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Abstract

Algorithms exist for compiling Fortran D for MIMD
distributed-memory machines, but are significantly re-
stricted in the presence of procedure calls. This paper
presents interprocedural analysis, optimization, and code
generation algorithms for Fortran D that limit compila-
tion to only one pass over each procedure. This is ac-
complished by collecting summary information after edits,
then compiling procedures in reverse topological order to
propagate necessary information. Delaying instantiation of
the computation partition, communication, and dynamic
data decomposition is key to enabling interprocedural op-
timization. Recompilation analysis preserves the benefits
of separate compilation. Empirical results show that inter-
procedural optimization is crucial in achieving acceptable
performance for a common application.

1 Introduction

Fortran D is an enhanced version of Fortran that allows
the user to specify data placement—the partitioning of
data onto processors. Its goal is to provide a machine-
independent programming model for data-parallel appli-
cations that shifts the burden of machine-dependent op-
timizations to the compiler. Preliminary results show that
the Fortran D compiler produces programs that closely ap-
proach the quality of hand-written code. However, it re-
quires deep analysis because it must know both when a
computation may be performed and where the data and
computation is located. The compiler is thus severely re-
stricted by the limited program context available at proce-
dures. This limitation is unfortunate since procedures are
desirable for programming style, modularity, readability,
code reuse, and maintainability.

Interprocedural analysis and optimization algorithms
have been developed for scalar and parallelizing compilers,
but are seldom implemented. We show that interprocedural
analysis and optimization can no longer be considered a
luxury, since the cost of making conservative assumptions
at procedure boundaries is unacceptably high when com-
piling data-placement languages such as Fortran D. The
major contribution of this paper is to demonstrate effi-
cient interprocedural Fortran D compilation techniques.
We have begun implementing these techniques in the cur-
rent compiler prototype.

In the remainder of this paper, we briefly introduce the
Fortran D language and illustrate how Fortran D programs
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are compiled. We illustrate the need for interprocedural
compilation and show how the Fortran D compiler is inte-
grated into the ParaScope interprocedural framework. We
present analysis, optimization, and code generation algo-
rithms in detail for a number of interprocedural problems,
then provide the overall interprocedural compilation algo-
rithm. Recompilation tests are described that preserve the
benefits of separate compilation. A case study of DGEFA
is used to demonstrate the effectiveness of interprocedural
analysis and optimization. We conclude with a comparison
with related work.

2 Fortran D Language

In Fortran D, the DECOMPOSITION statement declares an
abstract problem or index domain. The ALIGN statement
maps each array element onto the decomposition. The DIs-
TRIBUTE statement groups elements of the decomposition
and aligned arrays, mapping them to a parallel machine.
Each dimension is distributed in a block, cyclic, or block-
cyclic manner; the symbol “” marks dimensions that are
not distributed. Because the alignment and distribution
statements are executable, dynamic data decomposition is
possible. The complete language is described in detail else-
where [15]. As in High Performance Fortran (HPF), each
array is implicitly aligned with a default decomposition.
This feature allows arrays to be distributed or aligned with
other arrays directly without explicit DECOMPOSITION or
ALIGN statements if desired.

3 Intraprocedural Fortran D Compilation

Given a data decomposition, the Fortran D compiler auto-
matically translates sequential programs into efficient par-
allel programs. The two major steps in compiling for
MIMD distributed-memory machines are partitioning the
data and computation across processors, then introduc-
ing communication for nonlocal accesses where needed.
The compiler applies a compilation strategy based on data
dependence that incorporates and extends previous tech-
niques. We briefly describe each major step of the compila-
tion process below, details are presented elsewhere [22, 23]:

1. Analyze Program. Symbolic and data dependence
analysis is performed.

2. Partition data. Fortran D data decomposition spec-
ifications are analyzed to determine the decomposition
of each array.

3. Partition computation. The compiler partitions
computation across processors using the “owner com-
putes” rule—where each processor only computes val-
ues of data it owns [7, 29, 33].

4. Analyze communication. Based on the computa-
tion partition, references that result in nonlocal ac-
cesses are marked.



5. Optimize communication. Nonlocal references are
examined to determine optimization opportunities.
The key optimization, message vectorization, uses the
level of loop-carried true dependences to combine ele-
ment messages into vectors (2, 33].

6. Manage storage. “Overlaps” (33] or buffers are al-
located to store nonlocal data.

7. Generate code. The compiler instantiates the com-
munication, data and computation partition deter-
mined previously, generating the SPMD program with
explicit message-passing that executes directly on the
nodes of the distributed-memory machine.

We refer to collections of data and computation as indez
sets and iteration sets, respectively. In the Fortran D com-
piler, both are represented by regular section descriptors
(RSDs) [20]. We describe RSDs using Fortran 90 triplet
notation.

3.1 Compilation Example

We illustrate the Fortran D compilation process for proce-
dure F1 in Figure 1 onto a machine with four processors.
If interprocedural analysis determines that array X in pro-
cedure F1 is distributed blockwise, the compiler generates
efficient code for F1 as follows.

First, data partitioning assigns the local index set [1:25]
to each processor for X. Computation partitioning applies
the owner computes rule to the lhs X (i), yielding the local
iteration set [1:25]. Communication analysis finds that the
rhs " {i+5) accesses the index set [6:30]. Subtracting off the
locz index set reveals the nonlocal index set [26:30]. The
lack of true dependences on S; allows this to be vectorized
outside the i loop. Storage management selects overlaps,
expanding the local bounds of X to [1:30].

During code generation, the compiler first sets mydp to
the local processor number, an integer between 0 and 3. It
instantiates the data and computation partition by modi-
fying the program text to reduce the array bounds for X to
[1:30] and the i loop bounds to [1:25]. An expression is gen-
erated for ub$1, the upper loop bound, to handle boundary
conditions. Finally, the compiler instantiates the RSD for
the nonlocal index set by inserting guarded calls to send
and recv routines outside of the i loop. The resulting code
is shown in Figure 2.

Without interprocedural analysis, the Fortran D com-
piler cannot locally determine the data decomposition of
X in F1. It is forced to generate code using run-time reso-
lution techniques to explicitly calculate the ownership and
communication for each reference [7, 29, 33]. As can be
seen from Figure 3, run-time resolution produces code that
is much slower than the equivalent compile-time generated
code. Not only does the program have to explicitly check
every variable reference, it generates a message for each
nonlocal access. One of the prime goals for interprocedural
compilation is to avoid resorting to run-time resolution.

4 Interprocedural Support in ParaScope

ParaScope is a programming environment for scientific For-
tran programmers. It has fostered research on aggressive
optimization of scientific codes for both scalar and shared-
memory machines [6]. Its pioneering work on incorporat-
ing interprocedural optimization in an efficient compilation
system has also contributed the development of the Con-
vex Applications compiler [26]. Through careful design, the
compilation process in ParaScope preserves separate com-
pilation of procedures to a large extent. Tools in the en-
vironment cooperate so that a procedure only needs to be

SUBROUTINE F1(X)
REAL X(100)
PARAMETER (n$proc = 4) do i =1,95
DISTRIBUTE X(BLOCK) S X(i) = F(X(i+5))
call F1(X) enddo

end end

Figure 1: Simple Fortran D Program

PROGRAM P1
REAL X(100)

SUBROUTINE F1(X)
REAL X(30)
my$p = myproc() {= 0...3 =}
ub$1 = min((my$p+1)*25,95)-(my$p*25)
if (my$p .GT. 0) send X(1:5) to my$p-1
if (my$p .LT. 3) recv X(16:30) from my$p+1
do i = 1,ubs$1
X(i) = F(X(i+5))
enddo

end Figure 2: Fortran D Compiler Output

SUBROUTINE F1(X)
REAL X(100)
my$p = myproc() {x 0...3 =}
do i = 1,95
it (my$p .EQ. owner(X(i+5))) then
send X(i+5) to ownmer(X(i))
endif
if (my$p .EQ. owner(X(i))) then
recv X(i+5) from owner(X(i+5))
X(i) = F(X(i+5))
endif
enddo

end Figure 3: Run-time Resolution

examined once during compilation. Additional passes over
the code can be added if necessary, but should be avoided
since experience has shown that examination of source code
dominates analysis time. The existing compilation system
uses the following 3-phase approach (6, 12, 17]:

1. Local Analysis. At the end of an editing session,
ParaScope calculates and stores summary information
concerning all local interprocedural effects for each
procedure. This information includes details on call
sites, formal parameters, scalar and array section uses
and definitions, local constants, symbolics, loops and
index variables. Since the initial summary information
for each procedure does not depend on interprocedural
effects, it only needs to be collected after an editing
session, even if the program is compiled multiple times
or if the procedure is part of several programs.

