describing the flow of heat into or out of the pipeline
through its walls.

The equations are to be interpreted in some consistent set of units.

The plug flow model has been validated in engineering practice for pipelines
carrying such diverse fluids as natural gas, crude oil and water; see (5] for references.

These equations can be thought of as forming a differential-algebraic system.
Although some such systems have been analyzed, a general theory is still lacking.



The equations above contain the one-dimensional equations of gas dynamics
as the special case ¢ = f = 0; hence under certain conditions the solution can
involve shocks. The method presented here is appropriate for the solutions which
are important in pipeline applications, but this method would probably not be a
good choice if shocks were present.

We choose to compute with pressure, velocity and temperature, rather than
density, mass flow and internal energy, because the latter variables may be al-
most discontinuous across the boundaries between different batches of fluid in a
pipeline. Pipelines frequently carry several different fluids in successive batches.
Some pipelines also contain multiple phases, gaseous as well as liquid components,
but we ignore such complications here. Since we are looking for smooth solutions
and are using continuous functions to approximate the computing variables, pres-
sure and velocity are appropriate choices. In addition, the discontinuous piecewise
constants we use for temperature are also appropriate since contact discontinuities
in temperature are possible with appropriate boundary conditions.

The asymptotic accuracy of this method will be limited to first order by the
presence of the piecewise constant approximation for temperature. However, we still
expect the method to perform well in practice. Temperature effects are generally
only a small correction to the pressure and velocity system, as indicated by the
wide utility of Luskin’s pressure and velocity method. Moreover large temperature
changes tend to take place on a much slower time scale than that needed to resolve
sonic effects. Thus we expect that in practice the first order errors in temperature
will have a small coefficient compared to the second order pressure and velocity
errors, leading to better than first order convergence rates at practical mesh sizes.

3 The Numerical Method

3.1 Rewriting the Partial Differential Equations

We begin by formulating the differential system. After expanding the equations in
terms of p, v, and T, we make some simple substitutions to get

Pp(Pt + vp:) + p1(Ti + vT:) + pv- = 0, (1)
1
v + vus + ;p: + f;tgv =0, (2)
1 v|v?
Ep(pe + vp:) + E(Te + vT) + ;pt’: - !%'D—- - % =0. (3)

We next diagonalize the time derivative term, putting the equations into stan-
dard form. This has the effect of removing as much temperature dependence as
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possible from the pressure and velocity equations, which is helpful since tempera-
ture terms will be the main stumbling block in the analysis.
In particular, we analytically invert the 2 x 2 matrix

Pp PT
& Er
The inverse is
1 & -pr
k £ ’
~¢p Pp
where
. k= pyér - Eopr.

The quantity k is positive for fluids such as natural gas.
We write the resulting system of PDE’s as

u¢ + Au, = F, (4)

where
u = (p,v,T)",

and A and F are known functions. Note that the system is non-linear: Aand F
depend on u(z,t); in general they could also depend on z and ¢ explicitly.
In more detail, for some functions a, b, and ¢, we can write

v a 0
Aw)=| b v 0 |- (5)
0 c v
The characteristic polynomial of 4 js
' ch(A) = (o= A)((v = A)? - ab).
Let s = v/ab. Then the eigenvalues of 4 are
Al = s+,
A2 = —s+0,

/\3:0.



These represent three modes, namely, two high speed components called sound
waves moving in opposite directions, and one mode moving with the underlying
fluid velocity. For this reason s is called the sonic velocity. Note that we have
assumed s > |v| over the operational range of the pipe. This keeps the eigenvalues
distinct. For most pipelines, |v| < 0.01s. It is easy to see that because the third
eigenvalue can vanish, straightforward application of collocation to equations of this
form can give bizarre behavior; in the case of v = 0 a change in temperature at one
end of the pipe would be instantly propagated as a saw tooth wave down the entire
pipe.

3.2 Boundary Conditions

We need to specify initial conditions for pressure, velocity and temperature. Thus
we assume

u(z,0) = uo(2),

for all z € [0, E] where ug is a given, smooth, vector function. .
In addition, we need to specify one boundary condition for each in-flowing com-

ponent of the solution, at each end of the pipe. As a simple example, we may specify

pressure at each end of the pipe, and temperature at each inlet end. That is, we set

p(0,t) = pi(t),

p(E,t) = p,(1),

where p; and p, are given smooth functions. Depending on the sign of the velocity
we make analogous specifications for temperature at both ends, one end, or not at
all. In particular, we specify

T(0,t) = Ty(t) whenever v(0,t) > 0, and

T(E,t) = T,(t) whenever v(E,t) < 0.

These conditions make the problem well-posed. They are representative of the
conditions for which the theorems and analysis hold. In Section 4 we will describe
the general class of boundary conditions which we consider.

3.3 Discrete Notation

We now introduce some notation for describing the discrete problem. Given a posi-
tive integer NV, let : S .

Pz = {301311--%3N}y



where z, = kh, h = E/N and E is the length of the pipe. This gives a uniform
partition of [0, E] into NV intervals.
We write the spatial midpoints as

Zi+1/2 = (2 + Zj41)/2.

We collect these with

P, = {z,-“/z :j=0,1,...,N - 1}.

Next we define two shift operators on [0, E):

Zj+1/2 forz=1z;,j< N,
Ty =1 zn for z = zy,
Ziy1  for z € (zj,2,41),
and
Tji2 forz=2z;,j>0,
T =4 2o for z = z,,
z; for z € (zj,z;41).

If u is any function of z, we let
uy(z) = u(z4),

u_(z) = u(z-).

Define
AT =74 —-2z_,

and the centered divided difference operator by
O:u = (uy — u_)/az.

Note that for our uniform space partition, Az = h everywhere except at z = 0 and
z = E. We also use a centered approximation to u given by

ue = (uy +u2)/2.

We adopt analogous time operators using superscripts, based on a set of time
levels
P = {0 ¢,...,tM},



where t© = 0, t™M = r is some fixed final time, and t™ < t"*! for each n. This gives
a possibly non-uniform partition of [0, 7] into M time steps.
Given 8 € [0,1] we set
"t = 9"t 4 (1 - 6)e",

and write the set of theta-weighted time levels as

Po={t"*:n=0,1,...,M-1)}.

We also define
wl = gut + (1-0)u~.

Finally,
Q= Pz X Py,
is the set of space time points at which we will apply collocation.
Except in Section 7 we assume the time partition is uniform, with

t"t! —t" = at = /M for all n.
For example, using this notation we can write
diu(z,t) + d;u(z,t) =0 forall (z,t) € Q,
by which we mean

U(Zj1/2: ") = w(Z 4172, ") + Y@, ™) - u(z;, tm40)
tntl — ¢n =

0,
Ti41—Z;

forall j=0,1,...,N-1,and n=0,1,...,.M - 1.

We will henceforth suppress the (z,t) arguments to all functions.
We will need to define several bilinear forms, including the usual L?(0, E) inner
product

E
(f,9)2 =‘L fgdz,

and two discrete approximations to it,

<f,9>ma =) fgaz,
P,

<fig>a=)_fgaz.
Py

With these are associated the norms and semi-norms



”f“z,: = \/(fsf)z,z,
l.flm'-‘ = V<f’f>m3’
lfla =\/<f, f>n.

Finally, when dealing with functions of several variables we will use tensor index-
ing notation and the summation convention. Thus if 4 = ( A;;) is a matrix functjon
of a vector u, then we write

g
Aijp = —2_4..
7.kl auk a‘UI 179
where A;; is the element of A in the i row and 7** column. If B is another matrix
of compatible dimensions we write

AicBij = Z: Ak Byj.
k

3.4 Defining the Numerical Method

Returning to the problem at hand, we recall 4 = (,v,T)*". The numerical method
involves approximating u by U, where pressure and velocity are piecewise linear
in space and in time and temperature is discontinuous piecewise constant in space
and piecewise linear in time. Temperature is also velocity advected or upwinded.
Upwinding allows us to make temperature well defined at the knots, which further
allows us to use all the above indexing and discrete derivative notations. U} is
upwinded based on UJ~!, by the rule that

UlMz; if Ur(z; <0,
U:;‘(z,-) = 3 (3';+1/2) 1 1_1 (31)
U(zj-172) i UpF~(z;) > 0.

