Implementation of an Interior
Point LP Algorithm on a Shared-Memory
Vector Multiprocessor

Matthew J. Saltzman

CRPC-TR91199
November, 1991

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Implementation of an Interior Point
LP Algorithm on a Shared-Memory
Vector Multiprocessor

Matthew J. Saltzman

Department of Mathematical Sciences, Clemson University
Clemson SC 29634-1907, USA

Telephone: 803/656-3434 E-mail: mjs@clemson.edu

Keywords: Linear programming; interior point algorithms; Cholesky
factorization; sparse matrices; parallel matrix factorization; linear
algebra.

Abstract

One attractive aspect of interior point algorithms for linear programming
is their suitability for implementation on multiprocessing computers. This
paper describes a number of issues relating to the implementation of these
methods on shared-memory vector multiprocessors. Of particular concern
in any interior point algorithm is the factorization of a sparse, symmetric,
positive definite matrix. This implementation exploits the special structure
of such matrices to enhance vector and parallel performance. In initial com-
putational tests, a speedup of up to two was achieved on three processors.

1 Introduction

Since the introduction in the mid-1980s of interior point algorithms for linear
programming, significant advances in both simplex and interior point algo-
rithms have dramatically increased the size of problems that can be solved
in reasonable time. These advances have occurred in both algorithm design
and in exploitation of advanced features of current supercomputers, such as
vector processing, for example, see [2, 14, 15, 13], and others. Interior point
methods now promise to outperform the simplex method on large instances
of certain classes of problems, and on many problems previously considered
particularly difficult.

One feature of interior point methods is that they appear to be more
amenable than the simplex method to implementation on parallel comput-
ers. In this paper, we investigate opportunities for exploiting advanced-
architecture computers in the implementation of interior point algorithms.
Such opportunities are concentrated in the construction, factorization and
solution of a sparse, positive definite (SPD) system of equations. This is
the most computationally intensive part of each iteration: in large or dense
problems, 80-90% or more of the computation time is spent in this step
(on serial machines). This paper describes implementations of vector and
parallel algorithms for factoring large, sparse, SPD matrices, and shows how
these methods can be integrated into interior point LP algorithms. We de-
scribe the results of computational tests, and indicate where further research
is likely to show promise.

We begin by briefly reviewing a primal-dual interior point LP algorithm.
The following section reviews algorithms for solving sparse, SPD linear sys-
tems. We discuss the performance characteristics of various forms of the
Cholesky factorization algorithm for SPD matrices and their suitability for
sparse matrices and vector processing. Next we describe the data structures
to support the implementation of the solver and exploitation of vector and
parallel processing. Finally, we describe our experience implementing the
algorithm on an IBM 3090 vector multiprocessor.

2 A Primal-Dual LP Algorithm

The implementation described here is an extension to the FORTRAN-77
interior point software package, OB1! (Optimization with Barriers 1). The

10B1 is a trademark of XMP, Inc.

particular form of interior point algorithm implemented in OB1 is the primal-
dual barrier algorithm, described in [13]. In this section, we briefly recap
this algorithm.

The LP to be solved is:

min{cTz : Az =b,0 < z < u}, (1)

where A is m x n. We assume for the purpose of exposition that all of
the upper bounds u are finite, although this assumption is not restrictive.
The inequalities £ < u in (1) can be replaced by z + s = u, s > 0. The
inequalities £ > 0 and s > 0 can then be eliminated by incorporating them
into a logarithmic barrier function. The equality constraints can be relaxed,
and their residual vectors incorporated into the objective with Lagrange
multipliers. The Lagrangian barrier function is:

n n
L(z,s,y,w|p) = cT:c—uZlnzj -,uZlnsj —yT(Az = b) — wT(z + s —u).
j=1 i=1
(2)

Thus, L represents a family of functions parameterized by . L has a zero-
valued derivative when

Az = b, (3)

z+s = u, (4)
ATy—w+2 = ¢, (5)
XZe = pe, (6)

SWe = pe,)

where X, S, Z and W are diagonal matrices with entries z;, s;, 2; and wj,
respectively, and z is a vector of dual slack variables (defined by (5)). It is
apparent that as u — 0, (6) and (7) approach the complementary slackness
conditions for a pair of optimal solutions to the primal and dual LPs.

