Evaluation of Compiler Optimization
for Fortran D on MIMD
Distributed-Memory Machines

Seema Hiranandani
Ken Kennedy
Chau-Wen Tseng

CRPC-TR91196
November, 1991

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Revised April, 1992. To appear in Proceedings of the
1992 International Conference on Supercomputing,
Washington, DC, July 1992.

Evaluation of Compiler Optimizations for Fortran D
on MIMD Distributed-Memory Machines

Seema Hiranandani
seema@rice.edu

Ken Kennedy

ken@rice.edu

Chau-Wen Tseng

tseng@rice.edu

Department of Computer Science
Rice University
P.O. Bozx 1892
Houston, TX 77251-1892
Tel: (713) 527-6077

Abstract

The Fortran D compiler uses data decomposition specifica-
tions to automatically translate Fortran programs for exe-
cution on MIMD distributed-memory machines. This pa-
per introduces and classifies a number of advanced opti-
mizations needed to achieve acceptable performance; they
are analyzed and empirically evaluated for stencil computa-
tions. Profitability formulas are derived for each optimiza-
tion. Results show that exploiting parallelism for pipelined
computations, reductions, and scans is vital. Message vec-
torization, collective communication, and efficient coarse-
grain pipelining also significantly affect performance.

1 Introduction

Parallel computing represents the only plausible way to con-
tinue to increase the computational power available to com-
putational scientists and engineers. However, parallel com-
puters are not likely to be widely successful until they are
also easy to program. MIMD distributed-memory machines
such as the Intel iPSC/860 present the most difficult pro-
gramming model, since users must write message-passing
programs that deal with separate address spaces, communi-
cation, and synchronization. Even worse, the resulting par-
allel programs are extremely machine-specific. Scientists are
thus discouraged from utilizing these machines because they
risk losing their investment whenever the program changes
or a new architecture arrives.

To solve this problem, we have developed Fortran D, a
version of Fortran enhanced with data decomposition spec-
ifications. We consider it to be one of the first of a new
generation of data-placement programming languages. Its
design was inspired by the observation that modern high-
performance architectures demand that careful attention be
paid to data placement by both the programmer and com-
piler. As one measure of its relevance, we note that features
from Fortran D are being adopted by Cray Research, DEC,
IBM, and Thinking Machines for programming their newest
generation of parallel machines. Fortran D has also con-
tributed to the development of High Performance Fortran
(HPF), a new proposed Fortran standard.

Our goal with Fortran D is to provide a simple yet ef-
ficient machine-independent parallel programming model.
By shifting much of the burden of machine-dependent opti-
mization to the compiler, we allow the programmer to write

data-parallel programs that can be compiled and executed
with good performance on many different architectures. To
evaluate the Fortran D programming model, we are imple-
menting a prototype compiler in the context of the Para-
Scope programming environment [8].

Previous work described algorithms for partitioning data
and computation in the Fortran D compiler, as well as its
optimization and validation strategy [21]. Internal represen-
tations, program analysis, message vectorization, pipelining,
and code generation algorithms were presented elsewhere
[20]. The principal contribution of this paper is to intro-
duce, classify, and evaluate (both empirically and analyti-
cally) new and existing compiler optimizations in a unified
framework. The rest of this paper briefly reviews the For-
tran D language and compiler before presenting each opti-
mization, followed by empirical and analytical evaluations.
It concludes by discussing the scalability of compiler opti-
mizations, the overall optimization strategy, and a compar-
ison with related work.

2 Fortran D Language

Fortran D provides users with explicit control over data
partitioning using data alignment and distributionspecifica-
tions. The DECOMPOSITION statement specifies an abstract
problem or index domain. The ALIGN statement specifies
fine-grain parallelism, mapping each array element onto one
or more elements of the decomposition. This provides the
minimal requirement for reducing data movement for the
program given an unlimited number of processors. The
alignment of arrays to decompositions is determined by their
subscript expressions in the statement; perfect alignment re-
sults if no subscripts are used.

The DISTRIBUTE statement specifies coarse-grain paral-
lelism, grouping decomposition elements and mapping them
and aligned array elements to the finite resources of the
physical machine. Each dimension of the decomposition is
distributed in a block, cyclic, or block-cyclic manner; the
symbol “:” marks dimensions that are not distributed. Both
irregular and dynamic data decomposition are supported.
Some sample data alignment and distributions are shown
in Figure 1, the complete language is described in detail
elsewhere [12].

3 Fortran D Compiler

There are two major steps in compiling Fortran D for MIMD
distributed-memory machines. The first step is partition-
ing the data and computation across processors. The sec-
ond is introducing communication to maintain the seman-
tics of the program. A simple compilation technique known
as run-time resolution yields code that explicitly calculates
the ownership and communication for each reference at run
time [9, 32, 38], but resulting programs are likely to exe-
cute significantly slower than the original sequential code.

DECOMPOSITIOE D(N,N) REAL A(N,N)

él il D4
: p:2 P3| ; D)
ik P2

DISTRIBUTE D(:,BLOCK) DISTRIBUTE D(CYCLIC,:)

ALIGE A(I,J) with D(J-2,I+3)

Figure 1: Fortran D Data Decomposition Specifications

{* Run-time Resolution x}
REAL X(100)
my$p = myproc() {=0...3 =}
do i =1,96

{* Fortran D Program =}
REAL X(100)

PARAMETER (n$proc = 4)
DECOMPOSITIOR D(100)
ALIGE X WITH D
DISTRIBUTE D(BLOCK)

do i =1,95 endif
X(1) = X(i+5) if (my$p .eq. owner(X(i))) then
enddo recv(X(i#S% ,owner(X(i+5)))
X(i) = X(i+5)
endif
enddo

if (my$p .eq. owner(X(i+§))) then
send(X(i+5),owner(X(i)))

{* Compile-time Analysis & Optimization =}
REAL X(30)
my$p = myproc() {=0..3 =}
if (my$p .gt. 0) send(X(1:5),my$p-1)
if (my$p .1lt. 3) recv(X(26:30) ,my$p+1)
ub$1 = min((my$p+1)#25,95)-(my$p*25)
do i = 1,ub$1
X(i) = X(i+5)
enddo

Figure 2: Fortran D Compilation

Compile-time analysis and optimization performed in the
Fortran D compiler can generate much more efficient pro-
grams, as demonstrated in Figure 2. We present a brief
overview of the Fortran D compilation algorithm below. The
details are discussed elsewhere [20, 21]:

1) Analyze program The Fortran D compiler performs
scalar dataflow analysis, symbolic analysis, and dependence
testing to determine the type and level of all data depen-
dences [25].

2) Partition data The compiler analyzes Fortran D data
decomposition specifications to determine the decomposi-
tion of each array in a program. Alignment and distribution
statements are used to calculate the array section owned by
each processor.

3) Partition computation The compiler partitions com-
putation across processors using the “owner computes”
rule—where each processor only computes values of data
it owns [9, 32, 38]. The left-hand side (lhs) of each assign-
ment statement in a loop nest is used to calculate the set
of loop iterations that cause a processor to assign to local
data. This represents the work that must be performed by
the processor.

4) Analyze communication Once the work partition is
computed, it is used to calculate for each right-hand side
(rhs) reference to a distributed array the nonlocal data ac-
cessed by each processor. References that result in nonlocal
accesses are marked since they require communication to be
inserted.

5) Optimize communication The compiler examines
each marked nonlocal reference, using results of data de-
composition, symbolic and dependence analysis to deter-
mine the legality of optimizations to reduce communication
. .:ts. Regular section descriptors (RSDs) are built for the

“‘ons of data to be communicated. They compactly rep-

at rectangular array sections and their higher dimension
.. .uogs [18].

6) Manage storage The compiler collects the extent and
type of nonlocal data accesses represented by RSDs to cal-
culate the storage required for nonlocal data. For RSDs
representing array elements contiguous to the local array

section, the compiler reserves storage using overlaps created
by extending the local array bounds [15]. Otherwise tem-
porary buffers or hash tables are used for storing instances
of nonlocal data.

7) Generate code Finally, the Fortran D compiler uses
the results of previous analysis and optimization to gener-
ate the single-program, multiple-data (SPMD) program with
explicit message-passing that executes directly on the nodes
of the distributed-memory machine. Array and loop bounds
are reduced and guards are introduced to instantiate the
data and computation partitions. RSDs representing non-
local data accesses are used to generate buffer routines, send
and recv calls, and collective communication routines. The
compiler applies run-time resolution techniques to references
not analyzable at compile time.

4 Compiler Optimizations

The goal of the Fortran D compiler is to generate a parallel
program with low communication overhead and storage re-
quirements. We classify each Fortran D compiler optimiza-
tion by its ability to reduce communication startup costs,
hide message copy and transit times, exploit parallelism,
and reduce storage. Figure 3 lists Fortran D compiler opti-
mizations in each category.

In the following sections we describe each optimization
and provide motivating examples using a small selection
of scientific program kernels adapted from the Livermore
Kernels and finite-difference algorithms [30]. They contain
stencil computations and reductions, techniques commonly
used by scientific programmers to solve partial differential
equations (PDEs) (7, 13].

For clarity we ignore boundary conditions and use con-
stant loop bounds and machine size in the examples, though
this is not required by the optimizations. We have also
equalized sizes for two dimensional problems used in our
Livermore examples (e.g., nxn instead of 7xn data arrays).

4.1 Reducing Communication Overhead

Many compiler optimizations focus on reducing communi-
cation overhead. Computer architects usually characterize
communication by latency and bandwidth. For evaluating
compiler optimizations, we find it convenient to divide com-
munication overhead into three components:

—

. Reducing Communication Overhead
(a) Message Vectorization
(b) Message Coalescing
(c) Message Aggregation
(d) Collective Communication
. Hiding Communication Overhead
(a) Message Pipelining
(b) Vector Message Pipelining
(c) Iteration Reordering
(d) Nonblocking Messages
. Exploiting Parallelism
(a) Partitioning Computation
(b) Reductions and Scans
(c) Dynamic Data Decomposition
(d) Pipelining Computations

[&)

w

4. Reducing Storage
(a) Partitioning Data
(b) Message Blocking

Figure 3: Fortran D Compiler Optimizations

o Tsiare, the startup time to send & receive messages.

o Teopy(n), the time to copy a message of size n into &
out of the program address space.

® Tiransit(n), the transit time for a message of size n be-
tween processors.

We assume Tyeare is relatively fixed with respect to mes-
sage size, but that both Tcepy and Teransic grow with
n. Using this communication model we can cast la-
tency as Tseart + Tcopy(1) + Ttransie(1) and bandwidth as
n/(Tcopy(n) + Ttrnn.nil(n) - nran:it(l))-

We begin with optimizations to reduce Ts¢are, the startup
cost incurred to access nonlocal data. For most MIMD
distributed-memory machines, the cost to send the first byte
is significantly higher than the cost for additional bytes. For
instance, the Intel iPSC/860 requires approximately 95 usec
to send one byte versus .4 psec for each additional byte [6].
The following optimizations seek to reduce Tseare by com-
bining or eliminating messages.