We choose U based on the initial condition u% it can be the interpolant of 49
into the spaces defining U.
To compute U(t"+!) from U/ ("), we discretize equation (4). Before doing so, we
first make the substitution
vT; = (vT); - v, T.

This is useful in the analysis in make the upwinding of temperature work out. In
writing this term we will make use of two important matrices,

100
P=1901090], (6)
000
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and Q = I — P where [ is the 3 x 3 identity matrix. We also let A = AP, so that
A= AP+ )23Q.

Next, writing 4 = ug + (u — ug) where u — ug is small, we Taylor expand around
uo and ignore higher order terms beginning with (u — uo)?. Thinking of ug as
u(z,t") and u as u(z,t"*?), we have an equation we can discretize. We do so with
collocation at each point of Q. We write the resulting equations in tensor notation,
with & = 1,2,3. All the coefficient functions A and F in this equation are evaluated
at U~. We thus obtain

OUk + Akj0:U; + 6x30:(Ug Us) = 6x3U30:U5 + A i0zU (Ui = UT)
+ 8k30:((Uz = U7 )U7) = ék3U5 0:(Uz - Uy)
— = fi + fui(Ui = U7)  at every point in Q. (7)

One can view this as a discretization of the integral average of the PDE over
[zh -1'j+1] X [tmtvﬂ-l]'
We also discretize the boundary conditions of Section 3.2. We set

U;t’-f-l = pl(tn+1 ),

UrR = pe(™*).

To handle the temperature boundary condition we set
U;:}n = T‘(tn+1 )’

U::I’Ll/? = Tr(t"+l )’

and let the usual rule for upwinding determine when this determines Us g and Us x.

We should mention that the system (7) is soluble numerically; it produces a
nonsingular square matrix system which has a small bandwidth. To facilitate up-
winding of temperature it is convenient to let the midpoint temperature values be
variables as well as the pressure, velocity and temperature knot values. Under plau-
sible assumptions the variable ordering Pj» Tj, v, Tj41/2 produces a matrix which
can be solved without pivoting.

4 The General Framework

The thermal pipeline equations formulated in Section 3 are but one instance of a
more general set of equations to which my method applies. In this section we state
the general problem we propose to solve, which we will call the degenerate case, be-
cause of the possibility of one eigenvalue becoming arbitrarily small or even changing
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sign. For comparison we also state a version of Luskin’s 1978 equations which we
call the non-degenerate case. This is the case where all the eigenvalues are bounded
away from zero, and in the pipeline context corresponds to assuming some functional
form for temperature and then solving only the pressure and velocity equations. The
reader interested more in pipelines than in mathematics may skip this section; such
a reader should substitute “thermal pipeline equations” for “degenerate case” and
“pressure-velocity equations” for “non-degenerate case” hereafter.

We consider the following system of u first order hyperbolic nonlinear partial
differential equations:

ue + A(u)uy = F(u), (8)

where u(z,t) e R4, z € [0, E), t € [0,7], Ais a 4 x p matrix, and F is a H-vector,
and where 4 and F are smooth functions of z, ¢, and u(z,t).
We are given the initial condition

u(z,0) = ug(z) for all z € [0, E], (9)

as well as suitable boundary conditions. We need one boundary condition at (0,2)
for each eigenvalue of 4 which is positive there, and one boundary condition at
(E,t) for each eigenvalue of A which is negative there. We describe these more fully
in the following two special cases, based on the form of the matrix 4.

In both the following cases we assume that all the eigenvalues of A are real and
that there exists a smooth and bounded transformation matrix § (u(z,t), z,t) with
smooth and bounded inverse such that S-'4S is diagonal.

4.1 The degenerate case

Suppose that all the eigenvalues but one of A are uniformly bounded away from
zero. Suppose also that A has the form

- A |0
Aw)= | ——], (10)
Aan | A

where A is that one eigenvalue which is not bounded away from zero. Here A,
represents a u — 1 x y — 1 submatrix, and Aj; a 1 x # — 1 submatrix. Suppose also
that

aA(u) _
P =0 (11)

so that A does not depend on . Finally, if the eigenvalues of 4 are {},,.. ., Au-1,A},
then suppose

Al > A for1<i<pu—-1. (12)
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The boundary conditions for u, are handled exactly as was done for temperature
in the previous section, namely we specify

u,(0,t) = Ty(t), whenever A(0,t) > 0, and
u,(E,t) = T,(t), whenever A(E,t) < 0.

Now let S;; be a matrix such that S;'A;1S); is the diagonal matrix
diag(A1,...,Au—1) where A\; > 0for 1 <i<kand \; <Ofork+1<i<pu-1.
Then we must specify k boundary conditions at z =0and py—1—katz=E. At
each boundary the ingoing components must be specified as an affine linear func-
tion of the outgoing ones, in order for the boundary conditions to be realizable. Let
v = (u1,...,44-1). Then we allow the following boundary conditions:

R1v(0,t) = v,(2),
R2v(E’ t) = vb(t)v

where v, and v, are given smooth vector functions, and R, is a constant k x p-1
matrix and R; is a constant u — 1 — k X p — 1 matrix, and R; and R; satisfy

RSy = (EulEr),
RST! = (En|En),

where Ey; and Ej; are non-singular k x k and p — 1 — k x 4 — 1 — k matrices,
respectively.

Assumption 1 We assume that the system given by (8), with initial data given
by (9) and boundary data as described above, does have a smooth solution u for all
teo,7].

For example in the pipeline case the degenerate eigenvalue is the flow velocity,
which is much smaller than the sonic velocity. It arises in the temperature equation
but is independent of temperature. In addition T, does not appear in the p and
v equations. This was achieved by an analytic transformation prior to dxscretlzmg
the equations. This special form seems important to the analysis. The matrix St
has all entries non zero, so choosing R, = R; = (1,0) yields non zero scalars for
Ev1 and Ej;. This illustrates the acceptability of the pressure boundary conditions
described in Section 3.

Deflnition 1 When all the above suppositions hold, we say that we are considering
the degenerate case of (8). In this case we also define a u x u matriz P as follows:

P = diag(1,1,...,1,0). (13)
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We now define Q = I — P, where I is the K X p identity matrix, and A = AP,
With this notation, we can write the degenerate case of (8) as

U + A(u)ur + M(u)Quy = F(u). (14)

Equation (14) has the form

U + G(u,u;) = 0,

where G is a smooth function of 24 arguments. Applying Taylor’s theorem and
using the summation convention that repeated subscripts of i, j, k, or / indicate
summation from 1 to u, we have

Gi(v, w) = G(vo, wo) + G i(vo, wo)(vi = v0:) + G (v0, wo)(w; — wo;) + Quad,

where Quad contains only terms quadratic in v — vg or w — wg. In particular, using
v=1u(z,t), ws= uz(z,t), v = uo(z,to), and wo = uoz(2, t0), (14) becomes

Ukt + Akj(20)uzj + Akji(uo)uosj(u; — ugi)
+ ’\(uO)Jku“u: + ’\.i(“o)aku"o“:(“i - ug;)
= Fie(uo) + Fi,i(uo)(u; — uoi) + Quad. (15)

We now choose uo(z,20) = u(z, t~), and evaluate at all points in Q. We also use
the identity ab, = (ad)z — azb on the A-terms, obtaining

Ukt + Ak (U7 )uzj + Arji(u™)ug;(u; — )
+ 80 (A7)0 = Ao (0 )+ a0 (3 = 07))s
= (w7 - 7))
=F(u”)+ F;,,.-(u')(u,- - 47 ) + Quad. (16)

We will approximate u by U, where each component U, is piecewise linear in
time between the time levels P:. Each Uy is piecewise linear in space between the
knots P,, except for the last component Uy. U} is piecewise constant in space and
is upwinded by A(U™-1), meaning that

U2(zj4172) if A™"Y(z5) <0,

U(z;) =
“ {U;(z,-_,,,) if A"1(z;) > 0.
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We now discretize (16) by collocation at the points of Q, except that we ignore
the quadratic terms and use essentially an integral average on the (ab), terms. We
thus obtain as our proposed numerical method

0 Uk + Akj(UT)3:U; + A,,,,;(U‘)&,UJ-‘(U.- -U7)
+ 6t (3-(ANUTYU,) = UuBM(U™) + 8:(A (U™ (Ui = UY))
= UZ0:(0 Ui = UD))) = Fu(UT) + Feg(UT)(Ui = U7). (17)

We discretize the boundary conditions exactly as in the previous section. We dis-
cretize the initial conditions by setting U? = W?, where WP is the interpolant of
the initial data ug into the discrete space in which U is defined.

