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Abstract

Static performance estimation seeks to determine at compile time how long a given
program construct, such as a loop or a subroutine call, will take to execute. Perfor-
mance estimation provides useful information to parallelizing compilers, particularly
compilers which aggressively use code transformations to improve parallelism. In
an interactive parallel programming tool, performance estimation can direct users
to the most important and computation-intensive portions of their programs. This
paper describes the design and implementation of a performance estimator devel-
oped to assist in the parallelization and optimization of scientific Fortran programs
for shared-memory multiprocessors in the ParaScope programming environment.

1 Introduction

When compiling scientific Fortran programs for high-performance computer ar-
chitectures, a compiler must effectively exploit the parallelism in the program
and make effective use of the target machine’s memory hierarchy. Because such
programs spend most of their time executing loops [Knu71], much research has
been devoted to techniques for determining which loops in the program may be
performed in parallel and which loop transformations may be carried out safely
[AK87, Ban88, BC86, Wol89]. After analysis identifies all of the potentially parallel

loops and legal transformations, however, a parallelizing compiler must still discover
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how to transform the program to best make use of its parallelism and data locality
on a specific architecture. Some decisions in this process are very easy to make;
parallelizing a large loop is nearly always beneficial, for example. In other cases,
however, transformation decisions may not be as clear-cut, and some additional
form of analysis is needed.

Performance estimation uses static analysis to annotate interesting program con-
structs (statements, loops, subroutines) with estimates of their execution time. This
information can be useful to a compiler to decide how to use a particular transfor-
mation. In contrast to other forms of analysis such as live variable analysis or
dependence analysis, where imprecision can result in an incorrect transformation,
performance estimation is generally used in a manner which doesn’t require abso-
lute accuracy to maintain program correctness. If the estimate generated is a little
too large or too small, the program will still have the correct semantics, but the
improvements from the optimization will be reduced.

This paper describes the design and implementation of a static performance
estimator, along with some experiments designed to measure its usefulness. A major
strength of our design is its use of interprocedural analysis, which allows us to deal
with modular programs that make good use of subroutine calls, and which adds to
the ways in which the information can be used. Also important is the use of training

sets, which isolate machine-dependence details as much as possible.

1.1 Example: Latency-hiding transformations

A significant amount of recent research in compilers has focused on restructuring
programs to reduce the time spent waiting due to memory latency. These trans-
formations are particularly important for machines with deep memory hierarchies
and for distributed-memory multiprocessors, where memory and communications
latencies can be very high. Even in situations where it is impossible to eliminate

memory latency, it is often feasible to hide it by initiating a read or load and then
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performing some other computation while the operation completes. Examples of
optimizations based on this idea are software prefetching [MLG92, CKP91] and

message hoisting/vectorization [HKT92, Ger90]. Consider the following example:

doi=1,n
statement 1
statement 2
statement 3
do j = 1, 100
a(j,i) = ... c(j,kk,n) ...
enddo

enddo

Suppose that we are compiling this loop nest for a computer with a deep memory
hierarchy and hardware support for compiler-directed prefetching. The compiler for
this machine would like to be able fo program the prefetch unit to bring locations
into the cache prior to the point where they are used, in order to mask main memory
latency. Suppose that the compiler needs to prefetch the region accessed by the
reference “c(j,kk,n)” into the cache, and it decides that it can place the prefetch
anywhere within the “i” loop prior to the point where the values are used (note
that statements 1, 2, and 3 can be arbitrary — they may be assignments, subroutine
calls, loops, etc.). This placement choice is an important one. If the compiler places
the prefetch too close to the “j” loop, the data will not arrive in time to be in the
cache when the references take place. If the compiler places the prefetch too far
away from the “j” loop (for example, prior to statement 1) then the prefetched data
may displace other cached values which are required by the intervening code. What
the compiler really needs to know is how long each of the three statements will take

to execute. Static performance estimation is means of providing this information.



The compiler can use performance estimates for each of the statements to place
the prefetch in the best location — just far enough ahead of the access to mask the
latency.

The longer the memory latencies of the machine, the larger the regions of code
for which the compiler needs performénce estimates. In the case of compiling for
distributed-memory multiprocessors, for example, references to off-processor data
may result in communications latencies which are orders of magnitude larger than
those encountered for a shared-memory multiprocessor. In order to hide these la-
tencies, the compiler would like to be able to estimate the execution time of much
larger regions of the program; such regions may include loops, procedure calls, and

SO on.

