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Abstract

We present an integrated approach to compiling For-
tran 77D and Fortran 90D programs for efficient execution
on MIMD distributed-memory machines. The integrated
Fortran D compiler relies on two key observations. First,
array constructs may be scalarizedinto FORALL loops with-
out loss of information. Second, loop fusion, partitioning,
and sectioning optimizations are essential for both For-
tran D dialects.

1 Introduction

Parallel computing on distributed-memory machines is
very cost-effective, but it is hindered by both the diffi-
culty of parallel programming and lack of portability of
the resulting programs. We propose to solve this problem
by developing the compiler technology needed to automate
translation of Fortran D to different parallel architectures.
Our goal is to establish a machine-independent program-
ming model for data-parallel programs that is easy to use,
yet performs with acceptable efficiency on different parallel
architectures.

Fortran D provides data decomposition specifications
that can be applied to Fortran 77 and Fortran 90 [8] to pro-
duce Fortran 77D and Fortran 90D, respectively. In this
paper, we describe a unified strategy for compiling both
Fortran 77D and Fortran 90D into efficient SPMD (Single
Program Multiple Data) message-passing programs. In
particular, we concentrate on the design of a prototype
Fortran 90D compiler for the Intel iPSC/860 and Delta,
two MIMD distributed-memory machines.

The principal issues involved in compiling Fortran 90D
are partitioning the program across multiple nodes and
scalarizing it for execution on each individual node. Pre-
vious work has described the partitioning process [20, 21].
In this paper we demonstrate how to integrate partition-
ing with scalarization, and show that an efficient portable
run-time library can ease the task of compiling Fortran D.

The remainder of this paper presents a brief overview
of the Fortran D language and compilation strategy, then
describes the Fortran 90D and 77D front ends and the
common Fortran D back end. The design of the run-time
library is discussed, and an example is used to illustrate
the compilation process. We conclude with a discussion of
related work. ’

2 Fortran D Language

We briefly overview aspects of Fortran D relevant to this
paper. These extensions can be added to either Fortran 77
or Fortran 90. The complete language is described else-
where [16].
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2.1 Data Alignment and Distribution

In Fortran D, the DECOMPOSITION statement declares an
abstract problem or index domain. The ALIGN statement
maps each array element onto one or more elements of
the decomposition. This provides the minimal requirement
for reducing data movement for the program given an un-
limited number of processors. The DISTRIBUTE statement
groups decomposition elements, mapping them and any
array elements aligned with them to the finite resources
of the physical machine. Each dimension of the decom-
position is distributed in a block, cyclic, or block-cyclic
manner; the symbol “” marks dimensions that are not
distributed. Because the alignment and distribution state-
n_llc:lnts are executable, dynamic data decomposition is pos-
sible.

2.2 Forall

Fortran D provides FORALL loops to permit the user to
specify difficult parallel loops in a deterministic manner
[4]. In a FORALL loop, each iteration uses only values de-
fined before the loop or within the current iteration. When
a statement in an iteration of the FORALL loop accesses a
memory location, it will not get any value written by a
different iteration of the loop. Instead, it will get the old
value at that memory location (i.e., the value at that loca-
tion before the execution of the FORALL loop) or it will get
some new value written on the current iteration. Similarly,
a merging semantics ensures that a deterministic value is
obtained after the FORALL if several iterations assign to
the same memory location.

Another way of viewing the FORALL loop is that it has
copy-in/copy-out semantics. In other words, each iteration
gets its own copy of the entire data space that exists before
the execution of the loop, and writes its results to a new
data space at the end of the loop. Since no values depend
on other iterations, the FORALL loop may be executed in
parallel without synchronization. However, communica-
tion may still be required before the loop to acquire non-
local values, and after the loop to update or merge non-
local values. Single-statement Fortran D FORALL loops are
identical to those supported in CM FORTRAN [34].

3 Fortran D Compilation Strategy
3.1 Overall Strategy

Our strategy for parallelizing Fortran D programs for
distributed-memory MIMD computers is illustrated in Fig-
ure 1. In brief, we transform both Fortran 77D and For-
tran 90D to a common intermediate form, which is then
compiled to code for the individual nodes of the machine.
We have several pragmatic and philosophical reasons for
this strategy:



e Sharing a common back end for both the Fortran 77D
and Fortran 90D avoids duplication of effort.

e Decoupling the Fortran 77D and Fortran 90D front
ends allows them to become machine independent.

e Providing a common intermediate form helps
us experiment with defining an efficient com-
piler/programmer _interface for programming the
nodes of a massively parallel machine.