2. Interprocedural Propagation. The compiler col-
lects local summary information from each procedure
in the program to build an augmented call graph con-
taining loop information [18]. It then propagates the
initial information on the call graph to compute inter-
procedural solutions.

3. Interprocedural Code Generation. The compiler
directs compilation of all procedures in the program
based on the results of interprocedural analysis.

Another important aspect of the compilation system is
what happens on subsequent compilations. In an inter-
procedural system, a module that has not been edited
since the last compile may require recompilation if it has
been indirectly affected by changes to some other mod-
ule. Rather than recompiling the entire program after each
change, ParaScope performs recompilation analysis to pin-
point modules that may have been affected by program



Code Generation
Local iteration sets |
Nonlocal index sets |

Overlaps |
Buffers |
Live decompositions 1
Loop-invariant decomps |

Interprocedural Propagation
Call graph |
Loop structure |
Array aliasing & reshaping |
Scalar & array side effects |
Symbolics & constants |
Reaching decompositions |

Table 1: Interprocedural Fortran D Dataflow Problems

changes, thus reducing recompilation costs [5, 13]. This
process is described in greater detail in Section 8.

ParaScope computes interprocedural REF, MOD, ALIAS
and CONSTANTS. Implementations are underway to solve
a number of other important interprocedural problems, in-
cluding interprocedural symbolic and RSD analysis. Para-
Scope also contains support for inlining and cloning, two
interprocedural transformations that increase the context
available for optimization. Inlining merges the body of the
called procedure into the caller. Cloning creates a new
version of a procedure for specific interprocedural informa-
tion [10, 12].

Existing interprocedural analysis in ParaScope is useful
for the Fortran D compiler, but it is not sufficient. The
compiler must also incorporate analysis to understand the
partitioning of data and computation and to apply com-
munication optimizations. In order to use the above 3-
phase approach, additional interprocedural information is
collected during code generation and propagated to other
procedures in the program. These extensions are described
in the rest of the paper.

5 Interprocedural Compilation

As we have seen, interprocedural compilation of Fortran D
is needed to generate efficient code in the presence of proce-
dure calls. The Fortran D compilation process is complex.
The list of interprocedural data-flow problems that must be
solved by the Fortran D compiler is shown in Table 1. Each
problem is labeled |, 1, or | depending on whether it is com-
puted top-down, bottom-up, or bidirectional, respectively.
We have carefully structured the Fortran D compiler to per-
form compilation in a single pass over each procedure for
programs without recursion. It has three key points. The
first two support compilation in a single pass, the third
improves the effectiveness of interprocedural optimization:

¢ Certain interprocedural data-flow problems are com-
puted first because their solutions are needed to enable
code generation. In particular, reaching decomposi-
tions information is needed to determine the data par-
tition, the initial step in compiling Fortran D. These
problems are solved by gathering local information
during editing and computing solutions during inter-
procedural propagation.

¢ Other interprocedural data-flow problems depend on
data produced only during code generation. For in-
stance, local-iteration and nonlocal index sets required
for optimizations are calculated as part of local For-
tran D compilation. While we could introduce addi-
tional local analysis and interprocedural propagation
phases to solve these problems, it is much more ef-
ficient to combine their calculation with code gener-
ation. This approach is possible because the set of
problems we want to compute during interprocedural
code generation are all bottom-up. By visiting proce-
dures in reverse topological order, the results of analy-

PROGRAM P1 SUBROUTIBE F1(Z,i)
REAL X(100,100),Y(100,100) REAL Z(100,100)
PARAMETER (n$proc = 4) S3  call F2(2,i)
ALIGHE Y(i,j) with X(j,i) end
DISTRIBUTE X(BLOCK,:)
do i = 1,100 SUBROUTIEE F2(Z,i)
S call Fi(X,i) REAL Z(100,100)

enddo do k = 1,100

do j = 1,100 Z(k,i) = F(Z(k+5,i))
S2  call F1(Y,j) enddo

enddo end
end

Figure 4: Example Fortran D Program

=2 Nesting Edge
Figure 5: Augmented Call Graph

sis for each procedure are available when compiling its
callers. Only overlaps need to be handled separately.

o Delayed instantiation of the computation partition,
communication, and dynamic data decomposition en-
ables optimization across procedure boundaries. In
other words, guards, messages, and calls to data
remapping routines are not inserted immediately when
compiling a procedure. Instead, where legal they are
stored and passed to the procedure’s callers, delaying
their insertion. This technique provides the flexibility
needed to perform interprocedural optimization.

The remainder of this section presents interprocedural so-
lutions required by the Fortran D compiler and shows how
interprocedural information is used during code generation.
Section 6 describes additional interprocedural analysis and
optimization for efficiently supporting dynamic data de-
composition. The overall algorithm is then presented. For
clarity, each problem and solution is described separately,
even though the compilation process uses the 3-phase Para-
Scope approach described in the previous section.

5.1 Augmented Call Graph

Most interprocedural problems are solved on the call graph,
where nodes represent procedures and edges represent call
sites. Since the Fortran D compiler also requires informa-
tion about interprocedural loop nesting, it uses the aug-
mented call graph (ACG) [18]. Conceptually, the ACG is
simply a call graph plus loop nodes that contain the bounds,
step, and index variable for each loop, plus nesting edges
that indicate which nodes directly encompass other nodes.

For instance, the Fortran D program in Figure 4 produces
the ACG shown in Figure 5. The ACG shows that program
P1 has two loops, ¢ and j, both of which contain calls to
F1. F1 calls F2, which in turn contains loop k. Annotations
stored in the ACG show that the formal parameter i in F1
and F2 is actually the index variable for a loop in P1 that
iterates from 1 to 100 with a step of 1.

The ACG also contains representations of the formal
and actual parameters and their dimensions associated with
each procedure and call site. This information is used by
interprocedural analysis to translate data-flow sets across
calls, mapping formals to actuals and vice versa. An exam-
ple of this translation is the Translate function in Figure 6.



Translation must also deal with array reshaping across pro-
cedure boundaries. Interprocedural symbolic analysis used
in conjunction with linearization and delinearization of ar-
ray references can discover standard reference patterns that
may be compiled efficiently [4, 17, 20].

5.2 Reaching Decompositions

To effectively compile Fortran D programs, it is vital to
know the data decomposition of a variable at every point it
is referenced in the program. In Fortran D, procedures in-
herit the data decompositions of their callers. For each call
to a procedure, formal parameters inherit the decomposi-
tions of the corresponding actual parameters passed at the
call, and global variables retain their decomposition from
the caller. A variable’s decomposition may also be changed
at any point in the program, but the effects of decompo-
sition specifications are limited to the scope of the current
srocedure and its descendants in the call graph.

Reaching Decompositions Calculation. To deter-
.rine the decomposition of distributed arrays at each point
in the program, the compiler calculates reaching decom-
positions. Locally, it is computed in the same manner as
reaching definitions, with each decomposition treated as a
“definition” [1]. Interprocedural reaching decompositions
is a flow-sensitive data-flow problem (3, 11] since dynamic
data decomposition is affected by control flow. However,
the restriction on the scope of dynamic data decomposi-
tion in Fortran D means that reaching decompositions for
a procedure is only dependent on control flow in its callers,
not its callees. The effect of data decomposition changes in
a procedure can be ignored by its callers, since it is “un-
done” upon procedure return.
By taking advantage of this restriction, interprocedural
r -+hing decompositions may be solved in one top-down
over the call graph using the algorithm in Figure 6.
.ng local analysis, we calculate the decompositions that
_.ch each call site C. Formally,

LocaLREACHING(X) = { (D, V)| D is the set of
decomposition specifications reaching actual pa-
rameter or global variable V at point X }.

