Compiler Blockability of
Numerical Algorithms

Steve Carr
Ken Kennedy

CRPC-TR92208
April, 1992

Revised August, 1992.

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Compiler Blockability of Numerical Algorithms*

Steve Carr
Ken Kennedy

Department of Computer Science
Rice University
Houston TX 77251-1892

Abstract

Over the past decade, microprocessor design strategies
have focused on increasing the computational power
on a single chip. Unfortunately, memory speeds have
not kept pace. The result is an imbalance between
computation speed and memory speed. This imbal-
ance is leading machine designers to use more compli-
cated memory hierarchies. In turn, programmers are
explicitly restructuring codes to perform well on par-
ticular memory systems, leading to machine-specific
programs. This paper describes our investigation into
compiler technology designed to obviate the need for
machine-specific programming. Our results reveal
that through the use of compiler optimizations many
numerical algorithms can be expressed in a natural
form while retaining good memory performance.

1 Introduction

The trend in high-performance microprocessor design
is toward increasing computational power on chip.
Unfortunately, memory speed is not increasing at the
same rate. The result has been an increase in the
number of cycles for a memory access—a latency of
10 to 20 machine cycles is now quite common.

Although cache helps to ameliorate these prob-
lems, it performs poorly on scientific calculations with
working sets larger than the cache size. This situa-
tion has led many programmers to restructure their
codes by hand to improve performance in the memory
hierarchy. We believe that this is a step in the wrong
direction. The user should not be creating programs
that are specific to a particular machine. Instead, the
task of specializing a program to a target architecture
should fall to the compiler.

There is a long history of the use of sophisticated
compiler optimizations to achieve machine indepen-
dence. The Fortran I compiler included enough opti-

*Research supported by Darpa through ONR Grant
N00014-91-J-1989 and by NSF Grant CCR-9120008

mizations to make it possible for scientists to aban-
don machine-language programming. More recently,
advanced vectorization technology has made it pos-
sible to write machine-independent vector programs
in a sublanguage of Fortran 77. We contend that
it will be possible to achieve the same success for
memory-hierarchy management on scalar processors.
More precisely, enhanced compiler technology will en-
able programmers to express an algorithm in a natu-
ral, machine-independent form and achieve memory-
hierarchy performance good enough to obviate the
need for hand optimization.

To investigate the viability of this approach, we em-
barked on an experiment to determine if a compiler
could automatically generate the block algorithms in
LAPACK from the corresponding point algorithms ex-
pressed in Fortran 77 [DDSvdV91]. To assist this
research, Dongarra and Sorensen have contributed
point and block versions of several algorithms used
in LAPACK. This paper extends some preliminary
results of our efforts to define the compiler algo-
rithms that would be needed to generate the block
algorithms from the point algorithms automatically
[CK89]. In performing this study, we address the
question “What information does a compiler need
in order to derive block versions of real-world codes
that are competitive with the best hand-blocked ver-
sions?”

In the course of this study, we have discovered an
algorithmic approach that can be used to analyze and
block programs that exhibit complex dependence pat-
terns. In addition, we have found transformation al-
gorithms that can be successfully used on triangular
loops, which are quite common in linear algebra, and
trapezoidal loops. These methods have been success-
fully applied to block LU decomposition without piv-
oting. The key to many of these results is a transfor-
mation known as indez-set splitting. Our results with
this transformation show that a wide class of numer-
ical algorithms can be automatically optimized for a

particular machine’s memory hierarchy when they are
expressed in a natural form. In addition, we have dis-
covered that specialized knowledge about which op-
erations commute with one another can enable com-
pilers to block codes that were previously thought to
be unblockable by automatic methods.

We begin our presentation with a review of back-
ground material related to memory optimization.
Next, we present the transformations that are nec-
essary to block LAPACK automatically. Then, we de-
scribe a study of the application of these transforma-
tions to derive the block algorithms in LAPACK from
their corresponding point algorithms. For those algo-
rithms that cannot be blocked by a compiler, we pro-
pose a set of language extensions to allow the expres-
sion of block algorithms in a machine-independent
form. Finally, we review related work and present a
summary.

2 Background
2.1 Dependence

The fundamental tool available to the compiler is the
same tool used in vectorization and parallelization—
namely dependence. A dependence exists between
two statements if there exists a control flow path from
the first statement to the second, and both statements
reference the same memory location [Kuc78].

o If the first statement writes to the location and
the second reads from it, there is a true depen-
dence, also called a flow dependence.

o If the first statement reads from the location and
the second writes to it, there is an antidepen-
dence.

o If both statements write to the location, there is
an output dependence.

o If both statements read from the location, there
is an input dependence.

A dependence is carried by a loop if the references at
the source and sink of the dependence are on differ-
ent iterations of the loop and the dependence is not
carried by an outer loop [AK87].

To enhance the dependence information, section
analysis can be used to describe the portion of an
array that is accessed by a particular reference or set
of references [CK87, HK91]. Sections describe com-
mon substructures of arrays such as elements, rows,
columns and diagonals.

