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Abstract

Previous research has used program transformation to
introduce parallelism and to exploit data locality. Un-
fortunately, these two objectives have usually been con-
sidered independently. This work explores the trade-
offs between effectively utilizing parallelism and mem-
ory hierarchy on shared-memory multiprocessors. We
present a simple, but surprisingly accurate, memory
model to determine cache line reuse from both mul-
tiple accesses to the same memory location and from
consecutive memory access. The model is used in mem-
ory optimizing and loop parallelization algorithms that
effectively exploit data locality and parallelism in con-
cert. We demonstrate the efficacy of this approach with
very encouraging experimental results.

1 Introduction

Transformations to exploit parallelism and to improve
data locality are two of the most valuable compiler tech-
niques in use today. Independently, each of these op-
timizations has been shown to result in dramatic im-
provements. This paper seeks to combine the benefits
of both by using a simple memory model to drive opti-
mizations for data locality and parallelism. By unifying
the treatment of these optimizations, we are able to
place loops with data reuse on inner loops and to intro-
duce parallelism for outer loops. Our strategy produces
data locality at the innermost loops, where it is most
likely to be exploited by the hardware and places paral-
lelism at the outermost loop, where it is most effective.
If these two goals conflict, we present an algorithm that
usually reaps the benefits of both.

Optimizing data locality is necessarily both archi-
tecture and language dependent. However, the reuse
of memory locations and the consecutive access of ad-
jacent memory locations form the foundation of most
memory hierarchy optimizations. Reuse of a particu-
‘lar memory reference for arrays can be discovered using

data-dependence analysis [KKP*81]. However, reuse of
consecutive accesses, often called unit stride access, is a
significant source of reuse that can easily be determined
when the storage order of arrays and the cache line size
is known. In this paper we introduce a simple model for
estimating the cost, in memory references, of executing

,a given loop nest. The principal advantage of this model

over previous models is that it takes into account cache
reuse due to consecutive accesses to the same cache line.
We show how this model can be used to exploit data
locality at multiple levels via loop permutation.

Parallelism is usually most effective when it achieves
the highest possible granularity, the amount of work
per parallel task. Granularity is highest when paral-
lel tasks contain the largest amount of work possible.
In this paper, parallelism is introduced via the parallel
loop construct for shared-memory multiprocessors. Our
algorithm first uses the memory model to find a loop or-
ganization that exploits data locality. It then seeks to
parallelize the outermost loop or a parallel loop that can
be positioned outermost. Given sufficient iterations, it
then strip mines the loop into two loops, such that one
loop is used to achieve locality and the other is used to
introduce parallelism.

1.1 Matrix Multiply Example

As an example of this process, consider the ubiquitous
matrix multiply.
DOJ=1,N
DOK=1,N
DOI=1,N
C(1J) = C(1,J) + A(LK) * B(K,J)

Assuming arrays are stored such that columns of the ar-
rays are in consecutive memory locations, i.e. column-
major order, this loop organization exploits data local-
ity in the following manner. The consecutive access on
the inner I loop to C(1,J) and A(LK) provide an oppor-
tunity for cache line reuse when the cache line size is
greater than 1. There is also a loop-invariant reuse of
B(K,J) on the I loop. Additionally, the J and the I loops
can be parallel. However, if the number of processors,
P, is less than the number of iterations of either loop, it
is not profitable to utilize both levels of parallelism at
once due to additional scheduling overhead. A better
execution time would result by maximizing the granu-
larity of one level of the parallelism and then matching
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it to the machine. If N = P, selecting J to be executed in
parallel preserves data locality and introduces a single
level of parallelism with maximum granularity.
PARALLEL DOJ=1,N
DOK=1,N
DOI=1,N
C(L,J) = C(1,J) + A(LK) * B(K,J)
However, if the number of loop iterations is greater than
the number of processors, N > P, it is often useful to com-
bine independent iterations into a single parallel task
to achieve granularity that matches the machine. The
parallel loop is strip mined by the number of processors
where the strip size is SS = [ N/P ]. We call the J loop
the strip and the JJ loop, which walks between strips,
the iterator.
PARALLEL DO JJ =1,
DO J = JJ, MIN(JJ
DOK=1,N
DOI=IN
c(1,d) = C(1LJ) + A(LK) * B(K,J)
The parallel JJ loop carves up the data space nicely,
but if each processor’s cache is still not large enough
to contain all of array A, tiling the loop nest further
improves performance by providing reuse of A. Tiling
combines strip mining and loop interchange to promote
reuse across a loop nest [IT88, Wol89a]. For matrix
multiply, the loop nest may be tiled by strip mining the
K loop by TS and then interchanging it with J.
PARALLEL DO JJ =1,N, SS§
DOKK =1,N, TS
DO J = JJ, MIN(JJ + SS-1,N) .
DO K = KK, MIN(KK + B-1,N)
DOI=IN
c(1,J) = ¢(1J) + A(LK) * B(K,J)
Here, TS is selected based on the cache size. This orga-
nization moves the reuse of A(1:N,KK:KK+TS-1) on the
J loop closer together in time, making it more likely to
still be in cache.
This optimization approach may be divided into three
phases:
1. optimizing to improve data locality,
2. finding and positioning a parallel loop, and
3. performing low-level memory optimizations such as
tiling for cache and placing references in registers

[LRW91, CCK90].

This paper focuses on the first two phases. We advocate
the first two phases be followed by a low-level memory
optimizing phase, but do not address it here.

