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Abstract

We review a decade’s work on message passing
MIMD parallel computers in the areas of hardware,
software and applications. We conclude that dis.
tributed memory parallel compuling works, and de-
scribe the implications of this for future portable soft-
ware systems.

1 Introduction

We start with a nostalgic note. The 1984 COMP-
CON conference was my first oppm'tunitc{l to discuss
our early hypercube results from Calte [1] based
on the software and science applications we built for
C. Seitz’s 64-node Cosmic Cu%e which started “pro-
duction” runs on Quantum Chromodynamics (QCD)
in October, 1983. That first MIMD machine was only
two megaflops performance — ten times better than
the VAX11/780 we were using at the time. How-
ever, the basic parallelization issues remain similar in
the 1991 six gigaflop QCD implementation on the full
size 64 K CM-2. What have we and others learned in
the succeeding eight years while the parallel hardware
has evolved impressively with in particular a factor of
3000 improvement in Performance? There is certainly
plenty of information! In 1989, I surveyed some four
hundred papers describing para’llel applications XZ], [3]
— now the total must be over one thousand. A new
complete survey is too dauntinf for me. However, my
personal experience, and I believe the lesson of the
widespread international research on message passing
parallel computers, has a clear message.

The message passing computational model is very
powerful and allows one to ezpress essentially all large
scale computations and ezecute them efficiently on dis-
tributed memory SIMD and MIMD parallel machines.

Less formally one can say that parallel computing
works, or more controversially but accurately in my
opinion that “distributed memory parallel computing
works”. In the rest of this paper, we will dissect this
assertion and suggest that it has different implications
for hardware, software and applications. Formally, we
relate these as shown in Figure 1 by viewing com-
Putation as a series of maps. Software is an expres-
sion of the map of the problem onto the machine. In

Section 2, we review a classification of problems de-
scribed in more detail in [3], [4], (5], 6], [7), [8]. In the

following three sections, we draw lessons for applica-
tions, hardware, and software and quantify our asser-
tion above about message passing parallel systems.

2 Problem Architecture

Problems like computers have architectures. Both
are large complex collections of objects. A problem
will perform well when mapped onto a computer if
their architectures match well. This loose statement
will be made more precise in the following, but not
completely in this brief paper. At a coarse level, we
like to introduce five broad problem classes which are
briefly described in Table 1. These can and should be
refined, but this is not necessary here. Thus, as de-
scribed in Table 1, we do need to differentiate the ap-
plication equivalent of the control structure — SIMD
and MIMD — for computers. However, details such
as the topology Sh percube, mesh, tree, etc.) are im-
portant for detailed performance estimates but not for
the general conclusions of this paper. Note that the
above implies that problems and computers both have
a topology.

We will use the classification of Table 1 in the fol-
lowing sections which will also expand and exemplify
the brief definitions of Table 1.

3 Applications

Let us give some examples of the five problem ar-
chitectures.

Synchronous: These are regular computations
on regular data domains and can be exemplified by full
matrix algorithms such as LU decomposition; finite
difference algorithms and convolutions such as the fast
Fourier transform.

Loosely Synchronous: These are typified by
iterative calculations (or time evolutions) on geomet-
rically irregular and perhaps heterogeneous data do-
mains. Examples are irregular mesh finite element
problems, and inhomogeneous particle dynamics.

Asynchronous: These are characterized by
a temporal irregularity which makes parallelization
hard. An important example is even driven simula-
tion where events, as in a battlefield simulation, oc-
cur in spatially distributed fashion but irregularly in
time. Branch and bound and other pruned tree algo-






e Synchronous: Data Parallel Tightly coupled and
software needs to exploit features of problem
structure to get good performance. Compara-
tively easy as different data elements are essen-
tially identical.

o Loosely Synchronous: As above but data ele-
ments are not identical. Still parallelizes due to
macroscopic time synchronization.

o Asynchronous: Functional (or da.ta% tpa.x'a,lleli.vsm
that is irregular in space and time. Often loosely
coupled and so need not worry about optimal de-
compositions to minimize communication. Hard
to parallelize (massively) unless ...

o Embarrassingly Parallel: Independent execution
of disconnected components.

o A=LS: (Loosely Synchronous Complez) Asyn-
chronous collection of (loosely) synchronous
components where these programs themselves
can be parallelized.

Table 1: Five Problem Architectures

rithms common in artificial intelligence such as com-
puter chess [9] fall in this category.

Synchronous and Loosely synchronous problems
parallelize naturally in a fashion that scales to large
computers with many nodes. One only requires that
the application be “large enough” which can be quan-
tified by a detailed performance analysis [10& which
was discussed quite accurately in my original COMP-
CON paper [1]. The speed up ‘

=N _
S= 1+ f) (1)

on a computer with N nodes where the overhead f.
has a term due to communication which has the form

1 tcomm
feox o )

where tcomm and Zcaic are respectively typical node to
node communication and node (floating point) calcu-
lation time. n is the application grain size and d its
dimension which is defined precisely in [10]; in physi-
cal simulations d is usually the geometric dimension.
Good performance requires ”—hlm be “small” with a
value that depends on the critical machine parameter
tcomm/tcale. The grain size n would be the number of
grid points stored on each node in a finite difference
problem so that the complete problem had Nn grid
points. Implicit in the above discussion is that these

roblems are “data parallel” in the language of Hillis
El], 412]. This terminology is sometimes only asso-
ciated with problems run on SIMD machines but in
fact, data parallelism is the general origin of massive
parallelism on either SIMD or MIMD architectures.

