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Abstract. This paper presents a diagonal-secant modification of the successive element correction
method, a finite-difference based method, for sparse unconstrained optimization. This new method uses
the gradient values more efficiently in forming the approximate Hessian than the successive element
correction method. It is shown that the new method has at least the same local convergence rates as
the successive element correction method for general problems and that it has better g-convergence and
r-convergence rates than the successive element correction method for problems with band structures.
The numerical results show that the new method may be competitive with most of the existing methods
for some problems.
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1. Introduction. This paper is concerned with the unconstrained minimization
problem

(1.1) min f(z)
where f : D C R® — R is twice differentiable and the sparsity structure of Hessian
H(z) is known. To solve problem (1.1), we consider the following Newton-like method:

(1.2) o = g% — (B¥)1g(z*), k=0,1,...,

where g(z*) = V f(2*) and B* is a symmetric n x n matrix, which is an approximation
to H(z¥) with the same sparsity pattern as the Hessian. The purpose of this paper
is to try to find an efficient way to obtain such B* under the assumption that g(z)
can be only computed as a single vector, i.e., element-by-element gradient evaluation
subroutines are unavailable.

To reduce the number of gradient evaluations needed for forming the approximate
Hessian in a finite-difference method, Powell and Toint [9] extended the idea of the CPR
algorithm for solving systems of nonlinear equations, proposed by Curtis, Powell and
Reid (2], to the symmetric case, and gave two practical methods: the direct method
and the indirect lower triangular substitution method. The direct method is based on
a symmetrically consistent partition of the columns of the Hessian, while the indirect
method is based on a consistent partition of the columns of the lower triangular part
of the Hessian. Coleman and Moré [1] connected the partition problem to a graph
coloring problem and gave some partitioning algorithms which can make the number of
gradient evaluations optimal or nearly optimal. The direct method can take advantage
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of the symmetry to reduce the number of gradient evaluations for some structures.
Unfortunately, this is not always true. The symmetric band structure is a typical
example. Coleman and Moré [1] show that 28 + 1 differences are required in forming
the approximate Hessian with a symmetric band structure by the direct method, where
B is the half bandwidth of the Hessian. This means that the direct method requires
the same number of gradient evaluations as the CPR method does for symmetric band
structure.

The indirect method sometimes, especially for symmetric band structures, may
exploit symmetry to a greater extent than the direct method. However, the computation
of the approximate Hessian B* requires a sequence of substitutions which makes the
cost of obtaining B* higher than in the direct method and which may magnify rounding
and truncation errors.

To further reduce the number of gradient values needed for forming the approximate
Hessian, in a previous work we [4] proposed a successive element correction method, the
CM-successive element correction method (CMEC) for systems of nonlinear equations,
which is also based on a consistent partition of the columns of the Hessian. The basic
idea of the CMEC method is that some of the elements of the approximate Hessian
are corrected at each iterative step by using only two gradient values. The author
[5] extended the idea of the CMEC method to the symmetric case and proposed a
secant modification of the CMEC method by applying Marwil [6] and Toint’s [10] sparse
symmetric secant (SPSB) update, and the resulting algorithm will be referred to the
SCMEC method.

In this paper, we present a diagonal secant modification of the CMEC method,
which is called the DSCMEC method. The idea of this modification is that instead of
updating all elements of B*, we only update the diagonal of B* to make the updated
matrix satisfy the secant equation. The computational cost of the diagonal secant
update is much less than that in the SCMEC method, and we show that the new
method has the same local convergence properties as the SCMEC method for general
problems. The main results of this paper is that this new method has better local q-
convergence and r-convergence rates for problems with band structures than the CMEC
method. Our numerical results show that this new method is promising in practice.

We arrange this paper in the following way: A brief description of the CMEC
method and the SCMEC method and some theoretical results for these methods are
given in Section 2. The diagonal secant modification of the CMEC method and some
local convergence results are given in Section 3. Some numerical results and some
comparisons are given in Section 4.