Givenz > 0,s> 0, w > 0, 2 > 0 and y, and for a fixed value of u, we
can apply a damped Newton method to (3)-(7). The Newton steps for each
of the variables then satisfy:

Ady = b- Az, (8)

d:+d, = 0, 9)
ATdy+dz —dy = ¢c-ATy— 24w, (10)
Zd, + Xd, = pe—XZe, (11)
Wd, + Sdy, = pe-—- SWe. (12)

An iteration of the algorithm consists of solving (8)-(12) in the following
steps:

d, = (AOAT)71(AO(p(u)- dp) +dp),
d. = O(ATd, - p(p)+ dp),

d, = pXle-z-X"1Zd,,

d;, = pSle—w-S"'Wd,,

d, = —dg,

(where © = (S-1W + X~1Z)~! and p(p) = p(S~' - XYe — w + 2),
performing the ratio tests

az = m}n{-zj/(dx)j : (dg); < 0},
as = II'lJ_iIl{—Sj/(d,)j : (ds)j < 0},
a; = m}n{—zj/(dz)j : (d2)j < 0},

ay = m}n{“wj/(dw)j : (dw); < 0},

and updating

= z+ apdg,
s+ apd,,
Y+ apdy,
z+ apd,,
w + apd,,

€ n @ & 8
I

where

ap = 0.995 Inin{azaas}’
ap = 0.995 min{a,,a.}

(the factor 0.995 prevents contact with the boundary). At each iteration,
the barrier parameter is computed as

Tz - bTy+uTw

h= #(n)

where

oy = { P i n<5000
=\ nva ifn>5000

This results in a substantial reduction in g at each iteration, and the se-
quence of solutions converges to a primal and dual optimum. The algorithm
terminates when the duality gap is sufficiently small, namely

For details of the algorithm (including selection of the initial solution
and initial u) see [13].

3 The Cholesky Decomposition

The most computationally intensive step in each iteration of the primal-dual
algorithm (indeed, of any of the interior point algorithms) is the solution of
the system dy := (A@AT)~1r (where the form of r and the positive diagonal
matrix © depends on the particular algorithm). The matrix AO AT is mxm,
symmetric and positive definite. In addition, for most realistic LP problems,
both A and AOAT are sparse. Efficient implementation of the primal-dual
algorithm depends critically on efficient solution of this system.

Linear systems of the form z = M1} are not usually solved by forming
the explicit inverse of M. This is particularly true if M is sparse, since taking
the inverse does not, in general, preserve sparsity. Instead, the system Mz =
b is solved directly, by decomposing M into lower- and upper-triangular
factors L and U, such that M = LU. Then the triangular systems Lz’ = b
and Uz = z’ can be solved efficiently by forward and backward substitution,
respectively. If M is symmetric and positive definite, then M can be factored
uniquely into symmetric triangular components [and LT. These matrices
are the Cholesky factors of M. A slight variation on this theme computes
M = LDIL7T, where l;; = 1 for j = 1,...,m, D is a positive diagonal
matrix and L = LD/2. This version has the advantage of not requiring the
computation of square roots on the diagonal of L, and it is the method that
we use in our implementation.

3.1 Algorithms for Cholesky Decomposition

The formula for computing each element of L is given by

1-1
li; = (mg; = Y dilielin)/ djj- (13)
k=1

Each diagonal element of D is given by

j-1
djj =mj; — E dkkl§k° (14)
k=1

Note that in order to compute /;; the values of dik, lix and I for k < jand
d;; must already be known. Computing d;; requires ljx and di for k < ;.

As described in [7] the six permutations of the indices %, j and k in (13)
and (14) naturally yield three different algorithms for performing Cholesky
decomposition, and determine whether each algorithm applies to L stored
in row- or column-major order. In row Cholesky (ijk and ikj), rows of L
are computed successively; each element in the row is computed using the
previously-computed rows and previously-computed elements in the same
row. The column Cholesky algorithm (jik and jki) computes the columns
in succession, using previously-computed columns. Submatriz Cholesky (kij
and kji) uses each column as it is computed to update all subsequent
columns. Consideration of workload and memory access patterns suggest
that the jki column Cholesky algorithm and a version of the kji form known
as the multifrontal algorithm [5] are the best candidates for implementation
in parallel. A general discussion of the merits of the various forms of the
algorithm is contained in [16]. In this paper, we concentrate on the column
Cholesky method.

Sparse vector operations require indirect array references. Even on vec-
tor processors with hardware for indirect references, these operations are
slower than dense (direct reference) operations [4]. The column and subma-
trix Cholesky algorithms can be modified to take advantage of the structure
of L to replace some sparse SAXPYs with dense SAXPYs (see Section 4).
In addition, the multifrontal method replaces all sparse SAXPYs with dense
operations. The algorithm performs partial factorizations of a sequence of
small, dense frontal matrices. The cost to obtain this advantage is a re-
quirement for additional memory to store intermediate, partially-factored
submatrices, and the need to assemble the intermediate results to form new

frontal matrices. In this paper, we will be concerned only with the column
Cholesky algorithm.