The remainder of this paper is divided into 10 sec-
tions. We first present some terms used in this paper to
describe data dependence and the machine model. The
next section explores and illustrates the effects of par-
allelism and memory access on performance. The next
two sections present a cost model for determining reuse
and an algorithm for improving it. Section 6 describes
the parallelization strategy. The overall strategy com-
bines the two in Section 7. In Section 8, experimental
results are reported. We then overview related work
and conclude.

N, SS
+8SS-1,N)

2 Background
2.1 Data Dependence

Dependence analysis is the compile-time analysis of a
program’s memory accesses. A data dependence be-
tween two references Ref, and Ref, indicates that they
read or write a common memory location [KKP*81].
True, anti, and output dependences arise when at least
one reference is write; the order between Ref, and Ref,
must be preserved to maintain the semantics of the orig-
inal program. Input dependences arise if both Ref, and
Ref, are reads; they do not restrict program order.

Data dependences may be characterized by their ac-
cess pattern between loop iterations. The number of
loop iterations d separating the source and sink of the
dependence is its dependence distance [KMC72, Lam74];
it may also be summarized as a dependence direction
consisting of ‘<’, ‘=", or ‘>’ [WB87, Wol89b].

Dependence distances and directions are represented
as a vector whose elements, displayed left to right, rep-
resent the dependence from the outermost to the inner-
most loop in the nest. By definition all distance and
direction vectors are lexicographically positive. We use
6= (61, ..,6n) to represent a distance or direction vec-
tor, where §; is the dependence distance or direction for
the loop at level 1.

Dependences may also be characterized as either
loop-independent or loop-carried. Loop-independent de-
pendences occur on the same iteration of a loop. A
dependence between iterations of a loop is called loop-
carried and prevents the iterations of a loop from being
executed in parallel [AK87]. A dependence is carried by
the outermost loop for which the element in the direc-
tion vector is not an ‘=".

Data dependence is used to determine the legality of
a given loop permutation by checking whether any per-
muted true, anti, or output dependence vector becomes
lexicographically negative [Ban90b, WL90]. Data de-
pendence also characterizes reuse of individual memory
locations [CCK90].

2.2 Memory and Language Model

The techniques developed in this paper are intended
for shared-memory multiprocessors where each proces-
sor has at a local cache and the processors are connected
with a common bus. Because we are evaluating reuse,
we require some knowledge of the memory hierarchy.
However, because our model is very simple, only :ain-
imal knowledge of the cache is required; the compiler
must know the cache line size (cls). The size, set as-
sociativity, and replacement policy of the cache are not
important here. In addition, we assume a write-back
cache and ignore non-unique write references. If the
cache is write-through, these writes should be included.

In addition, we only concern ourselves with memory
accesses caused by array references, since they domi-
nate memory access in scientific Fortran codes. We also
assume that arrays are stored in column-major order,
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Figure 1: Memory and parallelism tradeoffs

where unit stride accesses in the first array dimension
translate into contiguous memory accesses. Our results
are also valid for row-major arrays such as those found
in C with only minor changes.

3 Tradeoffs in Optimization

This section illustrates with an experiment the influence
of memory reuse and parallelism granularity on speed-
up. As expected, it indicates the best performance is
possible only when both are utilized effectively in con-
cert. It also shows that when both cannot be achieved
at once, there are situations where favoring one or the
other results in the best execution time. Neither always
dominates. To illustrate, we phrase the following ques-
tion.

Given enough computation to make parallelism prof-
itable, what is the effect of reuse and how should it affect
the optimization strategy?

Figure 1 presents the results of executing different par-
allel versions of the following loop nest on 18 processors
of a Sequent Symmetry S81 with 20 processors, with
increasing amounts of total work.

DOH=1,L
C(L, J) = C(I, 1) + A(L, J) + B(L, J)
The total amount of work is increased by varying the
upper bounds N and M from 2 to the number of pro-
cessors (P = 18). We consider positioning I or J as the
outer parallel loop in the nest. In Figure 1, the best
version of this loop nest has an outer parallel J loop
with 18 iterations (N = 18) and total work is increased

by varying M from 2 to 18. Each of the 18 processors ac-
cesses distinct columns of each array. This organization
exploits cache line reuse on each processor and results
in linearly-scalable speed-up.

When the J loop is outermost and the number of
parallel iterations of is varied from 2 to 18 along with P
and the I loop contains 18 iterations, the total amount
of work increases, but the work per processor remains
the same. This organization is illustrated by the gran
line. In this case, the speed-up scales by the number of
parallel iterations, but cache line reuse is still facilitated
on each processor.

If instead the I loop is made outermost and parallel,
then processors must compete for the cache line which
contains C(1,J) in order to write it. This competition
is called false sharing. In addition, multiple processors
require cache lines containing A(1,J) and B(l,J), increas-
ing network contention and total memory utilization.
When the number of parallel iterations of the I loop as
outermost varies from 2 to 18 along with P and the J
loop contains 18 iterations, the worst line indicates the
performance. If the number of parallel iterations of I is
held at 18 while the J loop is varied from 2 to 18, the
mem line results.

Compare the pair of lines best and mem. The fac-
tor of two difference is due to the benefit of cache line
reuse in best, and the limitations of false sharing and in-
creased bus and memory utilization in mem. The same
comparison holds for the gran and worst lines. These
results indicate that the parallelizing algorithm must
recognize reuse and false sharing to be effective.

Now compare the pair of crossing lines gran and mem.
These computations differ only by an interchange. An
optimization strategy that only used loop interchange
would be forced to pick between the two. To obtain
the best performance for this example, the J loop would
be outermost when N > 8, otherwise the I loop should
be outermost. In addition, this “crossover” point would
need to be determined for each computation, a daunting
task. Our approach instead combines loop interchange
and strip mining in a parallelization strategy that min-
imizes false sharing and exploits data reuse.

