Evaluating Parallel Languages
for Molecular Dynamics

Terry W. Clark Reinhard von Hanzleden
Ken Kennedy Charles Koelbel
L. Ridgway Scott

CRPC-TR92202
February, 1992

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Evaluating Parallel Languages for Molecular Dynamics
Computations*!

Terry W. Clark
Department of Computer Science, University of Houston, Houston, TX 77204

Reinhard v. Hanxleden

Ken Kennedy

Charles Koelbel

Department of Computer Science, Rice University, Houston, TX 77251

L. Ridgway Scott
Department of Mathematics, University of Houston, Houston, TX 77204

Abstract

Computational molecular dynamics is an important
application requiring large amounts of computing time.
Parallel processing offers very high performance po-
tential, but irregular problems like molecular dynamics
have proven difficult to map onto parallel machines.
In this paper, we describe the practicalities of porting a
basic molecular dynamics computation to a distributed-
memory machine. In the process, we show how program
annotations can aid in parallelizing a moderately com-
plez code. We also argue that algorithm replacement
may be necessary in parallelization, a task which can-
not be performed automatically. We close with some
results from a parallel GROMOS implementation.

1 Introduction

The purpose of this paper is to examine the practi-
calities of parallelizing the basic algorithms of molec-
ular dynamics for distributed-memory multiproces-
sors using annotations to sequential Fortran programs.
This set of algorithms represents an important class
of unstructured problems in scientific computation. In
general, however, unstructured computations are dif-
ficult to map onto parallel systems using either auto-
matic or hand-written techniques. Parallelizing molec-
ular dynamics is therefore a problem of great intellec-
tual and practical importance.

*This research was supported in part by the National Science
Foundation through award number DMS-8903548, and by the
Center for Research on Parallel Computation, a National Sci-
ence Foundation Science and Technology Center, under the NSF
cooperative agreement CCR-8809615.

t A version of this paper is submitted to [EEE Computer Soci-
ety Press for Publication in the Proceedings of the Scalable High
Performance Computing Conference to be held in Williamsburg,
Virginia, April 26-29, 1992.

The greatest potential for parallelism in many scien-
tific codes, including molecular dynamics, is due to data
parallelism, meaning operations applied to all elements
of a large data structure. Exploiting data parallelism
on distributed-memory MIMD machines requires care-
ful partitioning of the data and computation for good
locality, which can be beneficial for shared-memory ma-
chines as well [16]. A number of language extensions
have been studied which allow the programmer to pro-
vide such distribution information. In this work, we
examine the facilities available in two such extended
languages. We also consider the tradeoffs of paralleliz-
ing existing sequential code (“dusty deck”) and writ-
ing a parallel program from scratch. Our examples
will illustrate the need for modification of algorithms
to achieve scalability.

The remainder of this paper is organized as follows.
Section 2 describes the GROMOS code [10], a stan-
dard molecular dynamics program that we are paral-
lelizing [4]. Section 3 gives a short description of the
parallel languages used, Pfortran and Fortran D. Sec-
tions 4, 5, and 6 each describe the parallelization of one
phase of GROMOS. Section 7 gives some performance
results, followed by conclusions in Section 8.

2 Molecular dynamics

First developed for simulating atomic motion in
simple liquids, molecular dynamics is used routinely
to simulate biomolecular systems [17]. Using the
compute-intensive data obtained from a molecular dy-
namics simulation, various kinetic, thermodynamic,
mechanistic, and structural properties can be ob-
tained [18]. In molecular dynamics, the motion of each
atom, represented as a point mass, is determined by
the forces exerted on it by other atoms.

Molecular dynamics algorithms commonly iterate

over the sequence:

1. Calculate bonded and nonbonded forces on each
atom as the analytical gradient of a potential-
energy function of the atom positions. The pair-
wise, nonbonded interactions dominate the com-
putation with O(N?) time complexity [5] and
therefore are key considerations in both the model
and its implementation [4], see Sections 4 and 5.

