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Introduction:

Several interactive software packages have been developed which allow students to explore
Euclidean geometry. For example, see The Geometric Supposer (available from Sunburst) and
The Geometry Sketch Pad (available from Key Curriculum Press). Because of its graphics
capability, the computer offers a high degree of visualization by quickly drawing and measuring
geometric figures with a precision that otherwise would require complex drawing instruments,
technical skills, and time. These graphics capabilities allow students to explore geometric patterns
and theorems not in the usual curriculum. Using these geometry programs, high school students
have actually discovered several completely new theorems.[3]

Conspicuously absent from the available geometry software packages is an interactive exploration
program for Non-Euclidean geometries. This paper discusses a computer program, called
NonEuclid, designed to allow students to investigate Hyperbolic Geometry. NonEuclid is available
from Rice University, CIT/CRPC, Houston Tx. 77251, Atm.: Danny Powell, or via e-mail
softlib@cs.rice.edu.

In the Standard 7 of the National Council of Teachers of Mathematics it is stated for college-
intending students to: "Develop an understanding of an axiomatic system through investigating and
comparing various geometries” (p. 157).

The truth value of even simple statements like "The base angles of an isosceles triangle are equal”
is not obvious in Hyperbolic Geometry. When students try to empirically verify which Euclidean
theorems hold in the Hyperbolic Plain they might become better able to differentiate between the
concepts of Definition, Postulate, and Theorem.

NonEuclid is designed to be easy to use and fun, while giving students greater insight into
Euclidean geometry, and an introduction to Non-Euclidean Geometry. We chose the Poincaré
Model for our implementation because it is two-dimensional, bounded, and therefore, easy to
represent on a computer screen. NonEuclid runs on Macintosh computers.

The following sections provide:

« a brief explanation and historical description of Non-Euclidean Geometry,
e a description of the Poincaré Model,

¢ an overview of NonEuclid,

" e some empirical results from NonEuclid, and

‘e.a mathematical discussion of some Algorithms used in NonEuclid. _






Historical Notes:

In developing his geometry, Euclid (300 BC) formulated five postulates. We will present them

here in a revised form given by Proclus (410-485 A.D.) [2]:

P-1 Every two points lie on exactly one line.

P-2 Any line segment with given endpoints may be continued in either direction.

P-3 It is possible to construct a circle with any point as its center and with a radius of any length.

P-4 Any pair of congruent adjacent angles, is congruent to all other pairs of congruent adjacent
angles.

P-5 (Parallel Postulate): Given a line L and a point P not on L, there is one and only one line L
which contains P and is parallel to L.

The fifth postulate, called the Parallel Postulate always stood apart from the first four. For over
2000 years there were numerous attempts to prove the Parallel Postulate using the first four
Postulates. It was not until the nineteenth century that Lobachevski (1793-1856), Bolyai (1777-
1855), and Gauss (1802-1860) finally put end to this impossible search. Lobachevski developed
theorems using Euclid's first four postulates and the negation of the Parallel Postulate. He
expected to eventually "prove" two theorems which contradicted each other. This would imply that
negating the Parallel Postulate is inconsistent with the first four postulates - thereby proving the
Parallel Postulate. To his surprise, he never obtained a contradiction. Instead, he developed a
complete and consistent geometry, a non-Euclidean Geometry. This proved that the fifth postulate
could not be derived from the other four. In the early 1900's, Einstein (1878-1955) developed The
General Theory of Relativity and made extensive use of Non-Euclidean Geometry.

Hyperbolic Geometry is a Non-Euclidean Geometry based on the first four of Euclid's postulates
together with the following variation of the Parallel Postulate.

Hyperbolic Parallel Postulate: Given a line L and a point P not on L, there are at least two lines
L’ and L” which contain the point and are parallel to L.

In addition to these postulates, both Euclidean and Hyperbolic geometry require a number of
common notions such as "Things which are equal to the same thing are also equal to one another”
and "of any three points on a line, exactly one is between the other two." The important point is
that all of these common notions are exactly the same for both geometries. In fact, the only
difference between the complete axiomatic formulation of Euclidean Geometry and of
Hyperbolic Geometry is the Parallel Postulate.



