PDS: Direct Search Methods for
Unconstrained Optimization on Either
Sequential or Parallel Machines

Virginia Torczon

CRPC-TR92206
March, 1992

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

PDS: DIRECT SEARCH METHODS FOR UNCONSTRAINED
OPTIMIZATION ON EITHER SEQUENTIAL OR PARALLEL
MACHINES*

VIRGINIA TORCZON
RICE UNIVERSITY!

Abstract. PDS is a collection of Fortran subroutines for solving unconstrained nonlinear optimiza-
tion problems using direct search methods. The software is written so that execution on sequential
machines is straightforward while execution on Intel distributed memory machines, such as the iPSC/2,
the iPSC/860 or the Touchstone Delta, can be accomplished simply by including a few well-defined
routines containing calls to Intel-specific Fortran libraries. Those interested in using the methods on
other distributed memory machines, even something as basic as a network of workstations or personal
computers, need only modify these few subroutines to handle the global communication requirements.
Furthermore, since the parallelism is clearly defined at the “do-loop” level, it is a simple matter to in-
sert compiler directives that allow for execution on shared memory parallel machines. Included here is
an example of such directives, contained in comment statements, for execution on a Sequent Symmetry
S81.

PDS encompasses an entire class of general-purpose optimization methods which require only that
the user provide a subroutine to evaluate the function. These methods require even less of the problem
to be solved since direct search methods presume only that the function is continuous. Thus, parallel
direct search methods are particularly effective on parameter estimation problems involving a relatively
small number of parameters. They are also very interesting as parallel algorithms because they are
perfectly scalable: they can use any number of processors regardless of the dimension of the problem
to be solved and, in fact, tend to perform better as more processors are added.

Key words. nonlinear optimization, unconstrained optimization, multidirectional search, parallel
direct search, parallel computing

1. Introduction. The parallel direct search algorithms are designed to solve the
unconstrained minimization problem

Jnin, f(x),
where f : IR® — IR. What distinguishes the direct search methods from other opti-
mization methods is that they require only that the function f be continuous.

Direct search methods neither require nor estimate derivatives. As a consequence,
while they are usually slower to converge than derivative based methods, they are
usually much more robust in situations where the function values are subject to noise,
analytic derivatives are unavailable, or finite difference approximations to the gradient

* This work was sponsored by Air Force Office of Scientific Research. Use of the Sequent Symme-
try S81 was provided by the Center for Research on Parallel Computation under NSF Cooperative
Agreement No. CDA-8619893. Use of the Intel iPSC/860 was provided by the Center for Research on
Parallel Computation under NSF Cooperative Agreement Nos. CCR-8809615 and CDA-8619893 with
support from the Keck Foundation. This research was performed in part using the Intel Touchstone
Delta System operated by Caltech on behalf of the Concurrent Supercomputing Consortium. Access to
this facility was provided by the Center for Research on Parallel Computation under NSF Cooperative
Agreement No. CCR-8809615.

t Department of Mathematical Sciences, Houston, Texas 77251-1892.

are unreliable. Furthermore, the direct search schemes given here parallelize very well,
although they can certainly be used as sequential methods.

The routines included here were designed to be run on sequential machines as well
as on any of Intel’s distributed memory parallel machines, including the iPSC/2, the
iPSC/860, and the Intel Touchstone Delta, with every expectation that they should run
on the Intel Paragon XP/S supercomputer as well. Furthermore, the code is structured
in such a way that the parallelism can be observed at the level of a “do-loop”; thus
straightforward implementation of this code on any shared memory machine should be
possible. In fact, the code contains compiler directives, within comment statements, to
allow for parallelization on the Sequent Symmetry S81.

All that is required of the user is a subroutine FCN to compute the value of f for a
given X, as well as an INPUT file to define the initial starting conditions for the problem
to be solved.

The next section gives a brief description of the parallel direct search methods.
Section 3 explains what must be done to use the code included here. Section 4 discusses
basic implementation issues so that the order of compilation will be clear. Section 5
describes the test problem included here as an example. The last section discusses the
Intel-specific library calls that are used within the subroutines provided here for Intel
distributed memory machines so that those interested in using PDS in other distributed
memory computing environments can get some feel for the modifications that will need
to be made.