2. Integrate Newton’s equations of motion to deter-
mine the new atomic momenta and positions. By
removing uninteresting, high-frequency motions,
larger timesteps can be taken resulting in a more
efficient computer utilization [19, 20]. This usu-
ally involves the constraining of some molecular
motions, as discussed in Section 6.

3. Save data as appropriate for post analysis.

The molecular dynamics program used in this study
is from the GROMOS (GROningen MOlecular Sim-
ulation) suite designed for the dynamic modeling of
biomolecules [10]. GROMOS provides programs for
the simulation of biological molecules (and arbitrary
molecules) using molecular dynamics or stochastic dy-
namics. In addition, energy minimization and analysis
programs are provided. The approximately 127 files
comprising GROMOS consist of about 74,000 lines of
FORTRAN77, comments included.

3 Parallel languages

Both IPfortran and Fortran D aim at providing a
more convenient interface for programming parallel
machines. Users rightfully expect compilers to handle
the low-level, machine-dependent details of program-
ming. A familiar example of this is register allocation
on sequential machines. On parallel architectures, an
equivalent challenge is generating synchronization and
interprocessor communication operations. Both lan-
guages provide support for this, in contrast to other
languages which required those operations to be pro-
grammed explicitly. The languages differ, however, in
that one uses a local memory model and the other uses
a global memory model.

Pfortran utilizes a local memory model [1]; the key
concept of IPfortran is to provide a better abstraction
for interprocessor communication than simple message-
passing [15]. IPfortran programs use an SPMD (Single-
Program Multiple-Data) style of programming. Vari-
ables are implicitly local to each processor; thus, X
on processor 1 may have a different value from X on
processor 2. Nonlocal accesses are denoted by the @

operator, so A(i)@j means the i-th element of array
A on processor j. Note that only the processor using
a nonlocal value must reference it, and that the ref-
erence may be made within a larger expression. This
is in contrast to message-passing languages, which re-
quire matching but separate “send” and “receive” op-
erations. Global reductions are also supported. For
example, +{X} denotes the sum of all values of X on
all processors. This set of nonlocal access and reduc-
tion operations supports programming at a convenient
level of abstraction, while still allowing a relatively sim-
ple compiler to produce excellent code.

Fortran D utilizes a global memory model, providing
a modified shared name-space for array elements [7].
Arrays are declared to be their full, global size and
are aligned with virtual decompositions which are dis-
tributed across processors. Statements are executed se-
quentially (except for the FORALL loop, for which
the iterations conceptually execute simultaneously).
The compiler must detect and exploit opportunities for
parallel execution, in addition to inserting any neces-
sary communication. This requires sophisticated com-
piler technology, but the potential gain is an additional
level of machine independence.

4 Nonbonded force calculation

The GROMOS code approximates nonbonded forces
by calculating them only for atom pairs which are
within a certain cutoff radius of each other. As de-
scribed in Section 5, these pairs are stored in a pair list
which is updated in regular intervals. In the original
code, this pair list is represented by two arrays, INB
and JNB. INB(I) gives the number of partners of atom
I, and JNB can be thought of as a concatenation of lists
of partners, one list for each atom. We also introduce
the arrays firstJ and lastJ, so that the array section
INB(firstJ(I) : lastJ(I)) gives the list of partners of
atom I. Obviously, INB(I) = lastJ(I)— firstJ(I)+1.

An important optimization is due to the fact that
for each force exerted by an atom A on an atom B,
atom B exerts an equal but opposite force on atom A.
We therefore can cut the number of force calculations
in half by storing each atom pair only once, for exam-
ple by storing only partners with a higher atom index.
The resulting sequential version for N atoms is shown
in Figure 1, where we assume that the force array F
is initialized to 0 (similarly in the following code sam-
ples). Note also that in practice the forces F and the
positions X are vectors in IR3.

In the IPfortran implementation [4], each processor
executes the outer loop of the sequential version for a
range (firstI(me) : lastI(me)) of atom indices. (Here,

DOI=1,N
DO J = firstJ(I), lastJ(I)
force = nbf(X(I) — X(INB(J)))
F(I) = F(I) + force
F(JNB(J)) = F(INB(J)) — force
ENDDO
ENDDO

* Figure 1:
calculation.