4.2 The non-degenerate case

Suppose that all the eigenvalues of A are uniformly bounded away from zero.
In this case we use the same affine linear boundary conditions as in the degenerate
case, except that we no longer treat the u, component differently from the rest.

Assumption 2 We assume that the system given by (8), with initial data given
by (9) and boundary data as described above, does have a smooth solution u for all
te(o,r].

For example, in the pipeline case, if one assumes a given functional form T =
T(p), and ignores equation (3), the remaining two equations for pressure and velocity
have v + s and v — s for eigenvalues. Since s > |v], both eigenvalues are bounded
well away from zero. Specifying pressure at each end remains a realizable set of
boundary conditions.

Definition 2 When the above supposition holds, we say that we are considering the

non-degenerate case of (8). In this case we also define a p x u matriz P as
follows:

P=1. (18)

We again define Q = I — P, and A = AP. Note that now Q = 0 and A4 = A.
With this notation, we can write the non-degenerate case of (8) as

ue + A(u)uz + A(u)Qur = F(u), (19)

which looks the same as equation (14) but which uses a different definition for P, Q,
and A. This allows us to carry out the analysis of the degenerate case once and then
get the corresponding results for the non-degenerate case simply by redefining the
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matrix P. In particular, we use the same numerical method as for the degenerate
case, namely that of equation (17). Note, however, that since P = I and Q =0,
that equation simplifies considerably, to

U + A,,,»(U‘)a,Uj + A,,,-,;(U')@,U;(U.- -U7)
=F(U7)+ Fri(UT)U; - uro). (20)

In particular, there is no upwinding to worry about, and all components of U are
piecewise linear in space.

5 Theoretical Results

In this section we state some asymptotic convergence results. We need to make the
following assumption.

Assumption 3 Assume § € ( 3+1] is @ given constant. Assume there is a constant
Ko, independent of h and at, such that

h

<
at

1
— < Ko,
Ko = 7o
as both h and at go to zero.
For the nonlinear thermal pipeline equations we obtain an L2 convergence result.

Theorem 1 (The Degenerate Case) Consider the degenerate case of equation
(8). Let assumptions 1 and 8 hold. Then there is a final time 0 < # < 7 and a
constant C which depends on K, and on Sobolev norms for u but remains bounded
even when A = 0, and which is otherwise independent of h and at, such that for h
and at sufficiently small,

U = ullieo(z2y < Ch,
and ’ R
[1P(U = u)|li0(z0) < Ch3/4,
where the I® norm in time is taken over the range 0 <t < .

Note that although we assumed A ~ aAt, there is no CFL type constraint, since this
is an implicit method. .

In general the constant ¥ can be order one. However, strengthening of the
hypotheses allows us to make 7 arbitrarily large by choosing A sufficiently small, in
which case the method converges for as long as you wish to run it. Computational
examples suggest that this is possible even without extra hypotheses.
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Theorem 2 Consider the degenerate case of equation (8). Let assumptions | and
3 hold. Suppose that the following additional assumption holds: The matriz A(u) is
independent of u,. Then the parameter 7 in Theorem ! depends upon h, and may
be made as large as desired by choosing h sufficiently small.

If we assume that the matrix A in (4) is independent of u, and that F depends
only linearly on u, then the system is linear and we can in fact prove H! convergence
on pressure and velocity, as described in Keenan[1)]. In this case there is no need for
an induction, the standard Gronwall inequality applies and the convergence is for
all time.

In the nonlinear non-degenerate case, Luskin(2] proved an L? estimate for the
case § = 1/2. The same proof I use for the degenerate case yields the following H!
result in the non-degenerate case when 6 > 1/2.

Theorem 3 (Non-degenerate Case) Consider the non-degenerate case of equa-
tion (8). Let assumptions 2 and 3 hold. Then given any final time 0 < 7 < r, there
ezists a constant C' which depends on Ko and on Sobolev norms for u but remains
bounded even when A = 0, and which is otherwise independent of h and At, such
that for h and at sufficiently small,

IIU - u“[co(ﬁl) S Ch.

6 Computational Results

I have implemented my method for the nonlinear thermal pipeline equations and
informally compared results against state of the art commercial codes currently in
widespread use. Such codes use ad-hoc methods to incorporate temperature effects
which generally require very small time steps to maintain stability. Such time step
limitations are poorly understood since convergence analyses do not exist for these
methods. Due to the proprietary nature of commercial pipeline codes we cannot
present a detailed comparison. However, my method does seem to be able to use
much longer time steps than the comparison methods, and the analysis does not
require any limitation on the time step. For instance, there is no CFL constraint
as would occur in an explicit method. This is important in networks of pipelines of
different lengths where the time step for the system would be limited by the smallest
natural time step in the network.

I emphasize that my numerical experiments are for the fully nonlinear thermal
pipeline equations, in which the matrix A does depend on temperature and the
velocity indeed changes sign; yet there has been no evidence of the error blowing up
in finite time. Computationally there does not seem to be a restriction on the 7 of
Theorem 1.
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We begin with two illustrations of actual computed solutions.

The first example deals with a pipeline for methane gas. We use a 150 km in-
sulated pipe with a 75 cm internal diameter, carrying gaseous methane. Initially
everything is at rest, with a pressure of 8000 kpa and a temperature of 20°C through-
out the pipe. We then open the ends of the pipe and drop the outlet pressure to 5500
kpa over 1 minute. Over the next 8 to 16 hours the flow evolves to a steady state.
Using 10 km space intervals and 10 minute time steps, we compute the solution after
12 hours. Figure 1 illustrates the resulting pressure, velocity and temperature along
the pipe. To fit all three variables on one graph, temperature is shown in degrees
C, velocity in meters per second, and pressure is in mega-pascals.

The second example deals with a Pipeline for liquid n-octane. We use a 100
km insulated pipe with a 60 cm internal diameter, carrying liquid n-octane. Inj-
tially everything is at rest, with a pressure of 1400 kpa and a temperature of 20°C
throughout the pipe. We then apply a ten second pulse of extra pressure at the
inlet end. This creates a smooth traveling wave in pressure which propagates down
the pipe at the sonic velocity of 1.6 km/sec. The pressure wave has amplitude equal
to ten percent of the initial pressure, or 140 kpa. As it travels it excites identical
looking pulses in velocity and temperature. Using 1 km space intervals and 5/8 sec.
time steps, we compute the solutjon during the first 45 seconds. Figure 2 illustrates
the resulting pressure at 15, 30 and 45 seconds. We notice a decay in the wave am-
plitude, due both to friction and to numerical dissipation in the upwinding process.
In both examples the friction factor f=0.014. ‘

We now present a table of empirical convergence rates based on these two ex-
ample scenarios.

Table 1 indicates the convergence rates obtained for pressure, velocity and tem-
perature in each of the two scenarios described above. In each case we measured
both the L? and L* norms of the error in each component, as compared to a
reference solution on a much finer mesh. As A was decreased, at was decreased
proportionately. For the steady state simulation we examined the norm of the error
12 hours after opening the valves. For the small amplitude wave case, we used the
norm of the error after 15 seconds.

" Figure 3 is a log-log plot of the errors as A decreases. It shows sample points for
both the L? and L* norms of the errors in pressure, velocity and temperature in each
of the two scenarios described above, In each case the base ten logarithm of the error
is plotted against the base ten logarithm of the number of spatial intervals. These
are the sample points used in constructing Table 1. Note that pressure is in pascals,
velocity in meters per second, and temperature in degrees Celsius. These units
separate the error curves into three bands, with pressure on top, then temperature,
and finally velocity. The three bands on the left are for the steady state case; the
three on the right are for the small amplitude waves. Each band shows the L2 and
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L* norms almost overlapping, because the length of the pipe has been scaled out
of the L? norm.