2.2 Cache reuse

When applied to memory-hierarchy management, a
dependence can be thought of as an opportunity for
reuse. There are two types of reuse: temporal and
spatial. Temporal reuse occurs when a reference in a
loop accesses data that has previously been accessed
in the current or a previous iteration of a loop. Spa-
tial reuse occurs when a reference accesses data that
is in the same cache line as some previous access. In
the following loop,

DO 10 I =1,¥
10 A(I) = A(I-5) + B(I)

the reference to A(I-5) has temporal reuse of the
value defined by A(I) 5 iterations earlier. The refer-
ence to B(I) has spatial reuse since consecutive ele-
ments of B will likely be in the same cache line.

2.3 Iteration-space blocking

To improve the memory behavior of loops that ac-
cess more data than fit in cache, the iteration space
of a loop can be grouped into blocks whose work-
ing sets are small enough for cache to capture the
available temporal reuse. Strip-mine-and-interchange
is a transformation that achieves this result [Wol87,
Por89, WL91]. It shortens the distance between the
source and sink of a dependence so that it is more
likely for the datum to reside in cache when the reuse
occurs. Consider the following loop nest.

D0 10 J = 1,K¥
DO 10 I =1,M
10 A(I) = AC(D) + B(Y)

Assume the value of M is much greater than the size
of the cache. Temporal reuse exists for B, but not
for A. To exploit A’s temporal reuse, strip-mine-and-
interchange is applied to the J-loop as shown below.

D0 10 J = 1,K,J8

D010 I =1,M
DO 10 JJ = J, MIN(J+Js-1,W)
10 A(I) = A(I) + BAJY)

Temporal reuse of A now occurs. In addition, the
temporal reuse of JS values of B out of cache occurs
for every iteration of the J-loop if JS is less than the
size of the cache and there is no interference [LRW91].

A transformation analogous to strip-mine-and-
interchange is unroll-and-jam [CCK90]. Unroll-and-
jam is used for register blocking instead of cache
blocking and can be seen as an application of strip
mining, loop interchange and loop unrolling. Essen-
tially, the inner loop is completely unrolled after strip-
mine-and-interchange to effect unroll-and-jam. When
JS doesn’t divide N, a pre-loop is used to handle the
extra iterations instead of a MIN function .

3 Index-set splitting

Iteration-space blocking cannot always be directly ap-
plied as shown in the previous section. Sometimes
safety constraints only permit a partial application
of blocking. In these cases, a transformation called
indez-set splitting can be applied. Index-set split-
ting creates multiple loops from one original loop with
each new loop iterating over nonintersecting portions
of the original iteration space. Execution order is un-
changed and the original iteration space is still com-
pletely executed. As an example of index-set split-
ting, consider the following loop.

DO 10 I =1,§
10 A(I) = A(I) + B(I)

The index set of I can be split at iteration 100 to
obtain

DO 10 I = 1,MIN(N,100)
10 ACI) = A(D) + B(D)

DO 20 I = MAX(1,MIN(N,100)+1),¥
20 A(I) = A(I) + B(I)

Although this transformation does nothing by itself,
its application can enable the blocking of complex
loop forms. This section uses index-set splitting to
enable the blocking of triangular and trapezoidal it-
eration spaces and loops with complex dependence
patterns.

3.1 Triangular iteration spaces

If the iteration space of a loop is not rectangular,
iteration-space blocking cannot be directly applied.
Interchanging loops that iterate over a triangular re-
gions requires the modification of the loop bounds to
preserve the semantics of the loop [Wol86, Wol87].
Therefore, blocking triangular regions also requires
loop bound modification. Below, we derive the for-
mula for determining loop bounds when blocking is
performed on triangular iteration spaces. We begin
with the derivation for strip-mine-and-interchange
and then extend it to unroll-and-jam.

The general form of one type of strip-mined trian-
gular loop is given below, where a and (3 are literal
integer constants (8 may be symbolic) and a > 0.

po 101 =1,K,IS
DC 10 II = I,I+IS-1
DO 10 J = aII+G,M
10 loop body

Figure 1 gives a graphical description of the itera-
tion space of this loop. To interchange the II and J
loops, the intersection of the line J=aII+8 with the
iteration space at the point (I,aI+B) must be han-
dled. Therefore, interchanging the loops requires the

J=all+f

II

1 I I+IS-1 N

Figure 1: Upper Left Triangular Iteration Space

II-loop to iterate over a trapezoidal region with an
upper bound of 14;-2 until g—"—;—ﬂl > I+IS-1. This
gives the following loop nest.

po10I1 =1,K,IS
DO 10 J = al+(,M
DO 10 II = I,MIN((J-0B)/cx,I+IS-1)
10 loop body

This formula can be trivially extended to handle the
cases where a < 0 and where a linear function of
I appears in the upper bound instead of the lower
bound [Car92].