2. The Parallel Direct Search Algorithms. A detailed development and de-
scription of the parallel direct search algorithms can be found in [1]. Convergence results
for the multidirectional search algorithm, the direct search method upon which these
parallel schemes are based, can be found in [8]. We briefly summarize the parallel direct
search schemes here.

The multidirectional search algorithm is a simplex based algorithm; thus the search
begins with a nondegenerate simplex So with vertices (vo,Vvi,:--,V,). The user is
required to provide an initial estimate of the solution. This estimate is used as one of
the vertices in the initial simplex. (The remaining vertices may be entered by the user,
but we have also included subroutines to construct a nondegenerate starting simplex.)
We order the vertices of the initial simplex Sp so that f(vo) < f(vi),i=1,---,n. We
then designate vg as the “best” vertex.

The idea of the parallel direct search schemes is quite simple: given an initial
simplex Sp, a best vertex vy, a search scheme, and the size of the search scheme (sss)
to be employed, we first test for convergence and then compute sss points and their
function values. We choose the point with the lowest function value, update the simplex
and go on to the next iteration. The basic algorithm is given in Table 1.

This seemingly simple idea has a surprisingly strong convergence result. If we as-
sume that the function f is continuously differentiable over a compact set L(vo) =
{x: f(x) £ f(vo)}, then we can prove that some subsequence of the best vertices con-
verges to a stationary point x. of f, x. € L(vo) and thus the sequence of best vertices
converges to the set {x : f(x) = f(x.), x € L(vo)}. This result can be extended to

2

Given an initial simplex Sy with vertices (vo, vy, -+, Vy),
initialize the search scheme
while (stopping criterion is not satisfied) do

fori=1,---,sss do
Vi — Vo + a1i(vi — Vo) + + - + ani(Vn — Vo)
foi = f(vi)
end
fv. — min; { fv;} /* communication */
update simplex
end
TABLE 1

The parallel direct search algorithm.

include functions that are continuous on L(vo), with convergence then to the set con-
taining all stationary points of f on L(vp), all points where f is nondifferentiable on
L(vo), and all points in L(vo) at which the gradient exists but is not continuous [8].

The parallel direct search schemes were designed to be used on parallel machines,
hence their name, but a simple glance at Table 1 should make it clear that there is
nothing to prevent these methods from being run in a standard sequential computing
environment. However, the parallelism that can be exploited is also obvious. If we
assume that the data, in the form of the scalars a;;,---,a;, needed to compute the
vertex v; are available to processor i, we then have a single program, multiple data
(SPMD) model for parallel computation. The only point in the computation at which
synchronization, or, in the case of distributed memory machines, communication is
required is in the choice of fv.. Thus the routines for running the optimization on
either a sequential machine or an Intel distributed memory machine are identical except
for a single call to the subroutine GLOBAL, which is required to handle the global
communication on the distributed memory machines.

Note that sss, the size of the search scheme, need not depend on the number of
processors available since it is possible to compute multiple points on each processor
before undertaking the global synchronization/communication. This can be seen in
Table 2, where p is the number of processors and the k* are chosen so that 7_, k* = sss.
Thus in the base case, p = 1 and k! = sss—giving us a sequential algorithm.

2.1. The Search Scheme. To divorce the number of processors that can be used
from the dimension of the problem to be solved, we rely on search schemes that take the
basic multidirectional search algorithm introduced in [7] and look ahead to subsequent
iterations of the algorithm. Because the multidirectional search algorithm is essentially
a sampling method, the moves allowed are limited but predictable. As a consequence,
“look-aheads” are possible and unlimited. This simple strategy leads to extremely
flexible, scalable algorithms ideally suited to parallel computation.

Defining the search scheme consists of defining a pattern or template of points,

3

Given an initial simplex S with vertices (vo, vy, -+, Vn),
initialize the search scheme
while (stopping criterion is not satisfied) do
for:i=1,---,pdo
forj=1,---,k' do
vie—vo+ aj;(vi—vo) + - + at;i(vn — Vo)

foj « £(v5)

end

fv; «+ min; {fv;} ’
end
fv. — min; {fv;} /* communication */
update simplex

end

TABLE 2
The “chunked” parallel direct search algorithm.

relative to the current simplex and its best vertex, to be constructed at each iteration.
In other words, we must initialize the scalars aj;, - - - ,a:'u- that reside on each processor.
Once this has been done, the vertices v, - - -, v, in the simplex change from iteration to
iteration, but the scalars defining the template do not. Thus, while a routine for pro-
ducing a template based on the original multidirectional search algorithm is provided,
the optimization routines assume that this information resides in a file and simply read
in the necessary information once, as part of the initialization, before the optimiza-
tion begins. The derivation of the template, as well as the algorithm actually used to
construct it, are described in some detail in [1].