1.2 Other Applications

Whole-program performance estimation can be used to guide programmers or the
compiler to regions of a program which are especially important. By ranking the
subroutines and loops which account for the largest fraction of the computation
performed in a program, performance estimation provides a mechanism for focusing
either the compiler or a user on the most computational intensive portions of a
program [HHK*93]. Performance estimation for a complete application requires
interprocedural analysis.

A variant of static performance estimation can also be used to determine exe-
cution time lower and upper bounds for real-time systems [Sha89, Par92]. These
bounds can be used at run-time when a program is ready to be scheduled to deter-

mine if it is possible to meet real-time constraints in the form of deadlines.



1.3 Profiling

Running a program using a profiler can provide similar information to that provided
by static performance estimation. It is true that empirically measuring a program
is more accurate for a particular input than making compile-time estimates, since a
compiler must be conservative and very often has to make guesses when confronted
with branches, control flow, and unknown variables. On the other hand, profiling
information may be difficult and time consuming to obtain for some programs.
To profile a program, it is first compiled, instrumented and executed one or more
times. It is then compiled with thé profile inforihation and executed again. For a
large scientific program, which operates on large data sets and runs for significant
amounts of time on supercomputers, it may be difficult to justify this compile-
profile-run-compile-run cycle.

An orthogonal issue is that of keeping profile information up to date. It seems
unacceptable to require programmers to re-profile the program each time a change is
made. Profiling information which has become out of date due to program changes

may be worse than no profiling information at all.

1.4 Outline

This paper is organized into four major sections, followed by a description of related
work and conclusions. Section 2 contains background material about the ParaScope
parallel programming environment and the types of analysis that are used by the
performance estimator. In Section 3 we describe the design of the performance

estimator. Section 4 contains experimental results.
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2 Background

2.1 ParaScope

The ParaScope programming environment is an integrated tool set designed to assist
users in developing parallel programs for shared-memory multiprocessors [CCH*88,
KMT91a]. ParaScope gathers and computes the information necessary for program
parallelization. For example, it performs interprocedural constant propagation and
dependence analysis [GKT91]. This analysis determines if parallelization is safe, i.e.,
if it preserves the meaning of the program. The program compiler uses the analysis
to determine program parallelization and optimization. Performance estimation is
used in concert with this analysis in the compiler to determine if parallelization is
profitable [McK92].

The ParaScope Editor, PED, is an interactive parallel programming tool that
assists users in parallelizing programs [KMT91a, KMT91b, HHK*93]. It provides
the analysis and transformation capabilities of a parallelizing compiler in a powerful
editor. In a recent study, researchers using PED often desired more assistance in
navigating their way through their programs [HHK*93]. In particular, they wanted
PED to guide them to the most time consuming portions of their applications in a
methodical fashion. This guidance would enable them to concentrate their efforts
on the program parts most likely to yield a high payoff.

We intend to use performance estimation to annotate the program with a ranking
of the subroutines and loops by their relative frequency of execution. This informa-

tion will then be used to assist users in examining their programs in ParaScope.



2.2 Analysis
2.2.1 Dependence Analysis

Dependences describe a partial order between statements that must be maintained
to preserve the meaning of a program with sequential semantics. A dependence
between statement S; and .S, denoted S516.5;, indicates that Sy, the source, must be
executed before \S;, the sink. There are two types of dependence: data dependence

and control dependence.

Data Dependence A data dependence between statements S; and Sy, written
51653, indicates that S; and S, read or write a common memory location in a
way that requires their execution order to be preserved [Ber66]. The compiler uses
dependence information to determine if a loop’s iterations can safely execute in
parallel. A dependence is loop-carried if its endpoints lie in different iterations of
a loop [All83, AK87]. Loop-carried dependences inhibit safe parallelization of the
loop.

Control Dependence Intuitively, a control dependence, S16.5,, indicates that
the execution of .57 directly determines whether .S, will be executed and is precisely
what performance estimation requires. The following formal definitions of control
dependence and the postdominance relation on Gy, the control flow graph, are taken

from the literature [FOW87, CFS90):

Definition 1 A statement z is postdominated by a statement y in the control flow
graph if every path from z to the exit node of G contains y.