Sequential form of the nonbonded force

as throughout the text and the code samples, me stands
for the local processor id, and P stands for the total
number of processors.) This range is determined in an
initial call to a load balancing routine, of which gather-
ing the corresponding portion of JNB, namely myJ/NB,
is the most time consuming part. The code finishes
with accumulating forces across processors, see Fig-
ure 2. An important point to keep in mind is that the

Balance(firstI, lastI)
DO I = firstI(me), last](me)
DO] = firstJ(I), lastJ(I)
force = nbf(X(I) — X(myJINB(J)))
F(I) = F(I) + force
F(myJNB(J)) = F(mnyJNB(J)) — force
ENDDO
ENDDO
F = +{F}

Figure 2: Force calculation, IPfortran version.

atom numbering and the resulting pair list do not in-
herently have a good locality, i.e., atoms close together
in space do not necessarily have similar numbers. This
is inherited from sequential GROMOS, another paral-
lel version we are currently developing overcomes this
limitation using a hierarchical decomposition [6].

Note that this implementation replicates the force
array F. A Fortran D version of this kind of algo-
rithm can be written by expanding each array by one
dimension (the processor dimension), the introduced
index being the processor number, and then distribut-
ing that dimension blockwise. The resulting code is
shown in Figure 3.

However, this approach does not really take advan-
tage of the Fortran D data distributions, and it ulti-
mately limits our scalability. Instead of replicating the
force array F, we should distribute it to distribute the
workload. To allow load balancing, we distribute the
data irregularly using a mapping array Map (7], for
which

firstI(p) < I < lastI(p) & Map(I) = p.
must hold.

DECOMPOSITION AtomD(N, P), PairD(MP, P)
DISTRIBUTE AtomD(*, BLOCK), PairD(*, BLOCK)
ALIGN FF,X with AtomD, myJNB with PairD

FORALL me = 0, P-1
DO I = firstI(me), lastI(me)
DO J = firstLocJ(I), lastLocJ(I)
force = nbf(X(I,me) — X(myJNB(J,me)))
FF(I,me) = FF(I,me) + force
FF(myJNB(J,me),me) = FF(myJNB(J,me),me)—force
ENDDO
ENDDO
ENDFORALL

FORALL me = 0, P—1
FORALLI=1,N

REDUCE(SUM, F(I), FF(I,me))
ENDFORALL
ENDFORALL

Figure 3: Force calculation, Fortran D version 1. M P
is the maximal number of pairs per processor.

We should also rethink how to distribute the neigh-
bor list JNB, which represents the largest data struc-
ture of the problem. In the IPfortran version this was
done by replacing the global pair list JNB with just
portions thereof, myJNB. We then modeled that with
our first Fortran D version by adding an extra proces-
sor dimension. In our second Fortran D version, we
also use a two dimensional structure, JNBL, but now
the second dimension does not represent a processor
number, but a partner number instead. So, JNBL(I,:)
represents all of the partners of atom I whose atom
number is greater than I. We have

JNBL(I,1: INB(I)) = JNB(firstJ(I) : lastJ(I)).

We guide the compiler by using a FORALL loop to
indicate the fact that the operations are independent.
For enhanced locality, we combine that with an ON
clause. The resulting code is shown in Figure 4.

It is worthwhile to aid our intuition about actual
costs of computation and communication and about
locality in general with some analysis. We start with
defining a predicate which indicates whether an atom
pair (I, K) is stored in the pair list:

1 if3J, JNBL(I,J) = K,

isPair(I,K) = { 0 otherwise.

We are also interested in how many force calculations
involving atom K we have to perform on processor p:

lastI(p)
3" isPair(l, K).