3.2 Intermediate Form

To compile both dialects of Fortran D using a single back
end, we must select an appropriate intermediate form. In
addition to standard computation and control flow infor-
~ation, the intermediate form must capture three impor-
tant aspects of the program:

e Data decomposition information, telling how data is
aligned and distributed among processors.

e Parallelization information, telling when operations
in the code are independent.

¢ Communication information, telling what data must
be transferred between processors.

In addition, we believe that the primitive operations of
the intermediate form should be relatively low-level oper-
ations that can be translated simply for single-processor
execution.

We have chosen Fortran 77 with data decompositions,
FORALL, and intrinsic functions to be the intermediate
form for the Fortran D compiler. We show later that
this form preserves all of the information available in a
Fortran 90 program, but maintains the flexibility of For-
tran 77. Parallelism and communication can be deter-
mined by the compiler for simple computations, and spec-
ified by the user using FORALL and intrinsic functions for
complex computations.

3.3 Node Interface

Another topic of interest in the overall strategy is the node
interface—the node program produced by the Fortran D
compiler. It must be both portable and efficient. In ad-
dition, the level of the node interface should be neither
so high that efficient translation to object code is impos-
sible, nor so low that its workings are completely opaque
to the user. We have selected Fortran 77 with calls to
communication and run-time libraries based on Express,
a collection of portable message-passing primitives (30].
Evaluating our experiences with this node interface is the
first step towards defining an “optimal” level of support
for programming individual nodes of a parallel machine.

4 Fortran D Compiler

The Fortran D compiler thus consists of three parts. The
Fortran 90D and 77D front ends process input programs
into the common intermediate form. The Fortran D back
end then compiles this to the SPMD message-passing node
program. The Fortran D compiler is implemented in the
context of the ParaScope programming environment [12].

4.1 Fortran 90D Front End-

The function of the Fortran 90D front end is to scalar-
ize the Fortran 90D program, translating it to an equiva-
lent Fortran 77D program. This is necessary because the
underlying machine executes computations sequentially,
rather than on entire arrays at once as specified in For-
tran 90. For the Fortran D compiler we find it useful to
view scalarization as three separate tasks:

Fortran 90
Fortran 77
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+ WHERE
+ intrinsics

Fortran 77

User or Automatic Tool

Fortran 90D

Fortran 77
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+ array constructs
+ WHERE, FORALL
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Figure 1: Fortran D Compilation Strategy

e Scalarizing Fortran 90 Constructs. Many For-
tran 90 features are not present in our intermediate
form. They must be translated into equivalent For-
tran 77D statements.

¢ Fusing Loops. Simple scalarization results in many
small loop nests. Fusing these loop nests can improve
the locality of data accesses, simplify partitioning,
and enable other program transformations.

o Sectioning. Fortran 90 array operations allow the
programmer to access and modify entire arrays atom-
ically, even if the underlying machine lacks this ca-
pability. The Fortran D compiler must divide array
operations into sections that fit the hardware of the
target machine [5, 6].

We defer both loop fusion and sectioning to the For-
tran D back end. Loop fusion is deferred because even
hand-written Fortran 77 programs can benefit significantly
[24, 28]. Sectioning is needed in the back end because
FORALL loops may also be present in Fortran 77D.

We assign to the Fortran 90D front end the remaining
task, scalarizing Fortran 90 constructs that have no equiv-
alent in the Fortran 77D intermediate form. There are
three principal Fortran 90 language features that must be
scalarized: array constructs, WHERE statements, and in-
trinsic functions [8].



Sending Reduction Multicasting Irregular Special
& Receiving Operations routines
CSHIFT DOTPRODUCT SPREAD PACK MATMUL
Fortran 90D | EOSHIFT | ALL, ANY, COUNT UNPACK
MAXVAL, MINVAL RESHAPE
SUM, PRODUCT TRANSPOSE
MAXLOC, MINLOC

Table 1: Representative Intrinsic Functions of Fortran 90D

Array Constructs Fortran 90 array constructs allow
entire arrays to be manipulated atomically. Array sec-
tions may also be specified using triplet notation. This
enhances the clarity and conciseness of the program, and
has the advantage of making parallelism explicit. It is the
responsibility of the compiler to efficiently implement ar-
ray constructs for scalar machines. Previous research has
shown that this is a difficult problem [5, 6].