MIMD machines are needed for loosely synchronous
data parallel problems where we do not have a homo-
geneous algorithm with the same update operation on
each data element.

The above analysis does not apply to asynchronous
problems as this case has additional synchronization
overhead. One can, in fact, use message passing to
naturally synchronize synchronous or loosely synchro-
nization problems. These typically divide into commu-
nication and calculation phases as given by individual
iterations or time steps in a simulation. These phases
define an algorithmic synchronization common to the
entire application. This is lacking in asynchronous
problems which require sophisticated parallel software
support such as that given by the time warp system

13].

However, there is a very important class of asyn-
chronous applications for which large scale paralleliza-
tion is possible. These we call loosely synchronous
complez as they consist of an asynchronous collection
of loosely synchronous (or synchronous) modules. A
good example, shown in Figure 2, is the simulation
of a satellite based defense system. Viewed at the
level of the satellites, we see an asynchronous applica-
tion. However, the modules are not elemental events

- but rather large scale data parallel subsystems. In a

simulation developed by JPL, these modules included
sophisticated Kalman filters and target weapon asso-
ciation [14]. This problem class shows a functional
parallelism at the module level and a conventional
data parallelism within the modules. The latter en-
sures that large problems of this class will parallelize
on large machines. Image analysis, vision and other
large information processing or command and control
problems fall in the loosely synchronous complex class.

A final problem class of practical importance is
termed “embarrassingly parallel”. These consist of a
set of independent calculations. This is seen in parts of
man¥ chemistry calculations where one can indepen-
dently compute the separate matrix elements of the
Hamiltonian. Another example is seen in the opera-
tion of the New York stock exchange where the trad-
ing of 2000 stocks can be independently controlled by
separate computers — in practice the SIAC corpora-
tion distributes the stocks over a few hundred personal
computers or workstations with each handling the in-
dependent trading of a few stocks.

4 Hardware

Table 2 shows that the five different problem archi-
tectures are naturally suited (i.e., will run with good
ferformance) to different parallel machine architec-

ures.

As described in the previous section, all problems
except those in the pure asynchronous class, naturally
parallelize on large scale machines as long as the ap-

lication is large enough. In my 1989 analysis [2],
Ei] of 84 applications in 400 papers, I estimated that
synchronous and loosely synchronous problems dom-
inated scientific and engineering computations, and
these two classes were rightly equal in number. This
argues that both SIMD and MIMD machines are valu-
able. Around 50% of the surveyed problems could






Numerical — Virtual
Formulation “compiler” Machine
of Problem (Virtual
' Problem)

Problem Class Machine Architeciure

Synchronous SIMD, MIMD
Loosely Synchronous MIMD
Asynchronous unclear

Heterogeneoué network
of SIMD and MIMD
machines

Loosely Synchronous
Complex (A=LS)

Network of
workstations
SIMD, MIMD

Table 2: Parallel Computer Architectures Suitable for
each Problem Class

Embarrassingly Parallel

effectively use a SIMD architecture whereas a compa-
rable number can exploit the additional flexibility of
MIMD machines. Note that all distributed memory
machines — whether MIMD or SIMD — are message
passing and so subject to similar analysis. One views
the 64 K CM-2 not as a bunch of virtual processors
controlled by data parallel CMFortran, but rather as
a set of 2048 WEITEK based nodes exchanging mes-
sages over a hypercube network.

We found 14% embarrassingly parallel applications
and 10% asynchronous problems in [2], [3]. The latter
contain some loosely synchronous complex problems,
but we had not identified this separate class at the
time. As parallel computing matures, we expect to see
more examples of this complex heterogeneous class —
especially in commercial and government applications.

5 Software

In our picture shown in Equation 3, software maps
problems onto the hardware in one or more stages.

We can understand many of the different software
approaches in terms of choices for the virtual machine
which is the user’s view of the target computer. Es-
sentially all our Caltech work on the hypercube and
other MIMD machines used a C (Fortran) plus explicit
message passing software model. This corresponds
to choosing a virtual machine model that was either
a hypercube or more generally a collection of nodes
able to exchange messages independent of a particu-
lar topology. The latter was called VMLSCS in [10]
for Virtual Machine Loosely Synchronous Communi-
cation System. This software model was very success-
ful in that as shown in Figure 3, one is able to use it to
map essentially all problems onto a MIMD distributed
memory multicomputer. Its strengths and weaknesses

— Real

Machine (Parallel) 3)
Specific Computer
“assembler”

are a consequence of using a virtual machine model
close to a real machine. This allows great generality
in problems but produces non-portable code that is
specific to one machine class. Further, it is hard work
as the user must map the problem a “long way” from
the original application onto the virtual machine.