4 Optimizing Data Locality

In this section we describe two sources of data reuse,
then we incorporate both in a simple yet realistic cost
model. In subsequent sections, this cost model is used
to guide optimizations for improving data locality and
exploiting parallelism.

4.1 Sources of Data Reuse

We first consider the two major sources of data reuse.
e multiple accesses to the same memory location
e accesses to consecutive memory locations (i.e.
stride 1 or unit stride access)
Multiple accesses to the same memory location may
arise from either a single array reference or multiple
array references. These accesses are loop-independent



if they occur in the same loop iteration, and are loop-
carried if they occur on different loop iterations. Wolf
and Lam call this temporal reuse [WL91]. The most
obvious source of temporal reuse is from loop-invariant
references. For instance, consider the reference to A(J)
in the following loop nest. It is invariant with respect
to the I loop, and is reused by each iteration.
DOJ=1,N
DOI=1N
S=S+ A(J) + B(I) + C(J.])

A second source of data reuse is caused by multiple
accesses to consecutive memory locations. For instance,
each cache line is reused multiple times on the inner I
loop for B(I) in the above example. Wolf and Lam call
this spatial reuse [WL91]. The actual amount of reuse
is dependent on the size of B(I) relative to the cache
line size and the pattern of intervening references. For
the rest of this paper, we assume for simplicity that the
cache line size is expressed as a multiple of the number
of array elements. For reasonably large computations,
references such as C(J,I) do not provide any reuse on the
I loop, because the desired cache lines have been flushed
by intervening memory accesses.

Previous researchers have studied techniques for im-
proving locality of accesses for registers, cache, and
pages [AS79, CCK90, WL91, GJGS88]. In this paper
we concentrate on improving the locality of accesses for
cache; i.e. we attempt to increases the locality of ac-
cess to the same cache line. Empirical results show that
improving spatial reuse can be significantly more effec-
tive than techniques that consider temporal reuse alone
[KMT92]. In addition, consecutive memory access re-
sults in reuse at all levels of the memory hierarchy ex-
cept for registers.

4.2 Simplifying Assumnptions

To simplify analysis we make two assumptions. First,
our loop cost function assumes that reuse occurs only
across iterations of the innermost loop. This assump-
tion decreases precision but greatly simplifies analysis,
since it allows the number of cache line accesses to be
calculated independent of the permutation of all outer
loops. This assumption is accurate if the inner loop con-
tains a sufficiently large number of memory accesses to
completely flush the cache after executing all of its iter-
ations. We show later that our optimizations to improve
locality can select a desirable permutation of outer loops
even with this restriction.

Cache interference refers to the situation where two
memory locations are mapped to the same cache line,
eliminating an opportunity to exploit reuse for one of
the references. Our second assumption is that cache
interferences occur rarely for small numbers of inner
loop iterations, compared to the total number of dis-
tinct cache lines accessed in those iterations. In other
words, we expect very few interferences for each cache
line being reused, since the cache line is only needed

Figure 2: Algorithm RefGroup

INPUT:
Refs = {Ref, ... Ref,} references
DG = {(Ref,; chfj), ...} the dependence graph
| = candidate innermost loop

OUTPUT:
{RefGroup, ... RefGroup,,} reference groups for I
ALGORITHM:
m=20
while Refs # # do
m=m-+1

RefGroup,,, = {r}, where r € Refs
Refs = Refs — {r}
for each (rér') or (r' §r) € DG s.t. r' € Refs
if (& is a constant d) & (& is the only
nonzero entry in § )
RefGroup,, = RefGroup,,, + {r'}
Refs = Refs — {r'}
endif
endfor
endwhile

for a small number of consecutive inner loop iterations.
Lam et al. show that this assumption may not hold if
cache lines must remain live for longer periods of time.
Considerable interference may take place when loops
are tiled to increase reuse across outer loops [LRW91].

4.3 Loop Cost Function

Given these assumptions, we present a loop cost func-
tion LoopCost based on our memory model. Its goal
is to estimate the total number of cache lines accessed
when a candidate loop ! is positioned as the innermost
loop. The result is used to guide loop permutation to
improve data locality. The estimate is computed in two
steps. First, references that will access the same cache
line in the same or different iterations of the ! loop are
combined using RefGroup. Second, the number of cache
lines accessed by all groups is calculated using Loop-
Cost.

4.4 RefGroup

The goal of the RefGroup algorithm is to partition vari-
able references in the program text into reference groups
such that all references in a group access the same mem-
ory locations, and consequently the same cache line.
Wolf and Lam call these groups equivalence classes ex-
hibiting group-temporal reuse. The partition process is
particularly simple here because we only consider reuse
for each loop when it is positioned innermost.

Two references are in the same reference group for
loop I if they actually access some common memory
location (data dependence § exists between them), and
the reuse occurs on [ if it is positioned as the innermost
loop. The common accesses then occur on either the
same iteration of ! (& = 0) or across d iterations of [



(& = d). More formally we define RefGroup as follows.

Definition: Two references Ref, and Ref, belong to
the same reference group with respect to loop [ if and
only if:

1. 3 Ref,6Ref, , and

2. & is a loop-independent dependence, or
&, the entry in 6 corresponding to loop I, is a con-
stant d (d may be zero) and all other entries are
zero.