An important aspect of sparse matrix decomposition is the maintenance
of sparsity in the resulting factors. In the case of Cholesky decomposition,
the positions of nonzeros in the lower triangle of M are a subset of the
positions of nonzeros in L. Fill-in (non-zeros in L corresponding to zero
elements of M) is static, essentially independent of the values of the nonzeros
in M, and highly dependent on the ordering of the rows and columns in M.
If M = AAT then the permutation of rows and columns of M is determined
by the permutation of rows of A. The Cholesky decomposition routines used
up to now in implementations of interior point LP algorithms, e.g., 1, 2, 14],
have used graph-based heuristics such as minimum degree or minimum local
fill-in [8] to order the rows of A so as to minimize fill-in. OB1 implements
the multiple minimum-degree ordering heuristic of [10]. This heuristic is
much faster than minimum degree, but gives results of comparable quality.
The remaining discussion assumes that the row/column permutation of M,
and hence the pattern of nonzeros in L, is fixed in advance.

4 Implementation

In this section, we describe the special structure of the Cholesky factor and
techniques for exploiting this special structure to improve parallel and vector
performance of the column Cholesky algorithm.

4.1 Sparse SAXPY

The key operation in almost all of the linear algebra in the primal-dual
algorithm is SAXPY, an operation of the form y = az + y, where z and y
are vectors and a is a scalar. If z and y are dense vectors, this operation is
a natural one for vectorization. If z and y are sparse, each is stored as a list
of indices of nonzero entries and a list of the corresponding nonzero values.
The SAXPY operation is performed by copying the entries of y into their
positions in a dense work array, then multiplying the entries in z by o and
summing them into the corresponding positions in the work array. Finally,
the result is copied back to the sparse data structure for y. In the column
and submatrix Cholesky algorithms, the nonzero elements of z are a subset
of the nonzero elements of y, so the updated y contains no new nonzeros
and can be returned to its original location in memory.

If the work array corresponds to the computer’s vector registers, the
copy operation from memory (the sparse data structure) to the registers is
referred to as a gather, and the copy from the registers back to memory
is called a scatter. Most new vector computers implement some form of
gather/scatter operations in hardware, but some early vector computers
(such as the Cray 1) did not. (The IBM 3090 instruction set provides indirect
vector load and store operations.) Even so, indirect operations are slower
than direct ones, because an indirect reference must be performed to find a
nonzero location in the work array, and because relatively few elements of the
vector register may be involved in computing the new result. Vectorization
of the sparse SAXPY is still a dramatic improvement over scalar processing
(as we will show; see also [9]), but it is still inefficient compared to the dense
version of the operation.

4.2 The Elimination Tree

The elimination tree Tpr associated with the matrix M = AOAT is a
rooted tree constructed from the following relation among the columns of
the Cholesky factor L of M [12]:

Parent(j) = min{i | l;; # 0,7 > j}

Column m of L is taken as the root. For example, consider the matrix
depicted in Figure 1. The subdiagonal elements of M are denoted by “e”
and the fill-in elements generated during the factorization are denoted by
“o” The elimination tree Ths of this matrix is pictured in Figure 2. Columns
of L and their corresponding nodes in Tas are referred to interchangeably in
the following discussion.

The elimination tree represents a partial ordering of the columns of L,
indicating the requirement that the children of column j be computed before
column j can be computed itself. This structure will be used to schedule
columns to be computed in parallel, as described below. In addition, the
elimination tree can be used to detect the presence of supernodes, as de-
scribed in the next section.

4.3 Supernodes

In order to reduce the number of sparse vector operations, we can exploit
the occurrence in L of consecutive columns with the same pattern of nonzero
entries. Such groups of columns are called supernodes (columns that don’t

7

o
o
e & o O

o oo

Figure 1: Nonzero structure of a matrix M and its Cholesky factor L.