Over the last few years, another approach has be-
come popular which corresponds to using a virtual
machine model which is close to the problem and not
the machine architecture. We view the use of CMFor-
tran in this fashion corresponding to a virtual machine
representing data parallel synchronous problems. The
two approaches are contrasted in Figure 4. This anal-
ysis suggests that data parallel Fortran can be ma%)ed
onto both SIMD and MIMD machines. We view CM-
Fortran as supporting a SIMD virtual machine (SIMD
problem architecture) and not as the language for just
SIMD hardware. For this reason, we prefer to term the
“compiler” target in Equation 3 as the virtual prob-
lem and not the more common description as a virtual
machine. This terminology makes it more natural to
consider languages like CMFortran as the languages
for “SIMD problems” (synchronous problems) rather
than the languages for SIMD machines.

The Rice and Syracuse groups [15], [16], [17] have
proposed FortranD as a data parallel Fortran suit-
able for distributed memory machines. This general-
izes the concepts behind CMFortran in several ways.
As shown in Figure 5, FortranD includes Fortran 77D
and Fortran 90D with implicit and explicit parallelism
respectively; the compiler for Fortran 77D uses de-
pendency analysis to uncover data parallel constructs
which are explicit in the array operations and run-time
library of Fortran 90D. FortranD targets both SIMD
and MIMD machines. Although the initial design for
FortranD was largely aimed at synchronous problems,
it is flexible enough to include loosely synchronous
problems. In fact, we expect that with suitable exten-
sions, FortranD and similar languages should be suit-
able for the majority of synchronous and loosely syn-
chronous groblems. Thinking Machines has pioneered
many of these ideas with their adoption of CMFortran
for the SIMD CM-2 and MIMD CM-5.

The loosely synchronous extensions to FortranD are
designed to handle irregular problems which we al-
ready understand how to implement with explicit mes-
sage passing. However, higher level software models
as defined by Figure 6, such as FortranD are I be-
lieve essential if parallel processing is to become gen-
erally accepted. We have used the ideas behind Parti
98], [19] in the loosely synchronous implementation of

ortranD. Table 3 summarizes work in progress with
Saltz. We need to divide the loosely synchronous class
into subclasses which each have rather different needs
in language extensions. We have examined initially






| Specific Applications Abstract Problem Model FortranD Challenges
Regular Meshes Mesh Topology Align, decomposition,
Full matrices distribution.......
. Synchronous
Fast fourier transform General Topology Original Forall
. Definition
Chemical matrix elements Embarassingly Parallel Do Independent
Analyze events from the
SSC (high energy collidor)
Unstructured Mesh CFD -~ Static Single Phase Incorporate static Parti ICASE)
. Extensions in
Unstructured Multigrid Loosely Static Multiple Phase ~ current research  Ab initio Physical Computation
Particle in the Cell Synchronous for differential  for decomposition
. ti . .
' eq‘;‘;‘;ﬁ,‘e’"d Dynamic Parti (ICASE)
Molecular Dynamics Adaptive Irregular dynamics Incremental Physical Computation
. problems New Library functions
Adaptive Fast Multipole - Implicit Multiphase l Major unsolved research issues
Image, Signal Processing Loosely Synchronous  Should Do! Lesson from APPLY
Event driven Simulations Asynchronous Outside current scope of
Transaction Analysis Fortran D

Table 3: _Extensions of FortranD for Different Problem Classes






some partial differential equation and particle dynam-
ics problems. We see four major subclasses. The sim-

lest case is typified by an unstructured mesh which
ﬁas a single static irregular data structure. The hard-
est case is typified by the fast multipole method for
particle dynamics [20], [21] where one has an irregu-
lar dynamic data structure which is implicitly defined.
As we consider further examples such as vision and
signal proceedings, we may discover new: issues or in
our problem architecture language, new loosely syn-
chronous problem architecture characteristics which
need to be explicitly recognized in FortranD.

8 Conclusions

We have claimed that the message passing model
was and will continue to be very successful. The ven-
dors will build better and better hardware with lower
communication latency and reasonable tcomm/tealc <
10. We view the message passing software model
as “assembly-language” which in many cases we can
and should ﬁide Tom the user with a software model
“nearer” that of the problem. Optimizing compilers
will translate from a problem oriented software model
convenient for users to the message passing level sup-
ported by the machine. This latter level will continue
to be used directly for applications for difficult cases
which are not efficiently supported in the high level
software.
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Figure 1: Computation as a Series of Maps
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Figure 2: A=LS Structure for Command and Control
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Figure 3: The maps of Problems to Computers via Virtual Computers






(@) The Fortran + Message Passing Approach
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Figure 4: The Message Passing and Fortran D (CMFortran)
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Figure 5: The FortranD Project
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