Through out this paper, ||-||r denotes the Frobenius norm of a matrix, || - || denotes
the I; norm of a vector, and || - ||, denotes the infinity norm of a vector. To specify the
sparsity of a given matrix B, we use M to denote the set of index pairs (¢,7), where b;;
is a structural nonzero element of B, i.e.,

M = {(i,5) : bi;; # 0}






2. The CMEC method and the SCMEC method. The CMEC method can
be formulated as follows:

ALGORITHM 2.1. Given z° € R", and a nonsingular symmetric matriz B°, which
has the same sparsity pattern as the Hessian, do the following:
At the initial step:

1. Using Coleman and Moré’s graph coloring technique [1] compute a symmetri-
cally consistent partition of the columns of the Hessian which divides the set
{1,2,...,n} into p subsets cy,cz, ..., cp.

2. Setl=0.

3. Solve B%s® = —g(z9).

4. Choose x' by z' = z° + s° or by a global strategy.

At each iteration k > 0 :
1. Update B*~! to B*:
a. Choose a scalar h*.
b. If 1 < p, then set l =1+ 1, otherwise set | = 1.
c. Set

dk = Z hkej.
J€a

where e; is the j-th component of the unit matriz.
d. If j € ¢ and (i,]) € M, then set

bf; =ﬁe?(g(m + d¥) — g(z*)),

and set
k k
bji = bij'
Otherwise, set
bﬁ’ = b?j_l.

2. Solve B¥s* = —g(z*) .
8. Choose 1 by z* + s* or by a global strategy.
4. Check convergence.

Note that at step 1(a), we use a uniform step length for all components of z. This
is for simplicity in our theoretical discussion. In practice, one should choose different
h% for each component of z¥. (See Section 4.)

The following results for the CMEC method were given in [5]:

LEMMA 2.1. Assume H(z) satisfies the following Lipschitz condition: For (3,7) €
M there erists an a;; > 0 such that

(2.1) |l (H(z) — H(y))ej| < aijlle —yl, =,y € D.
3






Let z* and B* be generated by Algorithm 2.1. Assume z* € D and z* + d* € D. If bf-‘j‘l
is corrected at the kth iterative step, then

n
(B — H(z))es| < Yooyl

LEMMA 2.2. Assume H(z) satisfies Lipschitz condition (2.1). Let {i}t_, c D

and {B’ *_o be generated by Algorithm 2.1 with B° satisfying ||B® — H(z%)||p < 6. If
{z? + d’};., C D, then for k > p,
|ef (B* — H(2"))e;| < aij(@r + Ra),
for any (i,7) € M. Moreover,
IB* — H(z*)|IF < (& + hy),
and for k > p,
IB* — H(z*)|lF < (28 + ki) + 6

where

= 2 = k_ pk=i h =\/—H hk-j
; ((i,j)ZGMau)?, = I8t = = e

with m(k) = min{k, p— 1} and h° = 0.

THEOREM 2.3. Assume that g: D C R® — R" satisfies the standard assumption
for local convergence, i.e.,

(2.2) Thereezistsan z* € D such that g(z*) = 0 and H(z") is nonsingular.

Also assume that H satisfies Lipschitz condition (2.1). Let {z*} be generated by Al-
gorithm 2.1 without any global strategy. Then there ezist €, §, h > 0 such that if
0 < |k¥| < h, 2° € D and B° € R**" satisfy

I2° = 2"l < e, 1B~ H(z")|F < 6,

then {z*} is well-defined and converges g-linearly to z*. If limy_5o |RF| = 0, then the
convergence is q-superlinear. If there ezists some constant C such that |h*| < C||g(z*)|,
then the convergence is p-step q-quadratic, and the r-convergence order of {x"} is not
less than 1, where 7, is the unigue positive root of the equation