LOCALREACHING may include elements of the form (T,V)
if V may be reached by a decomposition inherited from a
caller. T serves as a placeholder. During interprocedural
propagation, we use the call graph and LOCALREACHING to
calculate REACHING(P), the set of decompositions reaching
a procedure P from its callers. Formally,

REACHING(P) = {(D, V)| D is the set of decom-
position specifications reaching formal parameter
or global variable V' at procedure P }.

The function Translate maps actual parameters in the Lo-
CALREACHING set of a call to formal parameters in the
called procedure. Global variables are simply copied, and
actual parameters are replaced by the corresponding for-
mal parameters. REACHING(P) is computed as the union
of the translated LOCALREACHING sets for all calls to P.
We then update all LOCALREACHING sets in P that contain
T. Each element (T,V) is expanded to (D, V), where D is
the set of decompositions for variable V in REACHING(P).
This step propagates decompositions along paths in the
call graph. During code generation the compiler needs to
determine which decomposition reaches each variable ref-
er nce. It repeats the calculation of LOCALREACHING for
each procedure, taking REACHING into account.

{* Local analysis phase *}
for each procedure P do
initialize decomposition of all variables to T
for each call site C in P do
calculate LocALREACHING(C)
endfor
endfor
{* Interprocedural propagation phase *}
for each procedure P do (in topological order)
calculate REACHING(P) =
P invoked ot ¢ Translate(LOCALREACHING(C))

clone P if multiple decompositions found
for each call site C in P do
for each element (T, X) € LoCALREACHING(C) do
replace with (D, X) € REACHING(P)
endfor
endfor
endfor
{* Interprocedural code generation phase *}
for each procedure P do (in reverse topological order)
calculate LOCALREACHING for all variables in P
endfor

Figure 6: Reaching Decompositions Algorithm

(P1)  LocaLREAcHING(S:) = {( (block,), X ) }
S S LOCALREACHING(S2) = { {(:,block),Y ) }
LocaLREACHING(S3) = {(T,2)}
S"%D

REACHING(P1) = 0
REACHING(F1) = LOCALREACHING(S1) U
LOCALREACHING(S2)

REACHING(F2) = LOCALREACHING(S3)

Figure 7: Reaching Decompositions

Reaching Decompositions Example. Figure 7 illus-
trates the reaching decomposition calculation for the pro-
gram in Figure 4. During the local analysis phase, LoCAL-
REACHING sets are computed for the call sites 51, S2 and
S3. The results for S; and S2 contain the decompositions
that reach the actual parameter at the call site. At the first
call site i, the actual parameter X is distributed row-wise.
At the second call site Sz, Y is distributed column-wise.
LOCALREACHING(S3) is set to the element (T, Z) since the
decomposition inherited by procedure F1 reaches Z.

During the interprocedural propagation phase, the call
graph is constructed and REACHING sets are computed top-
down for program P1 and procedures F1 and F2. REACH-
ING(P1) is the empty set, since P1 has no callers. REACH-
ING(F1) is calculated as the union of LOCALREACHING for
the call sites S; and S2. The Translate function maps the
decomposition of the actual parameters X and Y at the call
sites to the formal Z, resulting in { {(:, block), (block,:)}, Z).
T for Z in LOCALREACHING(S:) is replaced with these col-
umn and row distributions from REACHING(F1). Since S3 is
the only call site invoking F2, the resulting data decompo-
sitions are also assigned to REACHING(F2). Finally, during
local code generation the interprocedural reaching decom-
positions in REACHING are used to calculate the decompo-
sition for each local variable.

Procedure Cloning. The Fortran D compiler can gen-
erate much more efficient code if there is only a single de-



partition calls C invoking P into {7 ... 7} such that
Filter( Translate(LOCALREACHING(C)), APPEAR(P))
is equal V¥ calls C in each partition w;
ifn > 1 then {* multiple partitions created *}
for each n; € {m;... 7} do
create clone P; of P
calculate REACHING(P;) =
Ucin x; Translate(LOCALREACHING(C))

for each call C in 7; do
replace P with P; as endpoint of edge
representing C in call graph
endfor
endfor

dif
endt Figure 8: Procedure Cloning Algorithm

composition reaching an array. We assume that cloning or
run-time techniques will be applied locally to ensure that
each array has a unique decomposition within each proce-
dure. Procedure cloning may still be necessary if calls to
procedure P provide different decompositions for variables
that appear in P or its descendants. The procedure cloning
algorithm is presented in Figure 8. We define APPEAR(P)
to be the set of formal parameters and global variables ap-
pearing in procedure P or its descendants. Formally,

APPEAR(P) = GMmoD(P) U GREF(P).

GMoD and GREF represent the variables modified or ref-
erenced by a procedure or its descendants [11]. The value
of APPEAR is readily available from interprocedural scalar
side-effect analysis [3, 12]. We also define a function
Filter(R,V) that removes from R all decompositions ele-
ments (D, X) where X € V, returning the remaining de-
composition elements.

In the algorithm we partition the calls to P so that
calls providing the same decompositions can share the same
clone. We use Filter to remove reaching decompositions
that are not in APPEAR. This step avoids unnecessary
cloning that would expose decompositions for unreferenced
variables. A clone of P is produced for each partition,
resulting in a unique decomposition for each variable ac-
cessed. For instance, the compiler creates two copies of
procedure F1 and F2 because they possess two different
reaching decompositions for Z. Edges in the call graph
are updated appropriately for the clone. In pathological
cases, cloning can result in an exponential growth in pro-
gram size [10]. Under these circumstances, cloning may be
disabled when a threshold program growth has been ex-
ceeded, forcing run-time resolution instead.

5.3 Partitioning Data and Computation

Recall that a major responsibility of the Fortran D compiler
is to partition the data and computation across processors.
Reaching decompositions calculated in LOCALREACHING
are translated into distribution functionsthat compute the
data partition for each variable. Once the data partition is
calculated, it is used with loop information in the ACG to
derive the computation partition via the owner computes
rule. In the Fortran D compiler, the data and computation
partition are represented by local index and iteration sets,
respectively. The computation partition is instantiated by
modifying the program text to reduce loop bounds and/or
introduce explicit guards.

When compiling a procedure, the Fortran D compiler
delays local instantiation of the computation partition as
much as possible. It first forms the union of all iteration
sets for statements in the procedure. Bounds are reduced

{* Interprocedural code generation phase *}
for each procedure P do (in reverse topological order)
for each variable V in P do
calculate local index set for V'
endfor
for each assignment statement S in P do
construct iteration set for S
endfor
for each call to Q at site C in P do
assign iteration set of Q to C
endfor
instantiate local data and computation partitions
collect union of all iteration sets in P for callers
endfor

Figure 9: Data and Computation Partitioning Algorithm

for loops local to the procedure. Guards are introduced for
loops outside the procedure only if local statements have
different iteration sets for those loops. Otherwise the com-
piler simply saves the unioned iteration set, using it to in-
stantiate the computation partition later when compiling
the callers. Delayed instantiation enables the compiler to
reduce computation partitioning costs by using loop bounds
reduction or by merging guards across procedure bound-
aries. The partitioning algorithm is shown in Figure 9.

Computation Partitioning Example. We illustrate
the partitioning process for the code in Figure 4. For sim-
plicity, we assume that procedure F1 contains the k loop.
Cloning has already been applied to F1, producing F1Srow
and F1$col as shown in Figure 10. The compiler computes
the local index set for Z to be [1:25,1:100] in F1$row and
[1:100,1:25] in F18col. Disregarding boundary conditions,
applying the owner computes rule results in the local iter-
ation sets [1:25,1:100] and [1:95,1:25] for the assignments
to Z(k,t) at S3 and Si, respectively. Since these are the
only computation statements in F1$row and F18col, they
become the iteration sets for the entire procedures as well.

