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ABSTRACT

We view computers and problems to be simulated on them as physical systems.
We show how the concepts of dimension, topology, size, temperature, adiabatic sys-
tems and phase transitions can be valuable in general computations. A space-time
picture of computation allows one to discuss the load balancing and decomposition
of processes as a theory of interacting strings. The mathematics underlying these
ideas allows a quantitative description of the performance of parallel machines for
different problems. We also describe a theory of the architecture or overall struc-
ture of problems. This approach can be naturally applied to parallelizing compilers
which can be thought as mapping temporal constructs in “sequential” languages
into spatial parallelism. We consider that current languages (C, Fortran, ADA ..))
as “wrong” (incomplete) as they do not properly express the spatial and temporal
structure of problems.

1. Introduction

After obtaining my Ph.D. in physics in 1967, the first 14 years of my postgraduate
career were centered on the study of theoretical, phenomenological and experimental
physics in a fashion that usually made essential use of the computer in simulation or
data analysis. Since 1981 on the other hand, I have studied the hardware, software
and applications of parallel computers in a fashion that sometimes used physics as
the a.pplica.t;ionl‘5 but often not. However, although much of my recent work has
been in computer science and in applications outside physics, I have found my train-
ing as a physicist very valuable. Physics taught me the value of confronting theory
with experiment and trained me in sophisticated problem solving techniques. How-
ever in this article, I wish to review how the concepts of physics were found to be
directly applicable to the theory and phenomenology of parallel computing. Several
references®5:6—15 contain more detail on these physics analogies. We will not give a
detailed discussion of the status and issues in parallel computing here—this is covered
in references16—20, It will be sufficient to view parallel computing as technologically
inevitable and currently divided into three classes or architectures.
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1) Distributed Memory MIMD or Multicomputers:
—a collection of independent computers each with processor and memory, con-
nected by some sort of network that allows messages to be sent between the

individual computers.
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Shared Memory MIMD or Multiprocessors:

—as above except that either logically or physically, the network connects a set
of processors to a single shared memory which each may address.

3) Distributed Memory SIMD:
—as 1), except each processor executes an identical instruction stream.
Examples of these architectures are given in Table 1.

Table 1: Simple Classification of High Performance
Concurrent Computers

Memory Grain Control Examples
Structure Size
Distributed Coarse MIMD Hypercubes: (Ametek, FPS, Intel, NCUBE)
Transputer Arrays: (CSA, Inmos, Levco,
Meiko, Parsytec, Topologix, Transtech)
Crossed buses: Suprenum (GMD, Germany)
Routing Mesh: Intel i860 based “Touchstone”,
Intel iWARP, Symult, Connection Machine CM-35
Large high speed network of workstations
Distributed Coarse SIMD IBM GF11
Columbia QCD Machine
APE (Rome)
Distributed Small SIMD AMT DAP 510
Connection Machine CM-1, CM-2
Goodyear MPP, ICL DAP,
Maspar (DEC mpp)
Shared Coarse MIMD BBN Butterfly, CEDAR
-Many Processors IBM RP3, NYU Ultracomputer
Shared Coarse MIMD Alliant FX-80, CRAY X-MP, CRAY Y-MP

~Modest Number
of Processors

CRAY 2, Convex, ELXSI, Encore
ETA-10, Flex, IBM 3090VF, Kendall Square
SSI, Sequent, Silicon Graphics

We note that, just as in physics, locality is a critical issue in high performance
computing. We need to ensure that the data needed for a computation is available



for the arithmetic unit. Delays increase as the data is placed in memory which get
slower or further array from the arithmetic unit. Locality underlies the design and use
by compilers of caches in “ordinary” computers and the nature of the networks used
to link the individual computer nodes in a parallel system. Matching the problem
locality to the computer locality is a key to good performance.

Parallel computers are complex entities used to simulate complex problems. While
physics has developed several qualitative and quantitative methods to understand
large systems, other fields, in particular computer science, have not. Thus, it is not
surprising that physics concepts are helpful in a theory of computation and indeed
may get more important as the computers and the problems they simulate get larger
and more complicated. The basic framework for this point of view is introduced in
Section 2, which defines a general space-time analogy for both computers and prob-
lems. In Section 3, we discuss the spatial structure of problems with the concepts of
problem size, topology and dimension. We also discuss adiabatic problems where the
operating system acts as a heat bath keeping the problem at its natural temperature.
As a function of temperature, we find phase transitions. In Section 4, we move to the
temporal structure where dynamic problems require an underlying theory of strings,
which is illustrated with examples from computing and navigation. The particle the-
ory of Section 3 and string theory of Section 4 can be evaluated by either Monte Carlo
or deterministic minimization methods for the underlying “energy function”. Both
Section 3 and Section 4 contain a performance analysis based on the underlying space
or space-time structure of computer and problem. In Section 5, we note that both
problems and computers have architectures and the relation of these enables one to
understand which problems are suitable for which computers. In the final section, we
apply these ideas to compilers viewed as mapping one space-time system into another.

2. Complex Systems and the Space-Time Picture
2.1 Problems and Computers

A complez system is a large collection of, in general, disparate members. Those
members have, in general, a dynamic connection between them; a dynamic complex
system evolves by a statistical or deterministic set of rules which relate the complex
system at a later time to its state at an earlier time. Table 2 lists some interesting
complex systems from a wide variety of fields: biology, computer science, physics,
mathematics, engineering, and various aspects of the real world. Some examples are
also illustrated in Figure 1. One particularly important class of complex systems is
that of the complez computer. In the case of the hypercube, such as the NCUBE-1,2
or other multicomputers such as the Intel Paragon or Thinking Machines CM-5, the
basic entity in the complex systems is a conventional computer and the connection
between members is a communication channel implemented either directly in VLSI,
on a PC board, or as a set of wires or optical fibers. In another well-known complex
computer, the brain, the basic entity is a neuron and an extremely rich interconnection



is provided by axons and dendrites.

Mapping one complex system onto another is often important. Solving a prob-
lem consists of using one complex system, the complez processor, to “solve” another
complex system, the complez problem. In building a house, the complex processor is
a team of masons, electricians, and plumbers, and the complex problem is the house
itself. In this article, we are mainly interested in the special case where the complex
processor is a complex computer and then modeling or simulating a particular com-
plex problem involves mapping it onto the complex computer. In this case, the map
of the complex problem onto the complex computer involves decomposition. We can
consider the complex problem as an algorithm applied to a data domain. We divide
the data domain into pieces which we call grains and place one grain in each node of
the concurrent computer. This is illustrated in Figure 1 for several examples; parti-
cles interacting with a medium range force, particles interacting with nearest neighbor
forces, finite difference solutions to a second order differential equation, multiplica-
tion of power series, and finally, matrix algorithms. In each case, the data domain is
a set of fundamental entities which we will term members. The algorithm defines a
possibly dynamic interconnection which converts the domain into a graph. As shown
in Figure 1, even though each member lies in a single processor, the decomposition
does not respect the interconnects and whereas some of the connections are internal,
some connections are interprocessor. In Figure 1, the latter are those connections
“cut” by the processor boundaries.

Let us contemplate decomposition or the mapping of a complex problem on to a
multicomputer, somewhat philosophically. In the map,

Complex Problem — Complex Computer
Members map into memory locations
Internal Connections map into arithmetic operations
Internode or “cut” connections map into communication followed

by arithmetic operations

In Section 3, we will be considering topological properties of complex systems
which correspond to the map

Complex Problem — Topological Structure
Members map into Points in a Space
Connections map into Geometric (nearest

neighbor) structure

In the optimal decomposition studies in Section 3 and Section 4, we will be
considering dynamic properties of complex systems for which it will be useful to
consider the map



Table 2:

Complex Systems

Fundamental Members and Interconnection

Field Problem Algorithm World Member or  Connection or
Degree of Communication
Freedom
Biology Intelligence Unknown Brain Neuron Axon, Dendrite
Computer PC Board Optimization PC Board Chip Trace, Wire
Science Layout
Physics Big Bang Einstein’s Universe Galaxy Gravity (Full
(Cosmology) Laws Interconnect)
Applied Differential Finite R" f(z;) Local
Mathematics  Equation Difference Differential
Operator
Social Science Society Unknown Earth Person Conversation
Roads
Telephones
Construction  Building Brick Wall Bricks Mortar
Great Wall Laying
of China
Structural Stress Finite Building Nodal Next to
Analysis Calculation Element Points Nearest
Neighbor
Condensed 2D Melting Monte Carlo 2D Solid Molecules Short Range
Matter or Liquid Forces
High Energy  Lattice Monte Carlo 4D World Quark and  Local
Physics Gauge ~ proton  Gluon Field Lagrangian
Theory Values
Granular Formation  Time Desert Sand Grain Contact
Physics of Ripples  Evolution
Data Analysis Image Convolution 2D Pixel Pixel Defined by
Processing Space Convolution
Defense War Games Event Driven Battle of  Archers Movement
Simulation Hastings Arrows Launch of
' Knights Weapons
Artificial Computer  Simplification Expression Variables Laws of
Intelligence Algebra Coefficients  Arithmetic




Complex Problem — Discrete Physical System

Members map into Particles or Strings
Connections map into Force Between Particles
or strings

We see that different classes of complex system realize their members and inter-
connection in different ways. We find it very useful to map general systems into a
particular class which have a particular chojce for members and interconnects. To be
precise, complex systems have interconnects that can be geometrical, generated by
forces, electrical connection (e-.g., wire), structural connection (e.g., road), biologica:l
channels or symbolic relationships defined by the laws of arithmetic. We map all
these interconnects into electrical communication in the hypercube implementation.
On the other hand, in the simulated annealing approach to load balancing described
in Section 3.4, we map all these interconnects to forces.

2.2 Space-Time Picture

The above discussion was essentially static and although this is an important
case, the full picture requires consideration of dynamics. We now “define” space and
time for a general complex system.

We associate with any complex system a data domain or “space”. If the system
corresponds to a real or simulated physical system then this data domain is a typically
three-dimensional space. In such a simulation, the system consists of a set of objects
labelled by index ¢ and is determined by the positions z; (¢) at each time ¢. As shown
in Figure 2, the data domain consists of a set of interconnected nodes and this forms
what we call the computational graph. This is defined by a time slice of the full
complex system.

Other complex systems have more abstract data domains:

1) In a computer chess program, the data domain or “space” is the pruned tree-like
structure of possible moves.

2) In matrix problems, the data domain is either a regular two-dimensional grid for
full matrices or an irregular subset of this for sparse matrices.

3) In a complex computer defined in Section 2.1, the computational graph of a
multicomputer is formed by the individual nodes with the interconnection of the
graph determined by the topology (architecture) of the multicomputer. We could
enrich this complex system by looking with finer resolution into the computer
node itself which can be considered as a set of connected components—chips or
transistors depending on detail required.

4) In the sequential neural compiler considered in Section 4.3, the space of the un-
derlying complex system consists of possible locations of variables, i.e., of the
memory, cache, registers and CPU of the computer.
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Figure 1. Four complez systems: a) particles interacting with a medium range force; b) finite
difference approximation to a two-dimensional partial differential equation such as V24 = 0. This
complex system is isomorphic to a two-dimensional crystal interacting with nearest neighbor forces;
c) the multiplication of two polynomials; d) matrix algorithms such as multiplication and inversion.
Only a sample of the interconnections for d) are shown. In reality, any element is connected with all

other elements in the same row and in the same column. The dashed lines divide complex systems
into grains in separate processors.
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fundamental element

of complex system
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Time
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STRING 1
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(Data Domain)

I —

Figure 2. (a) Static and (b) Dynamic Complex Systems Defined in “Space”-“Time”

In a physical simulation, the complex system evolves with time and is specified by
the nature of the computational graph at each time. If we are considering a statistical
physics or Monte Carlo approach, then we no longer have a natural time associated
with the simulation. Rather, the complex system is evolved iteratively or by Monte
Carlo sweeps. We will find it useful to view this evolution or iteration label similarly
to time in a simple time stepped simulation. We thus consider a general complex
system defined by a data domain which is a structure given by its computational
graph. This structure is extended in “time” to give the “space”-“time” cylinders
shown in Figure 2. In our previous examples

1) Chess: time labels depth in tree

2) Matrix Algebra: time labels iteration count in iterative algorithms or “eliminated
row” in a traditional full matrix algorithm such as Gaussian elimination.

3) The time dependence of a complex computer is just the evolution given by exe-
cuted instructions. Natural SIMD machines give an essential static or synchronous
time dependence whereas MIMD machines can be very dynamic. We will later
discuss in Section 5, an interesting class of problems and a corresponding way
of using MIMD machines, called loosely synchronous. These are microscopically
dynamic or temporally irregular but become synchronous when averaged over
macroscopic time intervals.



4) In the neural compiler, time labels clock cycles on the target computer and it
labels lines of code or steps in the directed graph in the software to be mapped
onto the computer.
In many areas, one is concerned with mapping one complex system into another.
For instance, simulation or modeling consists of a map

Nature (or system to be modelled) map Idealization or Model  (2.1)
theory

This map would often be followed by a computer simulation which can be broken
up into several maps shown in Figure 3.