Figure 2: Elimination tree T(M) of the matrix in Figure 1.

belong to such a group are simply nodes). These blocks of columns can
be treated together as a dense submatrix in the column Cholesky algo-
rithm. A slightly more restrictive definition of supernode is used in the
multifrontal algorithm, and has been applied to the column Cholesky al-
gorithm as well [3, 11]. The more restrictive definition requires that the
columns in the supernode other than the first have no direct predecessors.
This is necessary for the multifrontal algorithm because frontal matrices cor-
responding to direct predecessors must be assembled into the frontal matrix
for a column or supernode prior to the update step. In the column Cholesky
algorithm, there is no such requirement. Supernodes can be identified in
the elimination tree as chains of consecutively-numbered nodes, where the
columns have identical nonzero structures.

There are two points in the computation of a column of L where supern-
odes can be exploited:

e If any column in a supernode is required for the update to the current
column j, then all columns in that supernode are needed. The total
contribution of all columns in the supernode can be computed in dense
mode and then gathered once into the work array.

o If the current column j is a member of a supernode, then updates
from all columns preceding column j in the same supernode can be
applied directly to column j. (This is an improvement to the method
described in [3] which treats this case the same as the previous one.)

In the parallel factorization, supernodes can be exploited to gain an
additional level of task overlap. All columns in a supernode will require
updating by the same set of lower-indexed columns not in the supernode
(a sparse update), as well as by the previous columns within the supernode
itself (a dense update). The sparse update can be performed in parallel
on all columns of the supernode before the dense update. This provides
a significant improvement to the performance of the parallel factorization
algorithm.

4.4 Data Structures

The principal data structure is a sparse, column-major representation of L.
Three arrays are used: a double-precision array containing the values of all
nonzeros in L, in order by column and within columns by row; an integer
array containing the row indices of the nonzeros; and an m-array containing

the index of the start of each column in the nonzero array. The diagonal
matrix D is stored in a separate m-array. This is a static structure that
can be constructed once at the start of the primal-dual algorithm, using a
symbolic factorization procedure [4, 8]. The lower triangle of A© AT can be
stored in the same data structure, and the factorization done in place. Since
the contents of O are altered at each iteration of the primal-dual algorithm,
AOAT must be re-computed (see below).

An additional data structure is required for column Cholesky, to link the
columns that contribute to updating each column, and to locate the nonzero
entry in the row corresponding to the column to be updated. For serial (and
vector) implementations, [8] describe a set of non-overlapping linked lists,
which can be maintained in two m-arrays. There is a list for each row of L.
At the start of the algorithm, each column appears on the list corresponding
to the row of the first subdiagonal nonzero in the column. As each column
k on the list for row j is used to update column 7, it is moved from the
jth list to the list corresponding to the row of the next nonzero in column
k. Since each column appears on only one list at any given time, the lists
themselves may be stored in a single m-array. The list headers are contained
in the same array, since any column for which the list is non-empty is not
yet computed, and hence is not on any list. Finally, for each column k£ on
the list for column j, the index of /;x in the array of nonzeros is stored in a
second m-array. This allows the relevant portion of column % (those entries
in row j and below), to be located directly without having to search the
entire column. Since all columns in a supernode are treated as a unit, only
the first column of each supernode need be kept on these lists.

For our experiments with the parallel column Cholesky, we use a static
structure, where linked lists corresponding to each row are constructed dur-
ing preprocessing. This structure requires two arrays with the same number
of entries as L has nonzeros. In the future, this structure will be replaced
with a dynamic structure, in which the linked lists are updated dynamically
in parallel.

One additional m-array is needed to identify the supernodes. For each
singleton column j (not in any supernode) the corresponding entry in this
array contains j. If j is the first column in a supernode, the jth entry in
the array contains the index of the last column in the supernode. Each
other column in the supernode whose first column is j also contains j. Thus
columns in a supernode can readily be identified and the first column in the
supernode can be located directly.

10

4.5 Construction of AOAT
The value of an element of M = AOAT is given by

n
mi; =) aika;kOkk.

k=1
Again, the ordering of the indices i, j and k determine different algorithms
for constructing M. The ijk algorithm computes M one element at a time.
The kij algorithm computes M as the sum of scaled outer products of
columns of A. Previous implementations of interior point algorithms (no-
tably [1]) use one of these techniques. Both of these methods have draw-
backs, however. The ijk algorithm requires two multiplications in its in-
nermost loop. The straightforward kij algorithm is unsuitable for sparse
implementation because it is not possible to compute the location in the
array of nonzeros into which to accumulate each term. One solution to both
of these problems is to save a list of the elementary products (products of
the pairs axa;jx) and the corresponding locations in the nonzero array. This
allows the algorithms to run at full speed, but requires a very large amount
of memory for the arrays. In fact, in virtual memory systems the paging
activity associated with the construction of AOAT can slow the algorithm
down.