The Poincaré model - Definitions and Notation:

To develop the Poincaré model for Hyperbolic Geometry, consider a fixed circle, ¢, in a Euclidean
plane. We assume, without loss of generality, that the radius of € is 1.
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Figure 1 (Lines in the Poincaré plane)

B,

Let C, be a circle which is orthogonal to circle . Two circles are orthogonal when their tangents

at each intersection point are perpendicular. In the following discussion, P-points, P-lines, etc. are
used to identify how points, lines, etc. are defined in the Poincaré model.

P-points: P-points are Euclidean points of the interior of €. Let Q2 denote the set of all P-points

P-lines: A P-line is either (1) the intersection of Q and €, or (2) the intersection of Q2 and a
diameter of C.

By drawing a few example P-points it becomes clear that P-1 is satisfied (Every two points lie on
exactly one line). The appendix shows how to find the Euclidean equation of circle ¢, determined

by any two P-points.

P-2 is also relevant to our definition of P-lines. P-2 states that any line segment with given
endpoints may be continued in either direction. This is satisfied because P-lines form open
intervals (P-points may be arbitrarily close to C, but they may not actually be on ().



The Poincaré Model also includes a distance function. Before we define this function, let us
consider the minimum set of properties that any reasonable notion of distance ought to satisfy.

D-1 The P-distance between any two P-points P and Q should be a function, d(PQ), which
produces a non-negative real number.

D-2 d(PQ)=0ifand only if P=Q
D-3 d(PQ) = d(QP) for every pair of P-points.

D-4 For any three P-points P, Q and R, d(PR) + d(RQ) = d(PQ). This states that "a straight
line is the shortest distance between two points".

D-5 The distance function needs to satisfy P-3 which states that it is possible to construct a circle
with any point as its center, and with a radius of any length. This Postulate implies that space
is continuous, and that for any P-point P, there exists a P-point Q such that d(PQ) is
arbitrarily small. This also implies that space is infinite, and that for any P-point P, there
exists a P-point Q such that d(PQ) is arbitrarily large.

We now give the Poincaré distance function:

P-distance: Let P and O denote two P-points. P-1 tells us that these P-points determine a unique
P-line. This P-line will approach ¢ in two Euclidean points, A and B (notice that A and B are
not P-points). Let PA, PB, QA, and QB denote the usual Euclidean distances from P to A,
from P to B, etc. The P-distance between P-points P and Q is:

4(F0) =n PA/PBl.

QA/QB

This definition satisfies D-1 through D-4 and the postulates of Hyperbolic Geometry. See [1] for a
proof. The above formula is presented for completeness. The reader does not need to either
visualize or "plug-in" to this formula. The function of NonEuclid is to grind through this dirty
work allowing the user to work on the higher level of creating and examining geometric figures of
the hyperbolic plane.



An angle in the Poincaré model is formed by intersecting P-lines analogous to the formation of
angles in Euclidean Geometry.

P-angle measure Given an angle in the Poincaré model, we form a Euclidean angle by using the
two tangent rays (see Figure 2). We define the P-angle measure of £ BAC to be the Euclidean
measure of £ B'AC'

/\

Figure 2 (Poincaré Angle Measure):

We have explicitly defined points, lines, distance, and angle measure in the Poincaré model. Later
we will give an explicit definition of P-area. All of the other objects that will be used in the
Poincaré model are defined equivalently to the analogous Euclidean definition. For example, In
Euclidean Geometry "parallel lines" are defined as a pair of Euclidean lines which do not intersect.
In Hyperbolic Geometry, "P-parallel lines" are defined as a pair of P-lines which do not intersect.
This same replacement system gives definitions for P-congruent, P-circles, P-right angles, etc.

Edwin Moise in his book Elementary Geometry From an Advanced Standpoint gives a systematic
development of the Poincaré model. He shows that the definitions presented are consistent with
Euclid's first four postulates and the Hyperbolic Parallel Postulate. His book is quite readable and
is highly recommended.

For the remainder of the paper, we will use the following notation:

The Euclidean unit circle ¢ which contains all P-points will be called the Boundary Circle of the

Poincaré Model, or more simply, the boundary. The P-point located at the center of the Boundary
Circle will be called the origin.