One problem is that when Fortran 90 array constructs
are used in assignment statements, the entire right-hand
side (rhs) must be evaluated before storing the results in
the left-hand side (lhs). If an assignment statement utiliz-
ing array constructs is translated naively without adequate
analysis, rhs array elements would need to be stored in
temporary buffers to ensure that they are not overwritten
before their values are used.

The Fortran 90 front end can defer this problem by rely-
ing on a key observation—the FORALL loop possesses copy-
in/copy-out semantics identical to Fortran 90 assignment
statements utilizing array constructs. Such statements
may thus be translated into equivalent FORALL loops with
no loss of information.

However, since FORALL loops specify individual element
operations, indices are introduced. For simplicity, the in-
dex calculation is performed with respect to the lhs. In
general, an array construct of the form:

Al :uy:31) = B(l2:uz: 382)

where A and B are one dimensional arrays, is converted
into:

FORALL i = [, u1, &
AG) = B + (( = 1) /s1) * 52)
ENDFOR
Of course, the expression in the rhs is simplified as much
as possible at compile time.

WHERE Statement Another Fortran 90 feature that
has no Fortran 77 equivalent is the WHERE statement. It
takes a boolean argument that is used to mask array op-
erations, inhibiting assignments to array elements whose
matching boolean flag has the value false. The boolean ar-
gument to the WHERE statement must be completely eval-
nated before the body of the statement may be executed.

Fortunately, the WHERE statement may be easily trans-
lated into equivalent IF and FORALL statements. Consider
the following example where A is assumed to be an 1D
N-element array. Because of FORALL copy-in/copy-out se-
mantics, it is unnecessary at this point to explicitly store
the value of the boolean argument to prevent it from being
overwritten.

WHERE (A .EQ. 0) FORALL i = 1,N

A=1.0 IF (A(i) .EQ. 0) THEN
ELSEWHERE = A(i) = 1.0
A=0.0 ELSE
ENDWHERE A(i) = 0.0
ENDIF
ENDFOR

Intrinsic Functions Intrinsic functions are fundamen-
tal to Fortran 90. They not only provide a concise means of
expressing operations on arrays, but also identify parallel
computation patterns that may be difficult to detect auto-
matically. Fortran 90 provides intrinsic functions for oper-
ations such as shift, reduction, transpose, and matrix mul-
tiplication. Additional intrinsics are described in Table 1.
To avoid excessive complexity and machine-dependence in
the Fortran D compiler, we convert most Fortran 90 intrin-
sics into calls to customized run-time library functions.

The strategy used by the Fortran 90D front end is thus
to preserve all intrinsic functions, passing them to the For-
tran D compiler back end. However, some processing is
necessary. Like the WHERE statement, some intrinsic func-
tions accept a mask expression that restricts execution of
the computation. The Fortran 90D front end may need to
evaluate the expression and store it in a temporary boolean
array before performing the computation, so the mask can
be passed as an argument to the run-time library.

For example, consider the following reduction operation,
where X is a scalar and A, B are arrays:

X = MAXVAL(A, A .EQ. B)

It should return the value of the element of A that is the
maximum of all elements for which element of A is equal
to the corresponding element of B. The Fortran 90D front
end translates this to:

FORALL i = 1,N
TP (i) = A(i) .EQ. B(i)

ENDFOR
X = MAXVAL(A, TMP)

TMP can then be passed as an argument to the run-time
routine MAXVAL. Temporary arrays may also be intro-
duced when intrinsic functions return a value that is part
of a Fortran 90 expression.

Temporary Arrays When the Fortran 90D front end
needs to create temporary arrays, it must also generate
appropriate Fortran D data decomposition statements. A
temporary array is usually aligned and distributed in the
same manner as its master array. For example, in the pre-
vious example the temporary logical array TMP is aligned
and distributed in the same manner as A and B. If A and
B are distributed differently, then the temporary array is
assigned the distribution of A, the first argument.