The OB1 implementation avoids both elementary products and the dou-
ble multiplication in the inner loop, by employing the jki form of the con-
struction algorithm. This method can be interpreted as constructing AOAT
a column at a time. The cost of implementing this method is that A must
be accessible in both row-major and column-major order. A is stored in a
sparse, column-major data structure, similar to that described above for L.
An additional set of three arrays links the entries in each row together on a
list (this requires one m-array and an array with an entry for each nonzero)
and records the column index of each nonzero entry. It is straightforward to
find the entries in column k below row j. These entries can then be scaled
by a;k0kk and accumulated into the appropriate positions in column j of the
L-structure, using a sparse SAXPY. This method has proven to be nearly
as fast as the others, and provides a significant savings in memory.

The jki form of the construction step is also readily implemented as a
parallel algorithm, since construction of each column is independent of the
others.

11

4.6 Vectorization

The sparse and dense loops that perform a column update contain an appar-
ent dependence relation that prevents a vector compiler from automatically
vectorizing the loop. In the sparse case the dependence is based on indirect
indexing into the work array through the array of row indices. Since the row
indices of the nonzeros in any column are distinct, the loop runs correctly
when vectorized, but the compiler decision must be overridden explicitly.
Similarly, the loop that packs the work array back into the sparse data
structure must be explicitly vectorized. Other sparse SAXPY operations
appear throughout the code: during the forward and backward triangu-
lar system solution, the construction of A® AT, and operations involving A
alone, such as the ratio test, and the construction of the right hand side
of AOATz = r. The dense update of a column by other columns in the
same supernode also appears to contain a dependency, since the compiler
cannot guarantee that the sections of the array of nonzeros corresponding to
distinct columns do not overlap. Here again, the compiler incorrectly fails
to vectorize the loop and must be overridden manually. In the code tested
here, all false dependencies discovered by the VS FORTRAN compiler have
been explicitly overridden. There may be additional loops that are cur-
rently unanalyzable, but that could be restructured to allow vectorization,
for example, by moving print statements for debugging to separate loops.

4.7 Parallel Implementation

The parallel factorization algorithm utilizes self-scheduling processes dis-
patched at each iteration on all available processors. Coordination of tasks
is managed using three lists. Each list is updated inside a critical section,
under control of a lock, to prevent simultaneous writes to the same location.

e A list of tasks ready to execute. A “task” represents either a supern-
ode whose predecessors have been computed, or an individual column
ready for its sparse update. The action taken in the former case is to
replace the task on the list with the tasks corresponding to the indi-
vidual columns in the supernode (splitting). To minimize contention
for the lock, all other operations are integrated into the processing of
these two types of tasks, as described below.

e A count of the uncompleted predecessors of each column (children of
the corresponding node in the elimination tree). As each column j

12

is computed, the counter corresponding to Parent(j) is decremented.
When the predecessor count goes to zero, the column is itself ready to
compute. Note that, when the first column in a supernode is ready,
all columns in that supernode are ready as well.

e A counter of the number of columns in each supernode. As the sparse
update for each column in the supernode is completed, this counter is
decremented. When its value reaches zero, the supernode is ready for
its dense update.

Each processor executes the following algorithm:
1. Get the next task (column j) from the task list.

2. If task j represents a supernode ready to split, schedule the sparse
updates for each column and go to step 1. If j represents a single
column, go to step 3.

3. Task j represents a sparse update. Perform the update and decrement
the column counter for the supernode containing j. If this is the last
sparse update in this supernode, then perform the dense update on
the supernode and and decrement the predecessor counter for column
Parent(j). If this counter goes to zero, set j := Parent(j) and go to
step 2, else go to step 1.

When the task list is temporarily empty, the current version of the algorithm
uses a spin-lock technique to wait for additional work.

5 Computational Experience

We solved several sample problems, some from the Netlib test set [6], and
some from other sources, representing various applications of linear pro-
gramming from stochastic modeling in forestry to shipping, refinery oper-
ation and airline crew scheduling. The dimensions of the original problem
(the A matrix) are given in Table 1. These figures are after reduction by a
preprocessor that fixes variables and removes redundant constraints before
performing the minimum-degree ordering. Table 2 gives dimensions of the
AAT matrix and the number of fill-in entries in the L-factor. (Note that the
number of nonzeros given for AAT is for the lower triangle only.) Table 3
gives the percentage of columns of L that are members of a supernode. This