Message vectorization Message vectorization uses the
results of data dependence analysis [1, 28] to combine ele-
ment messages into vectors. It first calculates commlievel,
the level of the deepest loop-carried true dependence or
loop enclosing a loop-independent true dependence. This
determines the outermost loop where element messages re-
sulting from the same array reference may be legally com-
bined [3, 15]. Vectorized nonlocal accesses are represented
as RSDs and stored at the loop at commlevel. They even-
tually generate messages at loop headers for loop-carried
RSDs and in the loop body for loop-independent RSDs.

Message coalescing Once nonlocal accesses are vector-
ized at outer loops, the compiler applies message coalesc-
ing to avoid communicating redundant data. It compares
RSDs from different references to the same array, merging
RSDs that contain overlapping or contiguous elements. If
two overlapping RSDs cannot be be coalesced without loss
of precision, they are split into smaller sections in a manner
that allows the overlapping regions to be merged precisely.

For instance, consider the kernel in Figure 4. Communi-
cation analysis discovers that references U(k+1)...U(k+6)
access nonlocal data. These references do not cause loop-
carried true dependences, so their nonlocal RSDs are vec-
torized outside both the ! and k loops, resulting in the RSDs

{* Fortran D Program x}
REAL U(100), X(100), Y(100), Z(100), R, T
PARAMETER (n$proc = 4)
DECOMPOSITION D(100)
ALIGN U, X, Y, Z with D
DISTRIBUTE D(BLOCK)
dol =1,time

do k = 1,94

X(k) = F(Z(k),Y(k),U(k)...U(k+6))

end

{* Compiler Output =}
REAL U(31), X(25), Y(25), Z(25), R, T
my$p = myproc() {x0..3 =}
if (my$p .gt. 0) send(U(1:6),my$p-1)
if (my$p .1t. 3) recv(U(26:31) ,my$p+1)
do 1l = 1,time

do k = 1,25

X(k) = F(Z(k),Y(k),U(K)...U(k+6))

end

Figure 4: Livermore 7-Equation of State Fragment

[26:26]. . .[26:31]. These RSDs may be coalesced without loss
of precision, resulting in [26:31]. Calls to copy routines are
inserted during code generation to pack noncontiguous data
into message buffers, but is not needed for this example since
the data is contiguous. Finally, explicit send and recvstate-
ments are placed at loops headers to communicate nonlocal
data [20].

Message aggregation Message coalescing ensures that
each data value is sent to a processor only once. In com-
parison, message aggregation ensures that only one message
is sent to each processor, possibly at the expense of extra
buffering. After message vectorization and coalescing, the
Fortran D compiler locates and aggregates all RSDs repre-
senting data being sent to the same processor. During code
generation, these array sections are copied to a single buffer
so that they may be sent as one message. The receiving pro-
cessor then copies the buffered data back to the appropriate
locations.

Consider the kernel in Figure 5. The lack of true depen-
dences for nonlocal references to ZP, ZQ, and ZM allows
their communication to be vectorized and coalesced outside
the [loop. The compiler discovers they are being sent one
processor to the right, and aggregates them in the same
message. Nonlocal references to ZR and ZZ cause true de-
pendences carried on the ! loop. Their nonlocal accesses are
vectorized and communications inserted in loop [just after
the loop header, allowing values from the previous iteration
to be fetched at the beginning of each new iteration. Once
RSDs are placed at the header, the compiler easily recog-
nizes that the messages may be coalesced and aggregated as
one message each for the left and right processors. Finally,
nonlocal references to ZA cause loop-independent depen-
dences. Communication is vectorized and coalesced at the
level of the ! loop, since it is the only loop common to the
endpoints of the dependence. Messages are later inserted in
front of the loop accessing ZA.

Collective communication Message overhead can also
be reduced by utilizing fast collective communication, such
as broadcast, all-to-all, or transpose, instead of generating
individual messages [6, 29]. Collective communication op-
portunities are recognized by comparing the subscript ex-
pression of each distributed dimension in the rhs with the
aligned dimension in the lhs reference. For instance, loop-
invariaut subscripts in distributed array dimensions corre-
spond to broadcasts, and differing alignment between the
hs and rhs may require transpose or broadcast. Collective
communication routines are also useful for accumulating re-
sults of reductions and scans, as shown later in Section 4.3.

{* Fortran D Program =}
REAL ZP(100,100), 2Q(100,100), ZM(100,100), S, T
REAL ZR(100,100), 2Z(100,100), ZA(100,100)
REAL 2U(100,100), Zv(100,100), ZB(100,100)
PARAMETER (n$proc = 4)
DECOMPOSITION D(100,100)
ALIGN ZA, 2B, 2M, ZP, 2Q, ZR, 2U, ZV, ZZ with D
DISTRIBUTE D(BLOCK, :)
do 1 = 1,time
do k = 2,99
do j ='2,99
ZA(j,k) = Fy(ZP(j-1,k),2Q(j-1,k),ZR(j-1,k),...)
ZB(j,k) = F(2P(3-1,k),2Q(j-1,k),...)
do k = 2,99
do j = 2,99
ZU(§,k) = F3(22(j-1,K),22(j+1,%) ,ZA(j-1,K),...)
ZV(j,k) = F4(ZR(j-1,k),ZR(j+1,k),ZA(j-1,k),...)
do k = 2,99
do j ='1,25
ZR(5,X) = Fs (ZR(5,K),ZU(],K))
) 22(j.x) = F6(22(3.,%),ZV(j.X))
en

{* Compiler Output =}
REAL ZP(0:25,100), 2Q(0:25,100), 2M(0:25,100), S, T
REAL ZR(0:26,100), 2Z(0:26,100), ZA(0:25,100)
REAL 2U(25,100), 2v(25,100), ZB(25,100)
my$p = myproc() {=0..3 =}
if (my$p .1lt. 3)
send(ZP(25,2:100) ,2Q(25,2:100) ,ZM(25,2:100) ,my$p+1)
if (my$p .gt. 0)
recv(ZP(0,2:100),2Q(0,2:100),ZM(0,2:100) ,my$p-1)
do 1 = 1,time
if (my$p .gt. 0) send(ZR(1,2:99),22(1,2:99) ,my$p-1)
if (my$p .1lt. 3) send(ZR(25,2:99),22(25,2:99) ,my$p+1)
if (my$p .1t. 3) recv(ZR(26,2:99),ZZ(26,2:99) ,my$p+1)
if (my$p .gt. 0) recv(ZR(0,2:99),22(0,2:99) ,my$p-1)
do k = 2,99
do j = 1,25
ZA(§,X) = F (ZP(j-1,k),2Q(j-1,k) ,ZR(j-1,K),...)
ZB(j,k) = Fp(ZP(j-1,k),2Q(j-1,k),...)
if (my$p .1t. 3) send(ZA(25,2:99),my$p+1)
if (my$p .gt. 0) recv(ZA(0,2:99) ,my$p-1)
do k = 2,99
do j = 1,25
ZU(G,x) = F3(22(j-1,k),22(j+1,k),ZACj-1,K),...)
Zv(j.x) = F4 (ZR(§-1,k),ZR(j+1,K),ZA(j-1,K),...)
do k = 2,99
do j = 1,25
ZR(j,k) = F5(ZR(j,k),2U(j,k))
22(3.%) = F¢(22(5,k),2V(j,k))
end

Figure 5: Livermore 18-Explicit Hydrodynamics

4.2 Hiding Communication Overhead

The previous section discussed techniques to decrease com-
munication costs by reducing Tseare. This section presents
optimizations to hide Ttransic, the message transit time, by
overlapping communication with computation. The same
optimizations can also hide Tiopy, the message copy time,
by using nonblocking messages.

Message pipelining Message pipelining inserts a send
for each nonlocal reference as soon as it is defined (32]. The
recv is placed immediately before the value is used. Any
computation performed between the definition and use of
the value can then help hide Tiransic. Unfortunately, mes-
sage pipelining prevents optimizations such as message vec-
t- zation, resulting in significantly greater total communi-
¢. .on cost. It is thus generally undesirable for completely
parallel programs, but may be useful for exploiting paral-
lelism for pipelined computat:ons, as shown in Section 4.3.

Vector message pipelining We describe a new opti-
mization, vector message pipelining, that hides Tiransic
without increasing total communication cost. After message
vectorization, pairs of vectorized send and recv statements
have been gathered either inside or outside of loop headers.

{* Fortran D Program =}
REAL V(1000,1000)
PARAMETER (n$proc = 10)
DECOMPOSITIOE D(1000,1000)
ALIGN V with D
DISTRIBUTE D(:,BLOCK)
do 1l = 1,time
{* compute red points =}
do j = 3,999,2
do i = 3,999,2
Sy VL) = FOVG,§-1),V(-1,§) VG, 541D ,V(i+, §))
do j = 2,998,2
do i = 2,998,2
S V(L = FOVG,§-1),V(i=1,§) ,V(E, §+1) ,V(i+1,5))
{* compute black points =}
do j = 2,998,2
do i = 3,999,2
Ss V(i,j) = FV(i,j=1),V(i=1,5) ,V(i, j+1) ,V(i+t,§))
do j = 3,999,2
do i = 2,998,2
S,d V(i,§) = FOVG, 1) ,V(-1,5) ,V(i, j+1) ,V(i+t, §))
en

{* Compiler Output =}
REAL V(1000,0:101)
my$p = myproc() {*0..9 =}
if (my$p .1t. 9) send(m$3,V(3:999:2,100) ,my$p+1)
do 1l = 1,time
if (my$p .gt. 0) send(m$4,V(2:998:2,1),my$p-1)
if (my$p .gt. 0) recv(m$3,V(3:999:2,0) ,my$p-1)
do j = 1,99,2
do i = 3,999,2
S1 V(i,j) = F(VA,j-1),V(i-1,5),V(i,j+1),V(i+1,)
if (my$p .gt. 0) send(m$1,V(3:999:2,1),my$p-1)
if (my$p .1t. 9) recv(m$4,V(2:998:2,101) ,my$p+1)
do j = 2,100,2
do i = 2,998,2
S2 V(@i,j) = F(VGE,j=1),V3-1,3) ,V(3i, j41),V(i+1,3))
if (my$p .1t. 9) send(m$2,V(2:998:2,100) ,my$p+1)
if (my$p .1t. 9) recv(m$1,V(3:999:2,101) ,my$p+1)
do j = 2,100,2
do i = 3,999,2
S V(i,j) = F(V(,j-1),V(3-1,5),V(4,j+1),V(i+1,5))
if (my$p .1t. 9) send(m$3,V(3:999:2,100) ,my$p+1)
if (my$p .gt. 0) recv(m$2,V(2:998:2,0),my$p-1)
do j = 1,99,2
do i = 2,998,2
Se V(i) = FOG,j=1),VGE-1,5),V(, j+1) ,V(i+1,5))
if (my$p .gt. O) recv(m$3,V(3:999:2,0),my$p-1)

end
Figure 6: Red-Black SOR

Vector message pipelining uses data dependence informa-
tion to move vector send and recv statements towards their
definitions and uses respectively in order to hide Tiransic-

Vector message pipelining may be considered to be
macro-instruction scheduling, where macro-instructions
consist of vectorized send, recv statements and entire inner
loop nests. Since send and recv statements interlock, they
must be scheduled apart in order to avoid idle cycles. A
simple application of vector message pipelining is to invoke
all send statements before recv when a number of messages
are sent at the same time.