Let XY denote the infinite P-line determined by P-points X and Y.
Let XY denote the P-line segment with P-endpoints X and Y.

Let d(—X?) denote the P-length of the P-line segment XY .
Finally, we will drop the P- prefix to Poincaré points, lines, etc.



An Overview of NonEuclid:

Distinguishing between the concepts of Definition, Postulate, and Theorem is critical to
understanding the process of a geometric proof. However, many students complete a geometry
course without gaining a clear idea of these distinctions. Consider the following statements:

1) A rectangle is a quadrilateral containing four right angles.
2) A rectangle is a parallelogram containing a right angle.

In a typical geometry course we may give students either (1) or (2) as the definition of a rectangle
and ask them to prove the other. However, to the student, the "real” definition of a rectangle is a
class of shapes which he or she remembers seeing since infancy. The student draws the shape on
paper, looks at it and says: "yes, the opposite sides are both parallel and congruent, and yes, it has
four right angles - so what are you asking me to do?" It seems to many students like we are just
playing word games.

However, when students are given an interactive experience with the Poincaré Model, they will
discover that they are able to construct a figure that fulfills definition (2), yet does not have four
right angles. Hyperbolic triangles, thombuses and circles are significantly different from their
Euclidean counterparts. It therefore becomes very natural for students to ask what qualities must
an object have for it to be called a circle or, what defines a circle. Likewise, what qualities are just
properties or theorems about circles.

In modern physics and engineering, it is becoming increasingly important to define sets and
operations on those sets which may be particular to a given problem. It then becomes important to
discover the properties of the new operation (i.e., associative, commutative, distributive, etc.).
This is the realm of Abstract Algebra - a course that is often not taught until graduate school.

An interactive exploration of non-Euclidean geometry can offer insight into Abstract Algebra. For
example, students working with NonEuclid quickly notice that there are "short” line segments
which have greater length then some "long" line segments. This experience will cause students at
first to question the validity of the software and ultimately to think of distance in a more abstract
sense. They might notice, for example, that the Poincaré Model and the Euclidean plane share the
property that a "straight" line is the shortest "distance" between two points. (Straight and distance
are in quotation marks because they do not have the same meanings in both geometries.)



When the user runs NonEuclid, most of the screen is taken up by a Euclidean unit circle which
contains the totality of Poincaré points. By selecting menu options, the user can draw and measure
Poincaré points, lines, circles, angles, perpendiculars, etc.

Excluding the origin, each Poincaré point, X, has associated with it a unique ordered pair (distance
and angle). The distance is the P-distance between X and the origin. The angle measure is between
0° and 360°. This ordered pair we call the Poincaré Polar Coordinates of X.

As the cursor is moved around the Poincaré plane, a display shows the Poincaré Polar Coordinates
of the cursor position.

Figure 3 shows a snap-shot of the Macintosh screen after 9 points have been plotted and two line
segments have been drawn. Whenever a point is plotted, its Poincaré Polar Coordinates are
recorded in the scroll column to the right of the graphics display. Notice that point 4 is at the
origin (r=0.00). Notice also that points B, C,D,E, and Fare 1, 2, 3, 4, and 5 distance units from
the origin. A result of the Poincaré distance formula given in the previous section, is that as a
point approaches the boundary, the distance between that point and the origin approaches infinity.
On a computer screen, we are limited to a granularity of one pixel. Point Y in figure 3 (r=8.00) is
so close to the boundary (in the Euclidean sense) that it appears to be on the boundary; however
there are still an infinite number of points and an infinite distance between Y and the boundary.

When we say that C is a distance of 2.00 from the origin we do not assign any units to the distance.
Recall that the P-distance is defined in terms of Euclidean distances, and the Euclidean distances
are determined by the assumption that the Euclidean radius of the boundary circle is exactly 1.