4.2 Fortran 77D Front End

The Fortran 77D front end does not need to perform much
work since Fortran 77D is very close to the intermediate
form. Its only task is to detect complex high-level par-
allel computations, replacing or annotating them by their
equivalent Fortran 90 intrinsics. These intrinsic functions
help the compiler recognize complex computations such as
reductions and scans that are supported by the run-time
library. With advanced program analysis, some operations
such as DOTPRODUCT, SUM, TRANSPOSE, or MATMUL can
be detected automatically with ease. Others computations
such as COUNT or PACK may require user assistance.



4.3 Fortran D Back End

The Fortran D back end performs two main functions—
it partitions the program onto the nodes of the parallel
machine and completes the scalarization of Fortran D into
Fortran 77. We find that the desired order for compilation
phases is to apply loop fusion first, followed by partitioning
and sectioning.

Loop fusion is performed first because it simplifies par-
titioning by reducing the need to consider inter-loop inter-
actions. It also enables optimizations such as strip-mining
and loop interchange (7, 36]. In addition, loop fusion does
not increase the difficulty of later compiler phases. On the
other hand, sectioning is performed last because it can sig-
nificantly disrupt the existing program structure, increas-
ing the difficulty of partitioning analysis and optimization.

4.3.1 Loop Fusion

Loop fusion is particularly important for the Fortran D
back end because scalarized Fortran 90 programs present
many single-statement loop nests. Fusing such loops sim-
plifies the partitioning process and enables additional op-
timizations.

Data dependence is a concept developed for vectoriz-
ing and parallelizing compilers to characterize memory ac-
cess patterns at compile time (7, 26, 36]. A true depen-
dence indicates definition followed by use, while an anti-
dependence shows use before definition. Data dependences
may be either loop-carried or loop-independent. Loop fu-
sion is legal if it does not reverse the direction of any data
dependence between two loop nests [5, 35, 36].

The current Fortran D back end fuses all adjacent loop
nests where legal, if no loop-carried true dependences are
introduced. This heuristic does not adversely affect the
parallelism or communication overhead of the resulting
program, and should perform well for the simple cases
found in practice. More sophisticated algorithms are dis-
cussed elsewhere [17, 28, 35].

Loop fusion also has the added advantage of being able
to improve memory reuse in the resulting program. Mod-
ern high-performance processors are so fast that mem-
ory latency and bandwidth limitations become the per-
formance bottlenecks for most scientific programs. Trans-
formations such as loop fusion promote memory reuse and
can significantly improve program efficiency for both scalar
and vector machines [1, 5, 6, 26, 28, 33). For instance, con-
sider the following example.

FORALL i = 1,N FORALL i = 1,N

A(i) = i A(l) = i
ENDFOR = B(i) = A(i)*A(i)
FORALL i = 1,N ENDFOR

B(i) = A(i)=*A(i)
ENDFOR

The occurrences of A(i) in separate loops means that
the memory location referenced by A(i) in the first loop
is likely to have been flushed from the cache by the ref-
erence in the second loop. If the two loops are fused,
all accesses to A(i) occur in the same loop iteration, al-
lowing the value to be reused in a register or cache. For
this example, we measured improvements of up to 30% for
some problem sizes on an Intel i860, as shown in Figure 2.
Additional transformations to enhance memory reuse and
increase unit-stride memory accesses are also quite impor-
tant; they are described elsewhere [24, 28].

4.3.2 Program Partitioning

The major step in compiling Fortran D for MIMD
distributed-memory machines is to partition the data and
computation across processors, introducing communica-
tion where needed. We present a brief overview of the
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Figure 2: Effect of Scalarization Optimizations

Fortran D compilation process below, details are discussed
elsewhere [20, 21].

e Analyze Program. Symbolic and data dependence
analysis is performed.

e Partition data. Fortran D data decomposition
specifications are analyzed to determine the decom-
position of each array in a program.

e Partition computation. The compiler partitions
computation across processors using the “owner com-
putes” rule—where each processor only computes val-
ues of data it owns [13, 31, 38].

¢ Analyze communication. Based on the work par-
tition, references that result in nonlocal accesses are
marked.

e Optimize communication. Nonlocal references
are examined to determine optimization opportuni-
ties. The key optimization, message vectorization,
uses the level of loop-carried true dependences to com-
bine element messages into vectors [9, 38].