3. Usage. Use of the subroutines and drivers for the parallel direct search algo-
rithms will be detailed in this section. We begin with a minimal description of what is
necessary to run the parallel direct search schemes using the drivers included here.

The user must provide:

1. An input file INPUT as shown in Table 3. Further explanations can be found
in §3.3.

2. A subroutine FCN(N,X,F) to evaluate the function f : R* — IR at a point x.
The parameters of FCN are as follows:

N integer dimension of the problem
X(N) double precision vector at which the function is to be evaluated
F double precision the value of f at x.

FCN must be declared EXTERNAL in the calling program. Neither N nor X
may be modified.
Any additional information required by FCN must be passed in COMMON.

The user must compile and link two programs:

1. CREATE

2. OPTIM
The files necessary to successfully link each program can be seen from the call graphs
given in Figs. 3, 4, and 5, which are described in more detail in §4. The legend for these
call graphs is given in Fig. 2.
The user then first executes CREATE, to create a file containing a search scheme,
and then OPTIM, to perform the actual optimization. The result is written out to the

file RESULT.

3.1. Running on an Intel Distributed Memory Machine. We assume here
that the user has access to the user’s guide for the machine of interest and knows the
appropriate sequence of system calls to compile Fortran programs, allocate nodes and
then load and execute programs.

The main routine for the optimization, PDS, is identical to the sequential version ez-
cept for the call to the subroutine GLOBAL, which performs the global communication
call. Before compilation, the “CINTEL” should be removed from the line containing
the call to GLOBAL.

Programs compiled for the Intel distributed memory machines will need to set the
appropriate switch to link in the communication libraries provided for those machines.
Note that there is no host program. To allow these routines to be used on the Intel
Touchstone Delta, which does not have a host machine, all I/O and execution occurs
on the nodes.

All that need be done to execute these programs is to load them on the node(s).
Since CREATE is a sequential process, it should be loaded on a single node.! The
parallelism resides in OPTIM, which must be loaded on every node participating in the
optimization, as required by the global communication calls.

Opening and closing files is left up to the user and is handled in the drivers. This
is particularly important for those using either the Intel iPSC/2 or the Intel iPSC/860
since the time to access files can vary dramatically depending on whether or not a file
resides on the file system specifically designed to support the nodes of the hypercube.
In general, it is best to have all the necessary files residing on this file system (i.e., on

the “CFS").

3.2. Running on a Sequent Symmetry. Again, we assume that the user has
access to the user’s guide for the Sequent Symmetry and knows the appropriate sequence
of system calls to compile Fortran programs, allocate processors and then load and
execute programs.

The parallelization occurs in a single loop in the main subroutine for the optimiza-
tion, as should be clear from Table 1. The appropriate compiler directives have been
included in the comment statements for the subroutine PDS, which contains this loop.
To activate these compiler directives, the user will need to remove the “CSEQUENT ”

1 It is even possible to generate the search scheme on other machines with larger memory, for instance
a Sun Workstation, but the byte order of the unformatted output must be consistent with the byte
order required by the Intel chips, which requires some C programming.

from the beginning of the four lines containing the directives before compiling the sub-
routine.

In addition, the user will need to make sure that the variables in FCN, the subrou-
tine to compute the function value, are protected during parallel execution. To do this,
insert a “C$ PRIVATE?” line after the declaration of the variables. This is demonstrated
in the test function included here and can be used, again by removing “CSEQUENT ”
from the beginning of the line before compiling the subroutine.

We close with the observation that this code was initially designed to be used on
a distributed memory machine. The Sequent compiler directives for handling parallel
computation make it very easy to use this version of PDS, in parallel, on the SEQUENT.
However, the need to “lock” a critical section of the loop that is being parallelized is not
very satisfying and may impede performance for some applications. To improve per-
formance, the creation of extra global workspace to allow comparison across processors
after the loop has finished execution—as is done in the version for the Intel distributed
memory machines—is advisable.