13

Table 1: Model dimensions

A
Models Rows Columns Nonzeros Density (%)
KPEAR 120 308 631 T 171
BRANDY 126 249 2084 6.64
SHIP04L 317 2118 6101 0.91
TEST3 364 1212 7481 1.70
GROW22 440 946 8252 1.98
SHIPOSL 520 4283 11614 0.52
AA2 531 5198 36359 1.32
MILT 586 1338 6642 0.85
NESM 646 2923 13256 0.70
SHIP12L 687 5427 14913 0.40
SCFXM3 846 1371 7558 0.65
CZPROB 927 3523 10669 0.33
GANGES 1137 1681 6740 0.35
80BAU3B 2021 9799 20648 0.10
STOCFOR2 || 2141 2031 8319 0.19
PIMS2 2405 3120 19141 0.26

is one indicator of the advantage to be expected from exploiting the supern-
ode structure to avoid sparse vector operations. Table 3 also gives the size
of the largest supernode in L.

The code used for the vector comparisons was compiled using the IBM
FORTRAN version 2.3 compiler under VM /XA and CMS 5.5. The machine
was an IBM 3090-600E with the Vector Facility and 256 megabytes of mem-
ory. The parallel tests were performed using the IBM Parallel FORTRAN
compiler, and run after the machine was upgraded to an IBM 3090-600J.

5.1 Vectorization

Table 4 compares vector and scalar versions of the factorization. For each
problem, virtual and total CPU seconds (not including input/output times
but including overhead for setting up the L data structure) are given for
each of four runs: a standard column Cholesky algorithm (KCHC) and a
column Cholesky with supernodes (KCHCS), with the code compiled in

14

Table 2: AAT and Cholesky factor L

AA! L
Models Columns Nonzeros Density (%) [Fill-ins Density
KPEAR 120 247 3.43 666 0.09
BRANDY 126 1981 24.96 2593 0.33
SHIP04L 317 3740 7.44 3977 0.08
TEST3 364 7395 11.10 5015 18.78
GROW22 440 4600 4.76 4018 8.92
SHIPOSL 520 6110 4.52 6442 0.05
AA2 531 27191 19.32 | 103898 93.16
MILT 586 15308 8.93 | 10683 15.12
NESM 646 4057 1.95 | 16976 10.10
SHIP12L 687 8145 3.46 471 3.65
SCFXM3 846 8236 2.30 4736 3.63
CZPROB 927 6616 1.54 388 1.63
GANGES 1137 7484 1.16 | 29284 0.05
80BAU3B 2021 9533 0.47 | 39972 0.02
STOCFOR2 2141 12666 0.55 | 13772 1.15
PIMS2 2405 20201 0.70 | 43564 2.21
Table 3: Supernodes

% of columns in Max size of

Models . supernode a supernode

TEST3 67.31 51

GROW22 6.36 28

AA2 95.48 143

MILT 88.06 53

NESM 50.16 29

SHIP12L 31.88 15

SCFXM3 62.77 17

CZPROB 4.21 3

STOCFOR2 35.22 27

PIMS2 59.46 120

15

Table 4: Time for each method in serial and vector mode

Serial test Vector test
Models Class [KCHC KCHC1 | KCHC KCHC1| Iter.
TESTS3 V 23.74 21.72 8.93 8.13 39 |
T 23.88 21.84| 9.01 8.21
GROW22 % 16.01 16.00 | 8.08 8.12 47
T 16.15 16.09 | 8.12 8.19
AA2 V | 32151 271.88| 60.07 50.32 25
T | 32352 273.41| 60.55 50.73
MILT \Y 60.94 61.41 | 19.85 18.69 | 50/53
T 61.31 61.75 | 20.01 18.81
NESM \Y 87.37 80.48 | 34.42 31.66 81
T 87.84 80.93 | 34.70 31.87
SHIP12L vV 16.39 16.20 | 12.11 12.04 38
T 16.47 16.29 | 12.18 12.12
SCFXM3 \% 23.67 22.73 | 13.15 12.67 55
T 23.80 23.04| 13.26 12.76
CZPROB v 15.70 15.85 | 12.42 12.53 46
T 15.81 15.97 | 12.53 12.64
STOCFOR2 || V 43.50 41.62 | 25.96 25.29 41
T 43.72 41.84 | 26.09 25.48
PIMS2 V| 203.35 173.17| 6241 53.24 38
T | 204.55 174.14| 6324 53.47

serial mode (compiled with the NOVECTOR option) and in vector mode
(with the VECTOR option and all compiler directives activated). Finally,
the number of iterations required by the primal-dual algorithm, including a
“pre-factorization” to detect any linearly dependent rows of AAT, is given.
Where two iteration counts are given, the first refers to KCHC and the
second to KCHCS. In these cases, the difference in the order of computation
causes the termination criterion to be satisfied after different numbers of
iterations in each case.