¢ Manage storage. “Overlaps” [38] or buffers are al-
located to store nonlocal data.

e Generate code. Information gathered previously
is used to generate the SPMD program with explicit
message-passing that executes directly on the nodes
of the distributed-memory machine.

Two extensions are needed in the Fortran D back end to
handle FORALL loops and intrinsics. During communica-
tion optimization, the Fortran D compiler treats all true
dependences carried by FORALL loops as anti-dependences.
This reflects the semantics of the FORALL loop and en-
sures that the message vectorization algorithm will place
all communication outside the loop. In addition, during
code generation intrinsic functions are translated into calls
to the run-time library. Parameters are added where nec-
essary to provide necessary data partitioning information.

4.3.3 Sectioning

The final phase of the Fortran D back end completes the
scalarization process. After partitioning is performed, the
compiler applies sectioning to convert FORALL loops into
Do loops [5, 6] in the node program. The Fortran D back
end detects cases where temporary storage may be needed
using data dependence analysis. True dependences carried
on the FORALL loop represent instances where values are
defined in the loop and used on later iterations; they point
out where the copy-in/copy-out semantics of the FORALL
loop is being violated.



Proc Time (milliseconds)
ALL ANY MAXVAL | PRODUCT | DOT PRODUCT TRANSPOSE
1K x1K | 1K x1K | 1K x1K 256 K 256K 256 x 256 | 512 x 512 | 1K x 1K
1 580.6 606.2 658.8 90.1 164.8 58 299 -
2 291.0 303.7 330.4 50.0 83.0 118 575 -
4 146.2 152.6 166.1 25.1 42.2 87 395 -
8 73.84 77.1 84.1 13.1 22.0 61 224 1039
16 37.9 39.4 43.4 7.2 12.1 41 140 539
32 19.9 20.7 23.2 . 4.2 7.4 36 85 316

Table 2: Performance of Some Fortran 90 Intrinsic Functions

During simple translation of Fortran 90 array constructs
or FORALL loops, arrays involved in loop-carried true de-
pendences must be saved in temporary buffers to preserve
their old values. For instance, consider the translation of
the following concise Fortran 90 formulation of the Jacobi
algorithm:

A(2:N-1) = 0.5 * (A(1:N-2) + A(3:N))

FORALL i = 2,N-1
A(i) = 0.5 * (A(i-1) + A(i+1))

ENDFOR
.U

DO i = 1,N-2

TMP(i) = A(i-1)
ENDDO
DO i = 2,N-1

A(i) = 0.5 = (TMP(i) + A(i+1))
ENDFOR

A loop-carried true dependence exists between the defini-
tion to A(#) and the use of A(: — 1). A temporary array
TMP is needed so that the old values of A(i — 1) are not
overwritten before they are used. The values of A(i +1)
do not need to be buffered since they are used before being
redefined.

The previous example is problematic because temporary
storage is required for the values of A(i—1). In some cases,
the Fortran D compiler can eliminate buffering through
program transformations such as loop reversal. In other
cases, the compiler can reduce the amount of temporary
storage required through data prefetching[6]. For instance,
in ‘tlllm Jacobi example a more efficient translation would
result in:

X = AQ1)
D0 i = 2,N-1
Y = 0.5 % (X + A(i+1))
X = A(@)
A(Q) = Y
ENDFOR
This reduces the temporary memory required significantly,
from an entire array to two scalars. For this version of
Jacobi, we measured improvements of up to 50% for certain
problem sizes on an Intel i860, as shown in Figure 2.

5 Run-time Library

Fortran 90 intrinsic functions represent computations
(such as TRANSPOSE and MATMUL) that may have com-
plex communication patterns. It is possible to support
these functions at compile time, but we have chosen to
implement these functions in the run-time library instead
to reduce the complexity and machine-dependence of the
compiler.

The Fortran D compiler translates intrinsics into calls to
run-time library routines using a standard interface. Ad-
ditional information is passed describing bounds, overlaps,
and partitioning for each array dimension. The run-time
library is built on top of the Express communication pack-
age to ensure portability across different architectures [30].