Brilliant
Nature —— > Theory ———— Model
Idea

Numerical Method

High Level
Software

Virtual Computer or Virtual Problem

Low Level
Software

Real Computer
Figure 3. Computation and Simulation as a Series of Maps

Nature, the model, the numerical formulation, the software, and the computer are
all complex systems. Typically one is interested in constructing the maps to satisfy
certain goals such as agreement of model with effects seen in nature or running the
computer simulation in a minimum time. In these cases, one gets 2 class of opti-
mization problems associated with the complex systems. One recurring theme will
be the use of simulated annealing or neural network methods to address these opti-
mization problems. These are methods to minimize the energy function introduced
in Section 3.4 as associated with the general physical system given by the space-time
analogy. The energy function is the analytic form that expresses the goal described
above. Typically in studying performance, the energy function would be the execu-
tion time of the problem on a computer. For software engineering, the energy function
would have also reflected user productivity.



3. Spatial Structure of Problems and Computers
3.1 Performance }Model of Homogeneous Multicomputers

Figure 4 shows crude diagrams for four computer architectures including the two
MIMD parallel machines described in Section 1. We introduce the additional compli-
cation that most high performance sequential or parallel machines have a hierarchy of
memories. We will show in Section 6 that this hierarchy corresponds to the temporal
structure of computers as defined in the space-time picture of Section 2. Here we
will consider the simple class typified in Figure 4(c) of homogeneous multicomputers
where the “only” structure is a “spatial” distribution of nodes and associated memory.

In Figure 5, we introduce three basic parameters tcac, tmem, and tcomm Which we
show define a good model of the performance of the computers shown in Figure 4.
tcalc Tepresents the typical time to perform a floating point application including
any overheads such as memory (“cache”) access and indexing. tmem and tcomm are
effectively communication parameters. tcomm is the time taken to transmit a 32-bit
(64-bit if this unit of arithmetic) word between nodes of a hypercube and tmpem the
time taken to send a word back and forth between “cache” and main memory. As
described above, we will only use tmem in Section 6. We now need to make several
comments and caveats on these parameters.

First, we note that these three parameters are a very incomplete description of
the hardware. The analysis of Fox® uses the “cache” and node memory sizes as well.
Here we will only need the node grain size npoge, abbreviated n, which is the total
number of basic entities (e.g., matrix elements in a matrix problem or particles in a
dynamics problem) that can be held in the node memory of a multicomputer. The
performance of a system will also depend crucially on whether communication (either
node to node or “cache” to memory) is concurrent or sequential with other operations.

Multicomputers, like the NCUBE-1,2, have a scalar processor and the speed tc,c
of typical floating-point operations will not depend drastically on circumstances al-
though, even here, factors of two variations can be expected. Pipelined or vector
machines like the CM-5, Intel Paragon Multicomputer, or CRAY X-MP Supercom-
puter can expect very different values of ¢, on different applications. When in
doubt, one can use the smallest possible value of tc,c, as this will be the pacing value
for the performance analysis. The techniques described in Section 6.1 are in some
sense designed to improve tc,). by ensuring minimal “cache” misses.

All three parameters tcyc, tcomm, and tmem depend on the size of the operation
performed, i.e., on the size of the vector (tcac) or size of the “message” (tcomm, tmem )-
We will ignore the startup time for small vectors and messages even though these are
usually important. The techniques needed to minimize startup effects are interesting
but are outside the scope of this overview.

In discussing multicomputers, we have listed tcomm as the node to node transmis-
sion time; messages between nodes that are not directly connected in the interconnec-
tion topology will be characterized by a larger value of tcomm. We will accommodate
this by reflecting this as an application dependent effect which would be seen for



(b) Shared Memory Computer
(a) c;slri\lehri;iseerg:xce‘_:::l:‘l ﬁoef:‘%\:;ef with Hierarchical Memory

Main Global (Shared) Memory
Memory

"Cache"

CcPU

(d) Heirarchical Memory Multicomputer

(c) Homogeneous Multicomputer

t Node . Node
Node comm Node Memory ; Memory
Memory Memory . :
| @ Commulnlcauon @
-.e+ Channeis ----
t calc t calc CPU ; cpPU
: Node 5 Node
Node Node Memory Memory
Memory t comm Memory
CPU cpPU

Figure 4. Block diagram of the machine architectures considered in this paper. We allow either a
hardware controlled cache or user local memory to be the lowest level of the memory hierarchy. We
ignore the important issues concerning the network connecting the global memory in (b) to the local
«cache” and CPUs of the shared memory architecture, and the networks interconnecting the CPUs

in (c) and (d).



Basic Hardware Parameters

Calculation Time

CPU tcare =  Time for basic floating point operation.

"Cache" - Main (Global) Memory Transfer Time

e

Main
Memory

l T tem = Time spent to read AND write word
in "cache” from and to main memory.

Cache or
Local Memory

tmle:

Node to Node Communication Time

Main teomm = Time spent to communicate (read

Node |—— :
and write) a word
om0 ) between nodes.

S

tml‘:

brem

Figure 5. Definitions of the Three Hardware Parameters ic3)c, mem, and fcalc discussed in Sec-
tion 3.1.

algorithms like the fast Fourier transform on a hypercube as a 1/2log Npzoc factor in
the communication overhead f. defined later in Equation (3.1). We will use Nproc as
the number of physical processors in a parallel machine throughout this paper.
Finally, we summarize many of the caveats by noting that a performance analysis
in terms of simple parameters such as tcomm, tmem, tcalc is usually accurate but the
simplifications imply that the parameters are not universal but need to be adjusted by
different, but usually modest and understandable factors for each application3:21:22,
We briefly introduced in Section 2, the picture of computation as a map which is



shown in more detail in Figure 3. We will return to software issues in Section 6, but
we can here just consider the map of a problem on a computer with the structure of
Figure 4(c). Consider a very simple problem such as that shown in Figure 6 with a
regular two-dimensional array of grid points to be mapped on a machine with Nproc =
16 nodes. The problem is to be divided into 16 domains or grains each with ngrain
problem members (here members are grid points and ngrain ~ 16). Good performance

uires that each processor does (roughly) equal amounts of work and also that we
. .inimize the communication needed between nodes. We will return to the first (load
balancing) issue in Section 3.4 but here we will just discuss communication which

leads to an overhead fc defined as

amount of communication
(3.1)

fc=

amount of calculation
1]

where both calculation and communication are measured in units of time (seconds).
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Figure 6. Domain decomposition of a simple 256 point square region onto 16 processors arranged in
a two-dimensional grid. A local stencil such as that coming from a finite difference approximation
to V2 is shown.

In terms of fc, one can easily show that the speedup of S on a multicomputer



with Vjroc nodes is given by
s = Nproc
1+ fc
where the parallel machine runs a factor S faster than a single node. Onc often uses
parallel efficiency ¢ given by

(3.2)

S=¢ Nproc (3.3)

To illustrate these concepts, we show the efficiency measured for a Quantum
Chromodynamics Monte Carlo in Figure 9. This application realized 600 megaflops
on the 128 node Mark IIIfp hypercube?3:24,

Returning to Figure 6, assume that this was a finite difference mesh for the
solution of Laplace’s equation

Vi =0 (3.4)

Each processor contains n = nyeq4e grid points (the grain) arranged as a /n by
/n square array. If we consider a standard iterative solution, then a typical algorithm
would involve successive application of the replacement

' 1/ o 1d <
‘Pge;,v = 1 (‘153—1,3, + ¢g+l,y + ¢gl,dy—1 + ‘f’gl,ci/ﬂ) (3.3)

This is illustrated in Figure 7(a). We see that applying Equation (3.5) to all points in
each node requires 4n arithmetic operations. The application of Equation (3.5) also
requires communication for the boundary values in each node and this needs a total
of 4y/n numbers to be communicated. (Here, the four comes because a square has
four edges.) This communication takes a total time of 41/% tcomm using the notation
introduced above. Thus we see that for this example the communication overhead
becomes

— 1 tcomm
o= Tt 49

The result in Equation (3.6) and its generalizations have been confirmed in many
applications both in our work® and by other groups where the Sandia analysis?® is
particularly elegant.

We note that in writing Equation (3.6), we have assumed fcomm has no extra
factor due to routing on congested links, i.e., that the parallel computer has a two-
dimensional mesh or richer interconnect. This assumption would be true for the
hypercube machines.

In Figure 7(b) and Figure 7(c), we illustrate how fc is changed as one varies the
update stencil, i.e., as one changes Equation (3.5). It is important to realize that the
simple nearest neighbor algorithm (Equation (3.5)) is not the optimal problem for
machines with mesh interconnects. The stencil in Figure 7(b) involving higher order
differences and next to nearest neighbor connections, shows an identical value of f¢
to Figure 7(a). In Figure 7(c), we introduce off-diagonal terms into the stencil and
find in fact that fc is reduced. The essential point about the simple algorithm in
Figure 7(a) is that not only does it have minimum communication but also minimum
calculation; the overhead f¢ is not especially small.
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Figure 7. Five stencils starting with that in Figure 6. We show an increasing “range” of stencil
which would correspond to an increasing force range if a particle dynamics problem or higher or-
der differencing for a finite different problem. We show total calculation per node and internode

communication, as well as their ratio, fc.



This point is explored further in Figure 7(d). We show square (20 4+ 1) x (21 + 1
stencils of increasing size. Such a stencil implies that

By = (68t —ISiSl —1<5 <)) (3.7)
In this case, we find (for a linear function f in Equation (3.7)) that

1 tcomm

fC ~ (l + l)\/77 tealc

As we increase /, eventually the stencil covers the full two-dimensional domain.
We can view the progression in Figure 7(d) (Equation (3.7) as [ increases) as that
coming from interacting particles with a steadily increasing range of force. (To be
precise, this would lead to circular and not square stencils.) In the long range force
limit—the stencil covering the full domain—shown at the bottom in Figure 7(e), we
find3 that the overhead fc becomes

(3.8)

1 tcomm
fC = n teale (3.9)

Comparing Equation (3.8) and Equation (3.9), we find a pretty limit such that
as | increases in Equation (3.8), we see that (I + 1)y/n smoothly turns into the
denominator n in Equation (3.9).

3.2 Information Dimension

We would like to generalize the above discussion to an arbitrary complex system

for which we write®7
constant lcomm

CcC =
f n& tca.lc

where we introduced a fundamental static property of the complex system—its infor-
mation dimension, d. In the first example of Figure 7(a), the decomposition dimension
d was 2, and this was identical to the geometric dimension of the underlying domain
being decomposed. However, in the last example of the long range force, we find
d = 1, independent of the geometry of the domain. In Figure 7(e), we showed a
two-dimensional example but one would also find d = 1 for the long range force in
any geometric dimension. So we see that the information dimension, d is in general
unequal to the geometric dimension; it also need not be an integer, and it shares this
property with the fractal dimension introduced by Mandelbrot?6.

Figure 8 and Figure 9 show the measured performance of a simple matrix mul-
tiplication and QCD applications on a hypercube. Figure 8 shows3? the overhead in
the form given by Equation (3.10) with dimension d = 2. Figure 923 obscures this

(3.10)
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Figure 8. Matrix Multiplication on a Hypercube

analytic form but shows constant efficiency at constant grain size n, i.e., this result
illustrates that Equation (3.10) depends only on n and not Nproc.

A good example of nontrivial information dimension comes in the simulation
of electronic circuits. A well-known phenomenological rule which has been used in
the packaging of circuits by IBM?7 relates the number282? of output lines (pinouts)
to a power (= 0.5 — 0.7) of the number of internal components. This power is
approximately independent of the size of the circuit. This immediately gives the
overhead f¢ for simulating such a circuit on the hypercube. The number of internal
components which we call the grain size n again, is proportional to the calculational
load in the simulation; the number of pinouts from the part of the physical circuit held
in one node translates directly into the internode communication on the hypercube.
Rent’s Rule now takes the form (Equation (3.10)) with a non-integer value of d that
is approximately three.

Rent’s Rule illustrates some general features: When we simulate a physical system
on a multicomputer, the communication on the multicomputer is related to physical
connections between components in the physical system. These connections could be
wires (for circuits), roads (for transportation) and sound waves (for human society).
It is clear that the performance of a multicomputer is related to a very important
property of the underlying physical system. Analogously, the proper functioning of a
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city is dependent on an adequate density of roads to communicate between sections
(grains in decomposition) within the city. One can speculate that the information
dimension is a generally useful characterization of the internal communication within
a physical system. One may speculate on the validity of theorems such as “Los Angeles
needs a freeway system where the dimension d is greater than some critical value”
or “such and such a society will function cffectively if the communication between
(human) members has a dimension d greater than some other critical value”. This
discussion is related to that in Section 2 of the mapping of complex systems on to
each other.’

Another interesting feature of Rent’s Rule is that the decomposition dimension d
for electronic circuits is approximately independent of the grain size. Such complex
systems are self similar at different grain sizes. This point has been most emphasized
by Mandelbrot?6. In general, one must expect to find a dimension d depending on
grain size, but it would be interesting to study more examples to see if self-similarity
is the rule or the exception.