Triangular strip-mine-and-interchange can be ex-
tended to triangular unroll-and-jam as follows. Since
the iteration space defined by the two inner loops is
a trapezoidal region, the number of iterations of the
innermost loop vary with J, making unrolling more
difficult. Index-set splitting of J at a(I+IS-1)+8 cre-
ates one loop that iterates over the triangular region
below the line J=a (I+IS-1)+f and one loop that iter-
ates over the rectangular region above the line. Since
the length of the rectangular region is known, it can
be unrolled to give the following loop nest.

po10I =1,K,IS
DO 20 II = I,I+IS-2
DO 20 J = all+(,MIN(a(I+IS-2)+G,M)
20 loop body
DO 10 J = a(I+IS-1)+0,M
10 unrolled loop body

Depending upon the values of « and £, it may also
be possible to determine the size of the triangular re-
gion; therefore, it may be possible to completely un-
roll the first loop nest to eliminate the overhead. Ad-
ditionally, triangular unroll-and-jam can be extended
to handle other common triangles [Car92].

3.2 Trapezoidal iteration spaces

While the previous method applies to many of
the common non-rectangular-shaped iteration spaces,

there are still some important loops that it will not
handle. In linear algebra, seismic and partial differ-
ential equation codes, loops with trapezoidal-shaped
iteration spaces occur. Consider the following exam-
ple, where L is assumed to be a constant, and o > 0.

DO 10 I = 1,8
DO 10 J = L,MIN(aI+S3,NH)
10 loop body

The MIN function defines one rectangular region and
one triangular region separated at the point where
aIl+f = N. Because rectangular and triangular re-
gions can be handled already, the index set of I can be
split into two separate regions at the point I = !52
with blocking applied to each new loop separately.
Splitting gives the following loop nests that can be
blocked.

DO 10 I = 1 ,MIN(N,(¥-08)/a)
DO 10 J = L,al+0
10 loop body
DO 20 I = MAX(1,MIN(N,(N-0)/a)+1) .}
DO 20 J = L,§
20 loop body

The lower bound, L, of the inner loop in a trape-
zoidal nest need not be a constant value. It may be
any function that, after index-set splitting, produces
an iteration space that can be blocked. As an ex-
ample, consider the following loop that computes the
adjoint convolution of two time series.

DO 10 I = 0,N3
D0 10 K = I,MIN(I+N2,H1)
10 F3(I) = F3(I)+DT*F1(K)*F2(I-K)

The lower bound is a linear function of the outer-loop
induction variable, resulting in rhomboidal and trian-
gular regions. To handle this loop, blocking can be
extended to rhomboidal regions using index-set split-
ting similar to the case for triangular regions [Car92].
As another more complex example, consider the fol-
lowing loop which computes the convolution of two
time series.

DO 10 I = 0,N3
D0 10 K = MAX(O0,I-N2) ,MIN(I,N1)
10 F3(I) = F3(I)+DT*F1(K)*F2(I-K)

The MAX function in the lower bound can be index-
set split similar to a MIN function [Car92). In this
example, complete splitting to remove the functions
from the loop bounds would result in four separate
loops that can each be blocked.

The previous two loops come from an oil explo-
ration program and constitute 20% of the program’s
execution time. After performing index-set splitting,
unroll-and-jam and a transformation called scalar re-
placement on both loops, we ran them on arrays of

double-precision REALS [CCK90]. Below is a table of
the results on an IBM RS/6000 540. For timing mea-
surements, we iterated over each kernel 1000 times
with 75% of the execution in the triangular regions.

Loop | Size | Original | Xformed | Speedup

Aconv | 300 4.59s 2.55s 1.80
500 12.46s 6.65s 1.87

Conv 300 4.61s 2.53s 1.82
500 12.56s 6.63s 1.91

3.3 Complex dependence patterns

In some cases, it is not only the shape of the iteration
space that presents difficulties for the compiler but
also the dependence patterns within the loop. Con-
sider the strip mined example below.

DO 10 I =1,K
DO 10 II = I, I+IS-1
T(II) = A(ID)
DO 10 K = II, N
10 A(K) = A(K) + T(ID)

To complete iteration-space blocking, the II-loop
must be interchanged to the innermost position. Un-
fortunately, there is a recurrence between the defini-
tion of A(K) and the use of A(II) carried by the II-
loop, preventing interchange with distribution. Stan-
dard dependence abstractions, such as distance or di-
rection vectors, report that the recurrence exists for
every value defined by A(K) [Wol82). This means
blocking is prevented. However, analyzing the sec-
tions of the arrays that are accessed at the source
and sink of the backward true dependence reveals
that there is potential to apply blocking. Consider
Figure 2. The section of the array A read by the ref-
erence to A(II) goes from I to I+IS-1 and the section
written by A(K) goes from I to N. Therefore, the re-
currence does not exist for the section from I+IS to
N.

To allow partial blocking of the loop, the index set
of K can be split so that one loop iterates over the it-
eration space where A(K) and A(II) access common
memory locations and one loop iterates over the iter-
ation space where they access disjoint locations. To
determine the split point that creates these loops, the
subscript expression that defines the larger section is

1 I I+Is-1 N

Figure 2: Data Space for A

Procedure IndezSetSplit

For each transformation-preventing dependence
repeat the following steps until failure
or a region is created that may be blocked.