Table 2 presents some sample performance numbers for
a subset of the intrinsic functions on an iPSC/860, details
are presented elsewhere [2]. The times in the table include
both the computation and communication times for each
function. For large problem sizes, we were able to obtain
almost linear speedups. In the case of TRANSPOSE function,
going from one processor to two or four degrades execution
time due to increased communication. However, speedup
improves as the number of processors increases.

6 Fortran 90D Compilation Example

In this section we demonstrate how an example For-
tran 90D program is compiled into message-passing For-
tran 77, then measure its performance.

6.1 Compilation

Figure 3 shows a code fragment implementing one sweep of
ADI integration on a 2D mesh, a typical (if short) numeri-
cal algorithm. Conceptually, the code is solving a tridiago-
nal system (represented by the arrays A and B) along each
row of the matrix X. The tridiagonal systems are solved
by a sequential method, but separate columns are inde-
pendent and may be solved in parallel. The full version of
ADI integration sweeps each dimension of the mesh, pre-
venting completely parallel execution for any static data
decomposition.

In the example, Fortran D data decomposition state-
ments are used to partition the 2D array into blocks of
columns. For clarity, we declare the number of processors
(NSPROC) to be 32 at compile time. The Fortran 90D
example is concise and convenient for the user, since it
can be written for a single address space without requiring
explicit communication. However, additional compilation
techniques are required to generate efficient code. First,
the Fortran 90D front end translates the program into in-
termediate form as shown in Figure 4, converting all array
constructs into FORALL loops. Since no true dependences
are carried on the FORALL loops, they may be directly re-
placed with DO loops.

The compilation process for the Fortran D back end
merits closer examination. First, array bounds are re-
duced to the local sections plus overlaps. The local proces-
sor number is determined using myproc(), a library func-
tion; it is used to compute expressions for reducing loop
bounds. Analysis determines that both I and J are cross-
processor loops—loops carrying true dependences that se-
quentialize the computation across processors. To ex-
ploit pipeline parallelism, the Fortran D compiler inter-
changes such loops inward. We call this technique fine-
grain pipelining [20, 21).

For this version of ADI integration, data dependences
permit the Fortran D compiler to interchange the J loop
inwards. However, if loop fusion is not performed, the
imperfectly nested K loops inhibit loop interchange for
loop I, forcing it to remain in place. During code gen-
eration, true dependences for nonlocal references carried
on the I and J loop cause calls to send and recv to be



PARAMETER (¥ = 512, N$PROC = 32)
REAL X(N,N), A(H,N), B(¥,N)
DECOMPOSITIOE DEC(N,N)
ALIGHE X, A, B WITH DEC
DISTRIBUTE DEC(:,BLOCK)
DOI =2,
X(1:¥,I) = X(1:8,I) - X(l:I,I-i)#A(i:I,I)/B(i:l,l-l)
B(1:¥,I) = B(1:§,I) - A(1:N,I)*A(1:¥,I)/B(1:X,I-1)
ENDDO
X(1:¥,0) = X(1:8,0) / B(1:§,¥)
D0 J = B-1,1,-1 .
X(1:8,J) = (X(1:l,J)-A(i:I,J+1)¥X(1:I,J+1))/B(1:I,J)
EEDDO
Figure 3: ADI integration in Fortran 90D

inserted to provide communication and synchronization.
Figure 5 shows the resulting program.! Unfortunately, the
computation in the I loop has been sequentialized, since
each processor has to wait for its predecessor to complete.
Note that this is not due to communication placement;
the values needed by the succeeding processor are simply
computed last.

Ifloop fusion is enabled, the Fortran D back end will fuse
the two inner K loops. This is legal because the depen-
dence between the definition and use of B is carried on the
I loop and is thus unaffected. Fusion is also conservative
because it does not introduce any true dependences carried
by the K loop. Fusing the K loops promotes reuse of A and
B, but its main benefit is to enable the Fortran D back end
to interchange the I and K loops, exposing pipeline par-
allelism. The resulting program is displayed in Figure 6.
For simplicity, only the first loop is shown. The remaining
loops are compiled in a similar manner as before.

To reduce communication overhead, we can also ap-
ply strip-mining in conjunction with loop interchange to
adjust the granularity of pipelining. We call this tech-
nique coarse-grain pipelining (20, 21]. In the ADI example,
we strip-mine the K loop by four (an empirically derived
value), then interchange the resulting loop outside the I
loop. Messages inserted outside the K loop allow each
processor to reduce communication costs at the expense of
some parallelism, resulting in Figure 7. Except for coarse-
grain pipelining, all these versions of ADI integration were
generated automatically by the Fortran D compiler.