In the first part of this section, we showed that long range force problems exhibited
a decomposition dimension that was smaller than the conventional geometric decom-
position. Rent’s Rule shows that electronic circuits have a decomposition dimension



that is larger than the natural geometric value corresponding to a two-dimensional
layout. It is interesting to find mathematical models that exhibit this effect. We
have explored two possibilities. One considers members whose probability of con-
nection is governed by a function p(r) that depends on the distance r between the
two members. Giving p(r) a power law behavior at large r allows one to gener_e{xte
general fractional dimensions. Another model is shown in Figure 10. Consider’ a
two-dimensional complez system that consists of several types of members. For sim-
plicity, assume that each type is only connected to other members of the same type
and that this connection is of the simple nearest neighbor type shown in Figure 1(b)

and Figure 7(a).

Model for a Complex System
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Figure 10. A Possible Model for a Fractional Dimension discussed in Section 3.

We might consider this as an oversimplified model for society; the types of mem-
bers could be criminals, students, police, scientists, aristocracy, etc. The dominant
communication is nearest neighbor within each type. As one increases the grain
size at which the system is decomposed, the number Niype (n) of relevant types will
gradually increase. Suppose it happened that

and each type has approximately the same number of members. Then one can im-
mediately derive a value of the decomposition dimension as
2
d=—— .
— (3.12)

d is always greater than two and takes the value three for v = % If this model had
anything to do with Rent’s Rule, then one could interpret the types as simple basic



modules (e.g.. memory or arithmetic units) from which the complicated circuit was
made up.

Let us now consider another less speculative issue. If we consider the Fast Fourier
Traunsform (FF'T) on a hypercube multicomputer, then the result (Equation (3.9)) is

modifieds. L
communication constant fcomm

(3.13)

calculation logn tealc

This can be considered as a special case of Equation (3.11) with the limit d = oo;
in other words the complex system corresponding to the FFT has infinite decomposi-
tion dimension. The FFT maps well onto the hypercube, and in this formalism, the
good FFT map is partly due to the compler computer formed by the hypercube also
having infinite dimension. The hypercube with Nproc nodes has dimension logy Nproc
which does become infinite as Nproc itself gets infinite. To be precise, the constant
in Equation (3.13) increases logarithmically with Nproc, the number of processors.
In our initial formulation of dimension, we have chosen to ignore such logarithmic
behavior; this point needs to be addressed in greater depth.

Another interesting compler system is formed by the various matrix algorithms
illustrated in Figure 1(d). The members of this system are the matrix elements
themselves. Each member is connected to every other member in the same row
or column. There is no nearest neighbor structure at all, and yet this system has
the same decomposition dimension d = 2 as the simple system of Figure 1(b) and
Figure 7(a). This can easily be seen if we consider, as in Figure 1(d), each grain as a
/7 by \/n array. Then every member communicated to this grain (node) is involved
in \/n calculations corresponding to the \/n members in the grain that are associated
with the row or column of the transmitted member. Thus we can directly show that

the ratio leulati ;
calculation
O~ n ==l (3.14)
communication teomm

which corresponds to an information dimension of two.
Let us view the dimension as a property of the underlying graph which consists
of connected members as pictured in Figure 1. Then we can derive the equations:

calculation = Number of connections
made to members inside the grain. (3.15q)

communication = Number of connections
cut by grain boundaries. (3.15b)

In Equation (3.15a), each connection is counted with no restriction. However, in
Equation (3.15b), connections from a given external member are only counted once,
even if they land on distinct internal members. This restriction is crucial; without it
both the long range force and matrix problems would have infinite dimension rather
than the values of one or two described above. In multicomputer implementations,
the restriction implies that even if one needs a given external member in more than
one internal calculation, one only communicates it once. This is clearly possible



with careful software. A hardware cache is designed to automate this type of re-
use ol variables—usually when the “communication™ is between different levels of a
memory hierarchy as in the architecture in Figure -1(a). However. as reviewed in Sec-
tion 6.1 and described in detail in Fox®, communication between memory hierarchies
has many analogies with communication between processors. Current parallel com-
puting methodologies implement the “caching function” with software. Compilers for
many sequential RISC computers handle caching with software and as mentioned in
Section 6.2, this approach is now being applied successfully to parallel computers.
The hardware solution to “parallel caches” is difficult to implement for large Nproc
as one needs to ensure the caches are “coherent”, i.e., are properly updated when the
base variables are changed—perhaps on a processor “far” from caches in which it is
stored.

Our current implementations suggest an interesting relation between fc and the
dimensions d. and dp of the complez computer and complez problem, respectively. In
matrix multiplication3, corresponding to the experimental measurements shown in
Figure 8, one finds

fo = — Leomm (3.16a)

for a two-dimensional decomposition d. = d, = 2. On the other hand., if we decompose
the matrix on to a ring with d. = 1 by storing complete rows and columns in each

node, then we get
jo = YNeroc 1 toomm (3.165)

Equation (3.16b) corresponds to d. = 1 and dp = 2. We have used as before Nproc
to denote the number of nodes in the concurrent computer.
We can generalize these results as follows: if dc 2 dp, then

constant {comm

fe= T (3.17a)
nz‘; calc
while if d¢ < dp, then
('J“"‘JI‘) constant ¢
fc= Nprof: 7 Sl (3.176)

1
,nZ; teale

The Nproc dependence in Equation (3.17b) implies that cases with d. < dj, (dimen-
sion of computer less than that of problem) will not scale properly (speed up S pro-
portional to Nproc for fixed n) as one increases the number of nodes. Equation (3.17a)
corresponds to scaling behavior we have found on multicomputers. Equation (3.17)
quantifies the reasons to prefer an architecture like the hypercube with a high di-
mension. We have only demonstrated Equation (3.17) in simple examples (matrices,
partial differential equations) and need to explore its validity in more general prob-
lems.



In this section, we have concentrated on the dimension of problems and the com-
puter as it enables one to quantify the performance of a particular decomposition.
Closely related to this is the topology of computer interconnection which has been
discussed in great detail in the computer architecture literature? 2122,

3.3 Physical Analogy

In the previous two subsections, we described static spatial properties of com-
plex systems which were relevant for computation. These included size, topology
(geometric dimension) and the information dimension. We will find new ideas when
we consider problems that are spatially irregular and perhaps vary slowly with time.
A simple example would be a large scale astrophysical simulation as shown in Fig-
ure 11 where the use of a parallel computer required that the universe be divided into
domains which due to the gravitational interactions will change as the simulation
evolves.

Load Balancing can affect crucially the performance of a computation executing
on a parallel machine. By “load balance” we refer to the amount of cpu idling oc-
curring in the processors of the concurrent computer: a computation for which all
processors are continually busy (and doing useful-non-overlapping work) is consid-
ered perfectly balanced. This balance is often not trivial to achieve, however. The
problem of distributing a computation in an efficient manner into a parallel machine
can be fruitfully attacked via simulated annealing and other physical optimization
methods!2:13:34=37

As described in the previous section, a key to parallel computing is to split the
underlying spatial domain into grains which each correspond to a process as far as
the operating system is concerned. We will take a naive software model where there
is one process associated with each of the fundamental members of the simulated
system, i.e., with each “particle” in Figure 11 or each grid point in Figure 6. This
is not practical with current software systems as it gives high context switching and
other overheads. However, it captures the essential issues.

The processes will need to communicate with one another in order for the compu-
tation to proceed. Assume that the processes and their communication requirements
are changing with time—processes can be crcated or destroyed, communication pat-
terns will move. This is the natural choice when one is considering timesharing the
parallel computer, but can also occur within a single computation. It is the task of the
operating system to manage this set of processes, moving them around if necessary,
so that the parallel computer is used in an efficient manner.

The operating system performs two primary tasks. First, it must monitor the on-
going computation so as to detect bottlenecks, idling processors and so on. Secondly,
it must modify the distribution of processes and also the routing of their associated
communication links so as to improve the situation. In general, it is very difficult
to find the optimum way of doing this—in fact, this is an NP complete problem.
Approximate solutions, however, will serve just as well. We will be happy if we can
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realize a reasonable fraction (let’s say 80%) of the potential computing power of the
parallel machine for a wide variety of computations. We will sec in what follows that
the operating system functions as a “heat bath”, keeping the computation *cool” and
therefore near its “ground state” (optimal solution).

One may usefully think of a parallel computation in terms of a physical analogy.
Treat the processes as “particles” free to move about in the “space” of the parallel
machine. The requirement of load balancing acts as a short range, repulsive “force”,
causing the particles, and thereby the computation, to spread throughout the parallel
computer in an evenhanded, balanced manner. The situation is somewhat similar to
a gas or fluid filling up a container. This analogy, though, is not complete. In a
gas, the repulsive pressure which fills the container is due to the microscopic motion
(velocity) of the particles—not to any true, repulsive force between them. In the case
at hand, we do not want the particles (processes) to have a significant velocity—we
want them to move slowly so that they “stay put” in processors sufficiently long so
as to do useful work. A better analogy, therefore, is that of particles interacting via
a repulsive force with the system at a low temperature.

A conflicting requirement to that of load balancing is interparticle communica-
tions — the various parts of the overall computation need to communicate with one
another at various times. If the particles are far apart (distance being defined as
the number of communication steps separating them) large delays will occur, slow-
ing down the computation. We therefore add to the physical model a long range,
attractive force between those pairs of particles which need to communicate with one
another. This force will be made proportional to the amount of communication traffic
between the particles, so that heavily communicating parts of the computation will
coalesce and tend to stay near one another in the computer.

We have described qualitatively above a “Hamiltonian” for parallel computation
which is illustrated quantitatively in the next section, the operating system must try
to minimize, and if possible to find the ground state. We already noted that exact
minimization is not necessary—we have already “wasted” some computational power
using convenient high level languages—we can surely afford to lose another 20% to
load imbalance, so we can think of the operating system as a heat bath which keeps
the computation as cool as possible. Most scientific simulations change slowly with
time and redistribution of processes by the operating system can be gradual. Thus,
we can think of the computation as being in adiabatic equilibrium at a temperature
Tproblem Which reflects the ease of finding a reasonable minimum. Tproblem Will be
larger for those problems which change more rapidly and where the operating system
does not have “time” to find as good an equilibrium.

3.4 Load Balancing

We can now make the above discussion precise with a specific example®. We can
view the spatial structure of the problem as a graph (computational graph in Fig-
ure 2) for which the load balancing or decomposition for parallel computers becomes



a min-cut and equal weight graph partitioning problem. Consider for definiteness the
finite element problem shown in Figure 12 where the strains in a plate require the
unequal distribution of elements indicated in the figure. Suppose we wish to simulate
this system on a 16 node parallel computer with a two-dimensional mesh (or more
generally hypercube) topology. If the elements had been uniformly distributed, then
the equal area decomposition shown in Figure 13(a) would be appropriate. How-
ever, although this would give modest and local node-to-node communication, it does
lead to severe load imbalance shown in Figure 13(b). We need to distribute the el-
ements so that we minimize the appropriate sum of communication and calculation.
The relative weights of these two terms depends on the characteristics of the target
hardware.
Formally, one needs to minimize

max C; (3.18)

nodes 1

where C; is the total computation time for calculation and communication. We choose

to replace this mini-max problem by a least squares®® minimization of
E=Y C? (3.19)
Suppose m(m') label the nodal points of the computational graph. Then
Ci= Z [ Z Comm (m, m') + Calc(m) (3.20)
mei !
linked
tom

where it takes time Calc(m) to simulate m and time Comm (m', m) to communicate
necessary information from m’ to m. If we consider the case where we can neglect
the quadratic communication terms, then

C? =~ const. Z Comm (m, m') (3.21a)
mom
I
+ Y Cale(m) Calc(m') (3.21b)
m.m:

in 3

The two terms in Equation (3.21) have a straightforward interpretation with the
physics analogy where m, m’' are particles which interact, as described in Section 3.3,
if they are linked in the computational graph. We consider these particles as moving
in a space formed by the nodes and linkage of the parallel computer. Then Equa-
tion (3.21a) is an attractive long range force which is minimized when m and m' are



Figure 12. A Finite Element Mesh Generated by the Structural Analysis System NASTRAN. The
mesh is symumetric about the horizontal division and only the top halfl is shown in detail.

in the same node. It is a function of the distance in the “computer space” between m
and m'; this function depends on the hardware topology and the nature of message
routing on the computer. Equation (3.21b) represents a repulsive short range poten-
tial which is maximized and only nonzero when m and m’ are in the same node 7. It
is the load balancing repulsion described in Section 3.3.

Typical results for the problem of Figure 12 and Figure 13 are shown in Figure 14.
We have succeeded in dividing the mesh into roughly equal collections of nodal points;
moreover each set is approximately square so as to minimize edge the communication
effects which are proportional to perimeter (edge) of domain stored in each processor.