Definition 2 Given two statements z, y € Gy, y is control dependent on z if and
only if:

1. 3 a non-null path p, z — y, such that y postdominates every node between z
and y on p, and



2. y does not postdominate z.

Based on these definitions, a control dependence graph G4 can be built with the
control dependence edges (z, y); where [ is the label of the first edge on path z — .
Performance estimation uses the G.4 to determine which decisions effect the execu-

tion of a particular statement for programs with arbitrary control flow.

2.2.2 Constant Propagation

ParaScope combines local and interprocedural constant propagation to determine
when the values of scalar variables are constant. Interprocedural constant propaga-
tion determines the values of scalars on entry to each procedure and as a result of
executing each procedure [CCKT86]. The local constant propagation phase deter-
mines the values of scalars at particular references. When these values are constants,

dependence analysis and performance estimation often produce much better results.

2.2.3 Augmented Call Graph

The program representation for our work on whole program optimization and par-
allelization requires an augmented call graph, G,., to describe the calling relation-
ships among procedures and to specify loop nests [HKM91]. For this purpose, the
program’s call graph, which contains the usual procedure nodes and call edges, is
augmented to include special loop nodes and nesting edges. The loop nodes contain
loop header information. If a procedure p contains a loop I, then there will be a
nesting edge from the procedure node representing p to the loop node representing
I. If a loop I contains a call to a procedure p, then there will be a nesting edge from
[ to p. Any inner loops are also represented by loop nodes and are children of their
surrounding loop. The performance estimator uses this representation to assist in
the construction of estimates. The performance estimator also uses this information

to map execution frequencies for each loop and procedure in the source.



3 Design

The implementation of the performance estimator was designed with the following

goals:

e machine independence
e accurate estimates

o efficiency

In order to provide the most machine-independence, our implementation relies on
the use of Fortran training sets, which allow a variety of uniprocessors and shared-
memory multiprocessors to be modeled. The bulk of the performance estimator
is basically machine-independent, allowing it to be easily ported. The drawback
of the training set approach is reduced accuracy in the estimates, because of the
unmeasured affects of optimizations, and register and cache usage. However, by
using advanced analysis such as local and interprocedural constant propagation, we
believe that the estimates will be accurate enough for use in a combpiler.

To make performance estimation practical for use in a compiler, we use the inter-
procedural framework in ParaScope [CCH*88] which divides interprocedural prob-
lems into two phases, a local phase and an interprocedural phase [CKT86, Hal91].!
ParaScope runs the local phase automatically immediately following an editing ses-
sion. It determines the immediate interprocedural effects of each edited procedure
and stores the results in a database. This summary information includes a local
performance estimate. The interprocedural phase uses the local summary informa-
tion to determine estimates for the individual procedures and an estimate the entire
program without inspecting the Fortran source. Its efficiency is further improved

because the two-phase design provides the information needed from each procedure

This framework also naturally supports a modular programming style.



at all times and does not need to be derived on every invocation of the program

compiler.

3.1 Overview

3.2 Local Performance Estimation

After an editing session in ParaScope, the local phase is automatically invoked on the
changed file. For each changed procedure, it first constructs the procedure’s calling
interface and the local augmented call graph with all the loops, procedure calls, and
their relative positions. It then performs the local phase for each requested variety
of interprocedural analysis, among them performance estimation. The local phase
of performance estimation has two parts: estimating the time of basic operations

via training sets and estimating the execution times for branches and loops.

3.2.1 Using Training Sets to Estimate Basic Operations

To predict the execution time of basic operations such as a multiply or a compare,
the performance estimator recognizes the individual language constructs and then
looks up the execution time of the construct in a table of performance data for the
target architecture. Estimates for statements and basic blocks are then generated
by summing the estimates of their components.

The table of performance data is collected using a training set [BFKK91]. A
training set contains a benchmark code for each operation designed to measure its
average execution time. When the training set is run on a target machine, it gen-
erates a table of data that includes execution times for most computation-related
language constructs. For example, the table contains entries for arithmetic opera-
tions such as addition, subtraction, and divide (for each of the various Fortran data
types), the cost to perform multidimensional array references, the cost of executing

various Fortran intrinsics, and the cost of making a subroutine call.
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The training set does not attempt to measure I/O times, nor does it gather any
kind of information on the memory hierarchy of the machine. It does not attempt
to predict if accesses are to registers, cache or main memory. Instead, the training
sets only measure access times for items in cache. This simplification eliminates the
need for a precise machine model, but may lead to inaccuracies?.