I=firsti(p)

Partners(p, K) =

DECOMPOSITION atomD(N), PartnD(N, MaxINB)
DISTRIBUTE atomD(Map), PartnD(Map, *)
ALIGN F,X WITH atomD, JNBL WITH PartnD

FORALL I =1, N ON HOME F(I)
DO J = 1, INB(I)
force = nbf(X(I) — X(INBL(1,1)))
REDUCE(SUM, F(I), force)
REDUCE(SUM, F(JNBL(L,J)), —force) (*)
ENDDO
ENDFORALL

Figure 4: Force Calculation, Fortran D version 2.

For each processor p, we sum this up over all atoms:

N
Pairs(p) = E Partners(p, K) =
K=1

lastI(p) N lastI(p)

S Y isPair(ILK)=)

I=firstl(p) K=1 I=firstI(p)

INB(I).

In terms on averages (which are denoted by a subscript
ave), we have

N
. 1 N x INB,y.
Pa:rs,.,, = }-;INB(I) = —}—J_—'
We notice that Pairs(p) is proportional to the com-
putational load of processor p. Therefore, the overall
computational cost is given by

p P lastI(p)
T.omp max Pairs(p) =max »_ INB(I).
r=1 p=1
I=firstl(p)

This results in a typical load balancing problem [12],
where the goal is to lower Teomp down to Tideal
Pairsgye. This means that we have to choose first]
and lastI such that we have for all p:

lastI(p)
INB(I) =
I=firstI(p)

N x INBgye
P

After considering the computational costs, we now
take a closer look at communication costs and, closely
related to that, scalability. Most of the overall com-
munication is associated with the potentially nonlocal
assignment to the force array (statement (*) in Fig-
ure 4). Compiling this naively, without message block-
ing, would result in roughly Pairssy. (short) messages
per processor. For systems whose communication time
to send m units of data is well modeled by A + fm
with A 3> 4 [3), this would increase the communication

cost by a factor A/S. This would make it unacceptable
to send individual messages for each nonlocal access,
instead of combining them at the end of the loop.
Another issue besides raw message blocking is how
much we can gain by combining non-local reductions.
For example, if processor p has to make several contri-
butions to an F(I) owned by processor ¢, p # g, then
it would be profitable to combine these contributions
on p which then sends only the sum to g. We should
estimate how often this may occur. While the assign-
ments may be skewed for various reasons (for example,
because a pair (I, K) is stored only if I < K), the aver-
age number of assignments which involve a particular
atom, per processor, is simply Pairs,y. divided by N:

INBgye
P

Partnersaye =

Thus for P <€ INBgy., We can expect every pro-
cessor to contribute to most elements of F'; for P >
INB,y., each processor contributes to very few ele-
ments of F. Therefore, the ratio Partnersay. is crucial
for how we should distribute F' and perform the reduc-
tion operation, which we will discuss subsequently.

In the IPfortran version and the corresponding first
Fortran D version, F is replicated and all local contri-
butions to an element of F' are summed up locally. Af-
ter computing the global sum {F}, all forces are every-
where available. Using a simple dimensional exchange,
this summation can be done in O(N log P), with log P
messages per processor (this works best for hypercubes,
but can also be done on other parallel architectures). A
more sophisticated divide-and-conquer approach works
in O(N), with 2 x log P messages per processor [8]. If
we use the latter approach and have a balanced work-
load, then we have communication cost Teomm < N
and computation costs Teomp < Pairsaye.- Their ratio
then is

Rcomp/comm = Pairsave/N = INBave/P:

which is again Partnersqsy.. Thus for fixed INB,ye, the
cost of communication will dominate for large P, inde-
pendent of N. In the experiments with GROMOS par-
allelized in this way, for a system with INB g = 80, the
cross-over point occurs near 128 processors on the Intel
iPSC/860, see Figure 10. However, INB 4. increases
as the cube of the cutoff radius, so that the break-even
number of processors, for which P o INBaye, in-
creases cubicly with the cutoff radius as well. In the
limit of having an infinite cutoff radius (that is, no cut-
off at all), we have INByye = N and the communication
costs are swamped by the computational cost for any
N > P. In that case the algorithm is fully scalable as
N increases.