The benefits of careful vectorization are immediately apparent. Savings
range from 20% for CZPROB to 80% for AA2. These results indicate that
care is required when porting serial code to vector machines; automatic

16

vectorizing compilers are not a complete solution to the “dusty deck” prob-
lem. Vectorization is less advantageous when L is relatively sparse, and
more advantageous when L contains columns with many nonzeros. A large
fraction of columns in supernodes appears also to increase the benefits of
vectorization.

The advantages of supernodes are, of course, most pronounced when
there are many columns in supernodes and when the supernodes are large.
In CZPROB, for example, the supernode structure is disadvantageous, but
in AA2, PIMS2 and NESM the advantage from exploiting supernodes is
pronounced. This suggests that a more careful examination of the supernode
structure of a problem would be beneficial. One possible step would be to
merge columns adjacent to supernodes into the supernodes to increase their
size. This would entail including some explicit zero entries in L, but the
tradeoff for increasing the portion of dense updates should be worthwhile,
up to a point.

5.2 Parallel Implementation

Table 5 describes the results of a standalone test comparing wall-clock times
on one, three and six processors. Each test compares a straight parallel col-
umn Cholesky (essentially the above algorithm with every column treated as
an independent supernode) with the supernode algorithm described above.
The scheduling overhead for these algorithms on a single processor, as com-
pared to a uniprocessor implementation, is negligible. (Differences in iter-
ation counts between Tables 4 and 5 are due to adjustments in parameters
of the algorithm between the tests.)

Along with the parallel Cholesky algorithm, the following steps were
implemented in parallel: construction of AOAT, and computation of Az
and yA.

The performance of the supernode algorithm improves on the standard
algorithm by an average of 5% on a single processor, but increases to a 25%
average improvement on three processors and a 35% average improvement
on six processors. This points to the effectiveness of the parallel sparse
update of columns in supernodes. The average speedup of the supernode
algorithm when multiple processors are used is 1.60 for three processors and
1.85 for six processors. The maximum speedup achieved was nearly 2.0 on
three processors, and nearly 2.4 on six processors (both for the problem
MILT).

Due to the hierarchical nature of the tasks and the fact that parallelism

17

Table 5: Wall Clock Times (seconds)

P = 1 P = 3 P =
Problem __i_Eer E S C S C i
KPEAR 19 042 045] 0.34 0.40] 0.36 0.48]
BRANDY 27| 1.10 1.12| 0.85 0.90| 0.82 0.83
SHIPO4L 22| 268 271| 1.84 1.86| 2.13 2.08
TEST3 39| 741 7.00| 582 4.49| 551 4.04
GROW?22 30| 446 461| 261 2.83| 236 257
SHIPOSL 24| 4.92 4.97| 3.39 3.35| 3.03 3.04
MILT 49 || 15.37 14.04 | 1064 7.23| 9.94 5.90
NESM 66 || 22.82 21.41|16.78 12.81 | 15.79 10.95
SHIP12L 27| 7.35 7.41| 464 4.80| 4.09 4.33
SCFXM3 39| 7.83 7.90| 5.10 4.65| 4.63 4.19
CZPROB 57| 10.44 10.58| 831 7.71| 7.67 7.07
GANGES 34| 1225 11.01| 896 6.75| 838 5.51
S80BAU3B 77 || 64.48 61.07 | 51.30 40.11 | 47.87 35.16
STOCFOR2 60 || 21.89 22.23 | 12.49 12.66 | 10.19 10.77
PIMS?2 32 || 36.22 32.49 | 30.02 19.06 | 28.23 16.24

18

is exploited only in the factorization step, it is probably not reasonable to
expect linear speedup. For larger problems, it is likely that the speedup on
six processors would also improve, as the ratio of work in the factorization
step would be maintained at a higher level.

6 Conclusions

Our investigations have shown that dramatic improvements in performance
of interior point algorithms are possible if they are implemented correctly on
parallel and vector computers. We have achieved substantial performance
improvements on the IBM 3090 by exploiting its parallel and vector pro-
cessing capabilities, and the special structure inherent in the problem to be
solved.