The table and graph illustrate our empirical observation that even though the
first order nature of piecewise constants appears in the asymptotic convergence rates
of the above theorems, in practice we may obtain close to second order convergence
rates. This is not too surprising since the pressure and velocity approximations
are second order (for § = 1/2), and since isothermal pressure-velocity simulations
give good results in many situations. Temperature effects generally occur on a much
slower time scale than sonic effects, so we expect the constant on the first order error
terms to be small relative to typical practical values of k. In fact we see that in the
near steady state case, where the temperature varies only slowly, the convergence
is indeed approximately second order, at least for pressure, over the parameter
range shown. . We point out that this range is more than sufficient for practical
computations, since the errors shown are well below the error of measurement in
the real pipeline. We also see first order effects dominating in the small wave case,
since here the temperature changes as sharply and rapidly as pressure and velocity.

It is interesting to note the effect of temperature on the sonic speed. If £ is
made extremely large, the effect is to force temperature to be essentially constant.
This produces a substantial change in the sonic velocity. In the methane pipeline
the sonic speed decreases from 415 m/sec in the adiabatic case to 350 m/sec in the
isothermal case. In the octane pipeline it decreases from 1630 m/sec to 1312 m/sec.
This means that the pulses in Figure 2 would travel about 20% slower if temperature
effects were omitted, despite the fact that the overall temperature in that example
is virtually constant.

7 Remarks and Extensions

Remark 1 (Higher Order Methods) We begin by remarking on the choice of
piecewise constants for temperature rather than some higher order representation.
We chose piecewise constants for three main reasoms. First, higher order methods
are harder to analyze. These methods typically involve slope-limiting procedures
for which rigorous convergence results do not yet exist even in the scalar equation
case. Second, our numerical experiments indicate very good accuracy with piece-
wise constants in examples where the parameters were chosen to be of engineering
interest. Finally higher order methods are harder to code, making them less useful
in engineering practice.

Remark 2 (More General Boundary Conditions) Our analysis holds without
change for other simple configurations of boundary conditions such as specifying ve-
locity at each end of the pipe rather than pressure at each end. Luskin[2] treats
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very general nonlinear boundary conditions in the non-degenerate case, including
ones involving time integrals. We analyze the boundary conditions using a simpli-
fied version of Luskin’s analysis, but we do not treat the complexities he considers.
Although it is reasonable to expect the analysis to extend to many of the more
complicated boundary conditions he describes, we have not undertaken the task of
demonstrating this.

Extension 1 (Non-uniform Time Steps) We remark that the same numerical
method and proofs hold when at is allowed to vary in a smooth manner. That is,
the three theorems apply when we assume that

latrt1+8 _ Atn+é)| < Koat? for all n,

and
maxy Atn+1/2

min,, at™+1/2 < Ko,

as both A and at go to zero, for the constant K, of Assumption 3, which is inde-
pendent of A and at.

Extension 2 (Linearizations) We also note that various other linearizations are
possible. We completely linearized the nonlinear terms, but in practice one may
drop various small lower order terms. In particular, one need only keep the terms
identified in the analysis as helping terms in order to achieve numerical stability.

Extension 3 (The Periodic Case) In this section we describe a method for im-
proving a case related to Theorem 1 to yield convergence for any 7 given h sufficiently
small. In Theorem 2 we accomplished this by weakening the dependence of the prob-
lem on temperature. This is not always necessary, as we will show in the following
simplified case. Suppose the pipeline problem is periodic, so that the pipe forms a
closed ring. We use periodic boundary conditions, which eliminates the complexity
of the boundary terms in the error analysis. We will introduce a function i(z,t)
which is order A close to the true solution u, but to which the numerically computed
solution is h? close. The periodicity assumption removes technical problems about
the smoothness of @(z,t). This higher order convergence to a comparison function
gives the little bit extra needed to extend Theorem 1. In particular, the term Coh?
in (24) becomes Coh*, which keeps the solutions bounded for any finite time.

In the rest of this section we make this more precise by sketching the necessary
modifications to the analysis of Section 8. We assume the reader has already browsed
Section 8. In that section the truncation error is defined in (35) and bounded in
(38). Using Taylor’s theorem we rewrite it here as

TE = te,h + teqh?, (21)
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where te; is a smooth function consisting of derivatives of u evaluated where TE is,
and tez consists of integral averages of similar terms. We now define a function $
by the equation

L(®,®—-3;87) = te,, (22)

with periodic boundary conditions and zero initjal data. Then @ is smooth by the
same assumption we make for u. We now let

i =u-hd.

Now we go through the whole analysis of Section 8, changing only the definition
of the discrete interpolant W. Rather than W being the interpolant of u, we let
it be the interpolant of @. Note that discrete derivatives of W are still bounded
as they depend on the smooth functions u and #. The matrix L of (66) is now
the identity matrix. The entire proof goes through without change, except in (38),
where the bound on TE is now second order because the first order terms have been
canceled out by the construction of . Note that we do not change the induction
hypothesis — ¥ is still only first order small since it involves comparing U with u,
not 4. However, in (121) the A2 term is now A*. This carries through the equations
of Section 8.5. In addition the k in the H terms is now an h2. Thus the only real
change is in (125) where the right hand side multiplier of h? becomes A*. Thus (126)
becomes

Cn+l S
h3(2h + 4(C + (Cn + C2)C A7)t +1)1/?
+exp(4(Cs + 2(Ca + C3)CrAYE™). (23)

Thus C(t) grows like A2 times a fixed function of time, and hence can be kept below
C. for arbitrarily long times by making A sufficiently small.
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Table 1: Approximate Convergence Rates

steady state | small waves
L? L= L*| L=
pressure 2.0 1.9 0.9 0.9
velocity 1.1 1.2 0.9 0.9
temperature | 1.3 1.4 1.0| 0.9
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8 Error Analysis

Note: for an easier to read proof of an important special case, the reader is referred
to (1], which treats the linear case of the degenerate problem.

Before launching into the details of the proof we give a brief overview. The a-
priori error bound will be based on using the discrete scheme on U — W where W is a
discrete interpolant of u. The “error equation” for U — W is a version of the discrete
scheme that is linearized about the true solution . We introduce some notatjon
to get this equation in manageable form; the actual error equation is (47). We
then diagonalize the discrete scheme by changing variables; this follows the earlier
work of Thomeé and of Luskin. Next we develop an evolution inequality (122) for
certain norms of the error, using a discrete {2 inner product of the diagonalized
error equation with a test function which is the sum of three terms weighted with
carefully chosen powers of h. In developing this evolution inequality there are many
terms to estimate; these are summarized in a tableau and estimated one by one.
Finally the evolution inequality is used to derive the error bounds.

The fact that # may be finite in Theorem 1 comes from the unusual form of the
evolution inequality. In contrast to the usual Gronwall-type evolution inequality,
which in the continuous time case looks like

g, = Cg + C0h27

where C and Cj are constants independent of &, we have an evolution equation of
the form

¢ =Cq(l+ ‘—f—' + %) + Coh?, (24)

for which solutions can blow up in finite time. In addition, the squared norm of the
error, g, corresponds in our case to a non-symmetric energy (K — H in the notation
of section 8.5); we show that the symmetric part dominates the non-symmetric part.

8.1 The Error Equation

We consider the degenerate case of equation (8), with the numerical method given
by equation (17). Recall that the non-degenerate case is a simplification of these
equations.

Convention 1 In what follows we let C be a generic constant whose value in any
particular equation depends upon various Sobolev norms of A, A, F, u, and the con-
stant Ko of Assumption 3, but which is otherwise independent of the discretization
parameters h, at and 4.
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Throughout this section assumptions 1 and 3 hold. In what follows we take
p# = 3 as in the thermal pipeline equations, but the proof works in general. The
symbol d will be used to distinguish discrete operators from continuous ones.