Figure 6, Red-Black successive over-relaxation (SOR),
demonstrates a more complex case. Values of red points
computed by statement S, are used by S3, corresponding
to a loop-independent true dependence from S; to S3. Sim-
ilarly, Sz computes red points used by S;. Message vector-
ization creates communication for S3 and S, at the level of
the ! loop, since it is the deepest loop enclosing these loop-
independent dependences. We label these messages as m$1
and m$2. Vector message pipelining then places the vector
send for S3 and Sy after the j loops enclosing S and S,
respectively, using them to hide Tiransic-

In addition, values of black points computed by statement
S3 are used by S;, corresponding to a loop-carried true de-
pendence from Si to S;. Similarly, Si computes black points
used by S;. Message vectorization creates communication

for S; and S; at the level of the [loop, since it is the loop
with the deepest loop-carried dependences. We label these
messages as m$3 and m$4. Vector message pipelining places
the vector recv for Sz just before the j loop enclosing Sz,
using S; to hide Tiransit-

Hiding transit time for the values needed by S) is more
complicated, since the communication needs to cross iter-
ations of the [loop. Scheduling send and recv statements
across iterations of the outer time-step loop is analogous to
macro-software pipelining. Vector message pipelining places
the vector send for S; after S3, using Si to hide Tiransic.
Matching vector send and recv statements must be inserted
outside the loop. The final result is shown in Figure 6.

Iteration reordering Red-Black SOR is a computation
structured so that careful placement of vector sendand recv
statements using vector message pipelining can effectively
hide communication costs. Where this is not the case, it-
eration reordering may be applied to change the order of
program execution, subject to dependence constraints. This
allows loop iterations accessing only local data to be sepa-
rated and placed between send and recv statements to hide
Ttranait [26]

We demonstrate how the Fortran D compiler finds local
loop iterations for the Jacobi algorithm in Figure 7. First,
communication analysis calculates [2:99,0] and [2:99,26] to
represent nonlocal accesses to array B. These accesses are
caused by the references B(j,i-1) and B(j,i+1). Applying
their inverse subscript functions yields the iteration sets
[1,2:99] and [25,2:99]. Subtracting these nonlocal iterations
from the full iteration set yields [2:24,2:99] as the set of local
loop iterations. These iterations are placed into a separate
loop nest between the vector send and recv statements to
hide Tiransic. More aggressive iteration reordering would
also extract iterations from the second j loop to be placed
before the vector recv statement.

Nonblocking Messages The Fortran D compiler gener-
ally uses blocking messages. Invoking a blocking send causes
the calling process to block until the data has been copied
out of the program address space into a system buffer. Upon
return the process may overwrite the original data. This
does not mean that the process must wait for the message
to be actually received by another processor, just that the
content of the message is no longer affected by the sending
processor. Invoking a blocking recv causes the calling pro-
cess to block until the data has been received and copied
into the program address space.

Nonblocking messages, provided by machines such as the
iPSC/860, permit computation and message copying to be
performed in parallel on the same processor. A nonblocking
send returns immediately, allowing computation to be per-
formed on the sending processor concurrently with copying
the data into a system buffer. A nonblocking recv posts a
message destination, enabling computation to be performed
on the receiving processor while the data is being received
and copied. It also avoids an extra copy into a system
buffer, since the message body may be placed directly at
the posted address. Anu additional system call must be made
for each nonblocking message to block the computation until
the copy is complete.

Vector message pipelining and iteration reordering with
blocking messages can only hide Tiransic, since the proces-
sor must remain idle while copying the data. By using non-
blocking messages, the Fortran D compiler also hides Teopy,
the message copy time. This is important since copying is a
major component of commmunication overhead for large mes-
sages. However, nonblocking messages should be utilized se-

{* Fortran D Program =}
REAL A(100,100), B(100,100)
PARAMETER (n$proc = 4)
DECOMPOSITION D(100,100)
ALIGE A, B with D
DISTRIBUTE D(:,BLOCK)

dol = 1,time

do i = 2,99
AGi,j) = F(B(i,j-1),B(i-1,j),B(i+1,j),B(i,j+1))
do j = 1,99
do i = 2,99
B(i,j) = A(4,j)
end

{* Compiler Output =}
REAL A(100:25), B(100,0:26)
my$p = myproc() {=0..3 =}
dol =1,time
if (my$p .1t. 3) send(B(2:99,1),my$p-1)
if (my$p .gt. 0) send(B(2:99,25) ,my$p+1)
{» perform local iterations =}
doj = 2,24
do i =2,99
AL §) = F(B(G,j-1),B(i-1,5) ,B(i*+1,5) B3, j+1))
if (my$p .1t. 3) recv(B(2:99,26) ,my$p+1)
if (my$p .gt. 0) recv(B(2:99,0),my$p-1)
{* perform non local iterations =}
do j = 1,25,24
do i = 2,99
AGL§) = F(B(i,j-1),B(i-1,j) ,B(i+1,j),B(i,j+1))
do j = 1,25
do i =2,99
B(i,j) = A(i,})
end

Figure 7: Jacobi

lectively. Message startup time for nonblocking messages is
generally higher than for blocking messages, since the num-
ber of system calls is doubled. Nonblocking sends may also
require multiple buffers for noncontiguous data. Note that
in our model the only source of savings for a nonblocking
sendis the time to copy data to the system buffer. After the
copy is performed, both blocking and nonblocking messages
can overlap communication and computation.

4.3 Exploiting Parallelism

Parallelism optimizations restructure the computation or
communication to increase the amount of useful computa-
tion that may be performed in parallel.

Partitioning computation Most scientific applications
are completely parallel in either a synchronous or loosely
synchronous manner [13]. If this can be determined by the
compiler, partitioning the computation using the “owner
computes” rule yields a fully parallel program. To success-
fully exploit parallelism in these basic cases, the compiler
must be able to intelligently partition the work at compile-
time. The Fortran D compiler achieves this through loop
bounds reduction and guard introduction [20, 21)].

An exception to the “owner computes” rule must be made
for private variables, scalars or arrays that are only defined
and used in the same loop iteration. Since private variables
are usnally replicated, naive compilation would cause their
computation to be performed on all processors. The For-
tran D compiler needs to recognize these private variables
and partition their computation based on where their values
are used [20].

Compile-time partitioning of parallel computations is key
to any reasonable compilation system, and should not re-
ally be considered an optimization. Cross-processor depen-
dences point out sequential components of the computation
that cross processor boundaries. These dependences dis-
able parallel execution by forcing processors to remain idle,
waiting for their predecessors to finish computing. We show

{* Fortran D Program =} {* Compiler Output =}
REAL X(100), 2(100), Q REAL X(25), 2(25), Q
PARAMETER (n$proc = 4) dol =1,time
DECOMPOSITION D(100) Q=0.0
ALIGE X, Z with D do i =1,25
DISTRIBUTE D(BLOCK) Q = Q + Z(k)*X(k)
do 1l = 1,time Q = global-sum(Q)

Q=0.0 end

do k = 1,100

Q = Q + Z(x)*X(k)

end

Figure 8: Livermore 3-Inner Product

{* Fortran D Program =}
REAL X(100), Y(100)
PARAMETER (n$proc = 4)
DECOMPOSITION D(100)
ALIGE X, Y with D
DISTRIBUTE D(BLOCK)
do 1 = 1,time
x(1) = Y(1)
do k = 2,100 X(1) = Y1)
X(k) = X(x-1) + Y(k) if (my$p .ne. 0) then
end do k = O,my$p-1
X(1) = x(1) + s(k)
endif
do k = 2,25
X(k) = X(k-1) + Y(k)
end

{= Compiler Output =}
REAL X(25), Y(25), s(0:3)
my$p = myproc() {= 0...3 x}
dol =1,time

S(my$p) = 0.0

do k = 1,25

S(my$p) = S(my$p) + Y(k)
global-concat(S)

Figure 9: Livermore 11-First Sum

how optimizations may extract parallelism in the presence
of cross-processor dependences.

Reductions and scans Some computations with cross-
processor dependences may be parallelized directly. Reduc-
tions are associative and commutative operations that may
be applied to a collection of data to return a single result.
For instance, a sum reduction would compute and return the
sum of all elements of an array. Scans are similar but per-
form parallel-prefix operations instead. A sum scan would
return the suins of all the prefixes of an array. Scans may be
used to solve a number of computations in scientific codes,
including linear recurrences and tridiagonal systems [11, 27].

The Fortran D compiler applies dependence analysis to
recognize reductions and scans. If the reduction or scan
accesses data in a manner that sequentializes computation
across processors, the Fortran D compiler may parallelize it
by relaxing the “owner computes” rule and providing meth-
ods to combine partial results. This requires changing the
order in which computations are performed, which is why
the operations must be both associative and commutative.

Reductions are parallelized by allowing each processor to
compute in parallel, later accumulating the partial results.
Communication using individual send/recvcalls can be used
to calculate the global result. Broadcast may be used in
place of send for efficiency, and specialized collective com-
munication routines such as global-sum() can reduce com-
munication overhead even further for common reductions.
Figure 8 shows how a sum reduction may be parallelized
using a global-sum collective communication routine to com-
bine the partial sums.

Scans may also be parallelized by reordering operations.
Each processor first computes its local values in parallel,
then communicates the partial results to all other pro-
cessors. The global data is used to update local results.
Though extra communication and computation is intro-
duced during parallelization, the improvement in parallelism
yields major performance improvements. Figure 9 demon-
strates how a prefix sumn may be computed, using a global-
concat collective communication routine to collect the par-
tial sums from each processor in S. The partial sums of all

{= Fortran D Program =}
REAL A(100), B(100), X(100,100)
PARAMETER (n$proc = 4)
DECOMPOSITION D(100,100)
ALIGE X with D
DISTRIBUTE D(:,BLOCK)
dol = 1,time
{* Phase 1: sweep along columns x}
do j = 1, 100
do i =2, 100
X(i,j) = F1(x(i,j),Xx3-1,3§),A) ,B(1))
{* Phase 2: sweep along rouws =}
do j = 2, 100
do i =1, 100
X1(i,j) = F2(X(i,3),X(,5-1),A(1),B(1))
end

{= Compiler Output =}
REAL A(100), B(100), X(25,100), X1(100,25)
EQUIVALEECE (X,X1)
dol = 1,time
do j =1, 25
do i =2, 100
X(i,j) = Fr(x(i,j),x¢-1,5),A31),B(1)
redistribute-row-to-col(X)
do j = 2, 100
doi=1, 25
X1Gi, 30 = F2(X(i,3),X(i,5-1) ,ACi) ,B(4))
redistribute-col-to-row(X1)
end

Figure 10: ADI Integration

preceding processors are combined locally and used as a ba-
sis for computing local prefix sums [11].