1. Calculate the sections of the source and sink of
the preventing dependence.

2. Intersect and union the sections using symbolic
information.

3. If the intersection and union are equal then stop.

4. Set the subscript expression of the larger section
equal to the boundary between the disjoint and
common sections and solve for the inner-loop
induction variable.

5. Split the index set of the inner loop at this point.

6. Repeat steps 4 and 5 if there are multiple
boundaries.

Figure 3: Procedure IndexSetSplit

set equal to the boundary between the sections ac-
cessed by the source and sink of the dependence and
the equation is solved for the inner induction variable.
In the above example, let K = I+IS-1 and solve for
K. Splitting at this point yields

DO 10 I = 1,K
DO 10 II = I,I+IS-1
T(II) = A(ID
DO 20 K = I,I+IS-1

20 A(K) = A(K) + T(ID)
DO 10 K = I+IS,N
10 A(K) = A(K) + T(ID)

The II-loop can now be distributed around state-
ments 10 and 20 and blocking can be completed on
the loop nest surrounding statement 10.

The method just described may be applicable when
the references involved in the preventing dependences
have different induction variables in corresponding
positions (e.g., A(II) and A(K) in the previous ex-
ample). Figure 3 presents the method IndezSetSplit
used after strip mining to handle partial blocking.

The effectiveness of IndezSetSplit depends upon the
representation of sections. The precision must be
enough to relate the locations in the array to index
variable values. The representation that we have cho-
sen is equivalent to Fortran 90 array notation [HK91].
In Section 5, we show that this representation allows
IndezSetSplit to greatly enhance the performance of
solving systems of linear equations.

4 IF-inspection

In addition to iteration-space shapes and dependence
patterns, the effects of control flow on blocking must
also be considered. It may be the case that an inner

loop is guarded by an IF-statement to prevent un-
necessary computation. Consider the following ma-
trix multiply code that is take from the BLAS routine
SGEMM [DDSvdV91].

DO 20 J = 1,§
DO 20 K = 1,¥
IF (B(K,J) .EQ. 0.0) GOTO 20
DO 10 I = 1,¥
10 C(1,J) = C(1,J) + A(I,K) * B(K,J)
20 CONTINUE

If the IF-statement were ignored and unroll-and-jam
were performed on the K-loop, references to B would
be introduced that would never be checked by the
guard. Therefore, statements that were not executed
in the original code may be unsafely executed in the
unrolled code.

One possible method to preserve correctness is to
move the guard into the innermost loop and replicate
it for each unrolled iteration. However, this would re-
sult in a performance degradation due to a decrease in
loop-level parallelism and an increase in instructions
executed. Instead, a combination of IF-conversion
and sparse-matrix techniques, called IF-inspection,
can be used to keep the guard out of the innermost
loop and still allow unroll-and-jam [AK87]. The idea
is to inspect at run-time the values of an outer-loop
induction variable for which the guard is true and the
inner loop is executed. Then, the inner-loop nest is
executed only for those values.

To effect IF-inspection, code is inserted within the
IF-statement to record loop bounds information for
the loop to be transformed. On the true branch of the
guard to be inspected the following code is inserted,
where KC is initialized to 1, FLAG is initialized to false,
K is the induction variable of the loop to be inspected
and KLB is the lower bound of an executed range.

IF (.NOT. FLAG) THEN
KC=KC + 1
KLB(KC) = K
FLAG = .TRUE.

ENDIF

On the false branch of the inspected guard, the fol-
lowing code is inserted to store the upper bound of
each executed range.

IF (FLAG) THEXN

KUB(KC) = K-1
FLAG = .FALSE.
ENDIF

Note that the value of the guard could be true on
the last iteration of the loop, requiring a test of FLAG
to store the upper bound of the last range after the
IF-inspection loop body.

After inserting the inspection code, the loop to be
transformed is distributed around the inspection code

FLAG = .FALSE.
D0 10 J = 1,K¥
KC =0
DO 20 K = 1,¥
IF (B(K,J) .NE. 0.0) THEN
IF (.BOT. FLAG) THEN
KC =KC + 1
KLB(KC) = K
FLAG = .TRUE.
ENDIF
ELSE
IF (FLAG) THEN
KUB(KC) = K-1
FLAG = .FALSE.
ENDIF
ENDIF
20 CONTINUVE
IF (FLAG) THEN
KUB(KC) = §¥
FLAG = .FALSE.
ENDIF
DO 10 KN = 1,KC
DO 10 K = KLB(KN) ,KUB(KN)
DO 10 I =1,¥
10 c(1,J) = c(1,J) + A(I,K) * B(K,J)

Figure 4: Matrix Multiply After IF-Inspection

and a new loop nest that executes over the iteration
space where the innermost loop was executed is cre-
ated. The result of IF-inspection on matrix multiply
is shown in Figure 4. The KN-loop executes over the
number of ranges where the guarded loop is executed
and the new K-loop executes within those ranges.