In our second Fortran D version we do not replicate
F, but instead distribute it across processors. How-
ever, to allow message blocking, the compiler should
still provide buffer space for all elements of F which
are accessed nonlocally. The global combination would
then be performed via a reduction operation like scat-
ter_add [2]. A typical implementation of scatter_add
would again sum all local contributions to a particu-
lar array element up before combining them globally
with other contributions. However, it would proba-
bly not use a dimensional exchange, but instead send
point-to-point messages. The size of each of these mes-
sages would be O(N/P x min(1, Partnersay.)), where
the limiting 1 stems from combining reductions locally.
Whether the overall cost of a scatter_add would be less
than a global exchange of the full array depends on
Partnersgye.

To summarize, it appears that distributing F is ad-
vantageous when P > INB,,. roughly holds, otherwise
replicating F is appropriate.

5 Pair list generation

Figure 5 shows the original version of the generation
of the pair list used in the nonbonded force calculation.
The critical obstacle for parallelizing this algorithm is

Jo=0
JI=0
DOI=1N
firstJ(I) = JJ + 1
DOJ=I+41,N
IF ABS(X(I) — X(J)) < R THEN
JI=J1+41
JNB(JI) =1
ENDIF
ENDDO
INB(I) =JJ - Jo
lastJ(I) = JJ
Jo=1]
ENDDO

Figure 5: Pairlist computation, original version.

the loop carried dependence on JJ, which causes a de-
pendence for the assignment to JNB. However, the
dependency does not occur in the values of JNB, but
rather in the locations of the values. Thus we may
compute each iteration separately and figure out later
where to put them. This amounts to computing the
JNBL array which appeared already in Figure 4. JNBL
serves again to remove dependences as shown in Fig-
ure 6, similarly to scalar privatization. Here JVBL can
also be viewed as a “scratch space” to hold the values

DOI=1,N
JL=0
DO J = I+l, N
IF ABS(X(I) — X(J)) < R THEN
JL=JL+1
JNBL(JL,I) =1
ENDIF
ENDDO
INB(I) = JL
ENDDO

DOI=1,N
INB(firstJ(I):1astJ(I)) = INBL(I, 1:INB(I))
ENDDO

Figure 6: Pairlist computation, parallel-vector ver-

sion.

which are then combined into JNB. One difficulty in
doing this automatically is that the second dimension
of JNBL has to be large enough to fit maz{_, INB(I)
elements, for which there is no a priori bound that
could be easily derived by a compiler.

Now we can parallelize the outer loop by letting each
processor p compute a range (firstI(p) : lastI(p)) of
the iterations. In IPfortran we use processor specific
loop bounds; the Fortran D version distributes JNBL
and uses the owner computes rule. The range sizes
vary across processors due to the triangular shape of
the double loop [4]. Each processor will have a local
copy of only part of the JNB array. However, for per-
forming load balancing we need to know all of INB,
which can be collected in O(N) with O(log P) commu-
nication steps using a dimensional exchange [8], as seen
for example in Figure 7.

6 The SHAKE algorithm

SHAKE utilizes a typical form of relaxation to solve
a system of constraints regarding the distance (or an-
gles) between particular atoms. Mathematically, there
is a system of constraints, %;(z1,...,2zn) =0,1<i <
k, on the positions, z;, of atoms. Typically, this is
extremely sparse, with v; depending only on a small
number of z;. Although the constraints are not linear
(for example, they involve the distance between two
points which includes expressions quadratic in the co-
ordinates), any given constraint can be satisfied exactly
by moving only one atom, with the others fixed. Thus,
the SHAKE algorithm iterates on i and moves a partic-
ular atom, j;, so that y;(z1,...,%j;,...,Zn) = 0. Since
the previously computed values of z; are used, this can
be viewed as a nonlinear Gauss-Seidel method.