& Flle EdIt Constructions Measurements IWhat-To-Do Help

— o
DRAW LINE SEGMENT @
Click Mouse on Two Points

(3 Specify Endpoints
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- Figure 3. {Snap-shot of NonEuclid on-the Mac):



Empirical Exploration:

We can get a better sense of the hyperbolic world by examining figure 4 which shows a tiling of
three hundred and sixty congruent right triangles. The triangles are congruent in that the
corresponding sides and angles all have equal measure (as measured by the hyperbolic distance and
angle functions). Readers who are familiar with the art of M. C. Escher [1902-1972] might
recognize figure 4. His "Circle Limit" drawings and woodcuts, show tilings of congruent figures of
the Poincaré plane.[5]

Students who work with NonEuclid often expect that figures which are symmetric about the origin
would have special properties. For example, it might be believed that the base angles of an
isosceles triangle are congruent if and only if the two congruent sides are symmetric about the
origin (as in ALJK of figure 5). However, exploration shows us that off-center isosceles triangles
also have congruent base angles (as in AXYZ). While this may baffle the intuition, the proof lies in
every high school geometry book. Recall that the only axiomatic difference between Euclidean and
Hyperbolic geometry is the Parallel Postulate. Therefore, any proof in Euclidean Geometry which
does not use the Parallel Postulate is also a proof in Hyperbolic Geometry. This includes the
Isosceles Triangle Theorem, the Angle-Addition Theorem, the Vertical Angle Theorem, the SSS
Theorem, and many others. On the other hand, the Euclidean theorems that require the Parallel
Postulate will be false in Hyperbolic Geometry, e.g., "the sum of the angles of a triangle equals
180°". Furthermore, neither Euclidean nor Hyperbolic geometry has an absolute "center” or
"origin" about which there are special properties. This is very important to the Theory of
Relativity.

Figure 4 (Tiling the plane) Figure 5 (Isosceles Triangles)
«I7)=60 mzJ=4"  d(ZX)=2.0 mLX=15°
4IK)=60 mzK=4>  d(ZY)=2.0 mLY=15°
d(JK)=6.7 mzI=8° XY )=3.3 msZ=40°

Notice that two lines KJ and KJ are both parallel to XY yet they intersect each other at K
Therefore, the Euclidean Parallel Postulate-is not satisfied. - - . —...



As an illustration of the applicability of some Euclidean theorems
to Hyperbolic Geometry, we redraw isosceles AXYZ of figure 5

with altitude ZP . Measurements show that this altitude bisects Z
both the base XY and the vertex Z:

d(XP)=d(PY)=1.95

mZXZP = mLYZP = 20° pr

Figure 6 (Altitude of an Isosceles Triangle):

Figure 7 shows three separate clusters of line segments. Cluster 4 is composed of 36 line segments
all of which have length equal to 1 unit. The 36 segments of 4 also share a common endpoint.
Therefore, this cluster can be thought of as forming radii of a circle with center at the common
endpoint. Cluster B is of similar construction and shows 36 radii having length equal to 3. Any
pair of adjacent radii in either circle 4 or B form a 10° angle. C is the "largest" circle of the three.
C has a radius of 4 and any pair of adjacent radii form a 1° angle.

It is interesting to see that the set of P-points equal distant from a given P-point appears to have the
same round shape as a Euclidean circle. Its center, however, does not always appear to lie in the
Euclidean center. In fact, the farther the circle's center is from the origin the more "off-center" its
center appears.

Figure 7 (three clusters of radii): Figure 8 (Construction of Equilateral Triangles):

With this notion of a circle, we can perform many of the "ruler and compass constructions" from
Euclidean Geometry. Figure 8 shows the construction of two equilateral triangles. We began the

with line segment AB . We then constructed a circle with center 4 and radius equal d(-A_E). We
also constructed a circle of the same radius with center B. Finally, we plotted points R and S at the

intersections of the circles, and drew the radii E,Zg,ﬁ,ﬁ. Therefore, AABR and AABS are
equilateral triangles.