Dynamic Data Decomposition Other computations
contain parallelism, but are partitioned by the “owner com-
putes” rule in a way that causes sequential execution.
In these cases dynamic data decomposition may be used
to temporarily change the ownership of data during pro-
gram execution, exposing parallelism by internalizing cross-
processor dependences [3].

For instance, consider the two substitution phases in the
Alternating Direction Implicit (ADI) integration example
in Figure 10. The computation wavefront only crosses one
spatial dimension in each phase. A fixed column or row
data distribution would result in one parallel and one se-
quential phase. By applying dynamic data decomposition
using collective communication routines to change the ar-
ray decomposition after each phase, the Fortran D compiler
can internalize the computation wavefront in both phases,
allowing processors to execute in parallel without commu-
nication [26].

However, dynamic data decomposition is only applicable
when there are full dimensions of parallelism available in
the computation. For instance, it cannot be used to exploit
parallelism for SOR or Livermore 23 in Figure 12, because
the computation wavefront crosses both spatial dimensions.
Even when dynamic data decomposition is applicable, it
may not be efficient, as shown in Section 6.

Pipelining computations For many computations con-
taining cross-processor dependences, a technique known as
pipelining can extract partial parallelism. Consider the dif-
ference in program execution between parallel and pipelined
computations illustrated in Figure 11. Solid lines denote
computation, and dotted arrows represent communication
from sender to recipient. For parallel computations, all pro-
cessors can execute concurrently, communicating data when
necessary. In pipelined computations, a processor cannot
begin execution until it receives results computed by its pre-
decessor. However, by sending partial results to their suc-
cessors earlier, processors may overlap their computations.
When used in this fashion, messages both transmit data and

n P P P P P P P

. L....,
Time {‘:>ll‘§{¢§= l: o
TP D e l._,..ml..,..__}l _____ o
ldn;lza..ld:.b.l l::. ::;: """ :;:
it D i T
e

Figure 11: Parallel & Pipelined Computations

serve as data synchronization. The degree of pipeline paral-
lelism depends on how soon each processor is able to begin
work after its predecessor starts.

The Fortran D compiler can distinguish pipelined com-
putations from fully parallel computations by discovering
cross-processor loops—loops that cause computation wave-
fronts to sweep across processor boundaries [20]. The com-
piler finds cross-processor loops as follows. First, it con-
siders all pairs of array references that cause loop-carried
true dependences. If non-identical subscript expressions oc-
cur in a distributed dimension of the array, all loop index
variables appearing in the subscript expressions belong to
cross-processor loops. In most cases, cross-processor loops
are loops carrying true dependences whose iterations have
been partitioned across processors.

Consider the loop-carried true dependence between S)
and S; caused by ZA(k, j) and ZA(k, j-1) in Figure 12. Since
the second dimension of ZA is distributed, the compiler com-
pares j and j—1, the subscripts in the second dimension.
These are not identical, so the j loop is labeled as cross-
processor. No other loops are cross-processor.

The presence of any cross-processor loop in a loop nest
indicates that it is a pipelined computation. The granular-
ity of pipeline parallelism is determined by the amount of
computation enclosed by cross-processor loops. Fine-grain
pipelining interchanges all cross-processor loops as deeply as
possible, so that they enclose the least amount of computa-
tion. The resulting program execution order generates val-
ues needed by other processors in the shortest time, achiev-
ing the finest granularity of pipelining. Unfortunately, it
also results in high message overhead since a message is
sent for each iteration accessing nonlocal data.

Coarse-grain pipelining remedies this problem by apply-
ing loop interchange and strip-mining to adjust the amount
of computation C enclosed by cross-processor loops. In-
creasing C reduces communication, since all nonlocal data
accessed by C may be commnunicated in a single message.
However, parallelism is also reduced since processors must
wait longer before beginning to compute. Section 6 discusses
how to choose an efficient granularity for pipelining based
on the ratio between computation and communication costs.

Figure 12 shows examples of both fine and coarse-grained
pipelining. Fine-grain pipelining interchanges the cross-
processor loop j to the innermost position to maximize
pipelining. In comparison, coarse-grain pipelining strip-
mines the k loop by a factor B, then interchanges the itera-
tor loop kk outside the j loop. This allows communication
for B iterations to be vectorized at the j loop.

The legality of loop interchange and strip-mine is deter-
mined exactly as for shared-memory programs [1, 25, 28].
The Fortran D compiler first permutes loops in memory or-
der to exploit data locality on individual processors [24],
then applies coarse-grain pipelining to adjust the degree of
pipeline parallelism.

4.4 Reducing Storage

Most optimizations increase the amount of temporary stor-
age required by the program. Storage optimizationsseek to

{= Fortran D Program =}
REAL ZA(100,100), ZB(100,100), ZR(100,100), QA
REAL ZU(100,100), ZV(100,100), ZZ(100,100)
PARAMETER (n$proc = 4)
DECOMPOSITION D(100,100)
ALIGN ZA, ZB, ZR, 2U, ZV, 2Z with D
DISTRIBUTE D(:,BLOCK)
dol =1,time

do j = 2,99

do k = 2,99

Si QA = Fi (ZA(K,j+1) ,ZACK, j=1) ,ZA(k+1, §) ,ZA(k=1,3))
S ZA(k,j) = F2(ZA(k,j),QA)
end

{* Compiler Output 1: Fine-grain pipelining =}
REAL ZA(100,0:26), ZB(100,25), ZR(100,25), QA
REAL ZU(100,25), Zv(100,25), ZZ(100,2S)
my$p = myproc() {x0..3 =}
dol = 1,time

if (my$p .gt. 0) send(ZA(2:99,1) ,my$p-1)

if (my$p .1t. 3) recv(ZA(2:99,26) ,my$p+1)

do k = 2,99
if (my$p .gt. 0) recv(ZA(k,0) ,my$p-1)
do j = 1,25

QA = Fj (ZA(k, j+1) ,ZA(Kk, j-1) ,ZACKk+1, §) ,ZA(X-1,3))
ZA(k,j) = fz(ZA(k,dj),QA)
if (my$p .1t. 3) send(ZA(k,25),my$p+1)
end

{ Compiler Output 2: Coarse-grain pipelining =}
REAL ZA(100,0:26), ZB(100,25) ZR(100,25), QA
REAL ZU(100,25), Zv(100,25), 2Z(100,25)
my$p = myproc() {= 0..3 =}
dol = 1,time
if (my$p .gt. 0) send(ZA(2:99,1) ,my$p-1)
if (my$p .1t. 3) recv(ZA(2:99,26) ,my$p+1)
do kk = 2,99,B
if (my$p .gt. 0) recv(ZA(kk:kk+B-1,0),my$p-1)
do j = 1,28
do k = kk,kk+B
QA = F; (ZA(K, j+1) ,ZA(K, j=1) ,ZA(K+1,3) , ZA(Kk=1,3))
ZA(k,j) = F2(ZA(k,j),QA)
if (my$p .1t. 3) send(ZA(kk:kk+B-1,25) ,my$p+1)
end

Figure 12: Livermore 23-Implicit Hydrodynamics

reduce storage requirements. Compile-time partitioning of
the data so that each processor allocates memory only for
array sections owned locally is fundamental. Otherwise the
problem size is limited by the amount of data that can be
place on a single processor. We view partitioning data as
fundamental for any reasonable compiler; like partitioning
computation, it should not be merely viewed as an opti-
mization.

Once data has been partitioned, storage must be provided
for nonlocal data. Choosing overlaps, buffers, or hash tables
for storing nonlocal data involve many tradeoffs. Overlaps
are the most convenient, but also consume the most space.
Buffers may be preferred becanse they may be reused. If in-
sufficient storage is available, message blocking strip-mines
loops by a block factor B. Each vectorized message of size
n is then divided into n/B messages of size B. This reduces
the buffer space required by a factor of n/B at the expense
of additional messages.

5 Empirical Performance Evaluation

To evaluate the usefulness of each compiler optimization, we
applied them where appropriate to the Livermore and PDE
kernels used as examples in this paper. SOR is simply one of
the four inner loop nests in Red-Black SOR with unit step.
Table 1 shows the optimized versions of each program. Mes-
sage vectorization, coalescing, aggregation, and fine-grain
pipelining were applied by the prototype Fortran D com-
piler; otlier optimizations were performed by hand. Ncis
a parallel version of the program with all communication
removed. It is meant to provide a baseline for measuring

communication overhead. We also use nc x P to estimate
the sequential execution time, since most problem sizes are
too large for a single processor. Parallel speedup is then
simply %ﬁi.

The experiments were performed on a 32 node Intel
iPSC/860 with 8 Meg of memory per node. Each pro-
gram was compiled under -O4 using Release 2.0 of if77, the
iPSC/860 compiler. Timings were taken using dclock() for
one iteration of I, the time step loop. The results are pre-
sented in milliseconds for several machine and problem sizes.
P indicates the number of processors. N describes the total
problem size and its dimensionality; N/P yields the prob-
lem size on an individual processor. All arrays are double
precision and distributed block-wise in one dimension. In
addition to the timings, each table contains ratios of execu-
tion times for some selected optimizations, illustrating their

relative usefulness.
5.1 Optimizations for Communication Overhead

We begin by measuring the effect of optimizations to re-
duce and hide communication overhead. We found that the
nature of the computation and data partition significantly
affects the utility of each optimization. For instance, we
omitted execution times for Livermore 7, a 1D stencil com-
putation, since data movement is limited and optimizations
have little effect for reasonable problem sizes. The three ker-
nels presented in Table 2 are 2D stencil computations with

D data distributions. Enough communication is required
» make optimizations significant.

For these stencil computations, message vectorization is
clearly the most important optimization. The numbers com-
puted for ZB (2.1-8.9) demonstrate that message vectoriza-
tion significantly improves execution compared to sending
element messages. Message aggregation provides a small
fixed gain. Vector message pipelining and iteration re-
ordering help, but are most effective when used in tandem
with nonblocking messages. Nonblocking messages alone
are insufficient, since the original program may not pro-
vide enough computation to hide all copying costs. Op-
timizations to hide communication lose effectiveness for
small problem sizes, since insufficient computation exists to
hide all message copy and transit overhead. Optimizations
should not be applied in all cases. For instance, iteration
reordering actually degraded performance for Livermore 18.