To make the analogy precise, consider a system of
linear equations,

ai1€1+"'+ain€n"fi=0, i=1...,n

(think & = z;j, and v; = a1 +-- -+ ainén — fi). Then
the i-th step of a Gauss-Seidel iteration is

&= (Z aij§j — fi) /aii-
j#

It is well known that the Gauss-Seidel method does not

parallelize well due to the fact that each step of the

iteration depends on previous ones. A simple solution
would be to use instead the Jacobi iteration

hew — (Z a;;€3 — fi) /a.-g,i =1...,m,

J#

followed by the assignment "% « ¢°4. This is now
perfectly parallelizable, but is (usually) a more slowly
convergent algorithm than Gauss-Seidel [9].

To overcome this problem, it is common to use a
compound algorithm for parallel computation which
involves a Jacobi iteration across processors, but a
Gauss-Seidel iteration interior to each processor. More
precisely, the equations are partitioned into P sets, Zp,

p=0,...,P—1, and the iteration in each processor
becomes
& = (Z a;j&j — f.) /a,-.-, i €I,.
i#s

At the completion of this, all processors exchange val-
ues of {; as necessary. Suppose that the sets I, were
the ranges 1 < j — pn/P < n/P where for simplicity
we assume that P divides n. In IPfortran this can be
written as in Figure 7. Note the dimensional exchange
loop at the end, which has O(log P) messages with to-
tal volume of O(N') per processor.

When coding SHAKE in Fortran D, it is tempting to
write the code in Figure 8. However, this is just Gauss-
Seidel in a more complex form, since the innermost loop
references all of J. As it turns out, there is no simple
sequential algorithm that can be annotated to yield the
hybrid relaxation. In this kind of situation, where we
want to use different algorithms depending on whether
we operate within processors or across them, it is useful
to have an escape mechanism from the default, global
level into the processor level.

Here the concept of local blocks is very useful [13,
Thinking Machines proposal]. The Fortran D code in
Figure 9 shows how a FORALL loop, which by defini-
tion performs all iterations independently of each other,
can realize this concept.

much =n /P
myslice = me * much
DO i = myslice+1, myslice4+much
XI(I) = 0.0
DOj=1n
XI(i) = AMATRIX(i,j) * XI()
ENDDO
XI(i)= (XI(i)-F(i)) / AMATRIX(i,i)
ENDDO

mask =1

DO d = 1, CUBEDIM
a = 1 + (XOR(me, mask)/mask) * mask * much
b = a — 1 + mask * much
XI(a : b) = XI(a : b) @ XOR(me, mask)

mask = 2 * mask

ENDDO

Figure 7: Hybrid relaxation: Gauss-Seidel locally,
then Jacobi update globally. IPfortran version.
much=n /P

DOip =0,P-1

myslice = ip * much
DO i = myslice+1, myslice+much

XI(i) = 0.0
DOj=1,n
XI(i) = AMATRIX(i,j) * XI(j)
ENDDO
XI(i) = (XI({i)-F(i)) / AMATRIX(i,i)
ENDDO
ENDDO

Figure 8: Hybrid relaxation, Fortran D version 1.

7 Performance results

Figure 10 gives performance results for the parallel
implementation of GROMOS using IPfortran. The cal-
culation on an iPSC/860 uses a model for the enzyme
Superoxide Dismutase [22], with a total of 6968 atoms,
for 500 timesteps. Both the overall execution times
and the breakdowns into the principal sections of the
calculation are given.

The dominating parts of the sequential algorithm,
the nonbonded forces and pair list, have been paral-
lelized with nearly perfect speedup. Time-stepping and
the bonded force calculation, performed redundantly
at every processor, remain constant. These, together
with the load balancing and global sum of the non-
bonded force, form an asymptote which the total time
approaches as the number of processors is increased.
As the problem size, N, is increased, the pair list con-
struction (and the long-range force calculation which
is computed along with the pair list) grows as O(N?);

Parallel GROMOS: 500 steps, 6968 atoms

103 —— —
total iPSC/860, E
nbforce a_ -]
pairlist 7
102
3
8 .
=1 -
-E shake
s 10 E
g . - 3
= bonded force n
100 global sum 3
load balancing]
10-11L I A PR S R S W Y Lid Pt
10-1 100 10? 102

Number of processors

Figure 10: Performance results.