Figure 9 shows 24 infinite lines which can be used to define a coordinate system in the Poincaré
Model. The lines AB and AH are marked off into congruent segments of length 0.5 units. Let AB
be called the x-axis, and let AH be called the y-axis. The lines drawn through each of the points
along each axis are perpendicular to that axis. Consider quadrilateral 0ZCAH. This quadrilateral
has three right angles (£4, £C, £H) and one acute angle (£Z). We define the coordinates of any
point in the first quadrant to be the perpendicular distance from the point to each axis. That is,

the coordinates of Z are (d(ZH), d(ZC)) = (1.3, 0.9). This definition gives us a one-to-one
correspondence between all of the points in the first quadrant and all ordered pairs (x,y) where x
and y are positive real numbers. It is interesting to notice that defining coordinates to be the
distance along each axis to the perpendiculars which pass through the point does not set up a

one-to-one correspondence. By this definition, the coordinates of Z would be (d(:i-E ), d(ﬁ ) =
(1.0, 0.5), and in fact every point would correspond to a unique set of coordinates; However, some
coordinates pairs would not correspond to a point. For example, the point (1,1), would not exist

because the perpendicular to the x-axis at C (d(:(?) = 1) and the perpendicular to the y-axis at /
(d( Al ) = 1) do not intersect!

Figure 9 (Coordinate System):
The lines AB and AH are marked
off into 24 congruent segments
of length 0.5 units.

AB=BC=CDz=--=XY

Note: the distance from M to the
edge of the boundary circle is
infinite. In fact, the distance
from any point to the boundary is
infinite.

N

'\.s*\}NJ\P \.o
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Congruent Triangles:

In figure 4 we saw a tiling of congruent triangles. We will now take a closer look at congruence.
The corresponding parts of A4BC and ADEF in figure 10 are congruent. Therefore, the two
triangles are congruent. In other words, we could move AABC on top of ADEF so that the 3 sides
of each triangle perfectly coincide. Our intuition balks at this because the two triangles appear
different. The catch is that the process of moving a triangle will, in some sense, distort the triangle.
We can get an idea of what happens to a line as it moves through hyperbolic space by looking back
to the radii clusters in figure 7. Think of one of the clusters as a strobe-light picture of a single
radius that is pivoting on the circle's center. It would appear to us as if the line bends, stretches,
and compresses as it moves. Actually, the line remains straight and of constant length - it is the
hyperbolic plane that is curved. A

D
Figure 10 (Congruent Triangles):
d(AB)=d(DE)=4.0
F d(AC)=d(DF)=20
d(BC)=d(EF)=3.0
' mZA=m«D = 21°
mLZB=m«ZE=T°
m£LC =m«gF=72°
B C &

The SAS Postulate:
In the Elements, Euclid presents what he believes to be a proof for SAS[2]:

Given: AABC and ADEF, with AB = DE, AC = DF ,and ZA= £D
Proof: Move AABC such that point A coincides with point D, and line 4B coincides with DE.
The point B will coincide with E, because 4B = DE. D(A)
Also, line AC will coincide with DF, because £4 = £D.
The point C will coincide with F, because AC = DF .
Line BC will coincide with EF, because two lines cannot inclose a space.

Finally, BC = EF, because the lines and endpoints of each coincide.
Therefore, £B = LE, £C = LF, and AABC = ADEF.

Figure 11 (Euclid's presentation of SAS):
Euclid's proof depends on the undefined term "move".

Moise[1], defines "move" (in both Euclidean and Hyperbolic geometry) to be a function that maps
a set of points P,, P,, P5,... to P'|, P',, P'5,..., in such a way that for any two points P, and P, of

the original set d(PnPm) = d(P'nP'm).

Adopting SAS as a postulate requires that for any two lines L and L', it is always possible to
"move” line L so that it coineides with L'. SAS is true in both Euclidean and Hyperbolic

geometry. .
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Congruent Triangles:

In figure 4 we saw a tiling of congruent triangles. We will now take a closer look at congruence.
The corresponding parts of AABC and ADEF in figure 10 are congruent. Therefore, the two
triangles are congruent. In other words, we could move A4BC on top of ADEF so that the 3 sides
of each triangle perfectly coincide. Our intuition balks at this because the two triangles appear
different. The catch is that the process of moving a triangle will, in some sense, distort the triangle.
We can get an idea of what happens to a line as it moves through hyperbolic space by looking back
to the radii clusters in figure 7. Think of one of the clusters as a strobe-light picture of a single
radius that is pivoting on the circle's center. It would appear to us as if the line bends, stretches,
and compresses as it moves. Actually, the line remains straight and of constant length - it is the
hyperbolic plane that is curved.