4.4.1 Jacobi Example

For instance, consider the following Jacobi iteration ex-
ample.
DO I=2,N-1
DO J = 2,N-1
A(LD) = 0.2* (B(J,]) + B(J-1,]) + B(J,I-1)
+ B(J+1,]) + B(J,I+1))

Data dependences connect all references to B. The ref-
erence groups for the I loop are:

{a@.n}, {BED).B(,I1),BI+1)},
{B(3-1,h}, {BU+1.D)}.

The reference groups for the J loop are:

{a@.D}, {BU.D,B(-1.1),BJ+1,D},
{B(3,I-1)}, {B(3.I+1)}.

Algorithm RefGroup is shown in Figure 2. Its efficiency
may be improved by pruning all identical array ref-
erences, since they access the same memory location
on each iteration and always fall in the same reference
group.

4.5 LoopCost

After the number of reference groups for loop ! is com-
puted with RefGroup, the algorithm RefCost is applied
to estimate the total number of cache lines that would
accessed by each reference group if [ were the innermost
loop. Once again, the task is simplified because we only
consider reuse between iterations of [.

RefCost works by considering one array reference Ref
from each reference group; these representative refer-
ences are classified as loop-invariant, consecutive, or
non-consecutive with respect to loop l. Loop-invariant
array references have subscripts that do not vary with
I; they require only one cache line for all iterations of 1.1
Consecutive array accesses vary with [ only in the first
subscript dimension. They access a new cache line every
cls iterations, resulting in trip/cls cache line accesses,
assuming | performs trip iterations. Fewer cache lines
are reused for nonunit strides. Non-consecutive array
accesses vary with [ in some other subscript dimension;
they access a different cache line each iteration, yielding
a total of trip cache line accesses.

10f course, loop-invariant references should eventually be put
in registers by later optimizations [CCK90].

Once RefCost is computed, the algorithm LoopCost
calculates the total number of cache lines accessed by
all references when [ is the innermost loop. It simply
sums RefCost for all reference groups, then multiplies
the result by the trip counts of all the remaining loops.
This calculation will underestimate the number of cache
lines accessed on the inner loop, if the distance of the
dependences for a particular RefGroup set are greater
than cls. Also, slight underestimates occurs because
the exact alignment of arrays in memory is not known
until run-time. LoopCost will overestimate the number
of cache lines, if there is additional reuse across an outer
loop.

LoopCost is expressed more formally in Figure 3 for
the following loop nest containing one array reference
from each reference group RefGroup, ... RefGroup,y,:

do i1 = ")1, ub1,51
do i2 = ”)Q, ubg, S2

do i, = lb,, uby,, sp

Refl(fl(il,...,in),. ..,fj(il,...,iﬂ))
Ref . (91(31,. .. 0n), - - . in))

Note that LoopCost can be used to calculate cache line
accesses even for array references with complex sub-
script expressions. For instance, it determines that
A(I+J+N) results in consecutive memory accesses with
respect to both the I and J loops.

1 g(iy, -

4.6 Imperfectly Nested Loops

Because of their simplicity, both RefGroup and Loop-
Cost can also be applied to imperfectly nested loops.
Consider the following example, where the first defini-
tion of A(J) is imperfectly nested:

DO J =1, 100
A(J)=0
DO I=1,100
A() = AQD) + ...

RefGroup would place all references to A(J) in the same
reference group. When we apply RefCost to calculate
the number of cache lines accessed by a reference group,
we need to select the most deeply nested member of
the group. LoopCost then multiplies the result by the’
trip counts of all the loops that actually enclose the
reference.

5 Loop Permutation

The previous section presents our cost model for eval-
uating the data locality of a given loop structure with
respect to cache. In this section we show how the sim-
plicity and accuracy of the cost model guides loop per-
mutation to restructure a loop nest for better data lo-
cality.

A naive optimization algorithm would simply gener-
ate all legal loop permutations and select the permu-
tation that yields the best estimated data locality us-
ing LoopCost. Unfortunately, generating all possible



Figure 3: Algorithm LoopCost

INPUT: L={l,...,1n} aloop nest with headers lb, ub, s
R = {Ref,,..., Ref,,} representatives from each reference group
tripr = (uby = by + s1)/s1
cls = the cache line size,
appear(f) = the set of index variables that appears in the subscript expression f
coeff(ir, f) = the coefficient of the index variable 7; in the subscript f (it may be zero)
OuTtpuT: :
LoopCost(l) = number of cache lines accessed with { as innermost loop
ALGORITHM: m
LoopCost(l) = Y | RefCost(Refy(fi(i1,---,in), - fi(i1,--,in)) * [T tripa
k=1 h#l
RefCost(Ref,) =
1 if (i1 € appear(f1)) A ... A (i1 € appear(f;)) loop invariant

tripi/cls if (i1 € appear(f1)) A (|coeff(ir, fi)l = D) A(lsi] = 1) A

unit stride

(i1 & appear(f2)) A ... A (i1 & appear(f;))

trip otherwise

no reuse

loop permutations takes time that is exponential in the
number of loops and can be very expensive in practice.
It becomes increasingly unappealing when transforma-
tions such as strip mining introduce even larger search
spaces.

Instead of testing all possible permutations, we show
how our cost model allows us to design an algorithm to
directly compute a preferred loop permutation.

5.1 Memory Order

The locality evaluating function LoopCost does not cal-
culate data reuse on outer loops; however, we can still
restructure programs to exploit outer loop reuse. The
key insight is that if loop ! causes more reuse than loop
I’ when both are considered as innermost loops, I will
also promote more reuse than I’ when both loops are
placed at the same outer loop position.

LoopCost can thus be considered to be a measure
of the reuse carried by a loop. This allows us to se-
lect a desired permutation of loops called memory or-
der that yields the best estimated data locality. We
simply rank each loop ! using LoopCost, ordering the
loops from outermost to innermost (I ...l,) such that
LoopCost(l;—1) > LoopCost(l;).