DECOMPOSITION CoordD(N)
DISTRIBUTE CoordD(BLOCK)
ALIGN F,X with CoordD

much =n /P
FORALL p =0, P-1
myslice = p * much
DO i = myslice+1, myslice+much
XI@) = 0.0
DOj=1n
XI(i) = AMATRIX(1,j) * XI(j)
ENDDO
XI(i)= (XI(i)—-F(i)) / AMATRIX(i,)
ENDDO
ENDFORALL

Figure 9: Hybrid relaxation, Fortran D version 2.

all other parts increase by O(N), with the exception
of load balancing which depends on initial data and,
relative to this discussion, is difficult to characterize.
Thus we can assert that this simple port of the GRO-
MOS code is an efficient parallelization. Increasing the
cutoff radius while keeping N fixed also increases the
number of processors that can be used effectively, as
discussed in Section 4, thereby shifting the nonbonded
force curve up by some 6.

8 Conclusions

Because this study was limited to a single exam-
ple program and two languages, we cannot make broad

generalizations regarding parallel programming. How-
ever, we believe that for a range of scientific codes
whose complexity is comparable to molecular dynamics
the following observations will apply.

¢ Scalability in molecular dynamics is an achievable
goal, but it requires careful algorithm design where
the choice of the right algorithm may also depend
on the input characteristics.

e Both local and global models are feasible inter-
faces for programming distributed-memory paral-
lel machines [21]. In addition, both models can
provide the user with a higher-level programming
interface than current message-passing languages
on distributed-memory machines.

e As to be expected, regardless of the implementa-
tion model chosen, the key to a good parallel pro-
gram is the choice of an appropriate algorithm.
This implies that programs will have to be rewrit-
ten to some extent for parallelization, rather than
relying on compiler optimization of “dusty deck”
code. Resembling the “vectorizable style” asso-
ciated with vector architectures [23], an equiva-
lent challenge in the parallel arena is the devel-
opment of a “machine-independent parallel pro-
gramming style,” a long-term research target of
Fortran D [14].

o Pfortran improves on the usual message-passing
environment by eliminating the need for explicit
“send” operations. This simplifies code signifi-
cantly, allowing the programmer to concentrate on

higher-level problems such as load balancing. The
local model of computation is useful if we want
to apply distinct “intra-processor” and “inter-
processor” algorithms.

e Fortran D abstracts communication statements
out of the program text by providing a modified
shared-memory model of computation. The key
feature of a Fortran D program is the data dis-
tribution, which the compiler uses to generate the
low-level communications operations.

We plan to continue this work in several areas.
In the computational molecular dynamics area, we
will continue to design and implement scalable algo-
rithms, producing high-performance codes [6]. Both
the IPfortran and Fortran D implementations will con-
tinue to go forward, and the lessons from this study
and others like it will affect their development [11, 13].

9 Acknowledgements

We thank Professor McCammon for many help-
ful discussions and the Institute for Molecular Design
(IMD) and Intel for providing computing facilities for
this work. McCammon and the IMD are supported
in part by the National Science Foundation with ad-
ditional support from Intel. We also acknowledge the
use of computer facilities at Oak Ridge National Lab-
oratory in this research.

References

[1] Babak Bagheri, Terry W. Clark, and L. Ridgway Scott.
Piortran (a parallel extension of Fortran) reference man-
ual. Research Report UH/MD-119, Dept. of Mathematics,
University of Houston, 1991.

(2] H. Berryman, J. Saltz, and J. Scroggs. Execution time
support for adaptive scientific algorithms on distributed
memory machines. Concurrency: Practice and Ezperience,
3(3):159~178, June 1991.

(3] D. K. Bradley. First and second generation hypercube per-
formance. Technical Report UTUCDCS-R-88-1455, Dept.
of Computer Science, University of Illinois at Urbana-
Champaign, 1988.