Decomposition onto a hypercube naturally suggests a neural network formalism



A SIMPLE EQUAL AREA DECOMPOSITION
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Figure 13. (a) A simple equal area decomposition of the mesh shown in Figure 12 for a 16 node
machine; (b) The unequal workload corresponding to distribution shown in Figure 13(a).

which is in fact quite generalm. Let point m reside in processor P(m) and let this
processor be labelled by a binary number with og (P(m)) = 04 (m) being the a'th bit
of this processor label. If we have Nproc = 2¢ processors, then we associate d neural
variables oo (m) with each point m. As described3®, it is straightforward to express
C; in terms of oo (m) and write down the Hopfield and Tank minimization formulae
for Equation (3.19)%°. Using multiscale techniques, one can show that it takes time of
order M log M log Nproc to minimize Equation (3.19) with a neural network method
on a system of size M (Mn Nproc). This is typically much faster than simulation
time which is at least of order a large constant times M for a system that has an
essentially constant computational graph for a large time interval—the definition of
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Figure 14. (a) The “optimal” decomposition found in Flower, et al.38 using simulated annealing and
the formalism described in Section 3; (b) The approximately equal workload for the decomposition
of Figure 14(a).

an adiabatic system. Both simulation and decomposition performance can be speeded
up by a factor of order Nproc 01 the parallel computer. Koller has implemented a load
balancer for the iPSC/1 hypercube where simulation and balancer run as separate
tasks on each node of the hypercube®®.

Originally, we had expected decomposition to be difficult but we now believe it
to be quite straightforward to obtain adequate although non-optimal decompositions.
As well as simulated annealing and neural networks, there are a variety of simple ad-
hoc but satisfactory heuristic methods*!~48. We have used these methods routinely
for both finite element and particle dynamics problems3849—52,



Simulated annealing directly realizes the physical analogy introduced in Secc-
tion 3.3; neural networks can be viewed!? as the mean ficld approximation applicd
to the underlying Hamiltonian of the physical system. Genetic methods seem to give
similar results to annealing and here we don’t directly exploit the particle analogy

. . . A . . 53,54
but rather view load balancing “just” as an optinization problem”?”%.

3.5 Dynamic Load Balancing

The problem in Section 3.4 was posed “statically”: we needed to find the equilib-
rium state of the underlying physical analogy and this decomposition of nodal points
onto processors suffices for the full calculation. In such problems, adaptive meshes are
often needed where the center of attention, such as the crack in Figure 12, and then
one needs to change the distribution to keep the physical problem in its adiabatic
equilibrium. The example in Figure 11 would also need changing distributions.

We will illustrate some of the issues that can arise with the irregular finite element
mesh shown in Figure 15, and we will use this to describe the simple scattered decom-
position which is one of the effective heuristics discussed at the end of Section 3.4.
Suppose, for simplicity, we wish to perform this calculation on a two-dimensional
mesh of processors. The optimal decomposition, which could be found by the meth-
ods outlined previously, will look something like that shown in Figure 16. This is
all well and good, but it must be admitted that simulated annealing is a non-trivial
undertaking: if we could find a simple method which gave decompositions almost as
good, we would be happy. The “scattered decomposition” accomplishes this®:33.

The scattered decomposition is arrived at in the following way. First, take the
entire problem and surround it by a large rectangle. The rectangle is subdivided into
smaller rectangles as shown in Figure 17. Call these smaller rectangles “templates”.
The fundamental idea is to decompose each of the templates onto the parallel com-
puter by the usual square equal-area decomposition. This is illustrated for template
“A” in Figure 18. Where a processor region doesn’t actually intersect any of the
problem, a null pointer or some appropriate data structure is stored which signi-
fies that the processor has nothing to do in this template. After each template is
decomposed, the overall situation is as depicted in I"igure 19—the scattered decom-
position. The point is that each processor is responsible for a scattered subset of
the large rectangle—therefore, each processor will tend to have approximately the
same number of intersections with the actual problem. The concurrent algorithm
proceeds by cycling through the “stack” of templates, updating each according to the
usual, rectangular algorithm. If the algorithm is written correctly (i.e., by not forcing
re-synchronization during the update of each template®®, it will load balance quite
accurately for arbitrary problems!

As the templates are made smaller, the load balancing will become more accurate.
The price paid, of course, is increased communication overhead. Generically, the
scattered decomposition will have much more communication traffic than the optimal
decomposition of Figure 16. Often, however, communication is relatively cheap and
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Figure 15. The Example Finite Element Problem

so the scattered decomposition becomes an attractive possibility. This statement is
further enhanced by the fact that the communication pattern involved in the scattered
case is that of the simple, two-dimensional mesh, nearest neighbor variety. This kind
of communication strategy, in contrast to general, long distance message passing
(with message forwarding), can typically be made very fast. An example is the grid
communication (NEWS) systems on the CM-2 which is much faster than the general
router.

It seems fairly clear that the scattered decomposition will be a useful technique
in many situations. It would be nice to relate it somehow to the physical analogies
presented above as a deeper understanding would possibly result.

One of the outstanding features of the scattered decomposition is it’s “stability”.
By this we mean that, as the computation changes with time (particles move, clump-
ing occurs, etc.), the scattered decomposition is quite insensitive to these changes
and will continue to load balance rather well. Consider again, the computation of
Figure 12. Suppose now that the crack moves and new clumping of finite element
nodal points occurs somewhere else in the plate. If the decomposition of the space
remains static, severe load imbalances will rapidly develop. Our first proposal for
coping with this is to have the operating system continue to run the annealing as the
computation progresses, and this certainly remains a viable alternative. A scattered
decomposition applied to this problem will continue to load balance for almost any
pattern of clumping, however, without any annealing. Each processor “probes” all
regions of the problem and so it is rather unlikely that any load imbalance will occur



o N N W W O W W L R 4
BV W WL W W WL W W L
LN UV VAN W W W WL O WL L W

TS S  ECEE

I 7 7/

I /

I/
gighe
A1l V.
L
V4
d
y

11

Figure 16. A decomposition of Figure 15 onto a 16 processor parallel computer which is close to
optimal. The dotted lines show the areas of responsibility of each processor.

even when the problem changes. We term this property “stability”.

Stability can be understood in an abstract way in terms of the Hamiltonian.
Figure 20 shows a schematic picture of the shape of the Hamiltonian function at some
particular stage in the time evolution of the crack in Figure 12. The horizontal axis
represents the various choices of decomposition which could be used on the problem.
All of this is at time ¢, which is the time parameter of the crack evolution. The two
decompositions, optimal and scattered, give minima, with the optimal decomposition
being the global minimum (by definition). Now consider what happens to this picture
as time proceeds. Something like that drawn in Figure 21 will happen—the location
of the optimal decomposition will move significantly, while the scattered minimum
will move very little.

In a dynamical situation, where the characteristics of a computation are chang-
ing rapidly, the operating system will not be able to “keep up” perfectly with the
computation. This means that the Hamiltonian which actually matters is not the
instantaneous version plotted in Figure 20 and Figure 21, but a time averaged Hamil-
tonian, H:

H(t, tav) = /: i H(u) du (3.22)

where the averaging time, tay is some natural time scale of the operating system. An
interesting point is that, in terms of H, the better decomposition may actually be
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Figure 17. The Template overlay. The large squares are “templates”, each of which will be decom-
posed onto the parallel computer.

the scattered one. Because of the rapid shifting of the optimal decomposition as a
function of time, the minimum of H corresponding to this will be raised upwards,
while the scattered minimum will remain approximately the same. As illustrated
in Figure 22, two possible scenarios develop—the minima may or may not cross.
Depending upon the parameters of the problem and upon the hardware characteris-
tics of the parallel machine, a “phase transition” may occur whereby the scattered
decomposition actually becomes the better decomposition for H.

In particular, the relative importance of the terms in Equation (3.21a) and Equa-
tion (3.21b) are governed by the ratio fcomm/tcalc introduced in Section 3.1. This
plays a role of a coupling constant

¢’ = ——-t:°“"“ (3.33)
calc

which increases in size as communication performance of hardware decreases. The
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Figure 18. A Magnified view of the Template marked “A” in Figure 17. Each of the smaller, dotted
squares is a processor of the parallel computer: the template has been decomposed onto a 4 X 4 mesh
of processors. The processors are responsible for the finite elements landing within their regions.

scattered decomposition is favored as either the averaging time ¢,y increases or as the
coupling g? decreases. Large tav corresponds to rapidly varying problems which the
operating system finds hard to equilibriate. In the earlier terminology, large tav are
high “temperature” complex systems. Thus, as we increase g2 or decrease problem
temperature, we transition from the scattered high temperature phase to the domains
of Figure 16. This picture is of course quite analogous to the behavior of spin systems.
We can view the scattered decomposition as a spin-wave. We obtain this analogy by
associating with each member of the physical domain (nodal point in Figure 15) a
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Figure 19. The entire scattered decomposition, with processor numbers shown.

spin whose value is the processor number (1 ... Nproc) Where this member is stored.
We then find spin waves at high temperature and domains at low temperature as one

would expect.

4. The Dynamics of Temporal Structure

4.1 The String Formalism

In Section 3, we considered problems like those shown in Figure 2(a) where the
temporal structure was either static or slowly varying. Here we consider cases such
as that in Figure 2(b), where there is either complicated or rapidly varying time
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Figure 20. A sketch of the Hamiltonian versus all possible decompositions.

Decomposition

Figure 21. The Hamiltonian at two different times. The scattered decomposition is a re

latively
stable minimum.

structure. First, we describe how the dynamics changes from the particular picture
of Section 3.3 to one of strings.

Consider a complex system with basic entities labelled by p. Then it is specified
by the set of worldlines {z, (¢)} where (z, t) is a point in the generalized “space”-
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Figure 22. The Time Averaged Hamiltonian. Two scenarios are possible: the “optimal” decompo-
sition remains the true minimum (a), or the scattered wins (b).

“time” (data-domain, evolution label) associated with this system. This set of strings
or paths {z, (t)} are the basic degrees of freedom. In the parallel computer decom-
position problem, p labels processes and z, the processor (node) number where p is
located at clock cycle t. Clearly, the execution time Tpar of the problem represented
by this collection of processes is a functional of these paths

Tpar = Tpar ({Eo )} {z (O} {z, (2)}.. ) (4.1)

The minimization of Tpar is another example of an optimization problem of the



type discussed in Section 3.4 and Section 3.5. . .
The most straightforward approach views Tpar as 2 function of the string parame-
ters and a typical minimization would again use Monte Carlo or simulated annealing.

As shown in Figure 23, one considers local changes in paths
{z, ()} = {z, O (42)

and recovers a formalism very similar to that used in lattice gauge theories and
quantum chemistry.

L o L

change

L -

| time ‘ Plaquette

_ space (%, () ' (%, ® Y

Figure 23. A typical local trajectory (string) change used in a Monte Carlo approach to the string
formalism. The original string {zp (t)} is changed to {Zp )Y}

The alternative formalism uses the trick, due to Hopfield and Tank, where one
introduces redundant variables 7 (z, t) describing the string p. The binary variables
np are defined so that

np (z, t) = 1 if string p is at (z, t) (4.3)
= 0 if string p does not pass through (z, t)

For each t value, the string only passes through one (z, t) value and this is enforced
by adding a syntax term such as

2
Tpar — Tpar + const. Z (Z np(z, t) — 1> (4.4)
t z

which is zero when the constraint is satisfied and otherwise positive.

Often we will extend this technique of using penalty functions for redundant
variables by replacing quantities like Tpar by approximations Tpa: that becomes equal
to Tpar When constraints are satisfied. Exact constraints—such as the C.P.U. for the
neural compiler can only execute one instruction at a time are replaced by penalty
functions that “encourage” this. The combination of the trick (Equation (4.3)) and
penalty functions, allows one to express complex optimization problems in a simple—
often local—form with seemingly difficult constraints expressed easily if redundantly.



\We will find, in several cases, two variants ol the space-time minimization prob-
lem. In the most straightforward but computationally intense formulation, one solves
the full optimization problem over the full space time region. Alternatively, one can
use a window approach where if ¢ is the current time, the state of the system at time
to+1 is found by using a window to < t < to+ At (here At > 1 corresponds to several
steps in t) with the full string dynamics. The “future” t > to+ At is represented as an
average over possibilities. In the physics analogy where objective functions like Tpar
are thought of as Hamiltonians, H, then this future average leads to external fields in
H. This is the neural controller approach which is computationally less intense and
further is insensitive to uncertainties in future data. Of course, the reliability of this
approach depends on the accuracy of the “future” average.

4.2 Message Routing

There is an interesting class of very regular problems which exhibit a rhythmic
or cyclical computational graph for which one needs the string rather than particle
picture. Two examples are shown in Figure 24 and Figure 25 for the message routing®®
and combining switch problems. The latter is found in matrix-vector multiplication
when both matrix M and vector = are distributed®36:%¢. Consider

yj = z Mj; z; (4.3)
i

If one sums over all values Mj; z; corresponding to each fixed j and all z; stored
in a particular node I, then Equation (4.5) becomes

Yi=Y yﬁ-”
I

or the accumulation of many (= number of components of y) global sums. The ana-
lytic solution of this is known as the algorithm fold3%657 and illustrated in Figure 25.

In the physics analogy of Section 3.3, one might consider the separate yg-I) as
particles. However, these must move in a correlated fashion through the nodes of the
computer in a way such that y(~I1) and y(-h) are combined (added) when they “col-
lide” at a common node “on the way” from (I1) and (I2) to the destination node J
containing y;. The physics analogy is incomplete as we have an instantaneous energy
function but no equations of motion. Rather, we use the worldline formalism intro-
duced in Section 4.1 and consider as degrees of freedom the complete time dependent
strings which terminate at one end on y; in node J and at the other end on yg-I) in
node I. We must drape these strings on the computer nodes so as to minimize the
total time. In a traditional physics problem, one can use either a path integral or
equations of motion formulation. Here only the former seems possible and one must
regard the paths and not the instantaneous particles as the basic degrees of freedom.
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Figure 24. A Message Routing Schematic of the Problem Addressed by the neural_router.