5.1.1 Memory Order Algorithm

The algorithm MemoryOrder is defined as follows. It
computes LoopCost for each loop, sorts the loops in
order of decreasing cache line accesses (i.e. increasing
reuse), and returns this loop permutation.

5.1.2 Example

As an example, recall matrix multiply. We compute
memory order with cls = 4. The reference groups for
matrix multiply put the two references to C(1,J) in the
same group on all the loops and A(L,K) and B(K,J) are

placed in separate groups. LoopCost computes the rel-
ative reuse on each of the loops as seen below.

LoopCost as innermost

references J K I
C(1,J) n=n? 1+n? 1/4n = n?
A(I,K) 1+n? n = n? 1/4n = n?
B(K, J) n = n? 1/4n = n? 1+n?
totals | 2n3 +n? | 5/4n® +n2 | 1/2n% + n?

The algorithm MemoryOrder uses these costs to com-
pute a preferred loop ordering of (3, K, I), from outermost
to innermost. The same result is obtained by previous
researchers [AK84, WL91].

5.2 Permuting to Achieve Memory Order

We must now decide whether the desired memory or-
der is legal. If it is not, we must select some legal
loop permutation close to memory order. To deter-
mine whether a loop permutation is legal is straight-
forward. We permute the entries in the distance or di-
rection vector for every true, anti, and output depen-
dence to reflect the desired loop permutation. The loop
permutation is illegal if and only if the first nonzero
entry of some vector is negative, indicating that the ex-
ecution order of a data dependence has been reversed
[AK84, Ban90a, Ban90b, WL90].

In many cases, the loop permutation calculated by
MemoryOrder is legal and we are finished. However, if
the desired memory order is prevented by data depen-
dences, we use a simple heuristic for calculating a legal
loop permutation near memory order. The algorithm
for determining this organi:ation takes maz(D, n?)
time in the worst-case where n is the depth of the nest
and D is the number of dependences, a definite improve-
ment over considering all legal permutations, which is



exponential in n. The algorithm is guaranteed to find
a legal permutation with the desired inner loop, if one
exists.

5.2.1 Permutation Algorithm

Given a memory ordering {is,, t0,, - -, o, } Of the loops
{31,142, ...,in} where i,, has the least reuse and i,, has
the most, we can test if it is a legal permutation di-
rectly by performing the equivalent permutation on the
elements of the direction vectors. If the result is a legal
set of direction vectors, the loops are permuted accord-
ingly.

Otherwise, we attempt to achieve a “nearby” per-
mutation with the algorithm NearbyPermutation. The
algorithm builds up a legal permutation in P by first
testing to see if the loop i,, is legal in the outermost
position. Ifit is legal, it is added to P and removed from
L. If it is not legal, the next loop in L is tested. Once
a loop [ is positioned, the process is repeated starting
from the beginning of £ — {!} until £ is empty. The
following theorem holds for the NearbyPermutation al-
gorithm.

Theorem: If there ezists a legal permutation where
on is the innermost loop, then NearbyPermutation will
find a permutation where o, s innermost.

The proof by contradiction of the theorem proceeds as
follows. Given an original set of legal direction vectors,
each step of the “for” is guaranteed to find a loop which
results in a legal direction vector, otherwise the original
was not legal [AK84, Ban90a]. In addition, if any loop
o, through o,-; may be legally positioned prior to o,
it will be.

This characteristic is important because most data
reuse occurs on the innermost loop and is due to spatial
reuse, so positioning the inner loop correctly will yield
the best data locality.

6 Parallelism

In the following two subsections, parallelism is evalu-
ated and exploited. We first present a performance
estimator that evaluates the potential benefit of par-
allelism. A parallel code generation strategy then uses
performance estimation and the cost model developed
in the previous section with other transformations to
combine effective parallelism and memory order, mak-
ing tradeoffs as necessary.

6.1 Performance Estiination

This section uses performance estimation to quantify
‘the effects of parallelism on execution time. Our per-
formance estimator predicts the cost of parallel and se-
quential performance using a loop model and a training
. set approach.

The goal of our performance estimator is to assist
in code generation for both shared and distributed
memory multiprocessors [BFKK92, KMM91]. Model-
ing the target machines at an architectural level would

Figure 4: Algorithm NearbyPermutation

INPUT:
© = {i1,12,...,in}, the original loop ordering
DV = set of original legal direction vectors for I,
L = {iay,ia,--.,3a,} , a permutation of O

OuTPUT:
P a nearby permutation of O

ALGORITHM:
P=90; k=0; m=n
while L# 0
for j=1,m
l=lecl
if direction vectors for {p1,..., Pk, !} are legal
P={p,...,pk 1}
L=C-{l}; k=k+1; m=m-1
break for
endif
endfor
endwhile

require calculating an analytical model for each sup-
ported architecture. Instead our performance estimator
uses a training set to characterize each architecture in a
machine-independent fashion. A training set is a group
of kernel computations that are compiled, executed and
timed on each target machine. They measure the cost of
operations such as multiplication, branching, intrinsics,
and loop overhead. These costs are then made avail-
able to the performance estimator via a table of data.
Note, the training sets for the performance estimator
only measure access times to data in registers or the
closest cache.