Creating a training set is a fairly mechanical and machine independent task.
Many of the operations and language constructs in Fortran are benchmarked in
a similar fashion. For example, the code to measure floating point division is very
similar to the code that measures integer division. As a result, we designed a training
set generator rather than just a training set. The generator writes a set of Fortran
programs which can be run on a variety of target architectures to produce raw

performance data. This design makes generating training sets for new architectures

much easier.

3.2.2 Branches and Loops

The local phase of the performance estimator operates on the AST (Abstract Syntax
Tree) representation of the procedure in ParaScope. A control dependence graph,
Ged, 1s built from the AST, where nodes in the G.4 represent statements in the
original program. The local phase of the performance estimator is implemented
using a bottom-up pass over the G.4. Nodes in the graph are visited in reverse
depth-first order. Using this ordering insures that when a node N is visited, all
other nodes which are control-dependent on N have already been visited. In other
words, when an estimate is built for any node N, any estimates which contribute to
the estimate for N are available.

Consider Figure 1. Statement S is control dependent on the do j loop, which

2Pfister and Norton discuss detecting memory effects in detail, but do not address the issue of
predicting when memory contention or “hot spots” will occur [PN85]. They do address mitigating
the effects of memory contention once it is detected. They find that even a single hot spot can
severely degrade performance. Goldberg and Hennessy also address these issues [GH91].
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in turn is control dependent on the do i loop. We first compute the cost expression
for 51, then use it to compute the cost expression for the do j loop, which becomes
a component used in the estimate of the do i loop.

The performance estimator uses local (intraprocedural) symbolic analysis within
ParaScope to get more information about variables appearing in guard expressions
that affect control flow. Information from local constant propagation is used to see
if a given scalar has a constant value. If all of the variables involved in a guard
expression are constant, then the control low can be determined at compile time.

For variables that are not constant, the compiler tries to determine if they are
formal parameters of the routine, and if a clear path exists from the entry of the
procedure to the use in the guard expression. If the guard expression consists only
of constants and formals, then it is recorded in symbolic form, since it is possible
that some unknowns in the expression will be resolved during the interprocedural
phase. It is fairly common to have loop upper bounds which are formal parameters.
As a result, it is particularly important to record the symbolic expression for a loop
as opposed to immediately making a guess as to the number of iterations in the
loop.

If an array reference or other unknowns appear in a guard expression, then the
performance estimator simply records an expression of L and guesses a value for
the probability that the branch in question is taken (the guess varies depending on

the construct, see Section 3.3.1).

In the case of a Fortran DO loop, the execution time of the loop is a function of

the bounds and step:

(Upper Bound — Lower Bound + 1)/Step * BodyCost

Loops which are marked as explicitly parallel are handled by table lookup. The
table can be thought of as a function which maps a tuple (P, N, C) to a tuple (B, T),

12



where

e P is the number of processors available

e N is the number of iterations of the loop

e (C is the time to execute the loop body once

e B is the estimated best number of processors for the loop

o T is the estimated total execution time of the loop

This scheme takes into account the overhead of starting and finishing a parallel
loop, but ignores ignores any memory contention between the parallel tasks. In
particular, it will specify a parallel loop to be run sequentially if there is not sufficient

computation.

procedure R(m, n, s, q)
integer i, j, m, n
real s(100), q(100)
doi=1,m

doj=1,100

S1 s(i) =s(i) + 1

enddo

read *, n

if (n .eq. 0) then
q(i) = s(i)

else
call V(m, q, s)

endif

enddo
end

Figure 1: Example of local phase

Consider the program in Figure 1, the local estimate for the execution time of

procedure R would be
m* ((100 * Cy) + ((0.5 % C3) + (0.5 % V(m,L , L )))).
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Notice that the local estimate preserves for the interprocedural phase the program
structure surrounding the procedure call to V and when possible, determines con-
stants and symbolics for the actual parameters. Also, the local estimate for proce-
dure R is completely independent of procedure V.