3.3. Input. To run the parallel direct search methods the user must provide a
formatted input file as specified in Table 3. Descriptions of the variables are given in
Table 4. Two of these are standard for all optimization algorithms: N, the dimension
of the problem to be solved, and VO, an initial guess at the solution. The choice
of SSS follows from the discussion found in §2.1; we add that the convergence result
for multidirectional search, the core algorithm upon which the parallel direct search
schemes are based, requires a minimum of 2n function values per iteration to guarantee
convergence [8]. The rest of the input variables are described below.

L Line | l Variable | Fortran Type l # of Entries |

1 required N integer 1
2 required STEPTOL | floating point 1
3 required MAXITR | integer 1
4 required | VO " | floating point n
5 required TYPE integer 1
6] depends on TYPE] | SCALE floating point 1
6 +n — 1] | [depends on TYPE] [SIMPLEX | floating point | n? (n/line)
T[+n required DEBUG integer 1
8[+n required SSS integer 1
TABLE 3

Format of the input.

3.3.1. The stopping conditions. The optimization stops when either one of two
criteria are satisfied: the maximum number of iterations specified by the user has been
reached or a step length test has been satisfied. PDS uses the test

: v = vil
5 051?<a3§n VJ 112
6

| Variable || Description

N dimension of the problem to be solved
STEPTOL || stopping tolerance for the relative step length
MAXITR | maximum number of iterations allowed

Vo the starting point for the search
TYPE the type of simplex to be used
SCALE the base length of the edges if the simplex is to be constructed

SIMPLEX || the remaining n vertices if the simplex is to be provided by the user
DEBUG the level of information to be logged to a debugging file

SSS the size of the search scheme
TABLE 4
Description of the input variables.

where
6 = max (1, ||vol|) -

Note that it is not necessary to compute the length of every edge in the simplex at each
iteration; the length of the longest edge in the initial simplex Sp is determined before
the optimization begins and is updated at each iteration using a single scalar multiply.
This test is a slight modification of a test proposed in [9]. Its main advantage in the
parallel setting is that each processor can test for convergence independently without
any need for further synchronization. Its main limitation is that it considers only the
relative length of the steps being taken; no measure of relative decrease in the function
values is considered.

3.3.2. The initial simplex. The user is allowed either to enter the entire initial
simplex or to have one of three types of simplices constructed to start the search. The
options available are given in Table 5. If the user chooses to enter the entire simplex,

| Flag]I Option l

0 user defined

1 right-angled

2 || regular

3 scaled right-angled
TABLE 5

Options available for the type of simplex.

the entries for the remaining n vertices must be entered, one per line (the starting point
for the search is included as one of the n + 1 vertices in the initial simplex). Otherwise,
a scale factor must be entered as a base length (and orientation) for the edges in the
simplex to be constructed.
The choice of initial simplices that can be constructed is best demonstrated for the
two dimensional case as seen in Fig. 1. Note that for a right-angled simplex, the n edges
7

adjacent to vo are of length SCALE. For a regular simplex, every edge in the simplex
has the same length, SCALE. The algorithm for constructing a regular simplex is taken
from [2] but appears also in [6]. Both right-angled and regular simplices are standard
choices for simplex based algorithms for solving unconstrained optimization problems.

RIGHT-ANGLED REGULAR SCALED RIGHT-ANGLED

l

Fi1Gc. 1. Simplez choices.

We have also included an option for a scaled right-angled simplex, where the scaling
is based on the individual components of V0. This is a less common and, quite frankly,
a less desirable choice. We have included this option for those problems where the
variables are poorly scaled so that there is some hope of making progress in all the
variables. (A relatively mild example, for which the ratio of one coordinate to the other
is 20 to 1, can be seen in Fig. 1.)

To generate a scaled right-angled simplex, a right-angled simplex is constructed
and then the edges adjacent to Vo are rescaled by the nonzero components of vp, the
assumption being that any knowledge the user has about the relative scale of the vari-
ables at the solution is included in the choice of an initial guess. However, as the picture
amply demonstrates, this is not the most desirable option; it would be far better, if pos-
sible, to reformulate the problem so that the variables are of approximately the same
magnitude.