Of particular interest is the estimation of parallel
loops. Given sufficient parallel granularity, using all
available processors results in the best execution time.
Estimating the cost in this circumstance may be mod-
eled by determining the following.

c; = cost of starting parallel execution
c; = cost of forking and synchronizing
a parallel process
P = number of processors
b = number of iterations of the parallel loop
t(B) = cost of the loop body

If the loop bounds are unknown, a guess is used that is
based on the declared dimension of the arrays accessed
in the loop. With these parameters the performance of
a parallel loop with sufficient work may be estimated
by:

¢y +c P+ [%] #(B) .

However, if the amount of work is not sufficient, parallel
loop execution is more difficult to model. Instead of an
equation, a table is used to indicate the appropriate
number of processors for the best performance. The
model and the table are generated using a training set.



Interpolated contours in microseconds

- . . AP, IR

400

processors

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19

T T 1 T T 1 i T T Ll L
o S0 100 150 200 250 300 350 400 450 SO0

total work
Figure 5: Parallel loop training set

The sample training set for determining parallel loop
overhead begins by varying the total amount of work.
For each unit of work, the number of processors is varied
from 1 to the total available. The number of processors
which minimize the execution time of this work is se-
lected. The result of a training run for parallel loops on
the Sequent S81 appears in Figure 5.

This particular training run repeatedly performed a
single scalar operation that executed for approximately
10 microseconds, which represents one unit of work in
Figure 5. Each of the contour lines indicates a partic-
ular execution time. The single line cutting across the
contour lines represents the minimum execution time
for executing a particular work load and the appropri-
ate number of processors. When total work is below
250 a table determines the appropriate number of pro-
cessors and approximate execution time. Once the total
work is over about 250, the parallel loop model is used.
The estimator provides a single cost function for evalu-
ating loops that chooses between the techniques based
on total work and number of loop iterations.

Estimate(l, how) returns (7, np) where
l is a loop with body B
how indicates whether ! may be run in parallel

This function returns a tuple (7, np) with an estimate 7
which is the minimal execution time and the number of
processors np necessary to obtain the estimate, based
on whether the loop is parallel. Note, if the loop is
sequential or it is not profitable to run it in parallel,
the sequential running time and np = 1 are returned.

6.2 Introducing Parallelism

The key to introducing parallelism is to maintain mem-
ory order during parallelization by using strip mining

and loop shifting (loop shifting moves an inner loop
outward across one or more loops). Strip mining per-
forms two functions in parallelization. (1) It preserves
cache line reuse in parallel execution. Without strip
mining, consecutive iterations may be scheduled on dif-
ferent processors, denying cache line reuse. (2) Because
strip mining results in two loops, the parallel iterator
loop may be shifted outward to maximize granularity
while the sequential strip remains in place providing
the data locality introduced using memory order. To il-
lustrate this point, consider the subroutine dmxpy from
Linpackd written in memory order [DBMST79].
DO J = JMIN, N2
DOI=1,N1
Y(I) = Y(I) + X(J) * M(1,J)

The J loop is not parallel. The I loop can be parallel.
Both contain reuse. A simple parallelization that max-
imizes granularity would interchange the two loops and
make the I loop parallel without strip mining. Unfortu-
nately with this organization, the parallel loop may be
scheduled such that consecutive iterations are assigned
to different processors causing false sharing of Y and
eliminating cache line reuse for consecutive accesses to
X and M. In addition, cache lines containing the same
array elements would be required at multiple processors,
increasing total memory and bus utilization.

We instead strip mine a parallel loop by strip size
ss =[N1/P] to provide reuse on the strip and parallelize
the resultant iterator. If the parallel loop is outermost,
as in matrix multiply, parallelization is complete. If
not, we use loop shifting to move the parallel iterator
to its outermost legal position, maximizing its granu-
larity. Applying this strategy to dmxpy, we begin with
the memory ordered loop nest. The I loop is the only
parallel loop and it contains reuse. Therefore, it is strip
mined. The parallel iterator is not outermost, but it is
legally shifted to the outermost position. The compiler
shifts the loop, resulting in maximum granularity and
data locality as illustrated below.

PARALLEL DO I = 1, N1, SS
DO J = JMIN, N2
DO II = I, MIN(I + SS- 1, N1)
Y(II) = Y(II) + X(J) * M(ILJ)

6.3 Strip Mining Algorithm

If a loop is selected to be performed in parallel, it is
strip mined if it contains any reuse. Given sufficient
iterations, strip mining exploits data locality and par-
allelism by using [N/P] as the strip size where N is the
number of iterations. Assuming cls < P, the iteration
space is sufficiently large if P < N. If

P<N<cls=P,

strip mining by [N/P] is less than the c/s and may
result in false sharing. However, the granularity of the
parallel loop does match P and some reuse will occur.
In this case, we still strip mine by [N/P]. However, if
N < P, strip mining may provide reuse but at the cost of
drastically reducing the granularity of parallelism. This

?



Figure 6: Algorithm Parallelize

INPUT: L = {o01,...,0n} a legal permutation

OutpuT: T a parallelizing transformation

ALGORITHM:
T=9
fory;=1,n
fork=j,n
if ok legal at position j & parallel
T = { StripMine(ox),
shift iterator to j, parallelize it }
return 7
elseif oy legal at j & o; becomes parallel
T = {StripMine(ok), shift k iterator to j,
StripMine(new o;41),
parallelize the j+1 iterator }
endif
endfor
if T # 0 return 7
endfor

tradeoff is very machine specific. We choose not to strip
mine when N < P.

When memory order is computed, the loops are
marked to indicate if they contain any reuse. If there is
reuse, the strip mining algorithm uses the above equa-
tions to select a strip size that maximizes granularity
and reuse. If there is no reuse, the strip mining algo-
rithm does not perform strip mining, giving more flexi-
bility to the scheduler.