For a given procedure, the end result of the local phase is a table of (possibly
symbolic) execution time estimates, one for each loop in the procedure and one for

the entire procedure. This table is stored for use later by the interprocedural phase.

3.3 The Interprocedural Phase

To solve any interprocedural problem, the system begins by building the augmented
call graph, G,.. The G,. provides the structure for solving all the other inter-
procedural problems. The performance estimator uses the results of other inter-
procedural analyses such as constant propagation, MOD and ALIAS to improve its
accuracy. These analyses are therefore performed first. The interprocedural phase
of the performance estimator begins by annotating each loop node and procedure
node in the G,. with the corresponding local estimate’s symbolic expression. The

estimator then proceeds as follows:

1. Using the results of interprocedural constant propagation, the expression for

each node is simplified when possible.

2. A single backward pass is made over the augmented call graph in reverse
depth-first search order. For every call edge u — v, the symbolic expression
for v is substituted into the expression for u in the appropriate place. During
this substitution, the formals of v are translated into the actuals at the call

site in u. The expression for u is then simplified.

Consider the example in Figure 2. The local estimate of R is “k*C}” and the local
estimate of Q is “50%(R(50,.L , L )+R(L ,L,L ))”. Afterinterprocedural propaga-

tion of performance estimates, the estimate of Q becomes “50 * (50 * Cy + L * Cy)”.
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procedure Q(s, q)
integer i, j, m, n
real x(100,100), p(100,100)
m = 50
doi=1,m
call R(m, s, p)
call R(i, s, p)
enddo

end

procedure R(k, s, p)
integer j
real x(100,100), p(100,100)
doj=1,k
(i, k) = s(i, k) + p(k, j)
enddo

end

Figure 2: Interprocedural phase example

3.3.1 Guessing

In some programs, the performance estimator will have to make numerous guesses
about control-flow decisions, so it is important that the guesses be made as carefully
as possible. Guesses can be refined by looking for certa.iﬁ hints and clues in the
prograxh.

For example, when trying to estimate the execution time of the if statement
in Figure 3(a), the performance estimator can do little but guess arbitrarily at the
frequency of the two arms of the conditional branch. In Figure 3(b) however, the

array “a” is declared to have 10 elements. By recognizing that the induction variable

“i” is used to index through this array, the performance estimator can make a more
precise guess for the upper bound of the do loop.
Without any hints, we assume conditional branches are taken equally often and

loops are performed 50 times. If the local phase can determine that the induction

15



variable for a given loop is used as an array index (often the case), then it will guess
a number of iterations equal to the dimension size of the array in question. We are

experimenting with other ways to improve these guesses.

real a(10)
read *, n read *, n
if (n .eq. 0) then doi=1,n
a=Db**c a(i) =0
else enddo
a=0
endif

(a) (b)

Figure 3: Intraprocedural control flow

3.4 Discussion

Our interprocedural algorithm has a couple of drawbacks. First, it does not support
recursion. For scientific Fortran programs, this limitation is not a serious disad-
vantage, but it restricts the applicability of this technique to other languages. The
algorithm can be extended in a fairly straightforward manner to support recursion
by locating the strongly connected regions within the call graph, running the algo-
rithm recursively on just the region, compressing the region into a single node, and
then continuing.

The second drawback of this approach is the potential for exponential growth
in the size of the expressions being maintained during the backward pass over the
graph. Due to the style in which many people write scientific Fortran programs,

we do not anticipate that this will be a problem in practice. However, the design
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includes a cut-off mechanism which imposes an arbitrary limit on the size of the
expressions to insure that they do not grow too large.

An additional extension for this algorithm is a forward pass over the call graph
to refine interprocedural constant propagation.® In this “refinement” phase, instead
of trying to find whether a particular parameter has a constant value on every
entry to a procedure, a maximum and minimum value for the parameter would
be determined, if possible. This approach could be considered an interprocedural
version of range propagation and analysis [Har77]. Range information could then

be used to derive better guesses for loop upper bounds.

4 Experimental Results

We have completed an implementation of the performance estimator within Para-
Scope. This implementation consists of the local phase, the interprocedural phase,
and a training set for the Sequent Symmetry. This section describes three experi-
ments we performed to test our implementation. The first demonstrates the ability
of the performance estimator to correctly identify the relative importance of com-
putationally intensive subroutines for targeting optimization and for interactively
guiding users to interesting subroutines. The second seeks to test its effectiveness
in determining when to parallelize loop nests. The third experiment demonstrates
the importance of interprocedural constant propagation for determining appropriate

estimates.