Let us define two operators £ and £? as follows:

Li(a,b;c) = aps + Akj(c)az; + (Akj,;(c)c,,- - Fii(c))b;
+ 613 ((A(c)as)z — Az(c)as + (A i(c)eabi)z — (Ai(c)bi)zca), (25)

and

Li(a,b;c) = Biax + Arj(c)dza; + (Akj,i(c)dz¢c; = Fii(c))b;
+ 6k3 (0:(A(c)as) — a30:A(c) + Bz(Ai(c)eabs) = cad(Ai(c)b)).  (26)

Then we may re-write (14) and (17) in a more compact form: the true solution u
satisfies the equation

L(u,u-v";u7) + Quad(u —u~;u”) = F(u~), (27)
while at Q our discrete solution U satisfies
LYU,U-U-;U") = F(U). (28)

Recall that U is piecewise linear in time, and each UL is piecewise linear in space,
except U3, which is discontinuous piecewise constant, upwinded by A(U™"1). It will
now be useful to introduce a discrete interpolant W of u. Such a function is defined
in the same discrete space as /. Therefore U — W is also in the discrete space, and
thus is easier to analyze than U — u. We define W by Wi(z;) = ul(z;) for k < 3,
and W3(z;41/2) = u3(2j41/2), with W3 at the knots upwinded by AU,

We now define the total error

V=u-U,
the discrete error

C = W - U’
and the approximation error

e=u-W.

Under reasonable conditions we know that e is small; it thus suffices to show that ¢
is small.
Consider the quantity

n=L%¢, ¢~ (";u) over Q. (29)
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From (27) and (28) we see that
n=LY(W,W-W-; uT) = L(u,u—u";u")
+ LYV, U -U~;U",u™) - Quad(u — u~; u”)
+ F(u™) - F(U7), (30)

where .
Li(a,b;c,d) = £%(a, b; c)- Cd(a, b; d), (31)

and we used the fact that
L%a +a',b+b';c) = L%(a, b;c) + L3(a', b c). (32)
It is also true that
LYV, U -U=;U-,u™) = LHW, W - W~ U, u”) = L4(¢, ¢~ ¢~ U=, u™). (33)

Now if U — u turns out to be small, the é‘(( ) terms will just be small perturbations
to the £4(() terms; hence we finally write the discrete error equation

LAGC-CuT) + LG C-CT3U-wT) = TE+ NL,  ~ (34)
where the truncation error is
TE = LYW, W = W~;u) = L(u,u— u=; v7) - Quad(u —u~;u”)  (35)
and the remaining nonlinear terms are
NL=LYW,W-W~;U,u") + F(u~) - F(U"). (36)

Thus the discrete error ¢ satisfies a perturbed version of the equation satisfied by
U. The perturbations vanish in the linear case; the { equation also has truncation
error as its main inhomogeneous term.

Recall that P is defined by (13) or (18). To make the expansion of (34) manage-
able, we introduce the following generic objects, which may be functions, vectors,
matrices, three tensors or four tensors, and are all smooth functions of their various
arguments.

M = M(u,u,, and any other derivatives as needed).
M = A.{(‘Il,u,u,,...).
M, = My(P¥,u,u,...).

For instance, we can write u + Oru=M,andU=M-V¥,and 3,U = M - 0. V.
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We can write the identity

JO) = 6= (U= w) [ fi(u+ o0 = w)as

f(U) - f(u) = M.
Other useful identities are
f(PU) - f(Pu) = M,PYV,
f(O)U - f(w)u = MY,
f(U0)3:U - f(u)0:u = MV + M3,V + M(o;v)¥,
f(U)POU - f(u)PO:u = MV + MP3,¥ + M(P3.¥)¥,
f(PU)PO;U - f(Pu)Pd;u = M,P¥+ MP3,V¥ + M,(P3.¥)PV.
We also note the discrete product rule. _
0:(fg9) = fe0:9 + 9:0: f,

and chain rule

9z(f(9)) = Z(f'(9))0:g,

where

Z(e) = [ Flo(z) + s(olz4) - g(z-))ds.
Finally, we define

M=MV,
and
M,= H,P\Il.

Convention 2 The point of using the M notation is to simplify dealing with the
nonlinear terms arising from the differences U~ — u=. To avoid putting minus sign
superscripts on everything, we declare that henceforth M, My, M and M p Should be

interpreted as involving ¥~ rather than ¥.

Let us write Q3 for the third column of the matrix Q = I — P. Using this

notation, we find that the truncation error is
TE = -Quad(u — u;u™) + (OW — ue) + MP(3. W - u;)
+ MW =)+ M(W = W= = (u = u7)) + M(u - v~ )(u~ — u2)
+ Q3 (O=(M(u™)W3) = (M1 )us)s — WadA(u™) + uadz(u™)
+0:(Ai(uT)uz (Wi = W) = (A i(w™)uz (ui - w7)):
= w3 (B2(Xi(u™)(Wi = 7)) — (Ma(u™)(wi = w7))2))
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These are mainly the usual truncation terms for collocation and can be shown to be
small by standard approximation theory methods or simple Taylor expansions; we
find that for some C independent of h, at and 4,

ITElms < C(h+ ot + (8 - %)a), vt € P.. (38)

In the non-degenerate case, the A becomes an h3, since there are no piecewise
constants.
In both cases,

|P(TE™1* - TE™®)| 2 < C(hat + at?). (39)

We pause to remark that

oM = M,
oM = M + M3, 9,
and 9;:M, = M,+ M,P3,¥.

We now turn to the terms in (34) containing L4,
L3(a,b; U, v~) = MP8.a + Ma + Mb
+ (M + MP3. ¥~ + M(P3,¥~)¥~b)
+Q3 (0:((A(U™) = A(u™))as) + a38:(A(U~) = Au")) + 8,(# Pb)
+ M3.(MPb) + ¥39,((M + M)Py)), (40)
where we used the expansion
U3dz(Ai(U)bi) = u3dz( X i(u)b;)
= Usdz((A(U) = X,i())bi) + (Us — u3)(A i(u)bi)
= M3:(MPb) + 938,((M + M)Pb).
This simplifies to
L(a,b;U,u) = MPB.a+ Ma+ Mb+ (M + M) PO, ¥~ )b
+ Q3 (3:((MU7) = A(u7))a3) = a3d-(A(U™) = A(u™))
+ MO-(H Pb) + ¥50.(M + M)Pb)) . (41)

Before deriving the analogous expression for £?, we note that u~ is smooth, so
we can safely undo the @b, = (ab); - a,b transformation used in (26). In particular,

3,(/\,.'(11-)14;6,') — u30:(Ai(u™)b;)
= (F:u3)(Ai(u7)bi)c + (u3, — u3)8z(A i(u™)b:)
= M Pb + h*M.(M Pb). (42)

30



Thus

L%a,b;u) = 8a + A~ P3za + Ma + Mb
+Q3 (9:(A"as) + M, (MPY)) , (43)
where we have written A~ and A~ for A(u~) and A(u~), rather than M, for future
convenience. We can now expand (34) in a reasonably simple manner:
0+ ATPOC+ MC+ M((-¢7)
+ Qa (3=('\'Ca) + Maz(MP(C - C-)))
+ MP3¢ + M+ M(C - (™)
+ (M + M)(P8,¥~)(¢ - (™)
+ Qs (8:((MU™) = A7)¢a) + (o= M, + MO P(C - )
+ U30:((M + M)P(( - (7)) =TE + NL. (44)
We note that in (36), there are still ¢ terms:
F(u™) - F(U™) = Mat + Mat® + Matd, (45)
where we used u — U = e + ¢ and
Fuu=u")-FUYU-U")=
(F(u) = F(U))(u - w™) + F(U)[(u - w™) = (U - U")).