To evaluate the profitability of optimizations beyond mes-

m

sage vectorization, we compute ==, where best is defined
as the best time among all optimizations. The results show
that other optimizations can immprove somewhat on message

vectorization (1.1-2.6), but the differences are less dramatic

and drop quickly with increasing problem size. From % we

see that optimizations can reduce communication overhead
to a small percentage of total computation cost as prob-
lem size increases (5.3 to 1.01). This translates into close
to linear speedup for larger problem sizes, as shown by the
speedup values calculated for %.

These timings lead us to conclude that for parallel compu-
tations, communication optimizations can significantly re-
duce communication overhead, depending on the amount
and nature of computation performed by each processor.
The number of processors appears to have little effect, ex-
cept indirectly by changing the amount of computation per
processor. For larger problem sizes, message vectorization
seems to yield most of the available improvement.

5.2 Optimizations for Reductions and Scans

Table 3 illustrates the performance of optimizations for par-
allelizing reductions and scans. In seq, the computation is
sequentialized by requiring each processor to wait for the

Version Optimizations Performed

nc no communication
mp message pipelining (element messages)
mv message vectorization
mc mv + message coalescing
ma mc + message aggregation
vmp ma + vectorized message pipelining
ir vmp + iteration reordering
md,vmp',ir’ | versions w/ nonblocking messages
seq sequential reduction/scan
sr accumulate using send/receive
br accumulate using broadcast /receive
cc accumulate using collective communication
dyn dynamic data decomposition
fgp fine-grain pipelining
cgp coarse-grain pipelining w/ block size B

Table 1: Optimized Versions of Test Kernels

partial result from the previous processor before performing
the local computation. In sr, br, and cc the partial results
are computed in parallel by each processor, then accumu-
lated using individual send/receives, broadcast/receives, or
collective communication, respectively.

The largest improvements (4-22) were measured for 222,
making discovering and extracting parallelism the most im-
portant optimization for reduction and scan operations. As
expected, the benefit of exploiting parallelism increases with
both the problem size and number of processors. Timings
show that broadcasts can accumulate partial results quicker
than sending individual messages, and specialized collective
communication is even more efficient.

The values for £ (1-3.3) show that collective commu-
nication can provide large improvements over simple mes-
sages. Uulike other communication overhead optimizations,
the impact of collective communication increases with the
number of processors, even when the amount of computation
per processor remains constant. From the values for £ (1-
3.7) we conclude that communication overhead can become
a major component of execution time for reductions and
scans, especially when employing large numbers of proces-
sors. The values calculated for "‘c:P show that close to lin-
ear speedups were measured for reductions. Scans achieved
only about half of linear speedup, probably because compu-

tation is doubled in the parallel scan.

5.3 Optimizations for Pipelined Computations

Table 4 shows the timings for pipelined computations. In
all three kernels, the original loop structure and data dis-
tribution is such that message pipelining (mp) yields par-
allelism only for the last outer loop iteration, and message
vectorization (mv) sequentializes the computation. Loop in-
terchange is needed in order to enable fine-grain pipelining
(fgp) in these kernels. We present measurements for these
worst-case examples of mv and mp to illustrate potential
pitfalls if the compiler cannot reorder computation through
loop interchange. Results for nonblocking messages are not
displayed. They degraded the performance of both fine and
coarse-grain pipelining since message sizes are too small to
compensate for increased startup costs.

The values for 7% (2.7-14) show that it is essential to
exploit parallelism for pipelined computations, particularly
as the number of processors increases. The best overall
timings, best, were achieved using coarse-grain pipelining.
A block size of eight resulted in the best times for Liver-
more 23; a block size of twelve proved best for SOR and
ADIl integration. Results for £2£ (1.3-3.7) show that coarse-
grain pipelining can significantly improve performance when
compared to fine-grain pipelining. Values for nexP jndicate
coarse-grain pipelining can achieve respectable speedup for

Kernel P N nc { mp| mv | mc | ma|vmp| ir | md |vmp'| ir oE | 2= %ﬁ ":::f’
32x32 1.2 | 621] 9.7 7.4 5.7 5.7 5.7 5.3 4.1 4.3 | 6.40 | 2.37 | 3.58 | 4.7
64x64 39 |6271162]12.7|11.4| 110|116 11.1| 87 | 9.8 | 3.87 186|223 7.2
16 | 128x128 | 14.4 | 137 | 35.5 | 29.7 | 27.5| 25.6 | 28.0 | 26.5 | 22.5 | 24.9 | 3.86 | 1.58 | 1.57 10.2
Livermore 18 256x256 | 54.3 | 317 | 90.2 | 80.9 | 77.6 | 77.8 | 79.3 | 76.6 | 69.7 | 73.6 | 3.51 | 1.29 | 1.30 12.5
Ezplicit 512x512 | 211 | 732 | 277 | 260 | 257 | 255 | 262 | 253 | 239 | 248 | 2.64 | 1.15 | 1.13 | 14.1
Hydrodynamics 32x32 0.7 | 62.5| 9.5 7.1 5.5 5.4 5.5 5.0 3.7 43 [6.58 | 2.57 | 5.29 | 6.1
64x64 2.5 | 60.5| 14.7] 11.1 | 9.9 9.9 9.9 9.9 73 7.5 | 4.12 | 2.01 | 2.92 | 11.0
32 | 128x128 | 8.0 | 128 | 29.3 | 23.6{ 21.3| 20.7 | 21.7 | 20.6 | 16.5 | 18.3 | 4.37 | 1.76 | 1.50 15.5
256x256 | 28.8 | 287 | 64.8 | 55.4 | 53.8 | 51.6 | 53.9 | 52.8 | 43.7 [48.1 | 4.43 { 1.48 | 1.52 21.1
512x512 | 109 | 630 | 177 | 159 | 156 | 155 | 160 | 152 | 137 | 146 | 3.56 | 1.29 | 1.25 25.5
128x128 | 1.3 | 293 | 4.1 - - 3.9 3.7 38 [36 [29 | 715141223 | 7.2
256x256 | 5.3 | 64.0| 9.8 - - 8.9 9.2 90 | 87 | 6.2 | 6.53|1.58 | 1.16 | 13.7
16 | 512x512 | 20.7 | 145 | 28.3 - - 290 | 27.6 | 27.4|273|23.2|5.18|1.22 | 1.10 | 143
1Kx1K | 96.9 | 349 | 110 - - 107 | 112 | 109 | 109 | 99.1 | 3.17 | 1.11 | 1.02 | 15.6
Jacobi 2Kx2K | 385 | 889 | 412 - - 417 | 411 | 410 | 410 | 391 | 2.16 | 1.05 | 1.02 | 15.8
128x128 | 0.7 | 29.9| 3.5 - - 3.1 3.1 3.4 | 3.2 3.0 [854]1.174.29 | 7.5
256x256 | 2.7 | 64.2 | 7.2 - - 7.2 6.6 7.2 7.1 49 | 892]|1.47|1.81 | 176
32 | 512x512 | 10.4 | 136 | 18.2 - - 18.7|18.2|18.7]|18.5| 123|756 | 1.48 | 1.20 | 27.1
1Kx1K | 48.5 | 296 | 64.1 - - 64.2 | 64.0 | 61.0 | 60.9 | 51.8 | 4.63 | 1.24 | 1.08 | 30.0
2Kx2K | 193 | 693 | 220 - - 224 | 224 | 217 | 217 | 198 | 3.15] 1.11 | 1.03 | 31.2
128x128 | 1.7 | 29.8 | 4.8 - - 4.9 5.1 48 | 39 [3.6 [6.21 133212 7.6
256x256 | 6.7 | 66.7 | 11.8 - - 105 | 106 | 11.4] 9.7 | 9.3 | 5.65 | 1.27 | 1.39 | 11.5
16 | 512x512 | 26.3 | 158 | 33.9 - - 31.5 | 31.8 | 33.9|30.8| 29.7| 4.65 | 1.14 | 1.15 | 14.2
1Kx1K | 109 | 397 | 122 - - 118 | 118 | 122 | 116 | 114 | 3.25 | 1.07 | 1.05 | 15.3
Red-Black SOR 2Kx2K | 437 | 971 | 462 - - 453 | 454 | 457 | 448 | 442 | 2.10 [1.04 | 1.01 | 15.8
128x128 | 0.8 | 30.5 | 4.1 - - 4.0 4.2 4.1 33 | 3.1 | 744 1.32]| 3.88| 83
256x256 | 3.3 | 63.6 | 8.6 - - 7.3 7.4 8.0 | 6.3 58 | 740 | 1.48 | 1.76 | 18.2
32 | 512x512 | 13.2 | 148 | 21.0 - - 18.5 | 189 | 20.8 | 17.7| 16.6 | 7.05 | 1.26 | 1.30 | 25.4
1Kx1K | 54.3 | 342 | 68.3 - - 63.9 | 64.7 | 67.3|62.2| 59.5] 5.03 | 1.15 | 1.11 | 29.2
2Kx2K | 217 | 766 | 245 - - 236 | 238 | 241 | 231 | 226 | 3.13 | 1.09 | 1.04 | 30.7
Table 2: Performance of Optimizations to Reduce and Hide Communication Overhead (in milliseconds)
se ar cc ncx P
Kernel P N nc | seq sr br cc =1 e -rill e
64K 2.6 22 3.5 3.3 3.3 6.29 | 1.08 | 1.27 6.3
8 256K 10.0 86 11.0 | 11.0 | 11.0 | 7.82 | 1.03 | 1.10 7.3
1024K | 43.5 | 348 | 44.5 [44.1 | 44.2 | 7.82 | 1.01 | 1.02 7.9
Livermore 3 G4l 1.3 23 3.4 2.5 2.1 6.76 | 1.59 | 1.62 9.9
Inner Product | 16 256K 5.3 86 74 6.6 6.1 11.6 | 1.21 1.15 | 13.9
1024K | 21.7 | 347 | 23.8 | 22.9 | 22.6 | 146 | 1.05 | 1.04 | 15.3
64K 0.7 24 5.5 3.1 1.6 4.36 | 3.33 | 2.29 | 14.0
32 256K 2.6 86 7.5 5.0 3.6 11.5 | 2.07 | 1.38 | 23.1
1024K | 10.7 | 345 | 15.6 | 13.1 | 11.7 | 22.1 | 1.33 | 1.09 | 29.3
64K 2.3 19 4.6 4.3 4.2 4.13 | 1.10 | 1.82 4.4
8 256K 8.9 73 15.5 | 15.4 | 15.1 | 4.71 | 1.03 | 1.70 4.7
1024K | 35.6 | 286 | 59.0 | 58.9 | 58.8 | 4.85 | 1.00 | 1.65 4.8
Livermore 11 64l 1.2 20 4.2 3.1 2.7 | 4.76 | 1.54 | 2.25 | 7.1
First Sum 16 256K 4.5 74 9.5 8.6 8.1 7.79 | 1.31 | 1.80 8.9
1024K | 179 | 287 | 31.2 | 30.5 | 30.0 | 9.20 | 1.08 | 1.68 9.5
64K 0.6 21 5.8 3.4 2.2 3.62 | 2.66 | 3.67 8.7
32 256K 2.3 75 8.6 6.1 4.8 8.72 | 1.77 | 2.09 | 15.3
1024K 8.9 200 | 19.3 | 17.2 | 159 | 15.0 | 1.22 | 1.79 | 19.0
Table 3: Performance of Optimizations to Parallelize Reductions and Scans (in milliseconds)
mvy best | nexP
Kernel P N nc mp mv | dyn | fgp é:g:p“ 5222 Bc=g;1>2 BC-EI;G To5 | dest | “nc T
256x256 | 24 613 395 - 86 51 49 52 63 | 459|176 | 204 | 7.8
Livermore 23 16 | 512x512 | 96 1990 | 1550 - 222 156 148 152 171 | 6.98 | 1.50 | 1.54 | 10.4
Implicit 1Kx1K | 383 | 7190 | 6160 - 677 537 507 508 | 539 | 9.10) 1.34 | 1.32 | 12.1
Hydrodynamics 256x256 | 12 847 412 - 78 40 39 43 55 5.28 1200 3.25| 9.8
32 | 512x512 | 48 2480 | 1580 - 171 102 929 105 129 | 9.24 | 1.72 | 2.06 | 15.5
1Kx1K | 191 | 8280 | 6210 - 441 311 298 308 | 348 | 14.1 | 1.48 | 1.56 | 20.5
512x512 | 23 834 400 - 146 60 49 48 59 2.74 | 3.04 | 2.09 7.7
16 1Kx1K | 107 | 2730 | 1750 - 330 177 150 143 167 | 5.30 | 2.31 | 1.34 | 12.0
SOR 2Kx2K | 429 | 9280 | 6950 - 947 598 519 | 493 | 534 | 7.34 | 1.92 | 1.14 | 13.9
512x512 | 12 135 431 - 145 50 40 39 52 297 13.72]3.25| 9.8
32 1Kx1K 53 382 1800 - 321 121 99 96 123 | 5.61 | 3.34 | 1.81 | 17.7
2Kx2K | 213 | 1180 | 7010 - 806 360 308 288 | 340 | 8.70 | 2.80 | 1.35 | 23.7
512x512 | 51 933 496 288 175 95 79 77 20 2.83 | 2.27 | 1.51 | 10.6
16 | 1Kx1K | 204 | 2920 | 1960 | 1110 | 475 | 315 270 261 285 | 4.13 | 1.82 | 1.28 | 12.5
ADI Integration 2Kx2K | 817 | 10100 | 7710 | 4820 { 1520 | 1140 | 991 959 | 1000 | 5.07 | 1.59 | 1.17 | 13.6
512x512 | 26 1440 515 166 162 70 56 55 69 3.18 | 2,95 | 2.12 | 15.1
32 1Kx1K | 102 | 4020 | 1970 | 614 383 196 163 158 183 | 5.14 | 2.42 | 1.55 | 20.7
2Kx2K | 408 | 12500 | 7630 | 2530 | 1100 | 644 547 531 573 | 6.94 | 2.07 | 1.30 | 24.6