Initial results®*1? are presented for this combining switch using neural networks
for the controller or “window” formulation mentioned at the end of Section 4.1. The
neural networks include terms that

e Attract strings corresponding to the same sum y;.
¢ Repel strings corresponding to different sums yj; and yj,.
e Attract strings to destination node J containing y;j.

Typical results are shown in Figure 26 for our implementation called the neural
accumulator. We considered 16 sums accumulated on 16 nodes for a sparse matrix M
such that only a fraction f(0 < f < 1) of nodes contain a contribution Mj; z; for each
y;. Thecase f =11s solved exactly by the analytic fold algorithm but the case f <1
only has an approximate deterministic solution called the crystal accurnulator®-58.

Hopfield and Tank originally illustrated the neural network approach to the simple
travelling salesman (TSP) problem. One minimizes the total travel time of a single
salesman who must visit each of M cities once. Our path formalism can be viewed
as a multiple travelling salesman method. In the original TSP, one has a single path
or string to be routed (draped) over all the cities. In the new formalism, we have
several interacting salesmen.
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Figure 25. The combining switch illustrated for two and four nodes. The fold algorithm is known
analytically in this case and shown in the figures.

4.3 Optimizing Compilers

In the previous section, we considered salesmen which were messages or processes
moving between computers. Here we focus on a single node and consider salesmen
as variables moving between memories (registers, cache, main memory, paged out
memory...) and C.P.U. of a single computer. This leads us to consider our formalism
for optimizing compilers. Let us illustrate our ideas with the problem of producing
code for the simple C program: ‘

z=zx(z4+y)—y (4.6)

As shown in Figure 27, this is represented by a directed acyclic graph (dag)
where we will label nodes and leaves of the dag by an index i. We will consider the
evaluation of Equation (4.6) on a very idealized computer with a single register on
which all arithmetic operations are performed. Of course, the solution of this code
generation problem is “obvious” by inspection but it is sufficient to illustrate our
neural network approach.

We let m label the registers and memory locations in the machine, ¢ label the
clock cycle, and introduce neural variables 7 (m, 4, t) to indicate whether quantity i is
in location m at cycle t. The code generation problem is quite similar to the routing
problem of the previous section: we construct an energy function containing syntax
terms to ensure that
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Figure 26. Results from the neural accumulator described in Section 4.2 which addresses the dynamic
irregular version of the problem shown in Figure 25.

1) code correctly represents the program (e.g., t1 and t2 in Figure 27(b) are created
before being used),

2) fixed-t configurations represent possible machine states (i.e., one quantity per
storage location), and

3) states at consecutive times are related by a machine operation.

We also know the values of the initial machine state 7 (m, 1, 0) and the desired
final machine n(m, i, T') for some appropriate T. We add terms to the energy to
minimize the number of intermediate machine states, and use Hopfield Tank style
neural network evolution equations to find a minimum of this energy.

We have found a convenient way to build syntactic terms for even complicated
constraints of the type (1,2,3) above. Since we ultimately interpret the neural variable
n as logical variables with 1 = TRUE and 0 = FALSE, any constraint is some logical
statement involving the 7 (m, i, t), say P(m, 72, .- .) = TRUE. Extend the logical
operations to fraction values of 7 via a Ab — ab,aVb— a+b—ab,@— 1—a. Then
we penalize violations of this constraint by adding a multiple of P to the energy. In
the simple study reported®®, an appropriate coefficient for the penalty function P was
found by trial and error.

A typical example corresponds to constraint 2) above. Suppose 7 (m, i, 1) =1
indicates that memory location m contains quantity . Then we cannot store any
other variables in this location, i.e., n(m, j, t) must be zero for all j # 1. This
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Figure 27. (a) A simple line of code and its representation by 2 directed acyclic graph. (b)The
simple model computer discussed in Section 4.3.

constraint corresponds to a term P in the energy function E of form

E=P=n(m,i1) (Z 7(m, J, t)) (4.7)
i#]
ie., if n(m,jt) =1, we require all 7(m, J # i,t) = 0. More generally, we have
constraints of the form
A (m, n2 ...) requires B(m,n2 ---) (4.8)

where A and B are logical expressions, i.e., functions of the n (m, i, t). The constraint
Equation (4.8) corresponds to _
P=BVA (4.9)



and a term P = A A B = AB in the energy function.

We showed3® that adding a noise term to the Hopfield Tank equations improved
the performance of the resultant network for the problems of Section 3.4. We have
used the same “bold network” for code generation and the results are encouraging®’.
However, there is an important issue we need to address before a practical system
could be produced. We do not need an exact minimum of the term in E corresponding
to the execution time of the code. However, many of the syntax constraints must be
exactly satisfied or else the code will lead to incorrect results. One strategy is to
allow small syntax violations, and use a postprocessor to repair them. This is a
promising alternative to the all-or-nothing conventional approach to neural network
optimization. It also provides a natural way to normalize the penalty terms in the
energy: the penalty for a syntax violation should equal the extra execution time the
postprocessor would have to add to the program to fix up the error. Note that the
postprocessor could also be a neural network. This idea applies equally to the original
travelling salesman neural network formulation of Hopfield and Tank.

The neural network approach to optimizing compilers has several attractive fea-
tures:

1) As our approach explicitly minimizes an analytic function, it is possible to sys-
tematically improve any solution—perhaps by using simulated annealing. This
would allow one to adjust the compile time and optimality of code according to
ones needs. A long extensive optimization would be appropriate before a 6000
hour CM-5 run on a “grand challenge”; a quick non-optimal option would be
appropriate when debugging.

2) This method naturally incorporates the “exact” architecture of the computer in
the detailed form of E. In particular, it should in principle be able to handle
complex memory hierarchies, which are present in high performance computers
(such as the CRAY-2) but hard to handle with conventional techniques.

3) One should be able to build rather portable compilers with this technique. The
manufacturer of a new RISC architecture multi-function superchip need only spec-
ify the particular form of E to allow a portable neural network based compiler to
be used.

4.4 The Neural Navigator

The application of the methods of Section 4.1 to Section 4.3 to navigation are
quite general but for definiteness, consider an optimal path problem where we have
a collection of objects, which we call vehicles, in a two-dimensional space. We wish
to navigate the vehicles from initial starting positions to final destinations so as to
minimize the travel time. In the following, we consider just two vehicles labelled by
i = 1, 2. The essential idea is to again view the paths as the degrees of freedom
and use the redundant neural variables 7; (z, t) to parameterize these paths. We
again need to form an energy functional E({n:1}, {#2}) which incorporates both the
goal (minimal travel time) and the various constraints. Perhaps the problem is best



illustrated by typical results shown in Figure 28 and Tigure 29. We have the two
vehicles starting at the bottom of the figure and reaching destinations at the top.
They must navigate so as to avoid each other and respect the terrain constraints. In
this case, the latter corresponds to a collection of hills (rocks) with sharp boundaries,
i.e., the shaded areas are to be avoided. These hills consist of several randomly placed
rocks and a major “range” with only a narrow passable region. Our energy function

E has several terms ;
E=) AjE; (4.10)
j=0

with variable coefficients A; reflecting the “importance” of the constraint. Let us
describe these terms qualitatively.

Neural Navigator-!

Figure 28. An example of the neural navigator for the motion of two vehicles (1,2) from the bottom
to the top of the figure.

We will do this in the context of the window philosophy explained in Section 4.1.
We have a starting time o and only use the neural variables 7; (z, t) in the window
to <t <tg+ At as the dynamical variables. The future t > tg + At is, in principle
represented as an average over paths but in practice is approximated intuitively.

1) The first term represents the goal of minimal travel time. Let us just note that we
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Figure 29. A second example of the neural navigator with rather more complex terrain than in
Figure 28. Shaded areas (rocks, hills) are to be avoided. shown are typical window projections

discussed in Section 4.4.

can go back and forth between a neural and conventional space time description
with the simple equations.

Positions z; () = D, y7i (¥ 1) (4.11)
y
y; (t) = Velocity d_:z_::u(t)
=y (m(y t+8t)—m (y, 1)) /62 (4.12)

y

Let d; be the final destination of the i'th vehicle. Then we express the goal of
reaching the destination by

Bo=do Y, 2 [I&;(t-i-l)-z.'(t)l+|£;(t+1)-4;|—Izi(t)—c_iil] (419)

over over
vehicles window



In the examples of Figures 28 and 29, this simple form is an adequate “average of

the future”; it would not be sufficient if, for instance, the narrow pass was displaced
(in z) from the destinations. We are considering a general multiscale method in space
and time to provide a generally accurate estimate of Eg. The whole problem is first
solved with a coarse space and time grid and this crude solution is used to estimate the
goal constraint (Equation (4.13)). We have good experience with multiscale methods

in space®'5? but need to extend them to allow variable temporal scales.
1) The second term in Equation (4.10) expresses the smoothness of the trajectories
and is taken as
d2z;\’
Ei=A —_— .
=4 T Y () (4.14)
over window
vehicles
2) The third term ensures that the vehicles keep a reasonable distance apart and in
the case of two vehicles we use
Ex=4Ay ) exp(=la—tl). (4.13)
1z Ll
m
window
2
exp (—Izl —§2|'/a'2) m (Z1, t1) M2 (22, t2)
where o is a suitable distance scale and we actually cut off sums and keep only
those z;, t; where vehicles are close.

3) In the current model calculations, the terrain constraint comes in two terms. In
the first we represent hills and rocks by a function H(z) which is zero on the
level and unity in forbidden regions occupied by the hills. Then we constrain the
vehicles to passable regions by the constraint

Es=4As ), > D H@n(z? (4.16)
' ov"er ovter z
vehicles window
4) We also incorporate a maximum velocity 2™**(z) by the constraint

Ee=Ac 3, >, > miant) @ (M) -2 () (4.17)

over over
vehicles window

where v; is calculated as in Equation (4.12); actually this is not accurate and
we remove “jitter” by averaging not over two but many time intervals in Equa-
tion (4.12). This is appropriate as we choose the grid so that a vehicle moves
about two space grid positions in a single time step. In Equation (4.17), © is
any reasonable function, such as the Heaviside function, that is zero when its
argument is negative.



Ve introduce neural variables n(z, t) as before, and write T in terms of n using
Ilquation (4.12).

\Ve note that the neural network path integral formalism is much more computa-
tionally complex than direct integration. However, it can be implemented efficiently
on parallel machines; in particular, the SIMD Connection Machine CM-2 or special
purpose neural network hardware. Thus, in a future world dominated by parallel
machines, such path integral formalisms could be attractive compared to the direct
sequential method of Equation (4.22).

In Section 4.4, we used a separate neural variable n; (z, t) for each vehicle <. If the
vehicles were of identical type, it would be natural to use a single neural field n(z, t)
representing the vehicle density. At each time instance t, one requires a given number
N of the n(z, t) to be one and the rest zero. One would replace Equation (4.18) by

2
Es=As » (Z n(z, t) — N) (4.25)
t z

In this way one could, for instance, solve several (V) pendula problems (with different
initial conditions) simultaneously.

4.6 Ewvent Driven Simulation

The string formalism is the natural description of an event driven simulation. As
shown in Figure 30, we have several world lines 71, 2, 3, - . . interacting by events at
discrete variable times t;-"'. Nature is time stepped and a time driven (synchronized)
simulation is the obvious formulation of a physical simulation. However, this can be
very inefficient if the world is modelled as many macroscopic objects interacting at
variable irregular times. We note that such an event driven description of nature is
usually inherently inexact as we ignore the possibility of other events at intermediate
times. For instance, suppose we model a game of billiards where the world lines are
trajectories of balls and events are collisions. In a time stepped approach, we are
guaranteed “exact” results as long as the time step is small enough; we cannot miss
a collision. In an event driven approach, we can take long, ball dependent, time steps
between collisions; this is much faster as long as we catch all collisions.

The time stepped approach is exact, easily parallelized (the problem is loosely
synchronous®%3) but computationally complex. The event driven approach is faster
on a sequential machine but hard to parallelize (zﬂusynchronous63 in the language of Sec-
tion 5). As the strings interact irregularly, they cannot easily be evolved in parallel®4.
However, these problems in parallel simulation are only present if one insists on ex-
actly reproducing the sequential simulation. As the original event driven formulation
is intrinsically inexact, it seems natural to use an approximate simulation method.
This could be either the neural network method, as described in Section 4.4, or sim-
ulated annealing. In the latter case, by varying the annealing temperature one can
control the precision of the parallel simulation.
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Figure 30. Three world lines of an event driven simulation showing typical events at times tg-'k).

This approach to event driven simulation was suggested to us by Dan Wiener and
we are currently looking for some good examples to test our ideas on. We need a
case where we understand both the event and time driven approaches so that we can

quantify the precision of the event driven approach.