We will put this 3, term on the left hand side, below.
Since W depends only on u, we have

LYW, W - W=U~,u") = M + (M + M)(P3,¥")at
+ Q3 (3:((MU™) = A™)Wa) = W3d-(AM(U~) — A~).
+ MO(Mat) + ¥50.(M + M)at)) . (46)

Thus (44) becomes, via (31, 32, 27, 29, 22):

LHS =TE + IND, (47)

where the new terms are

IND = M + Mat® + (M + M)(P,¥")at
+ Qs (M, + hMO.(P¥™) + MO, (Mat) + ¥58:(M + M)at)),
(48)
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and

LHS = 8+ A™P3.C+ MC+ (M + M)atd¢
+ MP3:¢ + M( + Matd + (M + M)(P3,%~)atd(
+ Q3 (8:(ACa) + WM (MPatdC) + :(AU™) = A”)Ga)
+ (30:M, + M3, (MPatdC) + U50.((M + M)Patd()) . (49)

This simplifies to

LHS =3¢+ (M + M+ M + (M + M)(P0,¥"))atd(
+ A”PO3.C + MP3.C + (M + M)¢
+ Q3 (3:(A7Ga) + 0((MU™) = A7)Ca) + G0 I,
+ MO-((M + M)Pa(at) + MO, (R M + M)Paat)). (50)

In this form one can see the linear terms and how they are perturbed by small
nonlinear terms, subject to some induction hypotheses which we formalize later, to
the effect that ¥~ and P9, ¥~ are small, whence M and 6,1\7 p are also small.

To facilitate the diagonalization process described below, we make one more
adjustment to this equation. We recall that A = AP and A = AP + AQ, and that
A~ and A~ depend only on u~ and hence are smooth in space. Thus we may write

A™ Pa:c + Q.‘)a:(A-C.’!) =
0:(A~¢) + MP(. + h*M P3¢, (51)

8.2 Diagonalization

Before proceeding further with the error analysis of (47), we must first change
variables in order to diagonalize the matrix A in (51). This is a standard step, also
used by Luskin; we remark that it is done only in the proof, not in the numerical
computation.

From here on in we need to distinguish two parallel threads in the proof, one for
the degenerate case and one for the non-degenerate case. In the non-degenerate case
P =1,Q =0, and there are no piecewise constants to keep track of, which simplifies
matters to the point where we can prove an H! estimate. In the degenerate case we
only get L? convergence. As much as possible, we will do the two cases together.

The diagonalization is a bit messy, but using our M notation it is not too hard
to write it all out. v

We define two new matrices S and R, which will be smooth functions of z and ¢.
We define S to be a bounded matrix of column eigenvectors of A, and R = §-1. By
assumption in Section 4 the matrices R and S are smooth and bounded functions
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of u. We find that in the degenerate case, both S and R can be selected to have the
form

*+ *= 0
* = 0
* * 1
Thus S = SP+Q, and R = RP + Q.
We define A = RAS = diag(A1, A3, A). By hypothesis, A is a bounded function

of u. Also for any scalar function f, we note that RQ f = Qf.
We now define, for all z and ¢,

w(z,t) = R(z,t){(z,1). (52)

We note that Pw = M P( and P( = M Puw.
Although ¢ is piecewise linear in time, w is not. However,

un+6 = Rn+0<n+0 = Rn+0(0cn+l + (1 - o)cn)’

since { is piecewise linear time; hence using w = M( and { = Mw we see w"*+? =
Muw™*+! + Mw™, or more compactly

w=Mw*+ Mw~ inP; forall z. (53)
We compute the following transformations over Q, writing §+1/2 = §(¢"+1/ )
9¢ = 0(Sw) = §°0w + (B S = STV?w + AM POw + MPw*c, (54)

in which we note that any derivative of R or S introduces a factor of P, and similarly,

0z(A~¢) = §*'/%8,(A~w) + AtMPd,w + MPuw,, (55)
P3:{ = MP3;w + MPuw,, (56)

and
¢ =Sw=8§*2% + AtM Pw. (57)

We left multiply equation (47) by R*'/? to create a diagonalized error equation,
obtaining

RY2.LHS = 8w + a* M P3w + M Pu*
+(M+ M+ M + (M + M)(P8,¥™))at(Mdw + M Puw)
+0:(A"w) + (atM + h*M + M)Pw
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+(M + M)Pu, + (M + Mw
+Q3 (8:((A(U™) = A7)Go) + Mwd, 1,

+ M3:((M + M)Pd.(at) + MA,(B*M + M)P8(at))
=M-TE+ M. -IND. (58)

Notice that there is essentially no change in the right hand side terms. We write
DLHS for the diagonalized left hand side of this equation. We simplify it, and
also combine the term Q3(8,((A(U~) - AT)P(3)) with the A~ matrix, which simply
makes the (3,3) entry of A~ depend on PU~ rather than Pu~. This is exactly what
we need to handle the upwinding terms, since the upwinding is based on PU-,
rather than Pu~. Henceforth, A~ will mean this modified version. This leaves us
with

DLHS = 0w + (M + M + M + (M + M)(P8,¥~))atdyw + 9,(A~w)
+(AatM + h*M + M)POyw + (M + M)w
+ (M + (M + M + (M + M)(P3,¥~))at)M Pu® + (M + if)Puw,
+ Q3 (8:(M,Puw) + Mwd, M,

+ MO:((M + M)P3(at) + M3, ((h*M + A’?)Pa,cm)) . (59)

We define . .
€ =ot(M+M+M+(M+M)P3,¥-), (60)

and _
€ = atM + h*M + M. (61)

Since ¢ is piecewise linear in time, and P( is in space, we can write

Puw* = Pw + MatPiw, (62)
and
Puw,. = Pw+ MhP3.w. (63)
Thus we also define
€& = M + at(M + (M + M)P3,¥")P, (64)

whence (59) simplifies to

| B
DLHS =0w + 0w + 0:(A"w) + € POw + (M + €, )w



+ Q3 | 8:(M,Pw) + Mwd, M,

+ M3.((M + M)Pa,Cat) + M,((h*M + M)P3,(at)

=M-TE'+M-IND=, (65)

where we label each of the nine terms with a letter for future convenience and lump
the two right hand side terms together as p.

We have written the general case here; recall that in the non-degenerate case,
the only change is that Q becomes zero.

Equation (65) looks very much like the corresponding error equation in the linear
case, except for the addition of terms which we hope to show are small, by induction.
Note that (65) holds at every point of Q.

Let
L= diag(’l?’?vh)’ (66)
be a diagonal matrix where
W(z,t) = 90, 0)(1= 5) + 9(~M(E, )%, for k= 1,2, (67)
and
l3(z,t) = oy, (68)
where
1 ifA<0
g(A) = ’ (69)
0o if A > 0.

Here 0y is a small positive constant to be chosen later, independent of k and at.
Note that each I, is constant in time for each fixed z since the signs of A\; and
A2 never change. Each I is also linear in space.
Let us now define r by
1 in the context of Theorem 1,

T=19 1/2 in the context of Theorem 2, or

0 in the context of Theorem 3.
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We now define, at each point in @, the test function we will use for the energy
analysis:
¢ =Lw + ah" POw + BR" PL3,8.(Aw), (70)

where we leave unspecified two non-negative parameters a and B, which will be
determined later and will be independent of A and at.

8.3 The 27 Product Terms

We form the vector inner product of both sides of the equation (65) with ¢, pro-
ducing another equation involving 27 product terms which must be considered in-
dividually. The following chart summarizes the situation.

| A A BB CDFGH

- 4+ - - - - - e e = -
1 | L R RRRRRR RR R
2 | LRRRURRUOU OO
3 | RRL RRRUODO O

Since P-Q = 0, 6 terms vanish automatically. Three other terms marked with an
“L” are “helping” or “left hand side terms”; the other 18 are right hand side terms.
The analysis of each term proceeds just as in the linear case. The product equation
DLHS-¢ = p-¢ holds at every point of Q; for each time level t**9 in P, we multiply
by h and sum over all z’s in P;, thus forming the discrete spatial midpoint-based
m? norm. Some right hand side terms will be hidden by direct subtraction; later we
will use a time-induction form of Gronwall’s inequality to handle the rest.

For each right hand side term we give an upper bound for the sum over P.. For
the three terms marked L, we give a positive lower bound instead. The bounds may
not be obvious at first, but they follow in straightforward ways from the properties
of the objects involved, in particular from knowing that ¢ is piecewise linear in time
and either piecewise linear or piecewise constant in space.

We begin with the three “helping terms” A—1, A—2, and B - 3.