During code generation, the bounds of local loop k are
reduced in F18row, but not for F18col. The iteration sets
for F18row and F1S$col are stored and assigned to the call
sites at S; and S; when compiling P1. This causes the
bounds of the j loop enclosing S> to be reduced from [1:100]
to [1:25], based on the iteration set calculated for F1Scol.
The result is shown in Figure 10.

5.4 Communication Analysis and Optimization

Once they are calculated, local iteration sets (representing
the computation partition) may be used to compute nonlo-
cal accesses. Communication is generated only for nonlocal
references in procedure P that cause true dependences car-
ried by loops within P. This may be determined from RSDs
and local code. Messages for other nonlocal references will
be added when P’s callers are later compiled. Communica-
tion is instantiated by modifying the text of the program to
insert send and recv routines or collective communication
primitives.

To see how this strategy works, first recall that mes-
sage vectorization uses the level of the deepestloop-carried
true dependence to combine messages at outer loop lev-
els [2, 33]. Communication for loop-carried dependences
is inserted at the beginning of the loop that carries the
dependence. Communication for loop-independent depen-
dences is inserted in the body of the loop enclosing both
the source and sink of the dependence. If both loop-carried
and loop-independent dependences exist at the same level,
the loop-independent dependence takes priority [22].



PROGRAM P1
REAL X(30,100), Y(100,25)
my$p = myr~oc() {* 0...3 x}
if (my$p .GT. 0) send X(1:5,1:100) to my$p-1
if (my$p .LT. 3) recv X(26:30,1:100) from my$p+1
do i =1,100
S1 call Fi$row(X,i)
enddo
do j = 1,25
Sa call Fi1$col(Y,j)
enddo
end
SUBROUTINE Fi1$row(Z,i)
REAL Z(30,100)
ub$1i = min((my$p+1)+26,99)-(my$p*25)
do k 1,ubs$1
Ss3 Z(k,i) = F(Z2(k+5,i))
enddo
end
SUBROUTINE F1$col(Z,i)
REAL Z(100,25)

do k = 1,95
Sy Z(k,i) = F(Z(k+5,1))
enddo
end

Figure 10: Interprocedural Fortran D Compiler Output

Because the program is compiled in reverse topologi-
cal order, local dependence analysis augmented with inter-
procedural RSDs representing array uses and definitions
can precisely detect all loop-independent dependences and
dependences carried by loops within the procedure, but
not all dependences carried on loops outside the proce-
dure. This imprecision is not a problem since the Fortran D
compiler delays instantiation of communication for nonlo-
cal references in any case to take advantage of additional
opportunities to apply message vectorization, coalescing,
aggregation, and other communication optimizations [23].

For interprocedural compilation, the Fortran D compiler
first performs interprocedural dependence analysis. Ref-
erences within a procedure are put into RSD form, but
merged only if no loss of precision will result. The resulting
RSDs may be propagated to calling procedures and trans-
lated as definitions or uses to actual parameters and global
variables [20]. During code generation, the Fortran D com-
piler uses intraprocedural algorithms to calculate nonlocal
index sets, using the deepest true dependence to determine
the loop level for vectorizing communication. If a nonlocal
reference is the sink of a true dependence carried by a loop
in the current procedure, communication must be gener-
ated within the procedure. Otherwise the nonlocal index
set is marked and passed to the calling procedure, where
its level and location may be determined more accurately
and optimizations applied. The algorithm for optimizing
communication is shown in Figure 11.

Communication Optimization Example. We illus-
trate the analysis and optimization techniques used to gen-
erate communication for Figure 10. First, the Fortran D
compiler uses the local iteration sets calculated for state-
ments S3 and Si to determine the nonlocal index sets for
the rhs Z(k +5,1). In procedure F1$col, the local iteration
set [1:95,1:25] yields the accesses [6:100,1:25). Since the lo-
cal index set for Z is [1:100,1:25], all accesses are local and
no communication is required.

In procedure F1$row, the local iteration set [1:25,1:100]
yields the accesses [6:30,1:100]. Subtracting the local in-
dex set produces the nonlocal index set [26:30,1:100]. The
compiler determines that communication does not need to

{* Interprocedural code generation phase *}
for each procedure P do (in reverse topological order)
for each rhs reference V in P do
compare with lhs to determine type of communication
if communication is needed then
use dependence information to calculate commlevel
build RSD representing data to be communicated
insert RSD at loop at commlevel if local
endif
endfor
for each call site in P do
insert RSDs from call at commlevel if local to P
endfor
for each loop in P do
merge RSDs at loop if no precision is lost
aggregate RSDs for messages to the same processor
endfor
instantiate communication for RSDs at local loops
collect remaining RSDs for callers
endfor

Figure 11: Communication Analysis and Optimization

generated locally because Z(k + 5,1) has no true depen-
dences carried by the local k loop. Instead, it computes
the nonlocal index set [26:30,i] for Z and saves it for use
when compiling the caller.

When compiling P1, the Fortran D compiler translates
the nonlocal index set for Z into a reference to X, the
actual parameter for the call to procedure F1$row at 5.
Interprocedural dependence analysis based on RSDs shows
that it has no true dependence carried on the i loop either.
The compiler thus vectorizes the message outside the i loop,
resulting in the nonlocal index set [26:30,1:100]. Guarded
messages are generated to communicate this data between
Processors.

5.5 Optimization vs. Language Extensions

An important point demonstrated in the previous sections
is how delayed instantiation of the computation partition
and communication is key to interprocedural optimization.
For instance, consider the code generated for Figure 4 if
the compiler cannot delay instantiation across procedure
boundaries, but must immediately instantiate both the
computation and communication partition. For simplic-
ity, again assume that procedure F1 contains the k loop.
When compiling F1$row, the Fortran D compiler would
need to insert messages inside the procedure to communi-
cate nonlocal data accessed. This code would result in a
hundred messages for X[26:30,i], one for each invocation of
F1$row, rather than a single message for X[26:30,1:100] in
P1. In addition, the compiler would need to introduce ex-
plicit guards in F1$col to partition the computation, rather
than simply reducing the bounds of the j loop in P1. The
resulting program, shown in Figure 12, is much less efficient
than the code in Figure 10.

This example also points out limitations for language ex-
tensions designed to avoid interprocedural analysis. Lan-
guage features such as interface blocks [32] require the user
to specify information at procedure boundaries. These fea-
tures impose additional burdens on the programmer, but
can reduce or eliminate the need for interprocedural anal-
ysis. However, current language extensions are insufficient
for interprocedural optimizations. This may significantly
impact performance for certain computations, as we show
in Section 9.



PROGRAM P1
REAL X(30,100), Y(100,25)
do i = 1,100
S1 call Fi$row(X,i)
enddo
do j = 1,100
Sa call Fi1$col(Y,j)
enddo
end
SUBROUTINE Fi$row(Z,i)
REAL Z(30,100)
my$p = myproc() {* 0...3 =}
if (my$p .GT. 0) send X(1:5,i) to my$p-1
if (my$p .LT. 3) recv X(26:30,i) from my$p+1
ub$1l = min((my$p+1)*25,99)-(my$p*25)
do k = 1,ub$1
Ss3 Z(k,i) = F(Z(k+5,i))
enddo
end

SUBROUTINE Fi$col(Z,i)
REAL Z(100,25)
if ((i .GT. 0) .AND. (i .LT. 25)) then
do k = 1,95
Sy Z(k,i) = F(Z(k+5,i))
enddo
endif
end

Figure 12: Program with Immediate Instantiation

5.6 Overlap Calculation

The Fortran D compiler uses overlaps and buffers to store
nonlocal data fetched from other processors. The number
and sizes of temporary buffers required may be propagated
up the call graph during code generation as each procedure
is compiled. At the top level, the total number and size
of buffers is known and can be allocated. Calculating the
overlap regions needed for each array is more difficult. The
problem is that multidimensional arrays must be declared
to have consistent sizes in all but the last dimension, or
else inadvertent array reshaping will result. Since using
overlaps changes the size of array dimensions, the size of an
overlap region must be the same across all procedures. This
restriction prevents the use of any single-pass algorithms.