4.7 The Elastic Network

The above examples have extended Hopfield and Tank’s neural network approach
to the TSP, Travelling Salesman Problem. However, it is now clear®® that this
method is not as effective as other heuristics for the TSP. In particular, the elas-
tic network®5—%8 of Durbin and Wilshaw is clearly superior. In a set of papers5%70,
Petar Simic has shown that one can consider neural networks and elastic networks
as similar mean field approximations to physical analogies for the TSP for different
choices of degrees of freedom. In fact, returning to Section 4.1, the elastic network
for the TSP is gotten by using the path as the degree of freedom rather than the
neural variables of Equation (4.3). The string formalism performs better because it
does not have the syntax enforcing term as in Equation (4.4).

This result does not imply neural approaches are “always” wrong. In fact, we can
understand the great success of our neural methods in Section 3.4 because there we
found a formalism where neural variables required no syntax enforcing term as they
had no redundancy.



We have looked at the navigation problem of Section 4.4 again!®>™ and found
much better results using strings to represent the vehicle paths—these are elastic
bands stretched between the source and destination of the vehicles. We need to do
more study of the string approach, such as the neural compiler of Section 4.3, both
in this case and other areas where the neural networks led to great redundancy.

5. Problem Architectures

Here we describe a theory of problem structure or problem architecture which is
analogous to the classification of computers by their control mechanism into SIMD
and MIMD architectures!®13 7273,

This classiﬁcation4'63'74 was deduced from our experience at Caltech combined
with a literature survey which was reasonably complete up to the middle of 1989. At
Caltech, we developed some 50 applications on parallel machines of which 25 led to
publications in the scientific literature describing the results of simulations performed
on our parallel computersl'2'3'75. Our work was mainly on the hypercube, but the total
of 300 references cover work on the Butterfly, Transputers and the SIMD Connection
wlachine and DAP. We were interested in applications and algorithms where we could
evaluate the scaling to very large parallel machines. Table 3b illustrates what we
mean by an application—“modelling the acoustic signature of a submarine using
direct simulation of turbulence” would be another example, and in Table 3a we divide
84 application areas into eight disciplines.

The three general temporal structures are called synchronous, loosely synchronous,
and asynchronous; we sometimes shorten these here to Classes I, II, and III, respec-
tively. The temporal structure of a problem is analogous to the hardware classification
into SIMD and MIMD. Further detail is contained in the spatial structure or com-
putational graph of Figure 2 describing the problem at a given instant of simulation
time? which is important in determining the performance as shown in Section 3.1 and
Section 3.2 of an implementa.tion3 but it does not affect the broad issues discussed
here. In Table 3c, we only single out one special spatial structure, “embarrassingly
parallel”, where there is little or no connection between the individual parallel pro-
gram components, i.e., the spatial (computational) graph of Figure 2 is disconnected.
For embarrassingly parallel problems, the synchronization (both software and hard-
ware) issues are greatly simplified. As shown in Table 3c, asynchronous problems do
not clearly scale to massively parallel systems unless they are embarrassingly parallel.

Synchronous problems are data parallel in the language of Hillis"® with the re-
striction that the time dependence of each data point is governed by the same algo-
rithm. Both algorithmically and in the natural SIMD implementation, the problem is
synchronized microscopically at each computer clock cycle. Such problems are partic-
ularly common in academia as they naturally arise in any description of some world in
terms of identical fundamental units. This is illustrated by quantum chromodynam-
ics (QCD) simulations of the fundamental elcmentary particles which involve a sct



Table 3: Summary of Problem Architectures

A. Data Sample from 300 Papers* 62

S4 Total Applications

9 Biology

4 Chemistry and Chemical Engineering

14 Engineering

10 Geology and Earth Science

13 Physics

5 Astronomy and Astrophysics
11 Computer Science
18 Numerical Algorithms

B. Typical Applications

Analyze Voyager Data from Neptune
Calculate Proton Mass

Computer Chess

Dynamics of H + HO

Evolution of the Universe

Image Processing
Multiple Target Tracking

. Optimization of Oil Well Placement
Seismic Modelling
Access Database

C. Conclusions of Survey of Applications

About 50% of applications clearly run well on SIMD machines.
About 90% of applications scale to large SIMD/MIMD machines.

Category Number Fraction Natural Support
Hardware
I: Synchronous 34 0.4 Total Class SIMD
I and II
II: Loosely Synchronous 30 0.36 Spatially MIMD
(not Synchronous) Connected Distributed
0.76 Memory
I: Embarrassingly 6 0.07 SIMD
Parallel Spatially
[I: Embarassingly Parallel Disconnected MIMD
or but Asynchronous and 6 0.07 Distributed
ITI: needs MIMD Memory
III: Truly Asynchronous 8 0.1 Unclear Unclear
(Spatially connected) Scaling Maybe MIMD
Maybe Shared

Memory




of gluon and quark fields on a regular four-dimensional lattice. These computations
form the largest use of supercomputer time in academia’ 78,

Loosely synchronous problems are also typically data parallel, but now we allow
different data points to be evolved with distinct algorithms. Such problems appear
whenever one describes the world macroscopically in terms of the interactions between
irregular inhomogeneous objects evolved in a time synchronized fashion. Typical
examples are computer or biological circuit simulations where different components
or neurons are linked irregularly and modelled differently. Figure 11 shows a loosely
synchronous algorithm as the inhomogeneity makes the algorithm very different for
each particle. Time driven simulations and iterative procedures are not synchronized
at each microscopic computer clock cycle, but rather only macroscopically “every now
and then” at the end of an iteration or a simulation time step.

Loosely synchronous problems are spatially irregular but temporally regular. The
final asynchronous class is irregular in space and time, as in Figure 2b. A good exam-
ple is an event driven simulation as in Section 4.6, which can be used to describe the
irregular circuits we discussed above, but now the event paradigm replaces the regular
time stepped simulation. Other examples include computer chess™ and transaction
analysis. Asynchronous problems are hard to parallelize and some may not run well
on massively parallel machines. They require sophisticated software and hardware
support to properly synchronize the nodes of the parallel machine as is illustrated by
time warp mechanism®.

Both synchronous or loosely synchronous problems parallelize on systems with
many nodes. The algorithm naturally synchronizes the parallel components of the
problem without any of the complex software or hardware synchronization mentioned
above for event driven simulations. Asshown in Table 3¢, 90% of the surveyed applica-
tions fell into the classes which parallelize well. This also includes the embarrassingly
parallel I, II, III-EP classes. It is interesting that massively parallel distributed mem-
ory MIMD machines which have an asynchronous hardware architecture are perhaps
most relevant for loosely synchronous scientific problems.

In Table 4, we give details behind some of the applications in Table 3c by listing a
few of the recent (end of 1989) Caltech applications with their problem architectures
and an estimate of the appropriateness of SIMD or MIMD hardware.

We have looked at many more applications since the detailed survey®® and the
general picture described above remains valid! We have recently recognized that many
complicated problems are mixtures of the basic classifications. An important case
is illustrated by a battle management simulation implemented by my collaborators
ot JPL82. This is formally asynchronous with temporally and spatially irregular
interconnections between various modules, such as sensors for control platforms and
input/output tasks. However, each module uses a loosely synchronous algorithm
such as the multi-target Kalman filter? or the target-weapon pairing system. Thus,
we had a few (~ 10-50) large grain asynchronous (Class III) objects, each of which
was a data parallel Class I or II algorithm. This type of asynchronous problem
can be implemented in a scaling fashion on massively parallel machines. We can
denote this IIICG-IIFG to indicate the Coarse Grain asynchronous controlling of
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Problem Does SIMD
Application Architecture Perform Well

QCD I - Regular Yes
Continuous Spin I - Regular Yes

(High T¢)
Ising/Potts I - Regular Yes

Models
Strings III - Embarrassingly Parallel (forall) No
Particle Dynamics

O(NlogN) II - Irregular Maybe

O(N = N) I - Regular Yes
Astronomical IIICG-IIFG (several different Unknown
Data Analysis loosely synchronous modules)
Chemical Reactions

H + H, Scattering I - Regular + forall Probably

e~ + CO Scattering I - Regular + forall Probably
Grain Dynamics I - Regular Yes
Plasma Physics II - Can Be Irregular Probably
Neural Networks II - Typically Irregular Sometimes
Computer Chess ITI - Asynchronous No
Multi-target Tracking II - Irregular Maybe

Fine Grain loosely synchronous subproblems. A similar example of this problem class
is machine vision and signal processing, where one finds an asynchronous collection
of data parallel modules to perform various image processing tasks, such as stereo
matching and edge detection. Figure 31 illustrates another example where we outline
an approach to designing a new airframe which involves aerodynamics, structures,
radar signature and the optimization discussed above for the oil reservoir case. This
Figure 31 also points to the interesting analogy between heterogeneous problems of
class IIICG-IIFG and a heterogeneous computer network.

In the above cases, the asynchronous components of the problems were large grain
modules with modest parallelism. This can be contrasted with Otto and Felten’s
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Figure 31. The Mapping of Heterogeneous Problems onto Heterogeneous Computer Systems

MIMD computer chess algorithm, where the asynchronous evaluation of the pruned
tree is “massively pa.rallel”79. Here, one can break the problem up into many loosely
coupled but asynchronous parallel components which give excellent and scalable par-
allel performance. Each asynchronous task is now a Class I or Class IT modestly
parallel evaluation of a given chess position.

6. Matching the Space Time Structure of Problems and Computers

6.1 The Duality Between Memory Structure of the Computer and Space Time Struc-
ture of the Problem

Here, we review the analysis concerning memory hicrarchy®!7. We first note that
this is very directly related to an analysis of shared memory architectures because
high performance machines of this shared memory class need a fast cache or local
memory to buffer data from the slow shared memory. We will use the term “cache”
to refer interchangeably to a true hardware controlled cache or a user or software
controlled fast local memory.

We have already decomposed problems into parts designed to minimize commu-
nication between them. This was the subject of Section 3 and is essentially all that is
necessary to obtain good performance from machines like the NCUBE or Transputer
arrays. We will use the same idea for hierarchical memories and divide the problem
into parts (grains) so that each grain fits into the lowest level of memory hierarchy.
This is illustrated in Figure 32 and Figure 33 for shared memory machines, hierarchi-
cal multicomputers and the simpler homogeneous multi-computer. In Figure 32(a),



we see a simple special case where the total problem will fit into the “caches” when
summed over the nodes. Then the global shared memory can just be used as a com-
munication path and one can easily see that the overheads take the same form as
Equation (3.10) with ¢mem replacing tcomm. Here tmem was already illustrated in Fig-
ure 4 and is defined as the time taken to read and write a word between the two levels
of the memory hierarchy. However in the general case, shown in Figure 32(b), one
may fill the “caches” with grains but there are still other (virtual) grains waiting in
the shared memory to be executed. Figure 33(b) shows how this looks for a hierarchi-
cal hypercube where we note the grain size is defined by the “cache” size and not by
the total node memory. I have given a detailed analysis® of the extra overhead needed
for the cases of Figure 32(b) and Figure 33(a) to swap the grains in between the two
memory levels. The essential idea is contained in Figure 34 which illustrates that
the overhead fy is proportional to tmem/tcalc divided by the average temporal size of
the grain. On general principles, communication overhead proportional to tcomm is
associated with the spatial structure and that proportional to tmem is associated with
the temporal properties of the problem.

These results leads to a universal decomposition methodology which we call the
method of space-time blocking. For homogeneous multicomputers one only needs to
divide the problem into local spatial blocks. This is a special case of a more general
and difficult technique which divides the full space-time structure of the problem into
blocks. This idea is illustrated in Figure 35 for a very simple one-dimensional partial
differential equation. One can also illustrate this idea with the BLAS-3 project intro-
duced by Dongarra and collaborators®4—86. Their well thought out strategy of using
matrix-matrix and not matrix-vector suboperations is precisely the implementation
of space-time blocking for this problem. Although initially introduced for shared and
hierarchical memory machines, the BLAS-3 idea is the correct basis for a universal
library of full matrix operations across all the architectures of Section 1.

We see that all high-performance computers appear to need locality to achieve
their performance. This is spatial locality for homogeneous hypercubes but more
general and indeed higher performance architectures exploit locality in space and
time.

6.2 Parallel Computer Software

Figure 3 illustrated our view of software as implementing a map of problem onto
computer. Traditional languages such as Fortran map the space-time of the original
problem onto a purely temporal structure corresponding the execution of a serial
program on a sequential computer. The spatial (data) parallelism becomes a temporal
or control parallelism expressed as a DO loop. A parallelizing compiler tries to convert
the temporal structure of Fortran back into a space-time structure which can execute
well on a parallel machine. Usually this fails as the original map of the problem into
sequential code has thrown away information necessary to reverse this map. The first
(and some ongoing) efforts in parallelizing compilers tried to directly “parallelize the
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Figure 32. Shared or hierarchical memory computers showing the total problem divided into parts
or processes that individually fit into the “caches”. In (a) the total problem fits into the “caches”

but (b) shows the general case where the processes are held in the (slow) main memory and need to
be cycled through the “caches”.

DO loops”. This seems doomed to failure in general as it does not recognize that in
nearly all cases the parallelism comes from spatial and not control (time) structure.
Thus, we are working with Kennedy at Rice and others on a parallelizing compiler
FortranD where the user adds additional information to tell the compiler about the
spatial structure. We are optimistic that the resultant FortranD project!415:7%:87:88

will be successful for the synchronous and loosely synchronous problem classes defined
in Section 5.
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Figure 33. An illustration of (a) homogeneous and (b) hierarchical memory multicomputers.