(2.3) PPl _1 =0,






The basic idea of the SCMEC method is to make a secant modification on the matrix
B* by using the information g(z*~!) we already have to get a better approximation to
the Hessian, say B*. This method can be formulated as follows:

ALGORITHM 2.2. Given z° and B° as in Algorithm 2.1, take the initial step as in
Algorithm 2.1. At each iteration k > 0 do the following:
1. Update B*=! by steps a, b, ¢ and d of Algorithm 2.1 to get B*.
2. Update B¥ by Marwil and Toint’s SPSB update to get B* .
3. Solve B*s* = —g(z*¥).
4. Choose z** by z* + s*, or by a global strategy.
5. Check convergence.

THEOREM 2.4. Algorithm 2.2 has at least the same local convergence properties as
Algorithm 2.1.

3. The diagonal secant modification of the CMEC method. Though the-
oretically, we could not say that the secant modification of the CMEC method using
Marwil and Toint’s SPSB update (SCMEC) is better than the CMEC method, according
to our experiments, it usually takes fewer iterations to get the solution, and therefore,
it uses fewer gradient values than the CMEC method. However, Marwil and Toint’s
SPSB update needs the solution of an additional banded linear system to determine
the updated matrix B*. While this computatinal cost may not be too significant if the
pure SPSB update is used (See [11]), according to our experience, this additional cost
may be too high comparing to what we gain from the SCMEC method. In addition, the
coding for the SPSB method, especially for the degenerate case, is quite complicated.
To overcome these drawbacks, we consider a diagonal secant update. The basic idea is

to update only the diagonal of B* and make the updated matrix B* satisfy the secant
equation

Bksk—l — yk—l

where s¥=1 = gk — zF-1 and y*¥-1 = g(z*) — g(z*~1). We first define
a+ - i if z # 0,
0 otherwise,

for a scalar a. Now the diagonal secant update is given by

(3.1) B* = B* + Y (el s* 1)t el (y*! — B¥s*1)esel.

i
=1

It is easy to verify that if e s¥~! # 0, then the i-th row of BF satisfies the i-th secant
equation, i.e.,

e;?rB"s"'l = e;?ryk'l.
5






It can be seen from (3.1) that when els*~! = 0, no update is performed on the i-th
element of the diagonal. In practice, we actually skip the update if leFs*=1| is relatively
small, i.e., if

(3.2) l€7's* 7] < 0]l |oo,

then we skip the update, where > 0 is a small scalar.
Now the update is as follows: For i = 1,2, ..., n, if

(3.3) 7’5571 2 6]|s* 7 |oo,
then
_ 1
(3.4) el B¥e; = eI B*e; + TR el (y*~! — BFsF-1),
Otherwise,
(3.5) el B¥e; = eI B*e;.

Note that a similar diagonal update may be found in Dennis and Schnabel 3, p.
256], where a different choice of y is used and n additional gradient component values
are needed. ‘

Now the diagonal secant modification of the CMEC method (DSCMEQC) is as fol-

lows.

ALGORITHM 3.1. Given a symmetrically consistent partition of the Hessian, z°

and B® as in Algorithm 2.1, do the following:
At the initial step :

1. Set ! =0 and B® = B°.

2. Solve B%s = —g(z°).

3. Choose z' by z° + s or by a global strategy.
At each iteration k > 0:

1. Update B*~! by steps a, b, ¢ and d of Algorithm 2.1 to get B*.

2. Update the diagonal of B* by (3.4) and (8.5) to get BF.

8. Solve B¥s = —g(z*).

4. Choose z**1 by z* + s or by a global strategy.

5. Check convergence.

It can be seen from Algorithm 3.1 that the number of gradient evaluations needed
to form B* at each iteration is two, the same as the CMEC method, and the addi-
tional cost of the diagonal update is only a multiplication of a sparse matrix with a
vector plus n arithmetic operations, which is much less than that of the SPSB update.
Furthermore, we will show that the DSCMEC method has at least the same local con-
vergence properties as the CMEC method for general problems, and it has better local
convergence rates for symmetric band structures. Qur numerical experiments also show
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that the DSCMEC method behaves well in practice. Now we give the local convergence
properties of the DSCMEC method.