80301 A-l

We write the steps out in some detail for this first left-hand side term:

Ow - Lw > %@(Lw'w) +(6- %)Awo(asw)2 —C(W)P+wWh?), ()
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since L is constant in time, linear in z and bounded below by the positive constant
0. The above equation holds at each point of Q, hence for each point in P;,

Za,u - Lwh > %Bglul,znz + (8 - %)aolit'at‘w‘l2 Clw~12z + |w*25).

m’ -
Py

Here C is a generic constant independent of A, at; it can depend on oy and as
always, on norms of u.
8.3.2 A-2
Y 0w - ah” POwh > ah”| Pow)|2.,. (72)
Ps
8.3.3 B-3
Y 0:(A"w) - BA"PL3,8;(Aw)h
P
r [ 00 2 1 2
> gh (?a,wa,(/\unm, + (8 - 5)00at| PAB:(Aw)2,
= C(IPO(A"w7)|7a + | PO (A%w ) 22)) (73)
plus a right hand side term of the same form as B’ — 3 which comes from writing

AT = A+ (A~ - A). We ignore this term here since it will be treated automatically
under B’ - 3.

We now turn to giving upper bounds for right hand side terms. We do some
easy terms first.

8.3.4 D-1

Y (M + €& )w- Lwh < C(1 + |€]mee )|w]2s. (74)
ﬁ!

8.3.5 B-2
,
3 8.(A"w) - ah” POwh < %"4-1193.43,,, +ah"C|PO(A~w)2a.  (75)

=z

8.3.8 D-2
r
S (M + €,)w - ah” PO h < °;’; |POw?; + ah™C(1 + leslme 2|w|2a.  (76)
P,
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8.3.7 C-1
We now rewrite

p=Mh+ MV~ + Mh? + MhPO, ¥~
We now find it useful to expand this as

p=Mh+ MA? + Mw + Matdw + MhP8.w + Mh?P3,0,w. (77)

We use this in the C terms.

Y pLwh<
Ps
C’(h2 + ]wlfnz + hzlagld'?n: + hzlPa,uI:; + h‘lPagazu‘iz). (78)

8.3.8 C-2

> p-ah"Powh < 2h—lPagml2 2 + Ch?¥+r
5 64 m
+ ah™C(|wlha + h|8uwlhs + h?| PO,w|3: + h4| P O,w|3,z). (79)

8.3.9 B-1

This term contains helping terms as well as right hand side terms, so we give a lower
bound.

Y 8:(Aw)- Lwh >
P,
1 2 - 2\|z=F 2 2
3 Z:l(’\k lkwi)lz=0' — Clwils — Ch|POw|Z,. (80)
Note that |wk|z < C(lwrl?; + h?|P8;wi[2;). In the non-degenerate case the first
order term in A becomes second order, so an L? estimate with r = 2 is possible. In
the degenerate case, the presence of the first order term requires r < 1, thus giving
a slightly better than L2 result.
This analysis of the B — 1 term arises from detailed consideration of the form of

products of combinations of piecewise linear and piecewise constant functions and
their derivatives.
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803010 A-3

Z Oww - Bh" PL8:8-(Aw)h :

Ps
We note that w3 does not appear in this term, so only piecewise linear functions
need be considered. We write

(@] [6]
0:0:(Aw) =0:((0A)w°) + 0:(A*0w) :
From (a) we have

BR" S 8w - PLO((A)w)h <

Ps
ah’ 2 r c12
1 | POww| 5z + €BRT|POwe|3 ,, (81)
while from (b), we get
B> 8w - PLO(A“Bw)h >

Ps

BhT N c 2\|z=E r 2

= O (AI(Bewn)?)ZZ5 - BhrCi | POWIR. (82)

k=1
We then bound
ﬂh'CllPagwlfg < ﬁh'C’llPagulfn, + ahfcmwa,a,uﬁn,.

For (3 sufficiently small relative to a, the first term hides, and since A ~ at the
second term is bounded by

BRCy(|POw* |72 + | PB:w™|2).

The spatial boundary terms in (80) and (82) turn out to give non-negative helping
terms, provided gg is chosen sufficiently small relative to certain O(1) constants
depending only on u. This follows from the form of L, which is carefully chosen
based on a trick used by Luskin and pioneered by Thomeé. Essentially it works as
follows.

Consider the term in (80) at z = 0; by hypothesis on the signs of the A;, this is

—Uolf\llwf + |,/\2|U§ - 00'\‘4:3-

If A > 0, then (3(0) = 0 by choice of boundary conditions. Since Al € |A1] and
|A] < |Az], we can bound this term below by

=oo(lA1] + [Mwf + (122l = [A]ws.
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This is positive for oy sufficiently small, given physically realizable boundary con-
ditions. That is, we don’t want w;(0) to vanish unless w1(0) also vanishes. For
instance, if the boundary conditions are that we specify the pressure at both ends
of the pipe, then {;(0) = ¢;(E) = 0, whence w1(0) and w,(0) are proportional by a
constant depending on A(u) and not on A or At. Similar arguments apply at z = E
and to the dw terms from (82).

8.3.11 C-3

We “sum by parts in time” on the Mk + Mw terms of p and bound the rest directly.

Zp - Bh"PL3,8:(Aw)h <

Ps
R~ (h?|0wl3a + h?| PO.wl?,z + k4| P3,0.w|2; + ChY)
+ CB%h™*1 | P3,8.w|2,

+ D (Mh + Mw) - Bh™ PL3,8,(Aw)h. (83)
Pe

We recall a formula for summation by parts in time at ¢t = ¢"+;
@O = —a™HI(bt — b7) = L (a0 _ gntaogey - L (gue _ gaoiiayye
at at at
Thus we write

Y (Mh + Mw) - Bh™ PL8,0;(Aw)h =

P,
ﬂ:ht: Z((Mh + A-lw) - PL3;(Atw?) - (Mh + Mw)*=1+¢ . PL&,(A=w"))h
P
= BRTED (Mh + Mw) - (Mh + Mw)*™'¥). PL(A*w)h. (84)
Ps |

We can bound the second sum by
,
COR| PO, (A*wH)2, + %’;—w,wﬁ,,, + Ch¥*" 4 COR IO L w2,

8.3.12 D-3

As in C - 3, we sum by parts on the Mw term, which we need not repeat here. We
write €, = M + Ce;, and again sum by parts on the M term, while on the ¢; term
we use the bound
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Z €W - ,@h,PLaga:(AU)h S
P,
Cle2wh™3/3w|?; + BRI PR G2,

The summation by parts on the M term is

3" Mw-BhTPL8,8.(Aw)h =

P,
ﬂ:tr 3 (Mw- PLO,(A*w*) = (Mw)™'* . PLo(A~w™))h
5.
- ,Bh'-l Z(A"{u - (A?u)n-l+0) ] PLB;(A+W+)II.

Pa

We can bound the second sum by

. . ah" =
CBIIPO(A**) b + S B2 e B
+ ﬂh'(|3¢\1"|,2,,a + l‘I’-l,z,,ae)Isznz.

8.3.13 A'-1

Z €0w - Lwh <
Ps
a
Clwi?: + al‘dfnwlat“l?nr

8.3.14 A’-2

Z €Ow - ah” POwh <
Ps
ahrlﬂlmalagwl?n:.

8.3.15 A'-3
)" €dww - BT PL3O:(Aw)h <

Ps
el h™=%2|0w|2,; + Ch™+/%| P88 (Aw)|3 ..
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8.3.16 B'-1

D €POw - Lwk < [wlda + |e]30 ]| PO,w|2,2. (90)
?,

8.3.17 B'-2

r
)" €2 P3;w - ah” POywh < %wa,uﬁ,,, +Cah’|ez || POw[2,.  (91)
?,

8.3.18 B'-3

3" €:PO:w - BT PLO,3,(Aw)h
P ‘
S WTIPOwI2a + ezl 00 827 PB,D, (Aw)|2.. (92)

In the non-degenerate case, we are done. In the degenerate case we still have to
consider F—1,G -~ 1,and H - 1.
8.3.19 PF-1

We note that
0: M, = (6:M,)P‘I!"c + M, P8, Y.

Hence
z: ar(A‘{,PU)dow:;h =
Ps
2 ((8:Mp)P¥7 + M, PO,V ) .owsh + 3" M,Pd,woguwsh
Ps Ps
< Clwlh + | M2, | PO.wl2,). (93)

Note that A?, is A% in m>, and |walp = |w3|ma, so this is fine.