If the ranges over which the inner loop is exe-
cuted in the original loop are large, the slight in-
crease in run-time cost caused by IF-inspection can be
more than counteracted after transforming the new
loop nest for better data locality. To show this, we
performed unroll-and-jam on our IF-inspected ma-
trix multiply example and ran it on an IBM RS/6000
model 540 on 300x300 arrays of REALS. In the ta-
ble below, Frequency shows how often B(K,J) = 1,
UJ is the result of performing unroll-and-jam after
moving the guard into the innermost loop and UJ+IF
is the result of performing unroll-and-jam after IF-
inspection.

Frequency | Original ulJ UJ+IF | Speedup
2.5% 3.33s 3.84s 2.25s 1.48
10% 3.085 | 3.71s | 2.13s 1.45

5 Systems of linear equations

The goal of LAPACK is to replace the algorithms
in LINPACK and EISPACK with block algorithms
that have better cache performance. Unfortunately,

the LAPACK designers have achieved additional per-
formance at the expense of machine independence.
To adapt its kernels from one machine to another,
a programmer must perform machine-specific hand
optimization on each LAPACK subroutine to obtain
high performance. In contrast, we believe that pro-
grammers should express each kernel in a machine-
independent form with the compiler handling the
machine-specific optimization details.

To investigate whether compiler technology can
make it possible to express LAPACK in a machine-
independent form, this section examines the block-
ability of three of LAPACK's algorithms for solving
systems of linear equations using the techniques de-
veloped in Section 3. An algorithm is “blockable” if
a compiler can automatically derive the best known
block algorithm, the one found in LAPACK, from its
corresponding machine-independent point algorithm.
Our study shows that LU decomposition without piv-
oting is a blockable algorithm using the method In-
dezSetSplit, LU decomposition with partial pivoting is
blockable using IndezSetSplit and information about
commutative operations, and QR decomposition with
Householder transformations is not blockable. The
study also shows how to improve the memory perfor-
mance of a fourth non-LAPACK algorithm, QR de-
composition with Givens rotations.

5.1 LU decomposition without pivoting

Gaussian elimination is a form of LU decomposition
where the matrix A is decomposed into two matrices,
L and U, such that

A= LU,

L is a unit lower triangular matrix and U is an
upper triangular matrix. This decomposition can
be obtained by multiplying the matrix A by a se-
ries of elementary lower triangular matrices, where
L=M"...M!, as follows [Ste73].

U=M;...MA

Using this equation, an algorithm for LU decompo-
sition without pivoting using Gaussian elimination is
derived. The point algorithm, where statement 20
computes Mj and statement 10 applies M to A, is
shown below after strip mining.

D0 10K = 1,§-1,KS
DO 10 KK = K,K+KS-1
DO 20 I = KK+1,K
20 A(I,KK) = A(I,KK) / A(KK,KK)
DO 10 J = KK+1,¥
DO 10 I = KK+1,¥
10 ACI,J) = A(1,3) - A(I,KK) * A(KK,J)

N /
10
K+KS-1 /
20
K
K N

Figure 5: Sections of A in LU Decomposition

Unfortunately, this algorithm exhibits poor cache
performance on large matrices. To improve its cache
performance, scientists have developed a block algo-
rithm that essentially groups a number of updates to
the matrix A together and applies them all at once to
a block portion of the array [DDSvdV91]. To attain
the best block version, strip-mine-and-interchange is
completed for the K-loop on only a portion of the inner
loop nest. We show how to attain the block algorithm
using IndezSetSplit.

To complete the blocking of strip-mined LU de-
composition, the KK-loop must be distributed around
the loop that surrounds statement 20 and around
the loop nest that surrounds statement 10 before be-
ing interchanged to the innermost position. However,
there is a recurrence between A(I,KK) in statement
20 and A(I,J) in statement 10 carried by the KK-loop
that prevents distribution unless index-set splitting is
done.

Figure 5 shows the sections of the array A accessed
for the entire execution of the KK-loop. The section
accessed by A(I,KK) in statement 20 is a subset of
the section accessed by A(I,J) in statement 10. Since
the recurrence exists for only a portion of the itera-
tion space of the loop surrounding statement 10, the
index-set of J can be split at the point J = K+KS-1
to create a new loop that executes over the itera-
tion space where the memory locations accessed by
A(I,J) are disjoint from those accessed by A(I,KK)
in statement 20. This loop is shown below.