4.1 Target Architecture

All of our experiments were run on a 20-processor Sequent Symmetry S81. Each
processor on this machine has a 2-way set-associative 64k cache with a 4-word cache

line size and a write-back policy. Coherency is maintained with a snoopy bus scheme.

3Nodes are visited in depth-first search order.
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4.2 Test Programs

We have tested the performance estimator on the four programs in Figure 4; we
plan to also use a number of larger programs, including several more PERFECT
benchmarks [CKPK90]. Figure 4 gives the size of each program in lines (exclud-
ing comments), number of procedures, and sequential execution time in seconds on
the Sequent. Erlebacher is a 3-D tri-diagonal solver for the calculation of vari-
able derivatives written by Thomas Eidson at ICASE, NASA-Langley. Control
computes solutions for linear-quadratic optimal control problems [Wri91]. Seis-
mic checks the adjointness of two routines and was written by Michael Lewis at
Rice University. Trfd is a chemical and physical modeling code from the PERFECT

benchmark suite.

4.3 Experiment 1: Identifying important functions

We compared the results of the performance estimator with profiling data gathered
using the Unix profiling tool “gprof” to determine our ability to identify impor-
tant functions. The performance estimator was run for each program, and the
performance estimates were used to select the 5 procedures containing the most
computation. The programs were then run and profiled using “gprof” on the Se-
quent, and the data was inspected by hand to determine the 5 routines containing
the most computation.

The data for these experiments is given in Figures 5, 6, and 7. All times in the
tables are expressed as a percentage of the total program execution time. The E;uq;
column represents the time to execute a call to the specified routine, including the
time taken by other functions subsequently called during its execution. The Ej,cqa
column represents the time to execute a single call to the routine minus the time
spent in any descendants. “Count” represents the estimated number of times the

routine is called. Finally, the TP, , and T, columns represents the total fraction
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of the execution time attributable to the routine itself, which is likely to be the most
useful number *. For the profiling data, TF, , represents the actual percentage of

the programs execution time spent in the specified routine.

4.3.1 Discussion

In erlebacher (see Figure 5), both the performance estimator and the profiler
reported the function “gensoln” as the one with the most computation. The profiler
and the performance estimator agree on the next four important functions, but
order them differently. It is worth noting that the estimated execution times for
the routines tridvpi and tridvpj are both off by an order of magnitude from their
actual execution times, but their relative importance (as compared to other routines
in the program) is within a much more acceptable margin of error.

The results for control are not quite as satisfactory (see Figure 6). Although
the performance estimator is able to successfully identify “1qpdp” as the single most
computation-intensive function, it misses four unlisted subroutines whose share of
the total computation ranged from 0.10 to 0.05.

Figure 7 shows the results for the progra.ni trfd. In this program, the perfor-
mance estimator and the profiler agree for the first two routines, which account for
99.99 percent of the overall computation. The estimator incorrectly guesses the rel-
ative importance of the next three routines, but given their minuscule contribution
to total execution time, it is probably not significant.

In seismic (see Figure 8), the performance estimator’s choice for the most im-
portant routine, “chgadj” is incorrect. There are couple of reasons for this mistake.
First, although the estimate for the number of times the routine is called is correct,
the local estimate is artificially high due to a poor choice for the branch frequency
of one “if” statement in the inner loop of triple nest. The performance estima-

tor guesses that the branch is taken 50 percent of the time, when in reality the

“For the estimation case, T.Z,,; = Count * Coca.
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Program | Lines | Functions | Time
control 1902 30 18
erlebacher || 615 19 16
seismic 566 20 160
trfd 424 8 2960

Figure 4: Test Program Characteristics

Performance estimates Gprof
Function || Fiotali | Flocar | Count fm, Tt}:m,
gensoln || 0.606 | 0.606 1 0.606 || 0.25
genvar 0.212 | 0.212 1 0.212 || 0.08
compare || 0.123 | 0.123 1 0.123 || 0.12
tridvpi 0.015 | 0.015 1 0.015 || 0.14
tridvpj 0.015 | 0.015 1 0.015 || 0.13
Figure 5: Performance estimates for erlebacher