A D

Figure 10 (Congruent Triangles):
d(AB)= d(D_E)=4.0
F d(AC)=d(DF)=2.0
d(BC)=d(EF)=3.0
mZA =m«D = 21°

mLB=mgE=T°
mLC=m«LF=72°

B C 2

The SAS Postulate:
In the Elements, Euclid presents what he believes to be a proof for SAS[2]:

Given: AABC and ADEF, with AB = DE, AC = DF, and Z4 = £D
Proof: Move A4BC such that point A coincides with point D, and line 4B coincides with DE.
The point B will coincide with E, because 4B = DE . D(A)
Also, line AC will coincide with DF, because ZA4 = £D.
The point C will coincide with F, because AC = DF .
Line BC will coincide with EF, because two lines cannot inclose a space.
Finally, BC = EF , because the lines and endpoints of each coincide.
Therefore, ZB = LE, £C = £LF, and AABC = ADFEF.

F(C)

£(B)
Figure 11 (Euclid's presentation of SAS):

Euclid's proof depends on the undefined term "move".

Moise[1], defines "move” (in both Euclidean and Hyperbolic geometry) to be a function that maps
a set of points P, P,, P5,... to P';, P'), P'5,... , in such a way that for any two points P, and P, of

the original set d(PnPm) = d(P'nP'm).

Adopting SAS as a postulate requires that for any two lines L and L', it is always possible to
"move” line L so that it coincides with L'. SAS is true in both Euclidean and Hyperbolic

geometry.
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More on Congruent Triangles:

In the Poincaré Model, it is very difficult to visualize the movement of a triangle from one place to
another. Therefore, it is convenient to think of congruent triangles as a pair of triangles in a given
geometry that are completely indistinguishable by any measurement possible from within that
given geometry.

Look again at triangles A4BC and ADEF of figure 10. Certainly these triangles are distinguishable
by measurements that we make with our eyes. Our eyes, however, are not in the same geometry as
the triangles. Figure 12 shows example measurements that a student might make to convince
himself that these two triangles are congruent. The altitudes divide each triangle up into 6 non-
overlapping triangles. All of the line segments and all of the angles formed in A4BC are equal in

measure to the corresponding parts formed in ADEF (in particular, d(A—Z-) = d(EI-') =1.5, d(:’Z-E)
=d(TE) = 2.5, etc.). NonEuclid allows these constructions and measurements to be made very
easily.

4 D

3
Al

A X C <

Figure 12 (Altitudes of congruent triangles):

Area:

In Euclidean Geometry, the area of a triangle is calculated by multiplying the length of any side
times the corresponding height and dividing the product by two. This method does not work in
Hyperbolic Geometry because the product of the base and the height is not in_ie_pendent_gf the
choice of a base. For example, in A4BC of figure 12, d(4B) * d(CZ) # d(AC) * d(BY) #

d(BC) * d(AX).

12



In defining an area function for Hyperbolic Geometry, we should think first about what essential
properties a notion of area ought to satisfy. Our intuition might first be attracted to some
measurement of the Euclidean area that a figure encloses. A problem with this is that we have
already seen pairs of congruent triangles which enclose different Euclidean areas. Whatever
definition of area we define, it should be invariant as an object moves from one place to another.

Another property that our definition should preserve is area addition. For example, every
polygonal region, both in Euclidean and Hyperbolic geometry, can be cut up into a finite number of
non-overlapping triangular regions. Figure 13 shows two different ways to cut up the same
polygonal region. In fact, any polygonal region can be cut up into triangular regions in infinitely
many ways. Our notion of area should be such that the area of a polygonal region is equal to the
sum of the areas of the triangular regions that decompose it. This implies that the sum should
depend only on the region that we started with, and should be independent of the way in which we
cut it up.

Figure 13 (Decomposing Polygons into Triangles):

One of the consequences of the postulates for Hyperbolic Geometry is that the sum of the angle
measures in a triangle is always strictly less then 180°. The amount that this sum differs from
180° is used as the area function for Hyperbolic Geometry.

P-area: The P-area of a P-triangular region is 180° minus the sum of the three P-angle measures
of the P-triangle. The P-area of a P-polygonal region is the sum of any set of non-overlapping
P-triangular regions which completely decompose the given P-polygonal region [1].