DO 10 KK = K,K+KS-1
DO 10 J = K+KS,N
DO 10 I = KK+1,K
10 A(1,3) = A(1,J) - A(I,KK) * A(KK,J)

Now, triangular interchange can be used to put the
KK-loop in the innermost position (see Figure 6). At
this point, the best block algorithm has been ob-
tained. Therefore, LU decomposition is blockable.
Not only does this block algorithm exhibit better data

DO 10 K = 1,8-1,KS
DO 20 KK = K,MIN(K+Ks-1,8-1)
DO 30 I = KK+1,¥
30 A(I,KK) = A(I,KK)/A(KK,KK)
DO 20 J = KK+1,K+KS-1
DO 20 I = KK+1,§
20 A(I,J) = A(1,J) - A(I,KK) * A(KK,J)
DO 10 J = K+KS,N
DO 10 I = K+1,§
DO 10 KK = K,MIN(MIN(K+KS-1,§-1),I-1)
10 A(I,J) = A(I,J) - A(I,KK) * A(KK,J)

Figure 6: Block LU Decomposition

locality, it also has increased parallelism as the J-loop
that surrounds statement 10 can be made parallel.

We applied IndezSetSplit by hand to LU decompo-
sition and compared its performance with the point
algorithm and a hand-coded version by Sorensen. In
the table below, “1” refers to the Sorensen version and
“2” refers to the algorithm in Figure 6. In addition,
we performed trapezoidal unroll-and-jam and scalar
replacement to our blocked code, producing the ver-
sion referred to as “2+”. The experiment was run on
an IBM RS/6000 540 using double-precision REALS.
Note that the final transformations could have been
applied to the Sorensen version as well, with similar
improvements.

Size | Block | Point lb 2 24+ Speedup

300 32 1.47s | 1.37s | 1.35s | 0.49s 3.00

300 64 1.47s | 1.42s | 1.38s | 0.58s 2.53

500 32 6.76s | 6.58s | 6.44s | 2.13s 3.17

500 64 6.76s | 6.59s | 6.38s | 2.27s 2.98

5.2 LU decomposition with partial pivoting

Although the compiler can discover the potential for
blocking in LU decomposition without pivoting using
the algorithm IndezSetSplit, the same cannot be said
when partial pivoting is added (see Figure 7 for LU
decomposition with partial pivoting). In the partial
pivoting algorithm a new recurrence exists that does
not fit the form handled by IndezSetSplit. Consider
the following sections of code after applying IndezSet-
Split to the algorithm in Figure 7.

DO 10 KK = K,K+KS-1
DO 30 J = 1,§
TAU = A(KK,J)
25 ACKK,J) = A(IMAX,J)
30 A(INAX,J) = TAU
DO 10 J = KK+KS,X
DO 10 I = KK+1,N
10 A(I,J) = A(I,J) - ACI,KK) * A(KK,J)

The reference to A(IMAX,J) in statement 25 and the
reference to A(I,J) in statement 10 access the same
sections. Distributing the KK-loop around both J-
loops would convert the true dependence from A(I, J)

DO 10K = 1,8-1

Cc
C ... pick pivot --- IMAX
C
DO 30 J =1,K
TAU = A(K,J)
25 A(K,J) = A(IMAX,))
30 A(IMAX,J) = TAU

DO 20 I = K+1,K
20 A(I,K) = A(I,K) / A(K,K)
DO 10 J = K+1,K
DO 10 I = K+1,¥
10 A(I,J) = A(1,J) - A(I,K) * A(K,))

Figure 7: LU Decomposition with Partial Pivoting

to A(IMAX,J) into an antidependence in the reverse
direction. The rules for the preservation of data de-
pendence prohibit the reversing of a dependence di-
rection. This would seem to preclude the existence
of a block analogue similar to the non-pivoting case.
However, a block algorithm that ignores the prevent-
ing recurrence and distributes the KK-loop can still be
mathematically derived (see Figure 8) [DDSvdV91].
This block algorithm also exhibits the increased loop-
level parallelism found in the algorithm in Figure 6.

In the point version, each row interchange is fol-
lowed by a whole-column update in which each row
element is updated independently. In the block ver-
sion, multiple row interchanges may occur before a
particular column is updated. The same computa-
tions (column updates) are performed in both the
point and block versions, but these computations may
occur in different locations (rows) of the array. The
key concept for the compiler to understand is that
row interchanges and whole-column updates are com-
mutative operations. Data dependence alone is not
sufficient to understand this. A data dependence re-
lation maps values to memory locations. It reveals
the sequence of values that pass through a particular
location. In the block version of LU decomposition,
the sequence of values that pass through a location
is different from the point version, although the fi-

DO 10K = 1,H-1,KS
DO 20 KK = K,MIN(K+KS-1,N-1)

Q

point algorithm

DO 10 J = K+KS,X
DO 10 I =K+1,N
DO 10 KK = K,MIN(MIN(K+KS-1,N-1),I-1)
10 ACI,J) = A(1,3) - ACI,KK) * A(KK,J)

Figure 8: Block LU with Partial Pivoting

nal values are identical. Without an understanding
of commutative operations, LU decomposition with
partial pivoting is not blockable.