Table 4: Performance of Optimizations to Exploit Pipeline Parallelism (in milliseconds)

Opt | Resulting Communication Overhead (For n Elements)

none n(Tstart + Tcopy(l) + Ttran.n'!(l))

mp "(Tuart + Tcopy(l) + POS(Ttrnnait(]) - Tcomp))

mv | Tstare + Tcopy(n) + Tcransic(") [+ Tbu](")]

ma | Tstare + Tcopy(mn) + Ttran:it(mn) + meu] (n)

vmp Tseare + Tcopy(n) + POS(TIranut(n) Tcomp)

ir Tyeare + Tcopy (‘") + POS(Ttran.nt(n) comp) + ATc:amp

my’ Tlga" + Tcapy(ﬂ)/2 + Ttranut(n)
vmp Tamrt + pos(TCOP!l(n)/2 + Ttrannt(n) Tcomp)

i | T} ape + Po8(Tcopy(n)/2 + Teransie(n) =

comp) + ATC""P

Table 5: Effect of Compiler Optimizations

pipelined computations. Dynamic data decomposition to
redistribute arrays in ADI proved to be undesirable and re-
quired significantly more time than pipelining, especially for
large problem sizes.

6 Analysis of Compiler Optimizations

Our empirical results show that compiler optimizations can
be used to improve program performance. This section
presents analysis and decision algorithimns to determine when
these optimizations can be profitably applied.

6.1 Communication Optimizations

We begin by analyzing optimizations to manage communi-
cation overhead. Table 5 provides the cost of sending one
message with n elements for each optimization (the cost for
message aggregation (ma) represents m messages). These
formulas for communication overhead are presented using
Tstart, Tcopy, Ttransie and some new terms. Thus(n) de-
scribes the cost of buffering n noncontiguous data elements
for message vectorization (mwv). It is placed in square brack-
ets [] because it is only incurred if data is noncontiguous.
Tbus may also be be ignored if the underlying architecture
can efficiently communicate noncontiguous data. We as-
sume it is not needed for optimizations that include message
vectorization.

Pos() is a function that returns the value of its argument
if it is positive, zero otherwise. Tcomp represents the amount
of computation between a pair of calls to send and recv that
may be used to hide communication cost. T¢om, includes the
computation available after applying iteration reordering.
AT.omp describes the increase in computation timme caused
by iteration reordering. Tya,¢ is the startup cost of using
nonblocking messages.

The Fortran D compiler always applies message coalesc-
ing, vector message pipelining, and collective communica-
tion where applicable, since these optimizations improve
performance in all cases. In the following sections, we de-
scribe profitability criteria for other communication opti-
mizations. These criteria are derived directly from Table 5,
but are simplified where possible. These formulas can also
be used to calculate the expected savings of each optimiza-
tion. For simplicity we regard copy time as linear, treating
Teopy(n) and nTcopy(1) as equal quantities.

Message vectorization To send n elements, message
vectorization is profitable over message pipelining (assum-
ing mp can hide Tiransic) when:

mp > mv
Y
(n = 1)Tstart > Teransit(n) [+ Toug(n)]

The compiler thus needs to compare the reduction in startup
time against the transit time and cost of buffering non-
contiguous data. When startup costs are high, as on the
iPSC/860, message vectorization will significantly outper-
form message pipelining for large values of n.

Message aggregation To send m messages of size n,
message aggregation is profitable over message vectorization

when: mv > ma

4
(m - I)Tatnrt + mTzrunn't(Tl) > Tlraruit(mn) [+ meu](")]

If the transit time for m messages of size n is similar to
that for one message of size mn, the primary overhead of
message aggregation is the cost of copying all messages to a
single buffer. If the individual messages are not contiguous,
then message aggregation is always profitable since message
vectorization performs buffering in any case. Otherwise it
is profitable only if the reduction in startup time is greater
than the extra buffering cost.

Nonblocking messages Using nonblocking messages
halves Tcopy by ehmmatmg copying on the receiving proces-
sor, and the remaining Tcopy may be overla.pped with com-
putation. However, the resulting program incurs a higher
startup cost Tyeqr¢. It is profitable to use nonblocking mes-
sages with vector message pipelining when:

vmp > u‘mp'

¥
Teomp 2 TCOP!I("') > (T.:mrc = Tseare)

The compiler will use nonblocking messages if sufficient local
computation exists to hide copy cost, and the copy cost is
greater than the increased startup cost. Since the savings in
copy time increases with n, nonblocking messages become
more useful as message size increases.

Iteration reordering Iteration reordering makes addi-
tional local computation available, but may also affect code
size, data reuse, and conventional scalar optimizations, in-
creasing the total computation time. For instance, empirical
results show that iteration reordering does not affect com-
putation costs for Jacobi and Red-Black SOR, but slightly
degrades performance for Livermore 18, a kernel that con-
tains significant amounts of computation and data reuse.
With blocking messages, iteration reordering can profitably
enhance vector message pipelining when the following con-
ditions hold:]

vmp > ir

Y
T:mnp > T!rnnau(n) > Tcomp

Ttrnnut(") - Tcomp > ATcomp

Iteration reordering should thus be applied if the message
transit time is not completely hidden by vector message
pipelining, and iteration reordering can extract sufficient
local computation to hide the remaining transit time. In
addition, the savings in transit time must be greater than
the increased computation time. Iteration reordering using
nonblocking messages is profitable when:

vmp’ > ir’
Y
Téomp z TCOP!I(") + Ttrannt(n) > Tcomp
Tcopy(n) + Tcrunau(") - Tcomp > AT«:omp + T,mn = Tstart

The criteria are similar to that of blocking messages, except
that both copy and transit times are considered.

The usefulness of iteration reordering hinges on the value
of AT.omp, which is quite difficult to predict. Our strategy is
to simply estimate ATcomp as some small fixed percentage
of the total computation time. It can then be compared
against the message copy and transit times to determine
whether iteration reordering is worthwhile.

Data Arrays & Computation & Sequential Parallel Time Parallel Time Blocked Block Size

Data Partition Elapsed Timne Time (fap) (cgp) Preferred
n? 2 4+nC+(p=1)(2+C) 245+ (p-1)(22 +0) Ve
2n? 2 pamC+(p-1)(2+0) 2 4+BC4p-1ER+0) VI
m? B nC+(p-1)(2+0) 454 (p-1) (22 +0) [
n R 4nC+(p-1)(2+0) D+ L 4+(p-1)(22+0) VnC

Figure 13: Effectiveness of Pipelining

6.2 Parallelism Optimizations

In this section we analyze optimizations to exploit paral-
lelism. Reductions and scans should always be identified
and parallelized, using collective communication to accu-
mulate results. Empirical results prove that pipelining is
vital for pipelined computations. We show analytically that
pipeline parallelism is both effective and scalable.

Fine-grain pipelining Consider the simple examples
presented in Figure 13. We define n as the number of ele-
ments along one dimension, p as the number of processors,
and C as the communication overhead for each message.
We normalize all costs by the cost required to compute one
element, so the sequential computation time is equal to the
number of data elements.

For simplicity we restrict our analysis to cases where we
can interchange cross-processor loops to the innermost po-
sition, allowing program execution to first proceed along
the distributed dimensions. This enables both fine-grain
and coarse-grain pipelining. Fortunately, most if not all
pipelined computations meet this requirement. For in-
stance, loop interchange of cross-processor loops is legal for
both SOR and ADI integration.