LEMMA 3.1. Let {z/}5_; C D and {B?}%_, be generated by Algorithm 3.1. Assume
that H(z), B® and {a?+d’ }5_, satisfy the assumptions of Lemma 2.2. Then there ezists
a constant Cy > 0 such that for k > p,

(3.6) |B* — H(z")||F < Cra(Gr + i),
and for k < p,
|1B* — H(z*)|lF < Ci(e(28k + ki) + 6),

where

€ = k— k=3 k =\—/—ﬁ k_J
ek—lsl;rgﬁk){llm [}, he 5 osglsa:ﬁk)h ,

m(k) = min{k, p— 1} and h® = 0.

Proof. Let
- 1
(3.7) Je-1 = / H(z*1 + ts51)dt.
0
Then,
(38) jk-lsk-l = yk—l.

Note that by Lipschitz condition (2.1), for (¢,7) € M,

lel (J*= — H(z*))ej
(3.9)

IA

F [ (B 4 1(a* = 2) = H())dee

1 ..
a,-j||g;’° - zk—ll|A (1 _ t)dt < 92'__J”xk _ zk—ln,

IN

and therefore,
|7+ = H@H)lr < Slle* - 2>

Thus, from (3.1), (3.3), (3.4), (3.5), (3.7) and (3.8),

1 ”yk—l — Bksk—l”

Dk k

1B"=Bllle < 5
. LT - Bt
S
<« LI = B lelist)
S P
< YT B
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IA

(175 = H()||r + | H(z*) - B¥|r)

%I§ﬁ=lﬂ

IA

a -
(5||w'° — "7 + ||H(z*) — B¥||r).
Therefore,

IB* - H(z")llr < |IB* -

N (a
6 "2
Then, the desired results can be obtained by applying Lemma 2.2 and setting

B*|lr +||B* - H(z")lIF

< llz* — 27| + | H(z*) — B*||F) + | B* = H(z")||F-

(3.10) C = M +1.

Now we have the following local convergence results for Algorithm 3.1.

THEOREM 3.2. Under the same assumptions as in Theorem 2.3, Algorithm 3.1
has at least the same local convergence results as Algorithm 2.1.

Proof. Since z* € D and D is an open convex set, we can choose ¢ so that
S(z*,2¢) = {z: ||z — z*|| < 2¢} C D. Also, we can chose ¢,6 and & so that

(3.11) Jrh <e, 2,301((1(9—26 +h+o) <,

where C) is defined in (3.10) , and 8 > 0 satisfies ||H~!(z*)||r < B. Without loss of
generality, we assume that C; > 1.
We first show by induction on k that

(3.12) 241 — 2*| < S||2* — 2*[|, k=0,1,2, ...
Note that by Lipschitz condition (2.1) and (3.11),

IH*(z")(B® - H(z"))llF < ||H'1(z')||F(¥B° — H(")||r + |H(2°) — H(z")|IF)
(3.13) < B(6+ ae) < 3

Therefore, by Dennis and Schnabel’s Theorem 3.1.4 [3],
1B I < 28,
which shows that z' is well-defined. By Lipschitz condition (2.1),

=" ="l < I(B°)MIr(llg(=") - 9(°) = H(z)(z" — )|
+||B° - H(z%)||Fll=* - 2°ll)

< 26(5lle® ~ 2|+ I1B° = H))lla” — 2°)
8






3 1
(3.14) < 25(7a+5)||x’ -2 < —2-||z° -z

This means that (3.12) holds for £ = 0. Now suppose (3.12) holds for k¥ =
L,2,...,m — 1. We show that it also holds for £ = m. By (3.12),

le™ +d™ — 27| < [|2™ — 27| + [|d™]| < [|2° — 27| + v/nh < 2.