Fortunately, a compiler can be equipped to under-
stand that operations on whole columns are com-
mutable with row permutations. To upgrade the
compiler, one would have to install pattern matching
to recognize both the row permutations and whole-
column updates to prove that the recurrence involv-
ing statements 10 and 25 of the index-set split code
could be ignored. Forms of pattern matching are al-
ready done in commercially available compilers, so it
is reasonable to believe the situation in LU decompo-
sition can be recognized. The question is, however,
“Will the increase in knowledge be profitable?” To
see the potential profitability of making the compiler
more sophisticated, consider the table below, where
“1” refers to the algorithm given in Figure 8 and
“14” refers to that algorithm after unroll-and-jam
and scalar replacement. This experiment was run on
an IBM RS/6000 540 using double-precision REALS.

Size | Block | Point 1 1+ Speedup
300 32 1.52s | 1.42s | 0.58s 2.62
300 64 1.52s | 1.48s | 0.67s 2.27
500 32 7.01s | 6.85s | 2.58s 2.72
500 64 7.01s | 6.83s | 2.73s 2.57

5.3 Householder QR

The key to Gaussian elimination is the multiplica-
tion of the matrix A by a series of elementary lower
triangular matrices that introduce zeros below each
diagonal element. Any class of matrices that have
this property can be used to solve a system of lin-
ear equations. One such class, having orthonormal
columns, is used in QR decomposition [Ste73).

If A has linearly independent columns, then A can
be written uniquely in the form

A=QR,

where @Q has orthonormal columns, QQT = I and R
is upper triangular with positive diagonal elements.
One class of matrices that fits the properties of Q is
elementary reflectors or Householder transformations
of the form I — 2vv7.

The point algorithm for Householder QR consists
of iteratively applying the elementary reflector Vi =
I —2vxo] to A to obtain Agyq fork=1,...,n—1.
Each Vi eliminates the values below the diagonal in
the kth column. For a more detailed discussion of the
QR algorithm and the computation of Vj, see Stewart
[Ste73].

Although pivoting is not necessary for QR decom-
position, the best block algorithm is not an aggrega-
tion of the original algorithm. The block application

of a number of elementary reflectors involves both
computation and storage that does not exist in the
original algorithm [DDSvdV91]. Given

A Ap
A= ,
< A1 A)

the first step is to factor

(All)_(Qn le)(Ru)
An)\ Qn Q2 o)’

and then solve
Ay) A (Aqz)
(Ay) @ Az)’
where

Q= (I-2v07)(I —2v0T)---(I— 2007
= I-2vTVT.

The difficulty for the compiler comes in the com-
putation of I —2VTVT because it involves space and
computation that did not exist in the original point
algorithm. To illustrate, consider the case where the
block size is 2.

Q= (I-2v0T)(I - 2v907)
T T
= 1—2(v1v2)((1) (v 022) (:})’;T‘)

Here, the computation of the matrix

T= ((1) (vazz)

is not part of the original algorithm, making it im-
possible to determine the computation of @ from the
data dependence information.

The expression of block Householder QR requires
the choice of a machine-dependent blocking factor.
We know of no way to express this algorithm in a cur-
rent programming language in a manner that would
allow a compiler to automatically chose that factor.
However, the expressibility of a language can be en-
hanced to allow block algorithms to be stated in a
machine-independent form. In Section 6, we address
this issue.

5.4 Givens QR

Another form of orthogonal matrix that can be used
in QR decomposition is the Givens rotation matrix
[Sew90]. We currently know of no best block algo-
rithm to derive from the point algorithm, so instead
we show that IndezSetSplit and IF-inspection have
wider applicability.

Consider the Fortran code for Givens QR shown
in Figure 9 [Sew90]. The references to A in the in-
ner K-loop have a long stride between successive ac-
cesses, resulting in poor cache performance. Inter-
changing the J-loop to the innermost position would

1,8

= L+1,M

(J,L) .EQ. 0.0) GOTO 10

= DSQRT(A(L,L)*A(L,L) + A(J,L)*A(J,L))
A

A

|~
>

(L,L)/DEN
(J,L)/DER

0 10K = L,¥

A1l = A(L,K)

A2 = A(J,K)

A(L,K) = CxAl + S#*A2
A(J,K) = =S*A1 + C*A2
10 CONTINUE

Figure 9: QR Decomposition with Givens Rotations

give stride-one access to the references to A(J,K) and
make the references to A(L,K) invariant with respect
to the innermost loop. In this case, loop interchange
would necessitate distribution of the J-loop around
the IF-block and the K-loop. However, a recurrence
consisting of a true and antidependence between the
definition of A(L,K) and the use of A(L,L) prevents
distribution. Examining the sections for these ref-
erences reveals that the recurrence only exists for
the element A(L,L), allowing index-set splitting of
the K-loop at L, IF-inspection of the J-loop, distri-
bution (with scalar expansion) and interchange (see
Figure 10) [KKP*81]. Below is a table of the results
of the performance of Givens QR.

Array Size | Point | Optimized | Speedup
300x300 6.86s 3.37s 2.04
500x500 84.0s 15.3s 5.49

6 Language extensions

The examination of QR decomposition with House-
holder transformations shows that some block algo-
rithms cannot be derived by a compiler from their
corresponding point algorithms. In order to main-
tain the goal of machine-independent coding styles,
the expression of these types of block algorithms in
a machine-independent form must be made possible.
Specifically, the compiler needs to be directed to pick
the machine-dependent blocking factor for an algo-
rithm automatically.