Using these assumptions, we can now calculate the time
required to compute an n xn data array distributed block-
wise in one dimension. Each processor begins execution
exactly %-}-C units later than its predecessor, where -:- is the
time for its predecessor to compute one column and C is the
communication overhead. The time it takes each processor
to finish its computation is ,;T:, the total computation time,

plus nC, the time spent to send and receive n messages.
The total parallel execution time is (p — 1)(3 + C), the

delay before the last processor begins, plus -';,—2 + nC, the
time required by the processor to finish computing.

Similar calculations for the n x2n, 2nxn, and nxXnxn
example arrays result in the formulas shown in Figure 13.
Examining the expressions, we see that the dominating term
in the parallel execution time is simply (sequential time)/p.
Pipeline parallelism under these conditions thus approaches
perfect speedup for large problem sizes.

Coarse-grain pipelining The same model may also be
used to calculate an efficient blocking factor for coarse-grain
pipelining. Assume we strip-mine and interchange the outer
loop in the pipelined computation of an n xn array by a
constant block factor B, as in Figure 12. The delay between
processors increases to 2f+C, since B columns each costing
% are computed before sending a message. However, the

total communication overhead for one processor drops from

nC to %. The total parallel execution time is thus % +

% +(p- l)(% + C). The times for other examples are
shown in Figure 13.

As we can see, the asymptotic speedup is unchanged by
B, but the total communication overhead can be signifi-
cantly decreased at the expense of some parallelism. To
determine the minimal cost while holding » and p constant,
we differentiate the expression for parallel execution time
with respect to B and set the result to zero. This yields the
following equation and solution for B:

_ne nle-l)
B? P
B= / ﬁ ~VC = \/ block communicat.ioncost
p—1 elemnent computation cost
Since C has been normalized by the computation required
to calculate one array element, it is actually the ratio of
communication to computation cost. As expected, the re-
sults show that larger block sizes are preferred when the
ratio of communication to computation cost is high; smaller
blocks are desirable when communication cost is relatively
low. More importantly, these formulas allow the compiler to
calculate efficient block sizes and estimated execution times
for pipelined computations.

Our analysis for pipelined computations is somewhat im-
precise since it assumes that communication cost is fixed as
the message size increases. Fortunately this is relatively true
for the small block sizes that are selected. More accurate
analytical models can be developed, but may be hindered
by unpredictable system discontinuities. For instance, com-
munication cost increases abruptly past 100 bytes on the
iPSC/860 [6]. The Fortran D compiler will employ a flex-
ible and precise approach using training sets to estimate
communication and computation costs [4, 19, 23]. Accurate
static estimates of communication and computation are also
needed by the compiler to calculate block sizes for coarse-
grain pipelining.

Dynamic data decomposition The previous sections
show lhow parallel computation time can be estimated for
pipelined computations. The compiler needs to compare
it with the estimated cost for dynamic data decomposition
(based on training sets) to determine whether it is more
profitable than applying pipelining. Dynamic data decom-
position is likely to be profitable only for small problems,
because communication to redistribute data becomes less
efficient as problem size increases. In comparison, the effi-
ciency of pipelining improves with larger problem sizes.

mu
cc
cc, br
% . % br
vmp,ir, ...
ma mv,...

Neomm P

Figure 14: Effect on Comimunication Overhead

cc, br

sr, fgp,cgp muv,...
% sr, fgp, cgp
muv,cc,...
P

Figure 15: Effect on Programn Execution Time

%

=

Ntoml

6.3 Scalability

The scalability of an optimization describes whether its ef-
fectiveness increases, decreases, or remains constant in pro-
portion to some characteristic. In this section we use scal-
ability to summarize our insights concerning the usefulness
of communication and paralleliszn optirmizations. Our con-
clusions are derived from the empirical and analytical re-
sults presented in the previous sections. In the following
discussion we define Ncomm to be the number of elements
communicated by each processor and Neocat to be the total
number of elements. For convenience, we also use Nigcat to
describe the number of elements on each processor. It is
sinply N¢oeat/ P, where P is the number of processors.

Communication overhead Figure 14 shows the scala-
bility of optimizations in elimninating communication over-
head. The effectiveness of message vectorization (mv) is dis-
played as improvement over message pipelining. Collective
communication (cc) and broadcast/receive (br) are shown
as gains over send/receive (sr). The effectiveness of other
optimizations are displayed as improvemnent compared with
message vectorization. All improvements are shown as per-
centages.

We first consider how communication optimizations scale
with respect to Ncomm, the amount of data communicated
by each processor. When we increase Ncomm for a fixed
number of processors, message vectorization (mv) improves
most rapidly because it eliminates entire messages. Other
optimizations (vmp,ir,...) improve less quickly since they
only affect message transit and copy times. The effective-
ness of collective communication (cc) and broadcast/receive
(br) remains unchanged at a level determined by the num-
ber of processors. The percentage improvement for message
aggregation (ma) decreases because its usefulness is set by
the number of arrays communicated to the same processor.

In comparison, when Ncomm is fixed, most communica-
tion optimizations (mwv, vmp, ...) are not enhanced by in-
creasing the number of processors. Only collective comnmu-

ication (cc) and broadcast (br) improve in their ability to

‘minate communication cost as P grows.

‘rogram execution Figure 15 displays the scalability of
optimizations in reducing total execution time. We assume
that computation cost is proportional to N¢otat. Optimiza-
tions to exploit parallelism (sr, fgp, cgp) are expressed as
improvements relative to the sequential execution time. For
a fixed number of processors P, they increase in effectiveness

Problem |Dimensions| Ncomm Neomm /Niocal forp =8 &
Dimension{ Distributed n=10%|n=10*|n=10°
3D 1D 2v/n? 1.0 .74 .35
3D 2D VnZ/F| 1.0 .52 .24
2D 1D 2V/n .50 .16 .05
n
2D 2D 4\/: .36 11 .04
B
3D 3D 6 g/: .24 .05 .01
1D 1D 2 016 | .0016 | .00016

Table 6: Data Communication Requirements

as Neoar grows, reaching a plateau at the number of pro-
cessors. In comparison, communication optimizations (muv,
cc, ...) shrink in relative usefulness because Ncomm grows
slowly compared to Neocat for stencil computations.

The situation is more complex when a problem with fixed
size is parallelized using an increasing number of proces-
sors. Initially the amount of communication is small relative
to the local problem size (Ncomm € Niocat) so parallelism
optimizations achieve excellent speedup, increasing linearly
with P. At this stage communication optimizations only
attain modest improvements, though collective communica-
tion and broadcast/receive improve more quickly.

As we show in the next section, eventually the problem
is divided among enough processors that Ncomm becomes
a large percentage of Niocai. When this point is reached,
communication overhead begins to have a significant impact
on execution time. Growth in the effectiveness of paral-
lelisin optimizations slows because of communication costs,
while communication optimizations quickly increase in im-
portance. How soon this point is reached depends on the
cominunication overhead relative to computation costs.

Communication vs. computation We have seen that
parallelisim optimizations are critical for improving overall
program execution time, regardless of the problem or ma-
chine size. In comparison, the effectiveness of communica-
tion optimizations is dependent on Ncomm, the amount of
data that must be communicated. Understanding the rela-
tionship between Ncomm, Neotat, and Niocat is thus crucial
to determining the impact of communication optimizations.

Simple geometric analysis shows that the growth of
Necomm relative to Neoear varies for different data distribu-
tions. For instance, when a 2D array with n elements is dis-
tributed 1D block-wise across p processors, each processor
owns a ﬁxlpﬁ section of the array. Assuming a stencil com-
putation that only accesses boundary elements, a processor
needs to send /n array elements to each neighboring pro-
cessor. communicating 2/n elements. Similar analyses for
other examples result in the formulas for calculating Neomm
displayed in Table 6.

Table 6 also presents relative values of Ncomm for three
different problem sizes on a machine with eight processors.
Though it varies depending on the problem and machine di-
mensionality, Ncomm always grows less rapidly than Niocat.
This implies that communication optimizations become less
important as problem size grows. For large problems, mes-
sage vectorization and collective communication are likely
to yield most of the available benefits.

On the other hand, consider the situation when we at-
tempt to speed up a problem of size N¢ocat by increasing
the number of processors. Similar analysis makes it clear
that Veomm becomes an increasingly large percentage of
Niocai. Eventually communication overhead becomes the
limiting factor, and all of the communication optimizations
discussed become important for achieving good speedup.

7 Optimization Algorithm

The overall Fortran D compiler optimization algorithm is
shown in Figure 16. It is intended only to provide a rough
outline of how optimizations are organized. The compiler
will decide at each point which optimizations are actually
worth performing.

8 Related Work

The Fortran D compiler is a second-generation compiler that
emphasizes compile-time analysis and optimization instead
of language extensions and run-time support. By using de-
pendence analysis, the Fortran D compiler can detect and
exploit parallelism automatically, without requiring the user
to specify single assignment (CRYsTAL [29], ID Nouveau
[32]), all parallel loops (AL [36], ARF [37], KALI [26]), par-
allel functions (C*/DATAPARALLEL C [17, 33], DNo [34]),
parallel code blocks (OXYGEN [35], PANDORE [2]), or par-
allel array operations (CM FORTRAN [7], PARAGON [10]).
The Fortran D compiler is similar to Callahan & Kennedy
[9] and SupERB (15, 38], but applies analysis and optimiza-
tion up front before code generation, rather than inserting
guards and element-wise messages then optimizing via pro-
gram transformations and partial evaluation.

Most distributed-memory compilers reduce communica-
tion overhead by extracting communication out of user-
specified parallel regions (e.g., loops, code blocks, array op-
erations, procedures). Fortran D is similar to SUPERB and
VIENNA FORTRAN [5] in that it vectorizes messages using
data dependence information, which can extract communi-
cation even out of sequential regions such as those found
in ADI or SOR. CRYSTAL and ID NOUVEAU identify paral
lelistn automatically and vectorize messages using the sin-
gle assignment semantics of their high-level functional lan-
guages. CRYSTAL pioneered the strategy of identifying col-
lective communication opportunities.

ASPAR [22] and P3C [14] extract communication from
parallel loops and rely on portable run-time libraries to sup-
port collective communication and reductions. CM For-
TRAN extracts communications from array operations and
handles reductions expressed as array intrinsics. DINO pro-
grams can be significantly improved through iteration re-
ordering and pipelining [31]. ID NOUVEAU applies message
pipelining and recognizes reductions. KALI performs iter-
ation reordering for individual parallel loops and suggests
using array transposition for ADI integration. Gupta &
Banerjee estimate collective commmunication and pipelining
costs in PARAFRASE-2 [16).