Most languages do not express and preserve space time structure. Array lan-
guages such as APL and Fortran 90 are examples of data parallel languages which
at least partially preserve the space time structure of the problem in the language.
Appropriate class libraries can also be used in C++ to achieve this goal. We ex-
pect that development of languages which better express problem structure will be
essential to get good performance with an attractive user environment on large scale
parallel computers. The results in Section 6.1 show that data locality is critical in
sequential high performance (hierarchical memory) machines as well. Thus, we would
expect that the use of languages which properly preserve problem structure will lead
to better performance on all computers.



ANALYSIS OF HIERARCHICAL MEMORY OVERHEAD

TIME = lmem X OPJCCt spatial size

CACHE LOADING

VERSUS

TIME SPEND IN CACHE = feae X temporal ¢
of object X spadal size

xtem(compmational extent)

MEMORY OVERHEAD IS GENERALLY

X — hierarchical

1/d
1/(OBJECT OR GRAIN SIZE ) "

feomm_ giseributed
fealc
Figure 34. A summary of the overheads associated with hierarchical memory. d is the system
dimension introduced in Section 2(b).



DECOMPOSITIONS FOR THE CONCURRENT
ONE DIMENSIONAL WAVE EQUATION

(a) A Purely SPATIAL Blocking
AHigh Edge/Area Ratio In The Time Direction

Time
L ] L] e {7. [ ] [ ] L ] L] .J [ ] L] L]
RN Boundary of a Complex System
Space

(b,c) Two Space-Time Blockings

(b) A Better Edge/Area Ratio With
Modest Communication

(c) A More Practical Space-Time Decomposition
With More Communication

[ ] e O ‘0 [ e O L [ ] [ ] [ ] [ ] [ ] L ] [ ] [ ] [ ] [ ] ] L ] [ ] [ ] L] °
Tlme e © ¢ & o o O 0|0 o e © ©¢ o o o|e o o o o o o o
[ ] [ ] [ ) [ ] L ] L ] [ [ ] [ L ] L ] L ] [ ] [ ] ° L ] [ ] L ] [ ] L J ° [ ] L] L ]
. e e o o © .\. ojle o o o .\0 e e|eo [ ] e o 0\. o L]
[___> grain #1 — grain #2 AN grain #+3 A
Space

Figure 35. Space-time blocking (b,c) constrasted with conventional spatial (a) decompositions used
for the one-dimensional wave equations.



Acknowledgements

This work has been collaborative with many people, especially W. Furmanski and

S. Otto and I would like to thank them and my colleagues in the Caltech Concurrent
Computation Program for their insight and help.

References

1.

[&1]

G. C. Fox, ‘Questions and Unexpected Answers in Concurrent Computation’ in
Ezperimental Parallel Computing Architectures, ed. J. J. Dongarra (Elsevier Sci-
ence Publishers B.V., North-Holland, 1987) p. 97-121. Caltech Technical Report
C3P-288 [Fox:87d].

G. C. Fox, ‘The Hypercube and the Caltech Concurrent Computation Program:
A Microcosm of Parallel Computing’ in Special Purpose Computers, ed. B. J.
Alder (Academic Press, Inc., 1988) p. 1-40. Caltech Technical Report C3P-422
[Fox:8800].

G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, and D. W.
Walker, Solving Problems on Concurrent Processors, Volume 1 (Prentice-Hall,

Inc., 1988), [Fox:88a].

I. G. Angus, G. C. Fox, J. S. Kim, and D. W. Walker, Solving Problems on
Concurrent Processors, Volume 2 (Prentice-Hall, Inc., 1990) [Angus:90al.

G. C. Fox, P. C. Messina, and R. D. Williams, Parallel Computing Works (Morgan
Kaufmann Publishers, 1992) [Fox:92a).

G. C. Fox, S. W. Otto, and E. A. Umland, ‘Monte Carlo Physics on 2 Concur-
rent Processor’, Journal of Statistical Physics, 43,5/6 (1986). Caltech Technical
Report C3P-214 [Fox:85a].

G. C. Fox and S. W. Otto, ‘Concurrent Computation and the Theory of Complex
Systems’ in Hypercube Multiprocessors, ed. M. T. Heath (SIAM, 1986), p. 244~
96S. Caltech Technical Report C3P-255 [Fox:86al.

G. C. Fox, ‘Domain Decomposition in Distributed and Shared Memory Environ-
ments — I: A Uniform Decomposition and Performance Analysis for the NCUBE
and JPL Mark IlIfp Hypercubes’, in Supercomputing, ed. E. N. Houstis, T. S.
Paptheodorou, and C. D. Polychronopoulos (Springer-Verlag, 1987), Volume 297,
p. 1042-1073. Caltech Technical Report C3P-392 [Fox:87b].

. G. C. Fox and W. Furmanski, ‘The Physical Structure of Concurrent Problems

and Concurrent Computers’, Phil. Trans. R. Soc. Lond. A., 326, (1988) p. 411-
444 Caltech Technical Report C3P-493 [Fox:88tt].



10.

11.

13.

1.

16.

17.

18.

19.

G. C. Fox and W. Furmanski, ‘A String Theory for Time Dependent Complex
Systems and its Application to Automatic Decomposition’ in The Third Confer-
ence on Hypercube Concurrent Computers and Applications, Volume I, ed. G. C.
Fox (ACM Press, 1988), p. 285-305. Caltech Technical Report C3P-521 [Fox:88f].

G. C. Fox, W. Furmanski, and J. Koller, ‘The Use of Neural Networks in Parallel
Software Systems’, Mathematics and Computers in Simulation, 31, No. 6, p.
485-495 (1989). Caltech Technical Report C3P-642b [Fox:89q].

G. C. Fox, W. Furmanski, A. Ho, J. Koller, P. Simic, and Y. F. Wong, ‘Neural
Networks and Dynamic Complex Systems’ in Proceedings of 1989 SCS Eastern
Conference, (1988). Caltech Technical Report C3P-695 [Fox:88kk].

G. C. Fox, ‘Physical Computation’, Concurrency: Practice and Ezperience, 3, No.
6, p. 627-653 (1991). Syracuse Technical Report SCCS-2b [Fox:90i] (C3P-928b).

G. C. Fox, ‘Hardware and Software Architectures for Irregular Problem Architec-
tures’ in ICASE Workshop on Unstructured Scientific Computation on Scalable
Microprocessors, 1990 Syracuse Technical Report SCCS-111 [Fox:90p] (CRPC-
TR91164), to be published by MIT Press.

. G. C. Fox, ‘The Architecture of Problems and Portable Parallel Software Systems’,

Syracuse Technical Report SCCS-134 (1991) [Fox:91g].

G. C. Fox, ‘Parallel Computing’, California Institute of Technology Technical
Report C3P-830 (1989); published in Encyclopedia of Physical Science and Tech-
nology 1991 Yearbook (Academic Press, Inc.). Caltech Technical Report C3P-830
[Fox:89y].

G. C. Fox, ‘Parallel Supercomputers’ in Computer Engineering, ed. C. H. Chen
(McGraw-Hill Publishing Company, New York, 1992), Chapter 17. Caltech Tech-
nical Report C3P-451d [Fox:92b).

G. C. Fox, ‘Parallel Computing and Education’, Daedalus Journal of the American
Academy of Arts and Sciences, 121, No. 1, p. 111-118 (1992). Caltech Technical
Report C3P-958 [Fox:92d] (SCCS-83, CRPC-TR91123).

G. C. Fox, ‘Achievements and Prospects for Parallel Computing’, Concurrency:
Practice and Ezperience, 3, No. 6, p. 725-739 (1991). Caltech Technical Report
C3P-927b [Fox:91f] (SCCS-29b, CRPC-TR90083).

20. P. Messina, ‘Parallel Computing in the 1980s—One Person’s View’, Concurrency:

Practice and Ezperience, 3, No. 6, p. 501-524 (1991). Caltech Technical Report
CCSF-4-91 [Messina:91a).

. G. C. Fox and S. Otto, ‘Algorithms for Concurrent Processors’, Physics Today,

37, No. 5, p. 50 (1984). Caltech Technical Report C3P-071 [Fox:84a.



o
(R

30.

31.

33.

34.

_ G. C. Fox, ‘The Performance of the Caltech Hypercube in Scientific Calculations:
A Preliminary Analysis’, in SuperComp wters—Algorithms, Architectures, and Sci-
entific Computation, ed. F. A. Matsen and T. Tajima (University of Texas Press,
1085). Caltech Technical Report C3P-161 [Fox:83c].

H.-Q. Ding, ‘The 600 Megaflops Performance of the QCD Code on the Mark IIIfp
Hypercube’, in The Fifth Distributed Memory Computing Conference, Volume 2,
ed. D. W. Walker and Q. I'. Stout (IEEE Computer Society Press, California,
1990), p. 1295-1301. Caltech Technical Report C3P-799b [Ding:90c].

H.-Q. Ding, ‘Heavy Quark Potential in Lattice QCD: A Review of Recent Progress
at Caltech’, International Journal of Modern Physics C, 2, No. 2, p. 637-638.
Caltech Technical Report C3P-963b [Ding:91b].

J. L. Gustafson, G. R. Montry, and R. E. Benner, ‘Development of Parallel Meth-
ods for a 1024-Processor Hypercube’, SIAM J. Sci. Stat. Comput., 9, No. 4,
p. 609-638 (1988) [Gustafson:88a].

B. Mandelbrot, ‘Fractals: Form, Chance, and Dimension’ (Freeman, San Fran-
cisco 1979) [Mandelbrot:79a].

. W. Heller, private communication (1985).

B. S. Landman and R. L. Russo, ‘On a Pin versus Block Relationship for Parti-
tions of Logic Graphs’, I[EEE Trans. Comp., C20, p. 1469 (1971) [Landman:Tla].

W. E. Donath, ‘Placement and Average Interconnection Lengths of Computer
Logic, [EEE Trans. Circuits and Systems, 16, p. 272 (1979) [Donath:79a].

G. Fox, A. J. G. Hey, and S. Otto, ‘Matrix Algorithms on the Hypercube I: Matrix
Multiplication’, Parallel Computing, 4, p- 17, 1987. Caltech Technical Report
C3P-206 [Fox:85b].

M. S. Warren, W. H. Zurek, P. J. Quinn, and J. K. Salmon, ‘The Shape of the
Invisible Halo: N-Body Simulations on Parallel Supercomputers’ to appear in the
Proceedings of After the First Three Minutes, ed. S. Holt, V. Trimble, and C.
Bennetti (AIP, 1991). Caltech Technical Report C3P-961 [Warren:91a].

. J. Salmon, ‘Parallel Hierarchical N-Body Methods’, California Institute of Tech-
nology PhD Thesis, December 1990. Caltech Technical Report C3P-966 (SCCS-
52, CRPC-TR90115).

J. Barnes and P. Hut, ‘A Hierarchical O(XN log N) Force Calculation Algorithm’,
Nature, 324, p. 446 (1986).

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, ‘Optimization by Simulated An-
nealing’, Science, 220, No. 4598, p. 671-680 (1983) [Kirkpatrick:83a].



36.

37.

38.

39.

40.

41.

43.

44.

G. C. Fox, ‘A Review of Automatic Load Balancing and Decomposition Methods
for the Hypercube’ in Numerical Algorithms for Modern Parallel Computer Ar-
chitectures, ed. M. Schultz (Springer-Verlag, 1988), p. 63-76. Caltech Technical
Report C3P-385b [Fox:8Smm].

G. C. Fox and W. Furmanski, ‘Load Balancing Loosely Synchronous Problems
with a Neural Network’ in The Third Conference on Hypercube Concurrent Com-
puters and Applications, Volume 1, ed. G. C. Fox (ACM Press, New York, 1988).
p. 241-278. Caltech Technical Report C*P-363b [Fox:88e].

R. D. Williams, ‘Performance of Dynamic Load Balancing Algorithms for Un-
structured Mesh Calculations’, Concurrency: Practice and Ezperience, 3, No.,
5, p. 457-481 (John Wiley and Sons, Ltd., England, 1991). Caltech Technical
Report C3P-913b [Williams:91a). :

J. Flower, S. Otto, and M. Salama, ‘Optimal Mapping of Irregular Finite Element
Domains to Parallel Processors’ in Proceedings, Symposium on Parallel Compu-
tations and their Impact on Mechanics, (ASME, Massachusetts, 1987). Caltech
Technical Report C3P-292b [Flower:87al. :

J. J. Hopfield and D. W. Tank, ‘Computing with Neural Circuits: A Model’,
Science, 233, p. 625 (1986) [Hopfield:S6a].

J. Koller, ‘A Dynamic Load Balancer on the Intel Hypercube’ in The Third Con-
ference on Hypercube Concurrent Computers and Applications, Volume I, ed. G.
C. Fox (ACM Press, New York 1988), p. 279-284. Caltech Technical Report
C3P-497 [Koller:88a).

J. Barhen, S. Gulati, and S. S. Iyengar, ‘The Pebble Crunching Model for Load
Balancing in Concurrent Hypercube Ensembles’, in The Third Conference on
Hypercube Concurrent Computers and Applications, Volume 1, ed. G. C. Fox
(ACM Press, New York 1988), p. 189-199. Caltech Technical Report C3P-610
[Barhen:88b).