6.2 Performance Results

To validate these methods, we executed these codes on
an iPSC/860. The programs were compiled under -O4
using Release 3.0 of if77, the iPSC/860 compiler. Tim-
ings were taken for three double-precision problem sizes
using dclock() on a 32 node Intel iPSC/860 with 8 Meg
of memory per node. Results are shown using log scale
in Figure 8. Timings are not provided where problem size
exceeds available memory.

The original version of ADI (Figure 5) exploits pipeline
parallelism in the J loop, but shows limited speedup, since
the I loop is sequentialized. Fusing the K loops to improve
memory reuse provides very little improvement in this
case, yielding nearly identical results. Applying loop in-
terchange after fusion to enable fine-grain pipelining (Fig-
ure 6) parallelizes the I loop as well, yielding significant
speedup. Strip-mining to apply- coarse-grain pipelining
can improve efficiency an additional 10-50% (Figure 7).
Pipelining comes closest to perfect speedup for large prob-
lems on a few processors.

We also compared the efficiency of pipelining versus
dynamic data decomposition. By changing the distribu-

1Many details in the example programs have been elided
or simplified; however, they are precisely equivalent to code
generated and executed on the iPSC/860.

PARAMETER (N = 512)
REAL X(N,H), A(N,¥), B(¥,N)
D0 I = 2,8
FORALL K = 1,¥
X(X,I) = X(K,I) - X(K,I-1)#A(K,I)/B(K,I-1)
ENDFOR
FORALL K = 1,¥
B(K,I) = B(K,I) - ACK,I)*A(K,I)/B(K,I-1)
ENDFOR
ENDDO
FORALL K = 1,¥
X(K,¥) = X(X,§)/B(K,¥)
EEDFOR
Do J=1r8-1,1,-1
FORALL K = 1,¥
X(K,J) = (X(K,J)-A(K,J+1)*X(K,J+1))/B(K,J)
ENDFOR
ENDDO .
Figure 4: ADI in Intermediate Form

REAL X(512,0:17), A(512,17), B(512,0:16)
MY$P = myproc() {* 0...31 =}
LB1 = MAX((MY$P*16)+1,2) ~ MY$P*16
UB1 = MIN((MY$P+1)#16,511) - MY$P=16
IF (MY$P .GT. 0) recv(X(1:¥,0),B(1:¥,0),MY$P-1)
DO I = LB1, 16
DOK=1,¥
X(,I) = X(K,I) - X(K,I-1)*A(K,I)/B(K,I-1)
ENDDO
DO K = 1,¥
B(X,I) = B(K,I) - ACK,I)*A(K,I)/B(K,I-1)
ENEDDO
ENDDO
IF (MY$P .LT. 31) send(X(1:¥,16) ,B(1:H,16) ,MY$P+1)
IF (MY$P .EQ. 31) THEE
DO K =1,K
X(X,16) = X(K,16)/B(K,16)
ENDDO
ENDIF
IF (MY$P .GT. 0) send(A(1:¥,1) ,MY$P-1)
IF (MY$P .LT. 31) recv(A(1:H,17) ,MY$P+1)
DOK =1,
IF (MY$P .LT. 31) recv(X(K,17) ,MY$P+1)
DO J = UB1,1,-1
X(K,J) = (X(X,J)-A(K,J+1)*X(K,J+1))/B(K,J)
EEDDO
IF (MY$P .GT. 0) send(X(K,1) ,MY$P-1)
ENDDO
Figure 5: ADI without Loop Fusion

REAL X(512,0:17), A(512,17), B(512,0:16)
MY$P = myproc() {*0...31 =
LB1 = MAX((MY$P*16)+1,2) - MY$P*16
DOK=1,¥
IF (MY$P .GT. 0) recv(X(K,0),B(K,0) ,MY$P-1)
D0 I = LB1,16
X(K,I) = X(K,I) - X(K,I-1)*A(K,I)/B(K,I-1)
B(KX,I) = B(K,I) - A(K,I)*A(K,I)/B(K,I-1)
ENDDO
IF (MY$P .LT. 31) send(X(K,16) ,B(K,16) ,HY$P+1)
ENDDO
Figure 6: ADI with Fine-grain Pipelining