A simple algorithm can compile all procedures and
record overlaps used, then perform a second pass over pro-
cedures in order to make overlap declarations uniform. To
eliminate a second pass over the program, the Fortran D
compiler tries to estimate the number and sizes of overlaps
by storing constant offsets that appear in array variables
subscripts during local analysis. These offsets are propa-
gated in the interprocedural analysis phase to estimate the
maximal overlaps needed for each array. Code generation
then determines what overlaps are actually needed. The es-
timate may be updated incrementally if it has not been used
in previously compiled procedures. Otherwise the compiler
may choose to either utilize buffers or go back and modify
array declarations in those procedures. The algorithm for
calculating overlaps is described in Figure 13.

Overlap Example. For instance, the overlaps required
for X and Y in Figure 10 are calculated as follows. In
the local analysis phase, the reference Z(k + 5,1) results
in the overlap offset Z({+5},0). Interprocedural propaga-
tion of overlap offsets translates these offsets for the formal
parameter Z to the actual parameters X and Y, discover-
ing that this is the maximum offset for both arrays. Using
the results of reaching decomposition analysis, the compiler
determines that the first dimension of X and the second di-
mension of Y are distributed. The overlap offset ({+5},0)
yields for X the estimated overlap region [26:30,100]. No

{* Local analysis phase *}
for each procedure P do
for each array reference R to variable V do
mark overlap offset in each dimension
endfor
endfor
{* Interprocedural propagation phase *}
calculate reaching decompositions
for each procedure P do (in reverse topological order)
for each array variable V in P do
merge local overlap offsets and those from calls
propagate overlap offset to callers
endfor
endfor
propagate resulting overlap offset estimates down ACG
{* Interprocedural code generation phase *}
for each procedure P do (in reverse topological order)
for each array variable V in P do
determine actual overlap needed for V'
if actual overlap is greater than estimated then
use buffer instead, or modify previous procedures
endif
mark overlap estimate as used by P
endfor
instantiate local overlaps
collect actual overlap offsets for callers
endfor

Figure 13: Overlap Calculation Algorithm

PROGRAM P1 SUBROUTINE F1(X,Xlo,Xhi)
REAL X(30) REAL X(Xlo:Xhi)
call F1(X,1,30) do i =1,25
end X(1) = F(X(i+5))
enddo
end

Figure 14: Parameterized Overlaps

overlap is needed for Y since the offset in the distributed
dimension is zero. During code generation these overlaps
are discovered to be both necessary and sufficient.

Overlap Alternatives. The overlap estimation algo-
rithm is not very precise, but unfortunately is hard to im-
prove without significantly more effort during local analy-
sis. Empirical results will be needed to establish its accu-
racy in practice. The difficulty posed by overlaps may mo-
tivate other storage methods altogether. When analysis is
known to be imprecise, the Fortran D compiler may choose
to store nonlocal data in buffers instead of overlaps. Using
buffers requires additional work by the compiler to separate
loop iterations accessing nonlocal data, but this is necessary
in any case to perform iteration reordering, a communica-
tion optimization designed to overlap communication with
computation [23]. If the overlap region is noncontiguous,
using buffers also has the advantage of eliminating the need
to unpack nonlocal data.

Alternatively, the Fortran D compiler can rely on For-
tran’s ability to specify array dimensions at run time. By
adding additional arguments to a procedure, the compiler
can produce parameterized overlaps for array parameters.
Since the extent of all overlaps are known after compiling
the main program, they may simply be specified as compile-
time constants and passed as arguments to procedures. For
instance, Figure 14 shows how parameterized overlaps may
be generated for the program in Figure 1. Unfortunately
only overlaps for array formal parameters may be param-



eterized. Overlaps for global arrays found in Fortran com-
mon blocks must be determined statically at compile time
using the algorithm previously described.

6 Optimizing Dynamic Data Decomposition

As stated previously, users can dynamically change data
decompositions in Fortran D. This feature is desirable be-
cause phases of a computation may require different data
decompositions to reduce data movement or load imbal-
ance. Fortran D assumes the existence of a collection of
library routines that can be invoked to remap arrays for
different data decompositions. It is the task of the com-
piler to determine where calls to these mapping routines
must be inserted to map affected arrays when executable
ALIGN and DISTRIBUTE statements are encountered.

We show that straightforward placement of mapping rou-
tines may produce highly inefficient code. In comparison,
an interprocedural approach can yield significant improve-
ments. Additional language support is insufficient, because
optimization must be performed across procedure bound-
aries. As with communication and partitioning optimiza-
tions, the key to enabling interprocedural optimization is
delayed instantiation of dynamic data decomposition. In
other words, the Fortran D compiler waits to insert data
mapping routines in the callers rather than in the callee.

6.1 Live Decompositions

Because the cost of remapping data can be very high, we
would like to recognize and eliminate unnecessary remap-
ping where possible. For instance, consider the calls to
procedure F1 at S; and S; in Figure 15. Array X is origi-
nally distributed block-wise, but is redistributed cyclically
in F1. If no optimizations are performed, the compiler in-
serts mapping routines before each call to F1, as displayed
in Figure 16a. This code causes array X to be mapped
four times for each iteration of loop k. The same problems
result if delayed instantiation is not used, because calls to
mapping routines are inserted in F1 instead of P1. Analy-
sis can show that the mapping routine for X at Ss is dead,
because X is not referenced before it is remapped at S¢. A
more efficient version of the program would map array X
just twice, before and after the calls to F1, as in Figure 16b.

We pose a new flow-sensitive data-flow problem to detect
and eliminate such redundant mappings. We define live de-
compositions to be the set of data decomposition specifica-
tions that may reach some array reference aligned with the
decomposition. The Fortran D compiler treats each ALIGN
or DISTRIBUTE statement as a number of definitions, one
for each array affected by the statement. A reference to
one of these arrays constitutes a use of the definition for
that array. With this model, the Fortran D compiler can
calculate live decompositions in the same manner as live
variables [1]. Array mapping calls that are not live may be
eliminated.

One approach would be to calculate live decompositions
during interprocedural propagation. During local analysis,
we would collect summary information representing con-
trol flow and the placement of data decomposition spec-
ifications. We would then need to compute the solution
on the supergraph formed by combining local control flow
graphs with the call graph, taking care to avoid paths that
do not correspond to possible execution sequences [27]. To
avoid this complexity, we choose instead to compute live
decompositions during code generation, when control flow
information is available.

Live Decompositions Calculation. Interprocedural
live variable analysis has been proven Co-NP-complete in

SUBROUTINE F1(X)
REAL X(100)
DISTRIBUTE X(CYCLIC)

PROGRAM P1
REAL X(100)
DISTRIBUTE X (BLOCK)

do k = 1,T o= XL
S call F1(X) end
Sa call F1(X) SUBROUTINE F2(X)
enddo REAL X(100)
call F2(X) Sz X(...) =...
end end

Figure 15: Dynamic Data Decomposition Example

the presence of aliasing [27]. Even without aliasing, inter-
procedural live variable analysis can be expensive since it
requires bidirectional propagation, causing a procedure to
be analyzed multiple times. We rely on two restrictions to
make the live decompositions problem tractable for the For-
tran D compiler. First, the scope of dynamic data decom-
position is limited to the current procedure and its descen-
dants. Second, Fortran D disallows dynamic data decom-
position for aliased variables, as discussed in Section 6.4.