W. K. Chen and E. F. Gehringer, ‘A Graph-Oriented Mapping Strategy for a
Hypercube’, in The Third Conference on Hypercube Concurrent Computers and
Applications, Volume 1, ed. G. C. Fox (ACM Press, New York 1988), p. 200-209
[Chen:88a).

F. Ercal, J. Ramanujam, and P. Sadayappan, ‘Task Allocation onto a Hypercube
by Recursive Mincut Bipartitioning’, in The Third Conference on Hypercube Con-
current Computers and Applications, Volume 1, ed. G. C. Fox (ACM Press, New
York 1988), p. 210-221 [Ercal:88a].

G. C. Fox, ‘A Graphical Approach to Load Balancing and Sparse Matrix Vector
Multiplication on the Hypercube’, in Numerical Algorithms for Modern Paral-



46.

47.

49.

[¢]]
o

53.

lel Computer Architectures, ed. M. Schultz (Springer-Verlag, 1938) p. 37-62.
Caltech Technical Report C3P-327b [Fox:88nn].

M. Livingston and Q. F. Stout, ‘Distributing Resources in Hypercube Comput-
ers’, in The Third Conference on Hypercube Concurrent Compulers and Appli-
cations, Volume 1, ed. G. C. Fox (ACM Press, New York 1988), p. 222-231

[Livingston:88a].

F. Ercal, ‘Heuristic Approaches to Task Allocation for Parallel Computing’, Ohio
State University PhD Thesis, 1988.

A. Pothen, H. Simon, and K.-P. Liou, ‘Partitioning Sprase Matrices with Eigen-
vectors of Graphs’, SIAM J. Matriz Anal. Appl., 11, No. 3, p. 430-452 (July
1990).

H. Simon, ‘Partitioning of Unstructured Mesh Problems for Parallel Processing’
in Proc. Conf. Parallel Methods on Large Scale Structural Analysis and Physics
Applications, (Permagon Press, 1991).

G. A. Lyzenga, A. Raefsky, and B. Nour-Omid, ‘Implementing Finite Element
Software on Hypercube Machines’ in The Third Conference on Hypercube Con-
current Computers, Volume 2 , ed. G. C. Fox (ACM Press, New York 1988),
p. 1755-1761. Caltech Technical Report C3P-594 [Lyzenga:88a).

_ R. D. Williams, ‘DIME: A Programming Environment for Unstructured Triangu-

lar Meshes on a Distributed-Memory Parallel Processor’, in The Third Conference
on Hypercube Concurrent Compulers and Applications, Volume 1, ed. G. C. Fox
(ACM Press, New York 1988), p. 1770-1787. Caltech Technical Report C3P-502
[Williams:88a).

. R. Williams, ‘Free-Lagrange Hydrodynamics with a Distributed-Memory Parallel

Processor’, Parallel Computing, 7, p. 439-443 (1988). Caltech Technical Report
C3P-424b [Williams:88d).

D. W. Walker, ‘Characterizing the Parallel Performance of a Large-Scale, Particle-
In-Cell Plasma Simulation Code’, Concurrency: Practice and Ezperience, 2, No.
4, p. 257-288 (John Wiley and Sons, Ltd., England, 1990). Caltech Technical
Report C3P-912 [Walker:90b].

N. Mansour and G. C. Fox, ‘Allocating Data to Multicomputer Nodes by Physical
Optimization Algorithms for Loosely Synchronous Computations’, Concurrency:
Practice and Ezperience, (John Wiley and Sons, Ltd., England, 1992), to be
published.

_ N. Mansour and G. C. Fox, ‘A Hybrid Genetic Algorithm for Task Allocation

in Multicomputers’ in The International Conference on Genetic Algorithms and
Applications, p. 466-473 (July 1991).



Ot
(1)

60.

61.

63.

64.

_ For more details of the scattered decomposition applied to Finite Element Prob-

lems, see R. Morison and S. Otto, ‘The Scattered Decomposition for IMinite El-
ement Problems’, Journal of Scientific Computing, 2, No. 1, p. 59-76 (1986).
Caltech Technical Report C3P-286. Similar ideas are used in some types of matrix
algorithms (see reference 3 above).

. G. C. Fox and W. Furmanski, ‘Optimal Communication Algorithms for Regular

Decompositions on the Hypercube’ in The Third Conference on Hypercube Con-
current Computers and Applications, Volume 1, ed. G. C. Fox (ACM Press, New
York, 1988), p. 648-713. Caltech Technical Report C*P-314b [Fox:88h].

G. Fox, ‘Iterative Full Matrix-Vector Multiplication on the Hypercube’, Caltech
Technical Report C3P-336 (1986) [Fox:86e].

Q. C. Fox and W. Furmanski, ‘Hypercube Algorithms for Neural Network Simu-

lation the Crystal Accumulator and the Crystal Router’ in The Third conference
on Hypercube Concurrent Computers and Applications, Volume 1, ed. G. C. Fox
(ACM Press, 1988), p. 714-724. Caltech Technical Report C3P-405b [Fox:88g].

_ G. V. Wilson and G. C. Pawley, ‘On the Stability of the Travelling Salesman

Problem Algorithm of Hopfield and Tank’, Biol. Cybern., 58 p. 63-70 (1988)
[Wilson:88a).

G. C. Fox and J. G. Koller, ‘Code Generation by a Generalized Neural Network:
General Principles and Elementary Examples’, Journal of Parallel and Distributed
Computing, 6, No. 2, p. 388-410 (1989). Caltech Technical Report C*P-650
[Fox:88cc].

R. Battiti, ‘Surface Reconstruction and Discontinuity Detection: A Fast Hierar-
chical Approach on a Two-Dimensional Mesh’ in The Fifth Distributed Memory
Computing Conference, Volume 1, ed. D. W. Walker and Q. F. Stout (IEEE
Computer Society Press, California, 1990), p. 184-193. Caltech Technical Report
C3P-900 [Battiti:90a].

_ W. Furmanski and G. C. Fox, ‘Integrated Vision Project on the Computer Net-

work’ in Biological and Artificial Intelligence Systems, p. 509-527 (ESCOM Sci-
ence Publishers B. V., The Netherlands, 1988). Caltech Technical Report C3P-
623 [Furmanski:8Sc|.

G. C. Fox, ‘What Have We Learned from Using Real Parallel Machines to Solve
Real Problems?’ in The Third Conference on Hypercube Concurrent Computers
and Applications, Volume 2, ed. G. C. Fox, p. 897-955 (ACM Press, New York,
1988). Caltech Technical Report C3P-522 [Fox:88b].

D. Jefferson, B. Beckman, L. Blume, M. DiLoreto, P. Hontalas, P. Reiher, K.
Sturdevant, J. Tupman, J. Wedel, F. Wieland, and H. Younger, ‘The Status of the



66.

67.

Time Warp Operating System’in The Third Conference on Hypercube Concurrent
Computers and Applications, Volume 1, ed. G. C. Fox, p. T38-T4:4 (ACM Press,
New York, 1988). Caltech Technical Report C3P-627 [Jeﬁerson:SSa].

= R. Durbin and D. Wilshaw, ‘An Analogue Approach to the Traveling Sales-

man Problem using an Elastic Net Method’, Nature, 326, p. 689-691 (1987)
[Durbin:87al.

C. Peterson and B. Soderberg, ‘A New Method for Mapping Optimization Prob-
lems Onto Neural Networks’, Int. J. Neural Syst., 1, p. 3-22 (1989).

A. Durbin, R. Szeliski, and A. Yuille, ‘An Analysis of the Elastic Net Approach
to the Travelling Salesman Problem’, Neural Computation, 1, p. 348-358 (1989).

A. L. Yuille, ‘Generalized Deformable Templates, Statistical Physics and Match-
ing Problems’, Neural Computation, 2, p. 1-24 (1990).

. P. Simic, ‘Statistical Mechanics as the Underlying Theory of ‘Elastic’ and ‘Neural’

Optimizations’, Network, 1, p. 89-103 (IOP Publishing, Ltd., United Kingdom,
1990). Caltech Technical Report C3P-787 [Simic:90a.

. P. Simic, ‘Constrained Nets for Graph Matching and Other Quadratic Assignment

Problems’, Neural Computation, 3, p. 268-281 (1991). Caltech Technical Report
C3P-973 [Simic:91a].

‘1. G. C. Fox, ‘Applications of the Generalized Elastic Net to Navigation’, Caltech

Technical Report C3P-930 (1990) [Fox:90k].

. G. C. Fox, ‘FortranD as a Portable Software System for Parallel Computers’ in

The Proceedings of Supercomputing USA/Pacific 91, (1991). Syracuse Technical
Report SCCS-91 [Fox:91d] (CRPC-TR91128).

. G. C. Fox, ‘Parallel Problem Architectures and Their Implications for Portable

Parallel Software Systems’, presentation at DARPA Workshop, Rhode Island
(February 28, 1991). Caltech Technical Report C3P-967 [Fox:91c] (SCCS-T78,
CRPC-TR91120).

P. J. Denning and W. F. Tichy, ‘Highly Parallel Computation’, Science, 250,
p. 1217-1222 (1990) [Denning:90a).

. G. C. Fox, ‘Parallel Computing Comes of Age: Supercomputer Level Parallel

Computations at Caltech’, Concurrency: Practice and Ezperience, 1, No. 1,
p. 63-103 (John Wiley and Sons, Ltd., England, 1989). Caltech Technical Report
C3P-795 [Fox:89n].

W. D. Hillis, ‘The Connection Machine’, Scientific American, 256, p. 108, 1987
[Hillis:S7a). '

{' e



77. C. T. Baillie, R. D. Brickner, R. Gupta. and L. Johnsson. ‘QCD with Dyvnami-
cal Fermions on the Connection Machine’, in Proceedings of Supercomputing 'S5
(ACM Press, 1989), p. 2-9. Caltech Technical Report C*P-736 [Baillie:39e].

=1

(¢4]

C. F. Baillie, ‘Lattice QCD: Commercial vs. Home-grown Parallel Computers’
in The Fifth Distributed Memory Computing Conference, Volume 1, ed. D. W.
Walker and Q. F. Stout (IEEE Computer Society Press, California, 1990), p. 397-
105. Caltech Technical Report C3P-878 [Baillie:90f].

79. E. W. Felten and S. W. Otto, ‘A Highly Parallel Chess Program’, in Proceedings of
International Conference on Fifth Generation Computer Systems 1988, p. 1001-
1009 (ICOT, Japan, 1988). Caltech Technical Report C3P-379c [Felten:SSi].

80. F. Wieland, L. Hawley, A. Feinberg, M. DiLoreto, L. Blume, J. Ruffles, P. Reiher,
B. Beckman, P. Hontalas, S. Bellenot, and D. Jefferson, ‘The Performance of a
Distributed Combat Simulation with the Time Warp Operating System’, Con-

currency: Practice and Ezperience, 1, No. 1, p. 35-30 (John Wiley and Sons.
Ltd. England, 1989). Caltech Technical Report C*P-798 [Wieland:89a].

81. G. C. Fox, P. Hipes, and J. Salmon, ‘Practical Parallel Supercomputing: Exam-
ples from Chemistry and Physics’, in Proceedings of Supercomputing '89, p. 58-70
(ACM Press, 1989). Caltech Technical Report C3P-818 [Fox:89t].

[0/4]
o

2. D. L. Meier, K. C. Cloud, J. C. Horvath, L. D. Allan, W. H. Hammond, and
H. A. Maxfield, ‘A General Framework for Complex Time-Driven Simulations on
Hypercubes’, Caltech Technical Report C3P-761, 1989 [Meier:89a].

83. T. D. Gottschalk, ‘Concurrent Multi-Target Tracking’ in The Fifth Distributed
Memory Computing Conference, Volume I, ed. D. W. Walker, Q. F. Stout (IEEE
Computer Society Press, California, 1990), p. 85-88. Caltech Technical Report
C3P-908 [Gottschalk:90b].

84. J. J. Dongarra, J. Du Croz, S. Hammaling, and R. J. Hanson, ‘An Update No-
tice on the Extended BLAS, ACM Signum Newsletter, 21, No. 4, p. 1, 1987

[Dongarra:87c].

85. J.J. Dongarra in Proceedings of ICS87, International Conference on Supercomput-
ing, ed. C. Polychronoupolos (Springer-Verlag, New York, 1988) [Dongarra:88c].

86. J. Demmel, ‘LAPACK: A Portable Linear Algebra Library for High-performance
Computers’ Concurrency: Practice and Ezperience, 3, No. 6, p. 655-666 (John
Wiley and Sons, Ltd., England, 1991) [Demmel:91a].

. G. C. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C.-W. Tseng,
and M.-Y. Wu, ‘FortranD Language Specification’, Syracuse Technical Report
SCCS-42c, 1991 [Fox:91i] (CRPC-TR90079).

o
-1



‘Fortran 90D Compiler for Distributed Memory MIMD

33. M.-Y. Wu and G. C. Fox, [
I Technical Report C*P-918¢ [Wu:91b] (SCCS-88b).

Parallel Computers’, Caltec
1991.