3.3.3. The levels of intermediate output. Users may also specify several levels
of “debugging” output if they wish to monitor the progress of the parallel direct search
methods more closely. These options are given in Table 6.

| Flag ” Option B
[0 no (Tebugginé_ output -

log the iteration count, the best vertex and its function value

include the simplex and flag whether or not strict decrease was obtained
include all vertices constructed and their function values

> 3 || include the points that define the search scheme
TABLE 6
Options available for debugging.

Wi o

One word of warning to those using this code, as written, on the Sequent Symmetry
S81: the Symmetry does not support I/O in a loop that has been parallelized. Thus,
on the Symmetry, if parallelization has been specified, only debugging levels 0, 1, or 2
should be used.

8

3.3.4. Restrictions. We close by noting in Table 7 any restrictions on the values
of the input but we hasten to add the following caveat: it is up to the user to verify
that the input satisfies these restrictions.

rVa.ri able || Restrictions

N >0
STEPTOL || >0
MAXITR | >0
Vo none
TYPE 0,1,2,0r3
SCALE #0
SIMPLEX | nondegenerate
DEBUG >0
SSS >2n

TABLE 7

Restrictions on the input variables.

We also extend a special caution to those who choose to enter their own start-
ing simplex: be sure that the simplex is nondegenerate; otherwise the search will be
restricted to a hyperplane that may or may not contain a stationary point of the func-
tion. One simple test for nondegeneracy is to verify that the edges adjacent to the best
vertex are linearly independent before proceeding with the optimization.

3.4. Files. The opening and closing of all files is handled within the drivers for
the two programs. There are at least three files involved in running these programs.
If debugging information is requested, the number of files opened for this information
equals the number of processors used. The files, their format, and their use by the two
drivers can be seen in Table 8; descriptions of the files are given in Table 9.

f _File [| Format I C&]_:?_ATE | OPTII\L'

INPUT | required formatted input input
SCHEME | required | unformatted | output input
RESULT required | formatted output | output

DEBUG### | optional | formatted not used | output
TABLE 8
I/0 files.

The driver to create the search scheme relies on the existence of the file INPUT
to open and read in the dimension of the problem to be solved. This can be easily
modified. However, the call to the subroutine SEARCH requires a unit number for the
file SCHEME so that the points in the search scheme can be written out once they have
been generated.

The driver to actually run the optimization passes the unit number for the file
INPUT to the subroutine DEFINE, which handles the initialization of the information

9

’ File “ Description

INPUT information to define the problem and set optimization parameters
SCHEME a search strategy for problems of a given dimension
RESULT either the final result or an appropriate error message
DEBUG#+#+# || information specified by the choice of debugging levels

TABLE 9

File descriptions.

that must be provided by the user. The call to the subroutine GETSS requires a unit
number for the file SCHEME so that the required number of points can be read in for
the search scheme. The call to PDS requires a unit number for the debugging file(s)
if debugging has been specified. (We append “###” to the name of the debug file(s)
so that on the Intel distributed memory machines a unique file can be assigned to each
processor.) Finally, the call to RESULT requires the unit number for the file RESULT.

4. Implementation. There are two sets of subroutines associated with the par-
allel direct search methods: one set to construct the search scheme and the other to
perform the actual optimization. The two sets of subroutines can be seen in Figs. 3 and
4, respectively. We follow the convention set forth in Fig. 2.

C) routines shared across all architectures

machine dependent routines required for all architectures

.............

routines required only for Intel distributed memory machines

.............

Q user supplied routines

Fi1G. 2. Legend for the call graphs.

The comment block that heads each subroutine contains a description of the sub-
routine as well as a description of every parameter in the calling sequence.

4.1. Generating the Search Scheme. The main subroutine for generating the
search scheme is SEARCH; its call graph can be seen in Fig. 3. Note that the only
machine dependency involved here comes in writing the search scheme to a file, which
is handled by the subroutine WRITES. For the Intel distributed memory machines
we include a separate version of the WRITES subroutine that makes use of a special
Fortran library call to handle the unformatted writes.

4.2. Parallel Direct Search. The main subroutine for the optimization is PDS;
its call graph is shown in Fig. 4. The subroutine PDS assumes that the information
10

SEARCH

ORDER) (QUICK)

F1G. 3. The call graph for generating the search strategy.