By inserting mapping routines in the callers rather than
in the callee, we can solve live decompositions in one pass
by compiling in reverse topological order during the inter-
procedural code generation phase. The key insight is that
due to Fortran D scoping rules, we know all local dynamic
data decompositions are dead at procedure exit. To de-
termine whether they are live within a procedure, we only
need information about the procedure’s descendants. The
compiler cannot determine locally whether calls to map-
ping routines to restore inherited data decompositions are
live, but these mapping calls may be collected and passed
to the callers. By delaying their instantiation, we eliminate
the need for information about the procedure’s callers.

The basic live decompositions algorithm works as follows.
We calculate during code generation the following summary
sets for each procedure:

¢ DEcoMPUSE(P) = { X | X € APPEAR(P) and may
use some decomposition reaching P }

e DEcoMPKILL(P) = { X | X € APPEAR(P) and must
be dynamically remapped when P is invoked }

e DEcoMPBEFORE(P) = { (D, X)|X € APPEAR(P) and
must be mapped to decomposition D before P }

¢ DEcOMPAFTER(P) = { (D, X)| X € APPEAR(P) and
must be mapped to decomposition D after P

DecoMpUsE and DECOMPKILL are calculated through lo-
cal data-flow analysis. They provide interprocedural in-
formation for computing live decompositions. DECOMPBE-
FORE consists of all variables X that need to be mapped be-
fore invoking P. DECOMPAFTER consists of all variables X
that are mapped in P to some new decomposition, and thus
must be remapped when returning from P. Together DE-
coMPBEFORE and DECOMPAFTER represent dynamic data
decompositions from P whose instantiation have been de-
layed.

We calculate live decompositions by simply propagating
uses backwards through the local control flow graph for
each procedure [1]. A data decomposition statement is live
with respect to a variable X only if there is some path
between it and a reference to X that is not killed by an-
other decomposition statement or by DECOMPKILL of an
intervening call. Summary sets describe the effect of each
procedure call encountered. Formal parameters of P in DE-
comp USE and DECOMPKILL are translated and treated as



{* No Optimization =} {* Live Decompositions *}

do k =1,T dok =1,T
Sy map-block-to-cyclic(X) Ss  map-block-to-cyclic(X)
call F1(X) call F1(X)
Ss map-cyclic-to-block(X) call F1(X)
Se¢ map-block-to-cyclic(X) S9 map-cyclic-to-block(X)
call F1(X) enddo
S7 map-cyclic-to-block(X) call F2(X)
enddo
call F2(X)
(16a) (16b)

{* Loop-invariant Decomps *} {* Array Kills =}
map-block-to-cyclic(X) map-block-to-cyclic(X)

do k =1,T dok =1,T
call F1(X) call F1(X)
call F1(X) call F1(X)
enddo enddo
map-cyclic-to-block(X) mark-as-block(X)
call F2(X) call F2(X)
(16¢) (16d)

Figure 16: Dynamic Data Decomposition Optimizations

references to actual parameters. DECOMPBEFORE and DE-
COMPAFTER are translated and treated as decompositions
affecting variables in P. Decompositions that are dead may
be removed. In addition, we can coalesce live decomposi-
tions if they are identical and their live ranges overlap. All
live decompositions except the first may then be eliminated.
The live decomposition algorithm is presented in Figure 17.

Live Decompositions Example. Consider how live de-
compositions are calculated in Figure 15. The Fortran D
compiler proceeds in reverse topological order, so we be-
gin with either F1 or F2. For procedure F1, local live and
reaching decomposition analysis shows that no incoming
decompositions are used. The local redistribution of X to
cyclic kills the incoming decomposition for X, and requires
that X be distributed to cyclic before F1 and back to block
after F1. Since there are no local data decompositions for
F2, the incoming decomposition is used for the reference to
X. No decompositions are killed in F2 or needed before or
after F2. The resulting information is produced:

DecompUsg(F1) = @
DECOMPK]LL%FI{ = { X}
DeEcomMPBEFORE(F1) = {(cyclic), X) }
DecoMPAFTER(F1) = { ((block),X) }
DecompPUsg(F2) = { X}
DecomPKL(F2) = 0
DEcoMPBEFORE(F2) = 0
DEcOMPAFTER(F2) = 0

When we compile the main program body P1, we trans-
late all summary sets in terms of local variables. The DE-
coMPBEFORE and DECOMPAFTER sets correspond to po-
tential calls to mapping routines, equivalent to the program
shown in Figure 16a. Local live decomposition analysis dis-
covers that there are no uses of the block decomposition
for X at Ss, allowing it to be eliminated. Local reaching
decomposition analysis can then determine that the cyclic
decompositions for X at S; and Se are identical. They may
then be coalesced, eliminating S to achieve the program
shown in Figure 16b.

6.2 Loop-invariant Decompositions

In addition to eliminating non-live decompositions and coa-
lescing identical live decompositions, we can also hoist loop-

{* Interprocedural code generation phase *}
for each procedure P do (in reverse topological order)
for each call site in P do
Translate DECOMP AFTER, DECOMP BEFORE,
DecoMpUsE, DECOMPKILL to actual parameters
endfor
calculate local live decompositions
eliminate dead decompositions
coalesce identical decompositions
for each variable X € APPEAR(P) do
if original decomposition may reach X then
add X to DEcoMPUSE
if X must be assigned a decomposition then
add X to DEcomMPKILL
if X is assigned a decomposition D before
it uses its inherited decomposition then
add (D, X) to DECOMPBEFORE
if X is locally assigned a decomposition D that
differs from the inherited decomposition D’ then
add (D', X) to DECOMPAFTER
endfor
endfor

Figure 17: Live Decompositions Algorithm

invariant decompositions out of loops to reduce remapping.
For instance, consider the mapping routines remaining in
Figure 16b. If we can hoist the mapping routines, each
remapping then occurs once rather than on each iteration
of the loop. There are two situations where a decomposi-
tion that is live and loop-invariant with respect to variable
X may be hoisted out of a loop. They vary slightly from
the requirements for loop-invariant code motion [1]:

o If the decomposition is not used within the loop for X,
it may be moved after the loop. We verify this condl—
tion by comparing LOCALREACHING and DEcOMP USE
for all statements in the loop.

¢ If the decomposition is the only one used within the
loop for X, it may be moved prior to the loop. We
verify this condition by checking that no other decom-
positions reach any occurrences of X.

In the program in Figure 16b, the mapping routine at So
is not used within the loop and can be moved after the
loop. Now the mapping routine at Sa is the only decompo-
sition reaching all references to X in the loop, so it can be
hoisted to a point preceding the loop, producing the desired
program shown in Figure 16c.

6.3 Array Kills

Array kill analysis may be used to determine when the val-
ues of an array are live. An array whose values are not live
does not need to be remapped by physically copying values
between processors. Instead, it may be remapped in place
by simply marking it as possessing the new decomposition.
For instance, suppose that array kill analysis determines
that statement S3 in Figure 15 kills all values in array X.
We can then eliminate the cyclic-to-block mapping routine
preceding the call to F2, notxfymg the run-time system in-
stead if necessary. This optimization results in the program
shown in Figure 16d.

6.4 Aliasing
Two variables X and Y are aliased at some point in the

program if X and Y may refer to the same memory location
[3). In Fortran 77, aliases arise through parameter passing,



either between reference parameters of a procedure if the
same memory location is passed to both formals, or between
a global and formal to which it is passed.

Aliasing affects dynamic data decomposition because a
variable may be remapped indirectly through one of its
aliases. Unfortunately, precise alias analysis is computa-
tionally intractable [27]. As a result, the compiler cannot
efficiently prove that a decomposition that has been applied
to a variable holds for a possible alias. The compiler would
have to evaluate reaching decompositions for a variable and
all of its potential aliases, reverting to run-time resolution
if multiple decompositions reach an access to the variable.

To eliminate the efficiency problems and avoid certain
confusing program semantics associated with aliasing, For-
tran D requires that a variable and its alias cannot have
different reaching decompositions that are live at the same
point in the program. This requirement is similar to the
specification in the Fortran 77 standard that makes it ille-
gal to write to aliased variables. As a result, the compiler
can ignore aliasing when analyzing decompositions since it
is illegal to construct a program where remapping a vari-
able’s alias changes the decomposition reaching an access
to the variable.