Performance estimates Gprof
Function || Eiotai | Eiocat | Count Tft ol thm
lqpdp 0.016 | 0.016 1 0.797 || 0.52
rimain 0.176 | 0.172 1 0.172 || 0.01
daxpy 0.000 | 0.000 | 23184 | 0.010 || 0.02
ddot 0.000 | 0.000 | 5996 | 0.005 || 0.03
riqy 0.005 | 0.005 1 0.005 || 0.00

Figure 6: Performance estimates for control

Performance estimates Gprof
Function || Eiotar | Plocat | Count thta . thm /
olda 0.307 | 0.307 3 0.921 || 0.97
intgrl 0.014 | 0.014 : 0.042 || 0.02
trfprt 0.012 | 0.008 3 0.025 || 0.00
trfout 0.000 | 0.000 8 0.012 || 0.00
trfd 1.000 | 0.000 1 0.000 || 0.00

Figure 7: Performance estimates for trfd
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percentage is much lower. Second, the performance estimator incorrectly handled a
conditional loop exit in the same inner loop due to a bug. However, the performance
estimator and the profiler have identical choices for the next four routines.

We find these results quite encouraging; in most cases, the performance estimator
does an acceptable job of finding routines which are computation-intensive. It should
be noted that the study we performed focuses exclusively on relative execution time
and not absolute execution time. Our experience was that the performance estimator
did a poor job at determining the absolute execution time, and was occasionally off
by as much as an order of magnitude. This result did not have however an adverse

effect on the computation of relative execution times.

4.4 Experiment 2: Estimate-based parallelization

The following study was designed to illustrate the effects of introducing unprofitable
parallelism. We first obtained a set of hand-coded parallel programs for various
architectures. Each hand-coded program was transformed into a “nearby” sequential
version by changing all parallel loops to sequential loops. The nearby sequential
programs could then be parallelized using two strategies. In the first strategy, called
“Brute-force”, all loops which could legally be made parallel were made parallel °.
In the second strategy, called “Estimate-based”, loops were made parallel only if
they were legally parallelizable and the performance estimator found that it would
be profitable to run them in parallel. In this study, only loops which did not contain
subroutine calls were considered for parallelization.

Figure 9 presents the results for erlebacher, control and seismic. For er-
lebacher, the estimate-based parallelization produced was identical to the brute-
force parallelization. In control, the only difference between the two was a sin-
gle loop which was parallelized by the brute-force strategy and left sequential by

the estimate-based strategy. Because this loop did not contribute significantly to

5This system will not produce multiple levels of parallelism, only a single level.
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the overall execution time, no discernible difference in éxecutiou time occurred.
In seismic, several parallel loops were performed sequentially due to insufficient
computation and although each of these executed more quickly than their parallel
counterpart the overall execution time increased. The results reveal that the rest of
the program executes faster when these loops are parallel. Perhaps the loops which
were not estimated to perform better in parallel are preloading the caches of the
individual processors for later parallel loops and thus making them execute faster.

These findings indicate that when parallel loop overhead is small and it is the only
factor, overall program performance is not effected very much by executing small
loops either way. Loops without enough computa.tioﬁ to merit parallelization are
unlikely to contribute significantly to total execution time. Unfortunately, other and
harder to predict factors may also need to be considered. This type of estimation, of

course, increases in important for shared-memory machines with high startup costs.

4.5 Experiment 3: Effects of interprocedural constant
propagation

Figure 10 shows some of the effects of interprocedural constant propagation on
the accuracy of the performance estimates. In this study, estimates for each program
were computed with and without interprocedural constant propagation. For each of
the top 5 computation-intensive procedures (as determined by profiling), the figure
shows whether interprocedural constants produced any improvement or degradation
in the accuracy of the estimates. Changes of less than 1 percent were not recorded.
As can be clearly seen, interprocedural constant propagation has very little effect on
erlebacher and trfd, but for the other two programs, it improved the results. In
the case of seismic, the improvement was quite drastic. Without interprocedural
constant propagation, the estimates for several of the most important procedures

were significantly flawed, by as much as 10 to 15 percent of the total execution time.
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Performance estimates Gprof
Function || Eyotat | Etocat | Count | TE, || TP, |
chgadj 0.006 | 0.006 50 |0.288 || 0.04
afold 0.007 | 0.007 | 25 |0.180 | 0.31
fold 0.007 | 0.007 | 24 |0.173 | 0.31
chgvar 0.001 | 0.001 98 |0.137 || 0.06
sdvtt 0.003 | 0.001 48 10.060 || 0.04