9 Conclusions

A usable yet efficient machine-independent parallel pro-
gramming model is needed to make large-scale parallel ma-
chines useful for scientific programmers. We believe that
Fortran D, one of the first data-placement languages, can
provide such a portable data-parallel programming model.
The key to achieving good performance is applying ad-
vanced compiler analysis and optimization to antomatically
extract parallelisin and manage communication.

In this paper we described and categorized a large number
of compiler optimizations for MIMD distributed-memory
machines. For the kernels tested, we found that extracting
parallelism from reductions, scans, and pipelined computa-
tions is vital. Message vectorization, collective communica-
tion, and efficient pipelining can yield significant improve-
ments. The remaining optimizations acquire greater impor-
tance as the amount of computation per processor decreases
and communication overhead becomes a larger percentage
of total program execution timne. We derive profitability

partition data across processors
partition computation using “owner computes” rule
detect and parallelize reductions & scans
compute cross-processor loops
for each loop nest L do
if L is fully parallel (i.e., no cross-processor loops) then
vectorize, coalesce, and aggregate messages
select and insert collective communications
if sufficient Tcomp exists to hide Teopy, Ttransic then
apply vector message pipelining
insert nonblocking messages
else if T¢omp can be profitably created & used then
reorder iterations
apply vector message pipelining
insert nonblocking messages
else
insert blocking messages
endif
else {* must be pipelined computation *}
select efficient granularity for pipelining
apply strip-mining & loop iterchange
vectorize, coalesce, and aggregate messages
insert blocking messages
endif
if insufficient storage is available then
apply storage optimizations
endif
enddo

Figure 16: Fortran D Optimization Algorithm

formulas each optimization that depend on accurate knowl-
edge of the communication and computation costs of the
underlying machine.

The existing Fortran D compiler prototype parallelizes
reductions, pipelined computations, and performs mes-
sage vectorization, coalescing, and aggregation for block-
distributed arrays. We are implementing the remaining
optimizations and intend to evaluate their effectiveness for
larger and more varied programs on different MIMD archi-
tectures, including networks of workstations. Ongoing work
to provide environmental support for automatic data de-
composition and static performance estimation will also en-
hance the usefulness of the Fortran D compiler (3, 4, 19, 23].

10 Acknowledgements

The authors wish to thank Mary Hall, Ui Kremer, and
Kathryn MCKinley for their assistance on this paper, as
well as Joel Saltz, Robert Schnabel and Robert Weaver
for several enlightening discussions. We are also grateful
to the ParaScope and Fortran D research groups for their
assistance in implementing the Fortran D compiler. This
research was supported by the Center for Research on Par-
allel Computation, a National Science Foundation Science
and Technology Center. Use of the Intel iPSC/860 was pro-
vided by the Center for Research on Parallel Computation
under NSF Cooperative Agreement Nos. CCR-8809615 and
CDA-8619893 with support from the Keck Foundation.

References

(1] J. R. Allen and K. Kennedy. Automatic translation of For-
tran programs to vector form. ACM Transactions on Pro-
gramming Languages and Systems, 9(4):491-542, October
1987.

[2] F. André, J. Pazat, and H. Thomas. Pandore: A system to
manage data distribution. In Proceedings of the 1990 ACM
International Conference on Supercomputing, Amsterdam,
The Netherlands, June 1990.

(3]

(4]

(s]

(6]

(M

(8]

(o]

(10]

(11]

(12]

(121

(14]

(18]

(16]

(17]

(18]

(19]

(20]

(21]

V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer. An
interactive environment for data partitioning and distribu-
tion. In Proceedings of the 5th Distributed Memory Com-
puting Conference, Charleston, SC, April 1990.

V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer. A
static performance estimator to guide data partitioning de-
cisions. In Proceedings of the Third ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming,
Williamsburg, VA, April 1991.

S. Benkner, B. Chapman, and H. Zima. Vienna Fortran
90. In Proceedings of the 1992 Scelable High Performance
Computing Conference, Williamsburg, VA, April 1992.

S. Bokhari. Complete exchange on the iPSC-860. ICASE
Report 91-4, Institute for Computer Application in Science
and Engineering, Hampton, VA, January 1991.

M. Bromley, S. Heller, T. McNerney, and G. Steele, Jr. For-
tran at ten gigafiops: The Connection Machine convolution
compiler. In Proceedings of the SIGPLAN '91 Conference
on Program Language Design and Implementation, Toronto,
Canada, June 1991.

D. Callahan, K. Cooper, R. Hood, K. Kennedy, and L. Tor-
czon. ParaScope: A parallel programming enviromment.
The International Journal of Supercomputer Applications,
2(4):84-99, Winter 1988.

D. Callahan and K. Kennedy. Compiling programs for
distributed-mermory multiprocessors. Journal of Supercom-
puting, 2:151-169, October 1988.

C. Chase, A. Cheung, A. Reeves, and M. Smith. Paragon:
A parallel programming environment for scientific applica-
tions using cominunication structures. In Proceedings of the
1991 International Conference on Parallel Processing, St.
Charles, IL, August 1991.

S. Chatterjee, G. Blelloch, and M. Zagha. Scan primitives
for vector computers. In Proceedings of Supercomputing '90,
New York, NY, November 1990.

G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kre-
mer, C. Tseng, and M. Wu. Fortran D language specifica-
tion. Technical Report TR90-141, Dept. of Computer Sci-
ence, Rice University, Deceinber 1990.

G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and
D. Walker. Solving Problems on Concurrent Processors, vol-
ume 1. Prentice-Hall, Englewood Cliffs, NJ, 1988.

E. Gabber, A. Averbuch, and A. Yehudai. Experience with
a portable parallelizing Pascal compiler. In Proceedings of
the 1991 International Conference on Parallel Processing,
St. Charles, IL, August 1991.

M. Gerndt. Updating distributed variables in local compu-
tations. Concurrency: Practice & Ezperience, 2(3):171-193,
September 1990.

M. Gupta and P. Banerjee. Compile-time estimation of com-
munication costs on multicomputers. In Proceedings of the
6th International Parallel Processing Symposium, Beverly
Hills, CA, March 1992.

P. Hatcher, M. Quinn, A. Lapadula, B. Seevers, R. Ander-
son, and R. Jones. Data-parallel programming on MIMD
computers. JEEE Transactions on Parallel and Distriduted
Systems, 2(3):377-383, July 1991.

P. Havlak and K. Kennedy. An implementation of inter-
procedural bounded regular section analysis. IEEE Trans-
actions on Parallel and Distributed Systems, 2(3):350-360,
July 1991.

S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, and
C. Tseng. An overview of the Fortran D programming sys-
tem. In Proceedings of the Fourth Workshop on Languages
and Compilers for Parallel Computing, Santa Clara, CA,
August 1991.

S. Hiranandani, K. Kennedy, and C. Tseng. Compiler opti-
mizations for Fortran D on MIMD distributed-mermory ma-
chines. In Proceedings of Supercomputing ‘91, Albuquerque,
NM, November 1991.

S. Hiranandani, K. Kennedy, and C. Tseng. Compiler
support for machine-independent parallel programming in

(22]

(23]

(24]

(28]

(26]

(27]

(28]

(29]

(30]

(31]

(32)

(33]

(34]

(3s]

(36]

(37)

(38]

Fortran D. In J. Saltz and P. Mehrotra, editors, Lan-
guages, Compilers, and Run-Time Environments for Dis-
tributed Memory Machines. North-Holland, Amsterdam,
The Netherlands, 1992.

K. Ikudome, G. Fox, A. Kolawa, and J. Flower. An au-
tomatic and symbolic parallelization system for distributed
memory parallel computers. In Proceedings of the 5th Dis-
tributed Memory Computing Conference, Charleston, SC,
April 1990.

K. Kennedy and U. Kremer. Automatic data alignment and
distribution for loosely synchronous problems in an inter-
active programning environment. Technical Report TR91-
155, Dept. of Computer Science, Rice University, April 1991.

K. Kennedy and K. S. M¢Kinley. Optimizing for parallelism
and data locality. In Proceedings of the 1992 ACM Inter-
national Conference on Supercomputing, Washington, DC,
July 1992.

K. Kennedy, K. S. McKinley, and C. Tseng. Analysis and
transformation in the ParaScope Editor. In Proceedings of
the 1991 ACM International Conference on Supercomput-
ing, Cologne, Germany, June 1991.

C. Koelbel and P. Mehrotra. Programming data parallel
algorithms on distributed memory machines using Kali. In
Proceedings of the 1991 ACM International Conference on
Supercomnputing, Cologne, Germany, June 1991.

P. Kogge and H. Stone. A parallel algorithm for the efficient
solution of a general class of recurrence equations. [EEE
Transactions on Computers, C-22(8):786—793, August 1973.

D. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. J. Wolfe.
Dependence graphs and compiler optimizations. In Confer-
ence Record of the Eighth Annual ACM Symposium on the
Principles of Programming Languages, Williamsburg, VA,
January 1981.

J. Li and M. Chen. Compiling communication-efficient pro-
grams for massively parallel machines. JEEE Transactions
on Parallel and Distributed Systems, 2(3):361-376, July
1991.

F. McMahon. The Livermore Fortran Kernels: A com-
puter test of the numerical performance range. Technical
Report UCRL-53745, Lawrence Livermore National Labo-
ratory, 1986.

D. Olander and R. Schnabel. Preliminary experience in de-
veloping a parallel thin-layer Navier Stokes code and im-
plications for parallel language design. In Proceedings of
the 1992 Scalable High Performance Computing Conference,
Williamsburg, VA, April 1992.

A. Rogers and K. Pingali. Process decomposition through
locality of reference. In Proceedings of the SIGPLAN 89
Conference on Program Language Design and Implementa-
tion, Portland, OR, June 1989.

J. Rose and G. Steele, Jr. C*: An extended C language for
data parallel programming. In L. Kartashev and S. Karta-
shev, editors, Proceedings of the Second International Con-
ference on Supercomputing, Santa Clara, CA, May 1987.
M. Rosing, R. Schnabel, and R. Weaver. The DINO parallel
programming language. Journal of Parallel and Distributed
Computing, 13(1):30-42, September 1991.

R. Ruhl and M. Annaratone. Parallelization of FORTRAN
code on distributed-memory parallel processors. In Proceed-
ings of the 1990 ACM International Conference on Super-
computing, Amsterdam, The Netherlands, June 1990.

P.-S. Tseng. A parallelizing compiler for distributed mem-
ory parallel computers. In Proceedings of the SIGPLAN 90
Conference on Program Language Design and Implementa-
tion, White Plains, NY, June 1990.

J. W, J. Saltz, S. Hiranandani, and H. Berryman. Runtime
compilation methods for multicomputers. In Proceedings of
the 1991 International Conference on Parallel Processing,
St. Charles, IL, August 1991.

H. Zima, H.-J. Bast, and M. Gerndt. SUPERB: A tool
for semni-automatic MIMD/SIMD parallelization. Parallel
Computing, 6:1-18, 1988.