WRITES

that must be specified by the user has been passed, along with the points necessary
for the search scheme. Thus, there is no I/O unless debugging has been specified. The
auxiliary routines for initializing this information are discussed in the next section.

Fi1G. 4. The call graph for the optimization.

The subroutines DONE and MAXLEN make use of DNRM2, one of the basic linear
algebra subprograms (BLAS) [3], to compute the Euclidean vector norm. A version has
been included with this code, but users can certainly link to a local library instead.

When using the parallel direct search methods on an Intel distributed memory
machine, the outcome of the search on each individual node must be exchanged with
the remaining processors after the function values have been computed for every point
on the node (the “/* communication */” step seen in Tables 1 and 2). This requires
the subroutine GLOBAL to invoke the special purpose Fortran library calls provided to
handle global communication. The function SWAP is used to effect the actual exchange.
Note that these routines should not be linked when PDS is being used on other machines;
these two routines are specific to the Intel distributed memory machines.

4.3. The Drivers. Two drivers are included for the parallel direct search schemes:
the driver CREATE to create a file containing the points necessary to define a search
scheme and the driver OPTIM to perform the optimization. The call graphs for each
are shown in Fig. 5.

Creating the search scheme requires only a very simple driver to call SEARCH.
This driver must pass the dimension n, a unit number for the file to which the points
in the search scheme are to be written (all files must be opened and closed within the
driver), and workspace. The only output from the call to SEARCH is an error flag to

11

(CREATE) OPTIM

(SEARCH) (DEFINE) | GETSS
(READS) (SHRINK)

F1G. 5. The call graphs for the two drivers.

indicate whether or not the limit for the internal stack variable in the two Quicksort
routines was exceeded. (This is documented in the comments for SORT and QUICK,
but either routine can sort arrays with up to 232 ~ 2 x 10° entries before the internal
stack size is exceeded.)

The driver for the optimization comes with several service subroutines, of which
only one is machine dependent. Since, as discussed above in §4.1, writing out the points
in the search scheme to a file is machine dependent, it should not be too surprising that
reading in the points in the search scheme is also machine dependent. Thus there are
two versions of the subroutine GETSS. Again, the primary difference between the two
versions of GETSS is that the version for the Intel distributed memory machines uses
special Fortran library calls to set the file pointers (one for each processor) and to read
in the unformatted data.

Both versions of GETSS read four pieces of header information from the file con-
taining the search scheme before reading in the points for the search scheme. The first
two pieces are used to make sure that the search scheme matches the specifications for
the problem to be solved. - In particular, we wish to ensure that the dimension used
to generate the search scheme matches the dimension of the problem to be solved and
that the total number of points contained in the file to be read is at least as great as
the number requested by the user. If either condition is violated, an error flag is set
and GETSS returns to the calling program. The remaining two pieces of information
contained in the header are for algorithmic purposes and are discussed in comments
contained within the appropriate subroutines.

5. Testing. Included for testing purposes is a sample driver, CREATE, to create
the search scheme, a sample driver, OPTIM, to handle the optimization, a function
evaluation routine FCN that evaluates the extended Rosenbrock function [4], 5], and
an input file INPUT to test the two-dimensional Rosenbrock function. This is the
example given in [1].2 The entries for the file INPUT can be seen in Table 10.

When we run CREATE on either a Sun SPARCstation 1 or a Sequent Symmetry

2 For the numbers reported in [1], we used a different stopping test so that the results could be
compared for different choices of sss. Since the true solution was known to be x. = (1,1)T with
f(x.) = 0, we stopped the optimization when the absolute value of the function at v fell below 10~7.

12

| Variable || File Entry |

N 2

STEPTOL || 1.0D-3

MAXITR || 50

Vo -1.2 1.0

TYPE 2

SCALE 1.0

DEBUG 0

SSS 256
TABLE 10

Input for example

S81, we produce a file SCHEME containing 96048 bytes and the following message in
the file RESULT:

SUCCESSFULLY COMPLETED A SEARCH STRATEGY FOR PROBLEMS OF DIMENSION 2
THE TOTAL NUMBER OF UNIQUE POINTS AVAILABLE IS 2000
THE FACTOR NEEDED TO RESTORE THESE POINTS TO THEIR REAL VALUES IS 32

When we then run OPTIM, we get the following output in the file RESULT:

FINISHED WITH TOTAL NUMBER OF ITERATIONS: 7
THE BEST VERTEX IS:

1.00063008120658

1.00127939948865
WITH FUNCTION VALUE 0.00000043249716.

When we run CREATE on a single node of either an iPSC/860 or the Intel Touch-
stone Delta, we produce a file SCHEME containing 32016 bytes and the same message
given above contained in the file RESULT. When we then run OPTIM, on any num-
ber of processors, we also get the same message given above in the file RESULT. Note
that on the Intel machines, the special purpose routines for unformatted writes to a file
produce smaller files. Note also that while the total number of processors used for the
optimization may affect the execution time, it does not affect the final outcome.