Figure 8: Performance estimates for seismic

| Execution times in seconds |

Program Sequential | Brute-Force | PE-based
Erlebacher 15.770 3.020 3.020
Control 17.410 17.210 17.210
Seismic 155.860 12.496 12.572

Figure 9: Program execution times

: Number of procedure estimates changed
Program Improved Degraded
control 1 0
erlebacher 0 0
seismic 4 1
trfd 0 0

Figure 10: Change due to Interprocedural Constant Information
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We believe interprocedural constant propagation and the interprocedural structure

of our estimator are key to the quality of our implementation.

5 Related Work

Balasundaram et al. introduce a static performance estimator for distributed mem-
ory machines which pioneered the use of training sets [BFKK90, BFKK91]. They
use training sets to create a cost model for an architecture by summarizing empiri-
cally obtained data, as opposed to using a theoretical machine model. Our approach
is modeled on this one, but offers an efficient and practical solution for programs
that contain procedure calls.

Atapattu and Gannon describe a performance predictor as part of a general
multiprocessor programming environment [AG89]. In their system, a user can in-
teractively request a performance estimate for a particular loop or procedure. Their
estimator works by disassembling the object code for the procedure or loop in ques-
tion, and then generating an expression which represents its estimated execution
time. This expression, which may involve symbolics, is displayed to the user to il-
lustrate what the compiler is doing with the code. By looking at the actual assembly
language output of the compiler, they can generate fairly accurate estimates, but at
the price of making their estimator very architecture specific.

Both Polychronopoulos and Sarkar have also used machine models in their re-
search which estimate the amount of computation in a loop [Pol86, Sar89]. These
approaches are similar to Atapattu and Gannon’s in that they are very architecture
specific.

Gabber, Averbach and Yehudai generate estimates of execution times of loops in
their compiler as a means of deciding when to make loops parallel [GAY91]. Their
estimates are calculated in a way that is similar to the method we are proposing,

however their compiler does not perform interprocedural analysis. Additionally, they
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have a fixed policy for guessing unknowns. For example, all branches are assumed
to be taken 50 percent of the time and all loops with unknown bounds are assumed
to run from 1 to 50.

Fahringer, Blasko, and Zima use performance prediction as part of the Vienna
Fortran Compilation System to assist in automatic support for data distribution
[FBZ92]. Their approach provides good precision, but at the cost of requiring an

initial profiling run to generate values for unknown symbolics.

6 Future work

Much work remains to be done on the ParaScope vperformance estimator imple-
mentation. Planned improvements include better use of the ParaScope symbolic
analysis, training sets for additional architectures, and a better model for predict-
ing the cost of memory accesses.

In recent evaluations of the ParaScope Editor, users requested performance es-
timation or profiling be integrated into the tool in order to guide them to the
computation-intensive portions of their program [HHK*93]. As we demonstrated in
the introduction, if user edits or transformations are performed, profiling informa-
tion is insufficient. The additional flexibility offered by performance estimation and
its relative accuracy serve this purpose well.

If profiling information is available at the loop and basic block level, then a
hybrid approach which uses actual execution times as the initial estimates might
provide the most accuracy and flexibility. If an edit or transformation occurs, then
the performance estimator could build an estimate for the changed module and
invalidate profiled times for any affected module. This approach would work well

with our modular two-phase design.



7 Summary

The ParaScope performance estimator has a number of aspects which will con-
tribute to its effectiveness. Its use of training sets isolate machine-dependent code
and allow it to be ported to new architectures with a minimum of effort. By us-
ing interprocedural analysis, it can operate on complete applications in an efficient
and practical manner. Control dependence analysis allows it to handle functions
which use unstructured control flow, greatly enlarging the class of programs which
can be analyzed. By collecting static estimates, our design can deal with situations
where profiling data is unavailable or when it loses meaning following transforma-
tions. Our performance estimator has shown promise in the area of guiding the user
and the compiler to the most computation-intensive subroutines in a program, and
we hope that subsequent experiments will prove it useful for assisting in selecting

transformations during parallel code generation.
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