Since it is possible to construct a syntactically correct
but illegal program, the compiler should warn the program-
mer of situations where aliasing might cause undefined be-
havior. We can test the reaching decompositions for each
possible alias of a variable at a decomposition statement,
warning the programmer if the alias has a different decom-
position that is live. Only a warning is produced since the
imprecision of alias and live analysis may signal problems
in a legal program.

7 Interprocedural Compilation Algorithm

The full interprocedural Fortran D compilation algorithm
is shown in Figure 18. It integrates Fortran D compilation
techniques with the interprocedural analysis and optimiza-
tion framework of ParaScope.

8 Recompilation Analysis

The Fortran D compiler will follow the ParaScope approach
for limiting recompilation in the presence of interprocedural
optimization [5, 13]. Recompilation analysis is used to limit
recompilation of a program following changes, an important
component to maintaining the advantages of separate com-
pilation. Briefly stated, modules only need to be recompiled
if they have been edited or if they have been optimized us-
ing interprocedural information that is no longer valid.

To determine whether recompilation is needed, the com-
piler records the interprocedural information used by a
compilation. In subsequent compilations, it compares inter-
procedural information used in the previous compilation
with what has been computed in the current compilation.
The Fortran D compiler needs to record scalar data-flow
analysis results and array side-effects, as well as reaching
and live decompositions, overlap offsets, local iteration sets,
and nonlocal index sets. The complete list of problems is
shown in Table 1 in Section 5.

Recompilation mimics the interprocedural compilation
algorithm presented in Figure 18. Local analysis is applied
to edited procedures, then interprocedural propagation is
performed. Following an initial test to discover which mod-
ules have been edited since the previous compilation, we
apply recompilation tests to interprocedural data-flow in-
formation for each module and its call sites. The compiler
must also ensure that cloning applied to expose reaching
decompositions is still valid; it may decide to form more

{* Local analysis phase *}
for each procedure P do
calculate information for: augmented call graph,
scalar and array side effects, symbolics,
reaching decompositions, overlap offsets
endfor
{* Interprocedural propagation phase x}
construct call graph, augment with loop information,
calculate aliasing, symbolics, scalar and array
side effects, reaching decompositions, cloning,
overlap offsets
{* Interprocedural code generation phase x}
for each procedure P do (in reverse topological order)
translate information from call sites in P
update local loop and subscript information
perform scalar data-flow analysis, symbolic analysis,
dependence testing, variable classification
partition data and computation
analyze and optimize communication
calculate number, size, and type of overlaps & buffers
calculate live, loop-invariant decompositions
generate code, collect information for callers
endfor

Figure 18: Interprocedural Compilation of Fortran D

clones at this time. As soon as one recompilation test fails,
the module is marked as needing recompilation.

In the bottom-up pass over the program, if the current
node has not been marked for recompilation, the compiler
applies recompilation tests on the iteration sets, nonlocal
index sets and RSDs at each call site. Depending on the re-
sults, some procedures are marked for recompilation. If the
current procedures has been marked, it is compiled in the
usual manner, producing new interprocedural information
to be tested.

8.1 Recompilation Tests

Recompilation tests ensure that interprocedural informa-
tion used to compile a procedure conservatively approxi-
mates the current information. A simple test just verifies
that the old information is equal to the new information.
However, safe tests that generate less recompilation are pos-
sible if we consider how the information will be used. Im-
proved recompilation tests for many scalar data-flow prob-
lems are described by Burke and Torczon [5]. To give the
flavor of the recompilation tests, we describe the test for
reaching decompositions. Let oldP be the representation
of P from the previous compilation. The procedures need-
ing recompilation are those for which the following is true:

Filter(REACHING(0ld P), APPEAR(P)) #
Filter(REACHING(P),APPEAR(P)

Filter and APPEAR are described in Section 5.2. They are
used to determine whether differences in reaching decom-
positions actually affect optimization. The test thus marks
a procedure P for recompilation only if the decomposi-
tion reaching a variable appearing in P or its descendants
changes.

Recompilation tests for other Fortran D interprocedural
data-flow problems are simpler. Callers must be recom-
piled if the local iteration or nonlocal index sets of a proce-
dure have changed, since the callers’ guards, loop bounds,
or communication may be affected. Similarly, modifica-
tions to live or loop-invariant decomposition information
requires recompilation of the caller. Changes in array sec-
tion analysis may affect array kill information, requiring



recompilation if array remapping routines were affected in
the caller. If overlap offsets for a procedure change but do
not exceed the original assigned overlaps, recompilation is
not necessary. However, if the new overlap offset is greater
than the overlap allocated during code generation, every
procedure referencing the array will need to be recompiled
to reflect the new overlap offset, not just the callers.

A little more work is needed to calculate the extent of
recompilation in the presence of cloning based on reaching
decompositions [5, 17). The compiler maintains a map-
ping from procedures in the call graph to the list of com-
piled clones for that procedure. For a procedure that has
been cloned, the recompilation test can be applied to all
the clones in order to find a match for the procedure. It
must also pass recompilation tests for other interprocedural
problems.

9 Empirical Results
9.1 Compilation Strategies for DGEFA

This section demonstrates the effectiveness of inter-
procedural optimization using the routine DGEFA from Lin-
pack, a linear algebra library [14). DGEFA is also a major
component in the Linpack Benchmark Program. DGEFA
uses Gaussian elimination with partial pivoting to factor a
double-precision floating-point array. A simplified version
is shown in Figure 19. DGEFA relies on three other Linpack
routines: IDAMAX, DSCAL, and DAXPY. Since arrays are
stored in column-major order in Fortran, DGEFA performs
operations column-wise to provide data locality.

To reduce both communication and load imbalance, we
choose a column-wise cyclic distribution of array A. We fo-
cus on DAXPY because it performs the majority of the com-
putation. Because the techniques discussed in this paper
have not yet been implemented in the Fortran D compiler,
we applied them by hand, generating three versions of the
program. In the run-time resolution version shown in Fig-
ure 20, lack of decomposition information implies that pro-
cessors must determine ownership and communication for
individual array elements. In the interprocedural analysis
program displayed in Figure 21, we assume that reaching
decomposition is provided for DAXPY through analysis or
language extensions. This information allows us to vector-
ize messages inside the procedure.

Finally, in the version created by interprocedural opti-
mization, interprocedural array section analysis can deter-
mine that DAXPY reads a column of A starting at A(k+1,k)
and defines a column of A starting at A(k +1,5). Depen-
dence analysis discovers that the two columns never inter-
sect, since k < j < n, proving that no true dependences are
carried by the j loop. Message vectorization can then insert
communication outside the j loop altogether, avoiding re-
dundant communication. In addition, we utilize broadcast
rather than send, since the same column is required by all
processors. The resulting program is shown in Figure 22.