Thus, {z* + d*}7-, C S(2*,2¢) C D. By Lemma 3.1, there exists an integer 1 < jo <
min{m,p — 1} such that

IB™ = Hz™)lr < Ci(a(2l|z™ = 2™ || + hn) + 6)

<
< Ci(a2(ll2™ = 27| + ||z — 2™ ®]) + hm) + 6)
<

(3.15) Ci(a(4||z* — 2™ || + hp) + 6).

Thus, using a similar argument to (3.13), we obtain

|H7)(B" ~ H("))llr < BCi(a(3e +h) +6) < 5
and

I(B™) 7 ||F < 28,

which shows that z™*! is well defined. Using (3.15) and a similar argument as (3.14),
we have

m - a m - Bm » m
la™ ~ |l < 28(5lla™ — 27|l + I B” — H™)|p)lle” - =]

< 26(5 + Cilalde + ) + 8)lla” — 2|

9 1
(3.16) < 28Ci(a(ge+h) +é)|lz” — 27| < Slle™ - 27,

which completes the induction step. It follows from (3.12) that {z*} converges to z* at
least q-linearly.

Note that for £ > p, by (3.6), inequality (3.15) is changed to

IB* - H@Mr < Cia(lle* — 2| + |]2* — 2*7+1|| + Ry)

< Cro(2llz” — 277 4+ By),

and therefore, (3.16) is changed to
b 3 » - 7 *
(3-17) Iz = % < 2C10B(Flle™ = 25774 + Rl — 2.

Since {k4} is a sub-sequence of {h*}, h* — 0 implies hx — 0. Therefore, by (3.17), {z*}
converges to £* g-superlinearly if A* — 0. By Dennis and Schnabel’s Lemma 4.1.16 [3],

h*| < Clig(=)ll
9






is equivalent to
|B¥] < Callz* — 27|,

where C; > 0 is a constant. Therefore, if |h¥| < C||g(z¥)||, inequality (3.17) can be
rewritten as

(3.18) 12541 = 2%|| < Csllz™ — 2" []2* — 2”|| < Calla™ — 2*P+12,

where C3 > 0 is a constant, which implies that {z*} converges to z* at least p-step
g-quadratically.

The estimate of the r-convergence order of Algorithm 3.1 can be easily obtained by
using (3.18) and applying Ortega and Rheinboldt’s Theorem 9.2.9 [8].

Theorem 3.2 did not say that Algorithm 3.1 has a better local convergence property
than Algorithm 2.1 in general. However, we will show that it may actually have a better
g-convergence rate and a better r-convergence order than Algorithm 2.1 for problems
with band structures.

LEMMA 3.3. Let B* be generated by Algorithm 3.1. If (3.8) is satisfied, then the
distance between the i-th diagonal element of B* and the i-th diagonal element of J*-1
defined by (3.7) is independent of the i-th diagonal element of B*, and it depends only
on the off-diagonal elements on the i-th row of B*.

Proof. Let Q; denote the set of the column indices of the nonzero elements on the
i-th row of H(z), i.e.

Q={meL2.,n: el H(z)en # 0},
and let
Q={meQ: m#i}.

From (3.1) and (3.8), for all i € {1,2,...,n} such that |e7s¥~| > 8||s*~!||0, We have

(B = TNl = [T Brevt gl (I = BsH! = Ty
1 1 _ )
= |ei'ere;' + T b1 e?(‘]k-l - Bk) Z eg;sk‘lem - e?’Jk—leil
: me;
— T(jk-1 _ pk Ciskq
= | Z e" (J B )em—————T k—ll
lmeni € s
(3.19) < 3 3 [eT(JF = B¥)en.
med;

Now we give the main results of this new method, i. e., it has better local conver-
gence rates than the CMEC method for problems with band structures. Before we prove
those results, we give some insight by an example with tridiagonal structure explaining
why this diagonal secant update technique is specially good for the band structures.
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The following picture shows the elements corrected by the CMEC method in first three
iterative steps. The elements at ‘a’ positions are corrected at the first iteration, the
ones at ‘b’ positions are corrected at the second iteration and the ones at ‘¢’ positions
are corrected at the third iteration.

fa ab 0 0 O
ab b b 0 O
0 bc ¢ ac 0
0 0 ac a ab
0 0 0 ab b bc
0 0 0 0 b c.