REAL X(512,0:17), A(512,17), B(512,0:16)
MY$P = myproc() {* 0...31 =}
LB1 = MAX((MY$P*16)+1,2) - HY$P*16
DO KK = 1,¥,4
IF (MY$P .GT. O) THEN
recv(X(KK:KK+3,0) ,B(KK:KK+3,0) ,HY$P-1)
ENDIF
Do I = LB1,16
DO K = KK,KK+3
X(x,I) = X(X,I) - X(K,I-1)*A(K,I)/B(K,I-1)
B(K,I) = B(K,I) - A(K,I)*A(K,I)/B(K,I-1)
ENDDO
ENDDO
IF (MY$P .LT. 31) THEX
send(X (KK :KK+3,16) ,B(KK:KK+3,16) ,HY$P+1)
ENDIF
EXDDO
Figure 7: ADI with Coarse-grain Pipelining
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Figure 8: Performance of ADI Integration (double precision)

tion of data at run-time from columns to rows, all depen-
dences in each sweep of ADI may be internalized, enabling
completely parallel execution. Data must be redistributed
twice, once to achieve the desired distribution, then a sec-
ond time to return it to its original configuration. The
cost of redistributing is approximated by the performance
of the TRANSPOSE routine shown in Table 2.

Our results show that on the iPSC/860, dynamic data
decomposition for this formulation of ADI integration
achieves speedup. However, the resulting program is sig-
nificantly slower than pipelining, even for small problems
distributed over large numbers of processors, the expected
best case for dynamic data decomposition. Our experi-
ences show that some common algorithms, such as ADI
integration, require significant amounts of optimization to
compete with hand-crafted code.

~7 Related Work

The Fortran D compiler is a second-generation distributed-
memory compiler that integrates and extends many
previous analysis and optimization techniques. Many
distributed-memory compilers reduce communication over-
head by aggregating messages outside of parallel loops
[22, 25] or parallel procedures [18, 32], while others rely
on functional language [27] or single assignment seman-
tics [31). In comparison, the Fortran D compiler uses de-
pendence analysis to automatically exploit parallelism and
extract communication even from sequential loops such as
those found in ADI integration.

Several other projects are also developing For-
tran 90 compilers for MIMD distributed-memory ma-
chines. ADAPT proposes to scalarize and partition For-
tran 90 programs using a run-time library for Fortran 90
intrinsics [29]. The CM FORTRAN compiler compiles For-
tran 90 with alignment and layout specifications directly
to the physical machine, and can optimize floating point
register usage [3]. The FORTRAN-90-Y compiler uses for-
mal specification techniques to generate efficient code for
the CM-2 and CM-5 [15]. PARAGON is a version of C ex-
tended with array syntax, operations, reductions, permu-
tations, and distribution specifications [lt‘ll] Our compiler
resembles the VIENNA FORTRAN 90 compiler derived from
SUPERB [11, 38] and has also been influenced by a proposal

by Wu & Fox that discussed program generation and op-
timization [37].

A number of researchers have studied techniques to re-
duce storage and promote memory reuse [1, 5, 6, 24, 26, 28,
33, 35]. These optimizations have proved useful for both
scalar and parallel machines. The goal of the Fortran 90D
compiler is to integrate these scalarization techniques with
advanced communication and parallelism optimizations.

8 Conclusions

This paper presents an integrated approach to compiling
both Fortran 77D and 90D based on a few key observa-
tions. First, using FORALL preserves information in For-
tran 90 array constructs. Dividing the scalarization pro-
cess into translation, loop fusion, and sectioning allows it
to be easily integrated with the partitioning performed by
the Fortran D compiler. A portable run-time library can
also reduce the complexity and machine-dependence of the
compiler. All optimizations except coarse-grain pipelining
and data prefetching have been implemented in the current
Fortran D compiler prototype.

Compiling for MIMD distributed-memory machines is
only a part of the Fortran D project. We also are working
on Fortran 77D and Fortran 90D compilers for SIMD ma-
chines, translations between the two Fortran dialects, sup-
port for irregular computations, and environmental sup-
port for static performance estimation and automatic data
decomposition [9, 10, 19, 23].
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