6.4 Parallelization Algorithm

For memory ordered loop nests that are not parallel on
the outermost loop, the Parallelization algorithm uses
loop shifting to introduce parallelism. It uses loop shift-
ing, rather than a general loop permutation algorithm,
in order to minimize the effect of parallelization on data
locality. It performs strip mining when the loop con-
tains reuse before shifting for the same reason.

The algorithm for introducing parallelism into mem-
ory order appears in Figure 6. It begins by testing
whether the outermost loop is parallel. In the first it-
eration of the “for k” (j = k = 1), the first “if” tests if
the outermost loop is parallel. Trivially, a shift of loop
o; to position j is always legal.

If the loop is parallel, it is strip mined and parallelized
and the algorithm returns. If the loop is not parallel, a
legal shift of an inner loop to position j which is parallel
at position j is sought. If a parallel loop is found that
can be shifted outermost to j, it is strip mined, par-
allelized and shifted and the algorithm returns. Other-
wise, a shift to position j may cause the next inner loop,
i.e. the loop originally positioned at j, to be parallel.
This situation is determined in the “elseif.” Because it
is more desirable to parallelize a loop at position j than
at j + 1, all other shifts to position j are considered
before this parallelization is returned at the completion

Figure 7: Algorithm Optimizer

INPUT: L={l,...,.ln}
OutpuT: T an optimization of £
ALGORITHM:

O = MemoryOrder(£)

np = Estimate (O, parallel)

if np > 1 (parallelism is profitable)
T = Parallelize(O)

endif

perform { O, T }

of the “for k.”

In Figure 6 the Parallelize algorithm does not detect
when strip mining results in a strip size of less than cls
or strip mining is not performed due to insufficient par-
allel iterations. As we saw in Section 3 these conditions
are unavoidable in some cases and the best possible per-
formance is gained even when they hold. However, we
extend Parallelize as follows to seek a better paralleliza-
tion for which neither condition holds.

If StripMine returns with a strip size of less than cls
or does not strip mine due to insufficient parallel iter-
ations, then the number of parallel iterations PI and
the size of the strip SS are recorded and the “for k”
loop continues instead of returning. If the “for k” finds
a parallelization where neither condition holds, it re-
turns. Otherwise, at the completion of the “for k” it
selects the parallelization with the largest pair (PI, SS).

7 Optimization Algorithm

The optimization driver for exploiting data reuse and
introducing parallelism appears in Figure 7. It com-
bines the component algorithms described in the previ-
ous sections and is also O(n?) time.

It first calls MemoryOrder to optimize data locality
via loop permutation. It then determines whether the
loop contains sufficient computation to pursue paral-
lelism. If it does, the memory ordered loop nest is pro-
vided to the algorithm Parallelize. If needed, Parallelize
uses strip mining and loop shifting to introduce loop
level parallelism. :

The search space in Parallelize is constrained to meet
our goal of perturbing the memory order as little as
possible. If parallelism is not discovered and would be
profitable, other optimization strategies that consider
all loop permutations, loop skewing [WL90], or loop
distribution [McK92] should be explored.

8 Experimental results

We tested the algorithm for optimizing data locality in-
dependently and report some of those results here. The
overall parallelization strategy was also tested by ap-
plying it by hand to several kernels and to the program
Erlebacher, provided by Thomas Eidson from ICASE.
The results of these experiments are very promising.



8.1 Matrix multiply

We executed all possible loop permutations of matrix
multiply for 3 problem sizes, 150 x 150, 300 x 300 and
512x 512, on a variety of uniprocessors to determine the
accuracy of the MemoryOrder in predicting the best
loop permutations. In Table 1, the permutations are
ordered from the most desirable to the least based on
the ranking computed by MemoryOrder. On many of
the processors, memory order JKI produced the best
results. On all the processors but the Sequent, the entire
ranking generally served to accurately predict relative
performance. These results illustrate that LoopCost is
effective in predicting relative reuse on outer loops as
well as inner loops.

Table 1: Matrix Multiply (in seconds)

Loop Permutation
Processor JKI [ KIT JJIK | UK | KIJ [ IKJ
150 x 150 )
Sequent Weitek | 26.0 | 27.1 | 31.1 | 30.7 | 28.4 | 26.9
Sun Sparc2 233 | 2.25 | 3.20 | 3.16 | 2.81 | 2.79
Intel i860 1.16 | 1.17 | 1.23 | 1.18 | 3.50 | 3.42
IBM RS6000 0.42 | 0.46 | 0.36 | 0.38 | 1.08 | 1.08
300 x 300
Sun Sparc2 183 | 178 | 26.1 | 25.2 | 24.9 | 27.1
Intel i860 9.7 | 10.2 | 21.7 | 21.8 | 59.1 | 58.9
IBM RS6000 3.37 | 3.47 | 12.5 | 12.5 | 56.4 | 56.5
512 X 512
Sun Sparc2 91.0 | 93.6 | 223 | 240 | 277 | 336
Intel i860 60.2 | 46.7 | 143 | 156 | 292 | 292
IBM RS6000 16.7 | 17.0 183 186 399 399

Interestingly, the disparity in execution times between
permutations became greater as the processor speed in-
creased. On the individual processors, execution times
varied by significant factors of up to 3.69 on the Sparc2,
6.25 on the 1860, and a dramatic 23.89 on the RS6000.
These results indicate that data locality should be the
overwhelming force driving scalar compilers today.