O O OO

Note that after three iterations all off-diagonal elements are corrected twice while
all diagonal elements are corrected only once, i.e., the diagonal elements are not as
good approximations to the corresponding elements of the Hessian as the off-diagonal
ones. By updating diagonal elements using a diagonal secant update we may refresh
the diagonal at every iteration and make all elements be better approximations to the
elements of the Hessian.

We state the above fact as the following lemma without proof.

LEMMA 3.4. Assume that H(z) has a band structure with a bandwidth at least
three. Let B*for k > p, be generated by Algorithm 2.1. Then the off-diagonal elements
of B¥ are corrected at least twice in every p iterations.

Now we have the following better estimate for B* than that in Lemma 3.1.

LEMMA 3.5. Let {2’ }3—1 C D and {B7}%_, be generated by Algorithm 3.1. Assume
that H(z), B and {27 + d?}%_, satisfy the assumptions of Lemma 2.2. Also assume
that H(z) has a band structure with a bandwidth at least three. If (3.3) is satisfied for
all i € {1,2,...,n}, then there exists a constant Cy > 0 such that for k > p,

(3.20) |B* — H(z%)||r < Caa(ér + bi)

where

to= gmax (e~ 7} and by = Y2 max (W4-3).

1< <p -2 ]<p—2

Proof. Without loss of generality we assume that § < 1. By Lemma 3. 4,for k> p
and (3,7) € M, i # j there exists at least one integer 0 < ¢ < p — 2 such that bk'q i
corrected at the (k — g)th step. Let m be the smallest one among all such ¢’s. Then,

e?B"e_,- = eka'mej.
Thus, from Lemma 2.1,

| (B* — H(z*))ej| = |ef (B*™ — H(z¥))e;
11






= [eF(B*™ — H(@*™))e;| + T (H(@*™) - H(z"))e;
= a4 o - 2

(3.21) = < aij(ér + k).

Therefore, from (3.9), (3.19) and Lipschitz condition (2.1),

el (B* — H(z*))es| < lle:’r(Bk = J* Vei| + |e] (J*! — H(zF))e|
Th— (8 474 -
< 3 Y el (J5 = BYYem| + _2_ka —zF1
meﬁ.'
1 —
< 5( Y lel (J7 = H(z*))em| + ] (BF — H(zF))em|)
meﬁ.'
(0 471 -
+?||wk - z*1|
1 im - . 2 i _
< 3 2 (GFlet =+ cm(E + ha)) + S - 25
meﬁ.'
1 1 . A
<3 a;m(illw" — Y| + & + Ry)
meN;
1 3 N
< = im —é h
< 9men.-a (26k+ k)
3 A
< (¢ .
< 20(6 + hk)g;‘ Qim
(3.22) < (et hVia,

where | = maz{l;: i =1,2,...n}, l; is the number of nonzero elements on the i-th row,
and

ai= (Y o)t

Let Cs = 4. Then, by (3.21) and (3.22),

Y. |l (B¥ = H(z*))e;l* + 3 [e] (B* — H(z*))esf?
(i) EM,i#j =1
< (& + hi)? Y. o+ Clé+ hi)? P
. (i,j)GM N =1
= (ék + hi)?a® + C2(&x + hi)?a®
(3.23) < (C24+1)(ék + ha)?a?.

1B — H(")|I%

Let

C4= VC§+1

Then (3.20) follows from (3.23).
12






By using Lemma 3.5 and an argument similar to the proof of Theorem 3.2, we have
the following convergence results for Algorithm 3.1.