One of the interesting consequences of this definition is that the maximum area of a triangle is
bounded (the area will always be less then 180°), yet the area of an arbitrary polygon is
unbounded. The area of a circle can be found by a series of inscribed and circumscribed regular
polygons. Using NonEuclid a student could determine whether the P-area of a P-circle

seems to be a function of pi.
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Another interesting difference between Euclidean and Hyperbolic geometry is that in Hyperbolic
geometry, there does not always exist a circle passing through three given noncollinear points.

Consider The three noncollinear points 4, B, and C in figure 14. If there is a circle that passes
through these three points, then its center must be equidistant from the three points. Every point

that is equidistant from points 4 and C must lie on the perpendicular bisector of AC Likewise,

every point that is equidistant from points C and B must lie on the perpendicular bisector of BC.
Since these two perpendicular bisectors are parallel (do not intersect), there does not exist a point
that is equidistant from 4, B, and C. Therefore, it is impossible to construct a P-circle which
passes through points 4, B, and C.

Points X, Y, and Z of figure 14 show an example of three noncollinear points through which a
circle does pass. Notice that the perpendicular bisectors of ZX and ZY do intersect.

A
A
C
] W
B zZ Y

Figure 14 (Do three points determine a circle?)

The points 4, Band C form an obtuse triangle. The points X, Y, and Z form an acute triangle. Is
it always true that if three points form the vertices of an obtuse triangle, then a circle cannot be
drawn through the points? Alternatively, it might be that acute triangles can always be
circumscribed, and obtuse triangles can sometimes be circumscribed. A third possibility is that
both acute and obtuse triangles can sometimes be circumscribed. Questions like this stimulate
wonderful debates as some students explore the computer for counter examples and others hammer
away with logic/intuition.

14



Appendix:

Problem: Given two points P = (P,, P,) and 0 = (O, O, on the interior of the unit circle ( with
center at the origin of a Cartesian coordinate system, find the equation of the circle €, which is
orthogonal to C.

Solution: Let (X,,Y,) be the coordinates of the center of €, and let r; be the radius. Since the two
points P and Q lie on C, we have the following two equations
(P - X2+ (Py = Yo =17

(Qx _Xa)z + (Qy - Yo)z = r_Lz'

Since the two circles are orthogonal, the line segment joining the two centers forms the hypotenuse
of a right triangle with one leg a radius of ¢ and the other a radius of ¢; Thus, the Pythagorean

theorem gives
2 2=r2+12
Xo +7Y 0 ry + 12,

Expanding equation (1) and using equation (3) gives

2P (X,) + 2P (Y,) = P2+ Py2 + 1.
Expanding equation (2) and using equation (3) gives

20,(X) +20,(1) = OF + Q2 + 1.

Equations (4) and (5) are linear equations in X, and ¥, since the other variables are fixed. There
will be a solution when the determinant of coefficients is not zero, that is if and only if

4(P,0, - P.0,)

is not zero. The determinant is not zero if and only if the two points lie on a line through the origin
(0,0), that is the two points lie on a diameter C. In this case this diameter is the appropriate P-line.

When the two points P and O do not lie on a diameter of C, equations (4) and (5) can be easily
solved to give the center X, ,»Y,) of the orthogonal circle.



Problem: Given the circle ¢ with equation X2 + Y2 = 1, and an orthogonal circle ¢, with equation
X-X)+(Y-Y)2=r J_z, find the intersection points, (A, Ay) and (B,, By) of the two circles.

Figure 15 (Finding the intersections of ( and C.L)

Solution: In Figure 13, O is the center of unit circle . O is the center of orthogonal circle C, .
Points 4 and B are the intersection of ¢ and C,. M is defined to be the midpoint of line segment

AB . This means that AOAM = AOBM by SSS. Therefore, 4B L OOL

Since AM is an altitude of A4OO |, the triangles AAOO, and AMOA are similar. The dotted
lines shown in the figure are all parallel to either the x-axis or the y-axis of the coordinate system
with origin at O. Therefore, AORM ~ AOSO | ~ AATM. From here it is easy to show that

_X."nY, _rtrnX
A~ 42 y d?

=Xo+rJ.Yo _Yo ro Xo
Bx d2 Bx d2

where d is the length of line segment OOL
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