Table 2: Speed-ups for Parallel Matrix Multiply

speed-up of parallel JKI tiled
over over

sequential JKI | sequential JKI tiled
19 processors
150x150 20.5 18.8
300x300 20.1 18.7
7 processors
150x150 7.5 6.8
300x300 7.5 7.0

The speed-ups of a parallel tiled matrix multiply on 7
and 19 processors of a Sequent Symmetry S81 for arrays
of size 150 x 150 and 300 x 300 are presented in Table 2.
We ran a sequential version with the loops in memory
order JKI, a sequential tiled version, and the identically
tiled parallel version. The parallel version is tiled by 4
and is the same version presented in Section 1.1. Be-
sides tiling, no other low-level memory optimizations
were used. The speed-ups were basically linear for both

matrix sizes when comparing the two tiled versions.

8.2 Dmxpy

The subroutine dmxpy from Linpack was optimized us-
ing these algorithms as illustrated in Section 6.2. In sci-
entific programs, there are many instances of this type
of doubly-nested loop which iterates over vectors and/or
matrices, where only one loop is parallel and it is best
ordered at the innermost position. These loops may be
an artifact of a vectorizable programming style. They
appear frequently in the Perfect benchmarks [CKPK90],
the Level 2 BLAS [DCHH88], and the Livermore loops
[McMS86].

Table 3 illustrates the performance benefits with the
organization of dmxpy generated by our algorithm on
matrices of size 200 x 200 on 19 processors. For compar-
ison, the performance when the I strip is not returned
to its best memory position and a parallel inner I loop
were also measured.

Table 3: Dmxpy on 19 processors

loop organization
I loop parallel
IJII | IIIJ | JI
speed-up over sequential JI | 16.4 13.8 2.9

8.3 Erlebacher

Erlebacher is a tri-diagonal solver for the calculation
of variable derivatives written by Thomas Eidson at
ICASE, NASA-Langley. It uses 3 dimensional 64 x 64 x
64 arrays. It contains 1341 lines of Fortran. The Op-
timizer algorithm was performed by hand on the entire
program. No low-level memory optimizations were per-
formed. The speed-up from this algorithm on 19 proces-
sors was 14.2 for the entire application. The speed-up
for the parallel portions of the program was 15.0.

9 Related work

Our work bears the most similarity to research by Wolf
and Lam [WL91]. They develop an algorithm that es-
timates all temporal and spatial reuse for a given loop
permutation, including reuse on outer loops. This reuse
is represented as a localized vector space. Vector spaces’
representing reuse for individual and multiple references
are combined to discover all loops L carrying some
reuse. They then exhaustively evaluate all legal loop
permutations where some subset of £ is in the inner-
most position, and select the one with the best esti-
mated locality.

Wolf and Lam'’s algorithm for selecting a loop permu-
tation is potentially more precise and powerful than the
one presented in this paper. It directly calculates reuse
across outer loops and can suggest loop skewing and re-
versal to achieve reuse; however, how often these trans-
formations are needed is yet to be determined. Skewing
in particular is undesirable because it reduces spatial
reuse.



Gannon et al. also formulate the dependence test-
ing problem to give reuse and volumetric information
about array references [GJG88]. This information is
then used to tile and interchange the loop nests for
cache, after which parallelism is inserted at the out-
ermost possible position. They do not consider how the
parallelism affects the volumetric information nor if in-
terchange would improve the granularity of parallelism.

Porterfield presents a formula that approximates the
number of cache lines accessed, but is restricted to a
cache line size of one and loops with uniform depen-
dences [Por89]. Ferrante et al. present a more general
formula that approximates the number of cache lines
and is applicable across a wider range of loops [FST91).
However, they first compute an estimate for every ar-
ray reference in a loop nest and then combine them,
trying not to do dependence testing. Like Wolf and
Lam, they exhaustively search for a loop permutation
with the lowest estimated cost.

Many algorithms have been proposed in the literature
for introducing parallelism into programs. Callahan et
al. use the metric of minimizing barrier synchronization
points via loop distribution, fusion and interchange for
introducing parallelism [ACK87, Cal87]. Wolf and Lam
[WL90] introduce all possible parallelism via the uni-
modular transformations: loop interchange, skewing,
and reversal. Neither of these techniques try to map
the parallelism to a machine, or try take into account
data locality, nor is any loop bound information consid-
ered. Banerjee also considers introducing parallelism
via unimodular transformations, but only for doubly
nested loops [Ban90b]. Banerjee does however consider
loop bound information.

Because we accept some imprecision, our algorithms
are simpler and may be applied to computations that
have not been fully characterized in Wolf and Lam’s
unimodular framework. For instance, we can support
imperfectly nested loops, multiple loop nests, and im-
precise data dependences. We believe that this approxi-
mation is a very reasonable one, especially in view of the
fact that we intend to use a scalar cache tiling method as
a final step in the code generation process [CCKY0)]. In
addition, the algorithms presented here are O(n?) time
in the worst case, where n is the depth of the loop nest,
and are a considerable improvement over work which
compares all legal permutations and then picks the best,
taking exponential time.

10 Summary and Conclusions

We have addressed the problem of choosing the best
loop ordering in a nest of loops for exploiting data local-
ity and for generating parallel code for shared-memory
multiprocessors. As our experimental results bear out,
the key issue in loop order selection is achieving effec-
tive use of the memory hierarchy, especially cache lines.
Our approach improves data locality, provides the high-
est granularity of parallelism, and properly positions

loops for low-level memory optimizing transformations.
When possible, the benefits of parallelism and data lo-
cality are therefore both exploited.

We believe our experimental results provide strong
evidence for the effectiveness of this approach. With
this method, the programmer is permitted to pay more
attention to the correctness of a calculation and less
to the explicit loop structure required to achieve high
performance.
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