(4] Terry W. Clark, J. A. McCammon, and L. Ridgway Scott.
Parallel molecular dynamics. In Proceedings of the Fifth
SIAM Conference on :arallel Processing for Scientific
Computing, Houston, TX, March 1991.

[5] Terry W. Clark and J. Andrew McCammon. Paralleliza-
tion of a molecular dynamics non-bonded force algorithm for
MIMD architectures. Computers & Chemistry, 14(3):219-
224, 1990.

(6] Terry W. Clark, Reinhard v. Hanxleden, and L. Ridgway
Scott. Scalable algorithms for molecular dynamics compu-
tations. Technical report, Dept. of Mathematics, University
of Houston, to appear.

[7] G.C. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kre-
mer, C. Tseng, and M. Wu. Fortran D language specifica-
tion. Technical Report TR90-141, Dept. of Computer Sci-
ence, Rice University, December 1990. Revised April, 1991.

[8] G. C. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon,
and D. Walker. Solving Problems on Concurrent Multipro-
cessors. Prentice-Hall, 1988.

Girija Ganti and J. Andrew McCammon. Transport prop-
erties of macromolecules by Brownian dynamics simula-
tion: Vectorization of Brownian dynamics on the Cyber-
205. Journal of Computational Chemistry, 7(4):457—463,
1986.

[10] W. F. van Gunsteren and H. J. C. Berendsen. GRO-
MOS: GROningen MOlecular Simulation software. Tech-
nical report, Laboratory of Physical Chemistry, University
of Groningen, Nijenborgh, The Netherlands, 1988.

(11] Reinhard v. Hanxleden and Ken Kennedy. Relaxing SIMD
control flow constraints using loop transformations. In Pro-
ceedings of the ACM SIGPLAN ’92 Conference on Program
Language Design and Implementation, San Francisco, CA,
1992.

[12] Reinhard v. Hanxleden and L. Ridgway Scott. Load balanc-
ing on message passing architectures. Journal of Parallel
and Distributed Computing, 13, 1991.

[13] Proceedings of the High Performance Fortran Forum, Hous-
ton, TX, Jan. 27-28, 1992.

[14] S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, and
C. Tseng. An overview of the Fortran D programming sys-
tem. In Proceedings of the Fourth Workshop on Languages
and Compilers for Parallel Computing, Santa Clara, CA,
August 1991.

[15] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall, Englewood Cliffs, NJ, 1985.

[16] C.Lin and L. Snyder. A comparisonof programming models
for shared memory multiprocessors. In Proccedings of the
1991 International Conference on Parallel Processing, Vol.
2, pages 163-170, 1991.

[17] J. Andrew McCammon. Computer-aided molecular design.
Science, 238:486—491, October 1987.

(18] J. Andrew McCammon and Stephen C. Harvey. Dynamics
of proteins and nucleic acids. Cambridge University Press,
Cambridge, 1987.

[19] Florian Miller-Plathe and David Brown. Multi-colour algo-
rithms in molecular simulation: Vectorisation and paralleli-
sation of internal forces and constraints. Computer Physics
Commaunications, 64:7-14, 1991.

{20] Jean-Paul Rycaert, Giovanni Ciccotti, and Herman J.C.
Berendsen. Numerical integration of the cartesian equa-
tions of motion of a system with constraints: Molecular
dynamics of n-alkanes. Journal of Computational Physics,
23:327-341, 1977.

[21] L. R. Scott, J. M. Boyle, and B. Bagheri. Distributed data
structures for scientific computation. In M. T. Heath, editor,
Proceedings of the 3rd Hypercube Multiprocessors Confer-
ence, pages 55-66, Philadelphia, PA, 1987.

[22] Jian Shen and J. Andrew McCammon. Molecular dynamics
simulation of Superoxide interacting with Superoxide Dis-
mutase. Chemical Physics, 158:191-198, 1991.

[23] Michael J. Wolfe. Semi-automatic domain decomposition.
In Proceedings of the 4th Conference on Hypercube Con-
current Computers and Applications, Monterey, CA, March
1989.

9

—