803020 G-l

3" Mwd. Myoowsh < C(|P¥~ |me + |P3; W™ | e )|w]2.2. (94)
P,
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8.3.21 H-1

> (Ma-((M + 51)Pacat) + MO(A*M + il)P&tCAt)) oowsh <

S e

Clwlha + |97 |m=at?|8,0; Pul?; + [¥7 Imoe (14 | PO, ¥~ |m)at?| PO,

+10: ¥ |meat?| POC|2 ;. (95)

We also write |0, ¥~ |=at < [ ¥~ (0.

8.4 The Induction Hypothesis

We are finally in a position to collect the 27 terms. Before we write it all out, we
specify that og be taken small enough (based on order one constants) to make the
B -1 and A-3 boundary terms non-negative, as described above, and we then take
a to be a small fraction of o9, based on some other order one constants, and then
take § small relative to @ again based on order one constants, and finally require A
and at to be sufficiently small with respect to these other constants.

A number of right hand side terms now can be directly subtracted off from left
hand side terms. These are terms with a small multiplier on them, usually written
as g4 above.

However, other terms which we would like to hide by subtraction involve factors
such as |e|me. We must now specify an induction hypothesis that makes these
factors sufficiently small. For example, in the bound for term D — 3 above there is

a term A
ah™ =
'EIIMI?n“Ia‘wI?n"

To be able to subtract this from the 4 — 1 term

1
(6 - 5)0atldwlZ,
we need to assume that there are positive constants ¢ and § independent of A such
that
. | ¥ |me < Chré+(1-r)/2
In the non-degenerate case we can subtract it from the A — 2 term instead, so we

need only that _
| ¥ |me < CRY.

In either case, the inclusion of the § > 0 means that for A sufficiently small, the
term can indeed be subtracted.

There are other right hand side terms which do not hide by subtraction. We
wish to treat these by a Gronwall-like time induction. Once again we will need
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induction hypotheses to keep the nonlinear terms sufficiently small. For example,
in the bound for term D — 1 above there is a term

Cle:lme w2
To make this be only a small correction to terms like
Clwlma,

which arise in A — 1, we need to assume there are positive constants C and ¢
independent of A such that
l€zlmee < CAI.

It may happen that the best we can get is ¢ = 0; in this case the convergence
estimate may only hold for a fixed finite time regardless of decreasing h.

In order to state the induction hypothesis we begin with a couple definitions.
Let

K™ = |w"2: + BhT| PO (A™w™)|2,, (96)

and
J" = AT |Paw 12, 4 R0 12, 4+ AT PR8I 2, (97)

Now let C. be a constant independent of A, to be specified later.

Assumption 4 (The Induction Hypothesis) We assume that at time t"+9,
there is a non-negative number C, < C. such that Cp_; < C, and

K™ + hJ™ < (Cah)%. (98)
The induction hypothesis implies
[Clma + b/ P8:(|ma < Ch, (99)

where the C here is proportional to C,. Standa.rd approximation theory facts like
[(lme < Ch—% 7|¢|m2 and |r= < C(ICIL:ICIm)z allow us to deduce the following
additional bounds:

[Clmee < Ch'3, (100)
|P{lme < Ch!="/4, (101)
|¥|n2 < Ch, (102)
|¥lme < ChY3, (103)
|PO|mee < ChI-T/4, (104)
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|P8.¥|na < ChY&-T/2,

lPa:‘I’lm"’ S Ch(l-r)/zy
letlms < Ch,
leelmee < Ch,
lezlm2a < Ch,
lez|mee < Chl/z,
lezlm2 < Ch,
lezlmee < CAY3,

In the non-degenerate case we get the improved bounds
lezlmee < Chl-'ﬂ,

and
lezlmee < ChRY=T/4,

The induction hypothesis also implies

hT|POY~ |72 + hla¥~ |2, + A7 P38, ¥~ |2, < Ch,

from which we also get the bounds

|0:¥|ma < CAO,
|0:¥|mee < Ch™Y3,
|PO¥| 2 < ChA(-72
|P8¥|mee < ChYA-T/3,

In the non-degenerate case these improve to

0:¥|m2 < CHO-T2
|0i¥|me < ChVA-T/2,

(105)
(106)
(107)
(108)
(109)
(110)
(111)
(112)

(113)

(114)
(115)
(116)
(117)

(118)
(119)

In all of these induction related bounds, the C is proportional to C,. We point out
that the above relations imply' analogous bounds on the various M constructs.

8.5 The Gronwall Inductxon
Let us now define ¢ by

0 in the context of Theorem 1,
¢=4 1/4 in the context of Theorem 2, or
1/2 in the context of Theorem 3.
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Returning to the error equation, we now multiply by 2at, subtract the terms
that can now be subtracted based on the induction hypothesis, and are left with the
inequality

Gl S Grv

where

1
G = O‘Q(IU+ ,2.,..2 - |w~ ,znz) +(8- E)aoAtzla.wlf,,z
+ ah™ | Pow|?; + BhTao(| PO (A*wt))? |Po:(A~w™)|2,)

m3 —

+ 8K (0 - %)aomzlpa,a,(mn;,. (120)

The reader can check that the above induction hypothesis allows us to write that
for some constants C; and Cy independent of A,

Gr = (Cs + C((Cn + C?)R%)at.
(ko™ Iha + w2 + 851 PO(A=w) s + | PO (A*wH)(2,) + W)
+B8" Y ((Mh + Mo + Mwy™ . PL3 (A*wt)

Ps
~(Mh + Mw + Mw)™'"* . pLj,( ~w”)) h. (121)
We must now investigate how C, grows with n.
We define
A = gr" §° ((Mh + Mw + Mw)™+ . PL3(A*w*)) A,

L

Then we have

Kn+l + th+l - H'H-l S
K" — H+(Cs+(Ca + CHCIA)at(K™' + K* + 8?).  (122)

Summing in time many terms telescope, yielding
Kn+l _ ); ks + hJnH <
. n
K° = H® +(Cs + (Cn + C)C1A")nA3 + D 2K*(C;+2(Ci + CHC1h%)at
foer .
+ h(Cs +2(Cn + C3C A K™+, (123)

Now by the correct choice of initial conditions, namely U? = W?, the induction
hypothesis is satisfied at the initial time level with Cy = 0. Similarly K% = HC = 0.
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Also note that even when ¢ = 0, for A sufficiently small A(C; + 2(C, + CHCh?) <
1/2. Now, -
| < B32h7|PLO (AW )2,
+BY2h7(CR? + C(1 + C2h)(|w* |2, + at?|gwl|?.2)),

Thus for 3 sufficiently small with respect 1/(C2h), H™! < K™*+1/2 4 h2+r, This
i a harmless extra constraint on 3 since below we will be keeping C2h? bounded.
Thus,
o K™ 4 pJmt <
4(Cs+ (Ca + CHCIAN"HIR 4 2p24r
+8)_ K*(Cs+2(Ci + CHYCih%)at. (124)
k=0

So by the usual discrete Gronwall inequality,

Kn-i-] + th+1 S
h% (2K + 4(Cs + (Cn + C2)C1AY)EHY)
- exp(8(Cs + 2(Cn + C2)Ch%)t™). (125)

Hence we determine that at the next time level the induction hypothesis contin-
ues to hold, with

Cn+1 S (207 +4(Cs + (Ca + CHCRI)mH1)1/2
- exp(4(Cy + 2(Cn + CHCA)M). (126)

However, this is only true as long as Cn+1 £ C.. Thinking of C, as defining a
function C(t) by n corresponding to t®, we may ask “for what ¢ does C(t) first
exceed the stated upper bound?” This time will be the 7 of the theorems.
Let Cg = 4Cy + 2h" + 8C((C. + C?)h9. To see how C(t) grows, we note that
Cn < C. implies
C(t) < (Cat)/? exp(Cat).

Thus given any fixed values of C. and h, C(t) grows roughly exponentially with
time, and will eventually exceed C.. If ¢ > 0, then we can increase C. yet decrease
h so as to leave Cc unchanged; this allows us to make 7 as large as desired.
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