9.2 Measured Execution Times

For our measurements we used a 32 node Intel iPSC/860
with 8 Meg of memory per node. Each program was com-
piled under -O4 using Release 2.0 of if77, the iPSC/860
compiler. We timed the program for several problem sizes
and numbers of processors using dclock(). The results are
shown in Table 2. Execution time is presented in seconds.
We define speedup in the table as follows, given parallel
execution time Tpar and sequential execution time Tseq. If
Tpar < Tseq, speedup is Tseq/Tpar. Otherwise speedup is
calculated as —Tpar/Tseq- In some cases programs using
run-time resolution sent more messages than could be han-

{* Gaussian Elimination with Partial Pivoting x}
SUBROUTINE DGEFA(n,a,IPVT)
INTEGER n,IPVT(n),j,k,1
DOUBLE PRECISION A(n,n), t
do k =1, n-1
1 = IDAMAX(n-k+1,A(k,k),1) + k - 1
IPVT(k) = 1
if (1 .EE. k) then
t = A(1,k)
A(1,k) = A(k,k)
A(k,k) = ¢t
endif
t = -1.0d0/A(k,k)
call DSCAL(n-k,t,A(k+1,k))
do j =k+1i, n
t = A(1,j)
if (1 .NE. k) then
A(1,j) = A(k,j)
Ak,j) = ¢t
endif
call DAXPY(n-k,t,A(k+1,k),A(k+1,5))
enddo
enddo
IPVT(n) = n
end
{* Find Maximum Element in Vector =}
INTEGER FUNCTIOE IDAMAX(n,DX)
DOUBLE PRECISION DX(n),dmax
INTEGER i,ix,n
dmax = DABS(DX(1))
do i =2,n
if (DABS(DX(i)) .GT. dmax) then
idamax = i
dmax = DABS(DX(i))
endif
enddo
end
{* Scale a Vector by a Constant =}
SUBROUTINE DSCAL(n,da,DX)
DOUBLE PRECISIOE da,DX(n)
INTEGER i,n
doi=1,n
DX(i) = dasDX(i)
enddo
end

{* Constant times Vector plus Vector *}
SUBROUTINE DAXPY(n,da,DX,DY)

DOUBLE PRECISION DX(n),DY(n),da

INTEGER i,n

doi=1,n

DY(i) = DY(i) + da*DX(i)

enddo

end

Figure 19: Simplified Sequential Version of DGEFA

dled by the iPSC/860, causing the program to deadlock.
These programs are marked with “”.

We make several observations. First, run-time resolution
produces code that is over a hundred times slower than
the sequential program. Its performance is not affected by
problem size, and degrades as the number of processors in-
creases. Even with interprocedural analysis, the code is
five to ten times more expensive than the sequential pro-
gram and worsens as the number of processors increases.
Unlike run-time resolution, its performance improves for
larger problem sizes. However, for an 800 x 800 array,
approximately the largest double-precision array possible
on a single processor, the resulting code is still five times
slower than the equivalent sequential program. Only inter-
procedural optimization produces positive speedups. Af-
ter interprocedural optimization we observe a speedup of 8
on 32 processors. Further speedup is limited by the small
problem sizes.



Run-time Interprocedural| Interprocedural
SU:!;UIiJ'l;Ilf 2AXP Y(n,da,DX,DY) Problem Resolution Analysis Op‘;?mization
if (own(DX(i)) .AND. .HOT. own(DY(i))) then Size | P[ time | speedup| time | speedup | time | specdup
send DX(i) to owner(DY(i))) 1 sequential time = 0.84 seconds
endif . 200 2 125 -149 8.7 -10.4 .57 1.47
if (own(D.Y(i)) .AND. .HOT. .own(DX(l))) then X 4 104 —-124 78 -9.3 45 1.87
ey DX(1) from owner(DX(1))) 200 |8| 129 | —154 | 9.0 | -107 | 43 | 1.5
if (own(DY(i))) then 16| 144 -171 9.6 -11.4 46 1.83
DY(i) = DY(i) + da*DX(i) 32| 152 | -181 9.4 -11.2 .52 1.62
endif 1 sequential time = 7.16 seconds
:nddo 400 2 1050 | —147 53 -7.4 4.0 1.79
en . . . x |4| 841 | -117| 54 | -75 | 26| 275
Figure 20: DGEFA: Run-time Resolution 400 |8l| 1047 -146 | 63 -88 2.0 3.58
SUBROUTINE DAXPY(n,da,DX,DY) 16| 1177 -164 | 67 w54 18 398
n,da,DX, - -
if (own(DX(1)) .AND. .NOT. own(DY(1))) then 321 1256) —178 .?8. ___9'5 1.9 3.7
send DX(1:n) to owner(DY(1))) 1 sequential time = 64.5 seconds
endif 800 |2 [ B394 =130 | 358 | —56 | 32.8] 1.97
if (own(DY(1)) .AND. .HOT. own(DX(1))) then X 4 * * 400 -6.2 18.4 3.51
recv DX(1:n) from owner(DX(1))) 800 8 * * 467 -7.2 11.7 5.51
endif 16 * * 499 -7.7 9.0 7.17
if (own(DY(1))) then 32 * * 511 -7.9 8.1 7.96

do i =1,n
DY(i) = DY(i) + da#DX(i)
enddo
endif
end

Figure 21: DGEFA: Interprocedural Analysis

SUBROUTINE DGEFA(n,a,IPVT)
do k =1, n-1
if (own(A(k+1,k))) then
broadcast A(k+1:n,k)
else
recv A(k+1:n,k) from owner(A(k+1,k))
endif
do j=k+i, n
call DAXPY(n-k,t,A(k+1,k),A(k+1,j))
enddo
enddo
end
SUBROUTINE DAXPY(n,da,DX,DY)
doi=1,n
DY(i) = DY(i) + da=DX(i)
enddo
end

Figure 22: DGEFA: Interprocedural Optimization

Our empirical results show that interprocedural compi-
lation can improve performance by several orders of magni-
+ - 'a for an important application. We do not expect inter-

2dural optimization to be required in all cases, but for
- computations it can make a significant difference.

Related Work

T e Fortran D compiler is a second-generation distributed-
memory compiler that integrates and extends previ-
ous analysis and optimization techniques. It is simi-
lar to ASPAR [24], BOOSTER (28], Callahan-Kennedy (7],
MIMDIzER [21], and SUPERB in that the compilation pro-
cess is based on a decomposition of the data in the program.

Few other compilation systems have discussed inter-
procedural issues, especially interprocedural optimization.
The CM FORTRAN compiler utilizes user-defined interface
blocks to specify a data partition for each procedure [32].
Array parameters are then copied to buffers of the ex-
pected form at run-time if needed, eliminating the need
for interprocedural analysis. C* [30] and DATAPARALLEL
C [19] specify parallelism through the use of parallel func-
tions. Arguments to procedures in ID NOUVEAU [29] and
KALI [25] are labeled with their expected incoming data

Table 2: Performance of DGEFA for Intel iPSC/860

partition. The user must ensure that the procedure is called
only with the appropriately decomposed arguments. Dis-
tributed array parameters to composite proceduresin Dmo
cause their values to be communicated to the appropriate
processors [31]. The user labels parameters as IN or OUT to
indicate whether their values are used and/or defined.

SUPERB performs interprocedural data-flow analysis
of parameter passing to classify each formal parame-
ter of a procedure as unpartitioned or having a stan-
dard/nonstandard partition [16, 33]. A clone is produced
for each possible combination of classification of the proce-
dure parameters. For local compilation, SUPERB modifies
procedures so that arrays are always accessed according to
their true number of dimensions, inserting additional pa-
rameters where necessary for newly created subscripts.

VIENNA FORTRAN [9] provides data distribution specifi-
cations similar to Fortran D. Dynamic data decomposition
is permitted; arrays are copied at procedure boundaries
if redistribution takes place. VIENNA FORTRAN allows the
user to specify additional attributes for each distributed ar-
ray [8]. Restore forces an array to be restored to its decom-
position at procedure entry. Notransfer causes remapping
to be performed logically, rather than actually copying the
values in the array. Nocopy guarantees that its formal and
actual parameters have the same data decomposition. No
copies take place, but an error results if different decompo-
sitions are encountered. We attempt to achieve the same
benefits in the Fortran D compiler through interprocedural
analysis and optimization.

11 Conclusions

We believe that data-placement languages such as For-
tran D are required to make large-scale parallel ma-
chines useful for scientific programmers. This paper shows
that interprocedural compilation is needed to fully ex-
ploit the benefits of data-placement languages. Efficient
interprocedural analysis, optimization, and code genera-
tion techniques can be designed that require only one pass
over the program. Delaying instantiation of the computa-
tion partition, communication, and dynamic data decom-
position is key to improving interprocedural optimization.
Recompilation analysis preserves the benefits of separate
compilation. We have completed reaching decompositions




and are implementing the other interprocedural optimiza-
tions in the prototype Fortran D compiler. Once finished,
we intend to empirically measure the effectiveness of inter-
procedural analysis and optimization for real scientific pro-
grams.
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