THEOREM 3.6. Assume that H(z) has a band structure with a bandwidth at least
three and that g(z) and H(z) satisfy the hypotheses in Theorem 2.3. Also assume that
|R*| < Cllg(s¥)|| and that (3.8) is satisfied for all i € {1,2,...,n} and all k sufficiently
large. Then Algorithm 3.1 is locally at least p — 1 step q-quadratically convergent, and
the r-convergence order is not less than T where T is the unique positive root of the
equation

Pl "2 1 = .

Comparing Theorem 3.6 with Theorem 2.3 and Theorem 2.4, we see that the
DSCMEC method has a better g-convergence rate and a better r-convergence order
than the CMEC method for problems with band structures. This theoretical result
explains our numerical results in Section 4.

4. Numerical Results. To see the numerical behavior of the CMEC and DSCMEC
method, we solved seven example problems by Powell and Toint’s direct method (PTD),
Powell and Toint’s indirect method (PTID), Marwil and Toint’s sparse PSB method
(SPSB), the CMEC method, and the DSCMEC method. In this section we compare
the numerical results from these six methods.

The global strategy used to force convergence from far away points was a line
search backtracking strategy as described by Dennis and Schnabel [3]. We choose the
step length in finite differences for each element as

hf = \/macheps :c;‘,

where macheps is the machine precision. The stopping tests we used are the ones given
by Dennis and Schnabel [3] and all tests were run with the same accuracy requirement
(€ =107°%). For the DSCMEC method we choose 8 in (3.2) to be 10~8. For the SPSB
method, the CMEC method, the SCMEC method and the DSCMEC method, the initial
approximations to the Hessian were computed by the PTD method. All tests were run
on the Jilin University Honeywell DPS-8 in double precision.

One of the test problems is the Chained Rosenbrock function given by Toint [11].
Two others can be found in Moré, Garbow and Hillstrom [7]. They are the Extended
Rosenbrock function and the Discrete boundary value function. The fourth one is an
extension of Example 9.2.2 in [3], where the dimension was only two. The remaining
three examples are variations of the Broyden banded function (see [7]). Here, we only
made changes on the lower and upper half bandwidths to have five diagonal, seven
diagonal and nine diagonal structures. We recorded the average number of iterations
(NITER) and the average number of gradient evaluations (NGRAD) needed to solve the
seven problems using each of the method mentioned above in Table 1. To see the effect of
increasing the number of groups in the partition of the columns of the Hessian, in Table
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TABLE 1

Algorithms | PTD | PTID | SPSB | CMEC | SCMEC | DSCMEC
NITER 11.0 | 11.0 31.6 20.9 16.1 14.9
NGRAD 53.6 | 40.0 35.4 44.6 35.1 32.6

TABLE 2
Algorithms Five-diagonal Seven-diagonal Nine-diagonal
NITER | NGRAD | NITER | NGRAD | NITER | NGRAD

PTD 7 43 7 57 7 71

PTID 7 29 7 36 7 43

SPSB 31 35 39 44 34 40

CMEC 14 31 17 38 19 43

SCMEC 11 25 13 30 14 33

DSCMEC 10 23 12 28 14 33

2, we list the number of iterations (NITER) and the number of gradient evaluations
(NGRAD) for solving the five-diagonal, seven-diagonal and nine-diagonal variations of
the Broyden banded function by using the six methods. From the numerical results
we see that the DSCMEC method uses the least number of gradient values for the test
problems. It needs more iterations than the PTD and the PTID methods. However,

the difference is less significant than those between the PTD method and other three
methods.

5. Concluding Remarks. We have shown that the DSCMEC method has at
least the same local convergence properties as the CMEC method for general sparse
problems and that it has better local convergence rates than the CMEC method for
problems with band structures. Our numerical results show that the DSCMEC method
may be competitive with most existing methods for problems with band structures.
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