6. Using PDS on Other Distributed Memory Machines. While PDS was
originally designed to be run on an Intel distributed memory machine, and thus the
machine dependent routines provided here make explicit use of the Fortran libraries
for the Intel machines, PDS can easily be ported to other distributed memory comput-
ing environments by making the appropriate substitutions for the Intel-specific library
routines. The Intel routines used here, and their descriptions, can be seen in Table 11.

We know of at least one successful port of this code to an Ncube. We also believe
that it should be possible to use PDS in “paralle]” without the need for special purpose
parallel machines using, for instance, either a transputer board or a network of work-
stations with software to handle the global communication/synchronization required in
the optimization.

13

rCall || Description

cread high-speed, synchronous read from a CFS file

cwrite high-speed, synchronous write to a CFS file

gilow global MIN operation used for integer scalars

gopf make a global operation of a user-defined function (SWAP)
gisum global sum operation used for integer scalars

Iseek move the read/write file pointer

mynode get the node ID of the calling process

numnodes || return the number of nodes in the hypercube or partition
setiomode || set the I/O mode and perform a global synchronization operation

TABLE 11
Intel-specific Fortran calls.

Acknowledgments. I wish to thank Robert Michael Lewis for his many helpful
comments regarding both the implementation and documentation of this code, for his
help in getting this code up and running on the Sequent Symmetry S81, and for sharing
his nonrecursive Fortran Quicksort routine. Thanks also need to be extended to the
many people who served as guinea pigs on earlier versions of this code, in particular
Andrea Reiff. And special thanks to Danny Soroker at Shell Development Company,
Irv Lustig, and Bert Buckley for their many and considered comments on ways to
structure the code so that it would be more flexible and more useful for others.

REFERENCES

[1] J. E. DENNIS, JR. AND V. TORCZON, Direct search methods on parallel machines, SIAM Journal
on Optimization, 1 (1991), pp. 448—-474.

[2] S.L.S.JacoBy, J.S. KowALIK, AND J. T. P1zZ0, [terative Methods for Nonlinear Optimization
Problems, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1972.

[3] C.L. Lawson, R. J. HansoN, D. R. Kincaip, aND F. T. KROGH, Basic linear algebra subpro-
grams for fortran usage, ACM Transactions on Mathematical Software, 5 (1979), pp. 308-323.

[4] J. J. Morg, B. S. GarBow, AND K. E. HILLSTROM, Testing unconstrained optimization soft-
ware, ACM Transactions on Mathematical Software, 7 (1981), pp. 1741.

[5] H. H. ROSENBROCK, An automatic method for finding the greatest or least value of a function,
The Computer Journal, 3 (1960), pp. 175-184.

[6) W. SPENDLEY, G. R. HEXT, AND F. R. HIMSWORTH, Sequential application of simplez designs
in optimisation and evolutionary operation, Technometrics, 4 (1962), pp. 441-461.

[7] V. TORCZON, Multi-Directional Search: A Direct Search Algorithm for Parallel Machines, Ph.D.
thesis, Department of Mathematical Sciences, Rice University, Houston, TX, 1989; also avail-
able as Tech. Report 90-7, Department of Mathematical Sciences, Rice University, Houston,
TX 77251-1892.

(8] , On the convergence of the multidirectional search algorithm, SIAM Journal on Optimization,
1 (1991), pp. 123-145.

[9] D. J. Woobs, An Interactive Approach for Solving Maulti-Objective Optimization Problems, Ph.D.
thesis, Department of Mathematical Sciences, Rice University, Houston, TX, 1985; also avail-
able as Tech. Report 85-5, Department of Mathematical Sciences, Rice University, Houston,
TX 77251-1892.

14