There are several areas for future research. Better measurement and
larger test problems would give better insight into how effectively parallel
processors could be used. Additional opportunities for parallelism exist,
particularly in the solution of systems involving the factored matrix, as well
as other computations. Different methods for factorization, such as the
multifrontal algorithm or iterative methods may yet prove more suitable. In
addition, problems with special structure may prove particularly well-suited
for parallel solution.

The study of interior point methods is still in its infancy. Many issues
remain to be resolved before we can say that we have fully exploited the
capabilities of advanced computer architectures for this problem. In addi-
tion, developments in interior point methods have spurred new research into
implementation of the supposedly mature simplex method. Research into
these methods and their application in other optimization problems will cer-
tainly continue to advance the state of the art in both supercomputing and
optimization well into the future.

Acknowledgements

This work was supported in part by the Center for Research on Parallel
Computation through NSF Cooperative Agreement No. CCR-8809615.
Computational testing was conducted using the Cornell National Su-
percomputer Facility, a resource of the Center for Theory and Simulation
in Science and Engineering (Cornell Theory Center), which receives ma-
jor funding from the National Science Foundation and IBM Corporation,

19

with additional support from New York State and members of the Corpo-
rate Research Institute. The author would like to thank the Theory Center
consulting staff for their invaluable assistance.

Thanks are also due to Ho-Won Jung for assistance with early coding
and testing.

References

[1] I. Adler, N. Karmarkar, M. G. C. Resende, and G. Veiga. Data
structures and programming techniques for the implementation of Kar-
markar’s algorithm. ORSA Journal on Computing, 1(2):84-106, 1989.

[2] I. Adler, M. G. C. Resende, G. Veiga, and N. Karmarkar. An implemen-
tation of Karmarkar’s algorithm for linear programming. Mathematical
Programming, 44(3):297-336, 1989.

[3] C. C. Ashcraft, R. G. Grimes, J. G. Lewis, B. W. Peyton, and H. D.
Simon. Progress in sparse matrix methods for large linear systems

on vector supercomputers. International Journal of Supercomputing
Applications, 1(4):10-30, 1987.

[4] 1. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse
Matrices. Oxford University Press, New York NY, 1986.

(5] I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse
symmetric sets of linear equations. ACM Transactions on Mathematical
Software, 9:302-325, 1983.

[6] D. M. Gay. Electronic mail distribution of linear programming test
problems. COAL Newsletter, 13:10-13, December 1985.

[7] A. George, M. T. Heath, and J. W.-H. Liu. Parallel Cholesky fac-
torization on a shared-memory multiprocessor. Linear Algebra and its
Applications, 7:165-187, 1986.

[8] A. George and J. W.-H. Liu. Computer Solution of Large Sparse Posi-
tive Definite Systems. Prentice-Hall, Inc., Englewood Cliffs NJ, 1981.

[9] J. G. Lewis and H. D. Simon. The impact of hardware gather/scatter on
sparse Gaussian elimination. SIAM Journal of Scientific and Statistical
Computing, 9(2):304-311, March 1988.

20

[10]

[11]

[12]

[13]

[14]

[15]

[16]

J. W.-H. Liu. Modification of the minimum-degree algorithm by
multiple elimination. ACM Transactions on Mathematical Software,
11(2):141-153, June 1985.

J. W.-H. Liu. On the storage requirement in the out-of-core multifrontal
method for sparse factorization. ACM Transactions on Mathematical
Software, 12(3):249-264, 1987.

J. W.-H. Liu. The role of elimination trees in sparse factorization.
Technical report, Dept. of Computer Science, York University, North
York, Ontario, Canada, 1988.

I. J. Lustig, R. E. Marsten, and D. F. Shanno. Computational experi-
ence with a primal-dual interior point method for linear programming.
Technical Report J-89-11, School of Industrial and Systems Engineer-
ing, Georgia Institute of Technology, Atlanta GA, 1989.

R. E. Marsten, M. J. Saltzman, D. F. Shanno, G. S. Pierce, and J. F.
Ballintijn. Implementation of a dual affine interior point algorithm for
linear programming. ORSA Journal on Computing, 1(4):287-297, 1989.

K. A. McShane, C. L. Monma, and D. F. Shanno. An implementation
of a primal-dual interior point method for linear programming. ORSA
Journal on Computing, 1(3):70-83, 1989.

M. J. Saltzman, R. Subramanian, and R. E. Marsten. Implementing
an interior point LP algorithm on a supercomputer. In R. Sharda,
B. L. Golden, E. Wasil, O. Balci, and W. Stewart, editors, Impacts
of Recent Computer Advances on Operations Research, pages 158-168.
North-Holland, New York NY, 1989.

21