To this end, we present a preliminary proposal for
two looping constructs to guide the compiler’s choice
of blocking factor. These constructs are BLOCK DO
and IN DO. BLOCK DO specifies a DO-loop whose block-
ing factor is chosen by the compiler. IN DO specifies
a DO-loop that executes over the region defined by a
corresponding BLOCK DO and guides the compiler to
the regions that it should analyze to determine the
blocking factor. The bounds of an IN DO statement
are optional. If they are not expressed, the bounds
are assumed to start at the first value in the specified

DO 1OL =1,K
DO 20 J = L+1,M
IF (A(J,L) .EQ. 0.0) GOTO 20
DEN = DSQRT(A(L,L)*A(L,L)+A(J,L)*A(J,L))
€c(J) = A(L,L)/DER
$(J) = A(J,L)/DER

A1 = A(L,L)
A2 = AQJ,L)
A(L,L) = C(J)*A1 + S(J)*A2
A(J,L) = -S(J)*A1 + C(J)*A2
Cc
c IF-Inspection Code including 20
c
DO 10 K = L+1,¥
D0 10 JE = 1,JC
D0 10 J = JLB(JN),JUB(JN)
A1 = A(L,K)
A2 = A(J,K)
A(L,K) = C(J)*A1 + S(J)*A2
10 A(J,K) = -S(J)*A1 + C(J)*A2

Figure 10: Optimized Givens QR

block and end at the last value with a step of 1. To
allow indexing within a block region, LAST returns the
last index value. For example, if LU decomposition
were not a blockable algorithm, it could be coded as
in Figure 11 to achieve machine independence.

The principal advantage of the extensions is that
the programmer can express a non-blockable algo-
rithm in a natural block form, while leaving the
machine-dependent details, namely the choice of
blocking factor, to the compiler. In the case of LA-
PACK, the language extensions could be used, when
necessary, to code the algorithms for a machine-
independent source-level library. Then, compiler
technology could be used to port the library from ma-
chine to machine and still retain good performance.
By doing so, the machine-dependency problem of LA-
PACK would be removed, making LAPACK readily
accessible to new architectures.

7 Previous work

Wolfe has done a significant amount of work on cache
blocking [Wol86, Wol87, Wol89]. In particular, he
discusses strip-mine-and-interchange for triangular-
shaped iteration spaces, but he does not present
general compiler algorithms nor extend the work to
unroll-and-jam. He also shows by example how to
use index-set splitting to handle a trapezoidal region
that arises from triangular iteration-space blocking.
We take this a step further by developing a general
technique that handles more cases.

Irigoin and Triolet describe a general technique for
blocking iteration spaces for memory that uses a de-
pendence abstraction called a dependence cone [IT88].

BLOCK DO K = 1,H-1
IN K DO KK
DO I = KK+1,§
ACI,KK) = A(I,KK)/A(CKK,KK)
EEDDO
DO J = KK+1,LAST(K)
DO I = KK+1,K
ACI,J) = A(1,3) - A(I,KK) * A(KK,J)
EEDDO
ENDDO
ENDDO
DO J = LAST(K)+1,¥
DO I = K+1,K
IN K DO KK = K,NIN(LAST(K),I-1)
ACI,J) = A(I,J) - ACI,KK) * A(KK,J)
EEDDO
ENDDO
ENDDO
ENDDO

Figure 11: Block LU in Extended Fortran

This technique does not work on non-perfectly nested
loops, which are common in linear algebra codes, nor
does it handle partially blockable loops.

Wolf and Lam present a framework for applying
blocking transformations and ordering a loop nest for
memory performance and parallelism [WL91]. How-
ever, their framework does not include the applica-
tion of index-set splitting nor is it applicable to non-
perfectly nested loops.

8 Summary

We have set out to determine whether a compiler can
automatically restructure computations well enough
to avoid the need for hand blocking. To that end, we
have examined a collection of programs in LAPACK
for which we were able to examine both the block ver-
sion and the corresponding point algorithm. For each
of these programs, we determined whether a plausi-
ble compiler technology could succeed in obtaining
the block version from the point algorithm.

The results of this study are encouraging: we can
block triangular and trapezoidal loops and we have
found that many of the problems introduced by com-
plex dependence patterns can be overcome by the use
of the transformation known as “index-set splitting”.
In many cases, index-set splitting yields codes that
exhibit performance at least as good as the best block
algorithms produced by LAPACK developers. In ad-
dition, we have shown that knowledge about which
operations commute can enable a compiler to succeed
in blocking codes that could not be blocked by any
compiler based strictly on dependence analysis. Un-
fortunately, our success has not been universal. For
methods like QR decomposition, the block algorithm

has no corresponding point algorithm because block
sizes larger than one require additional computation
to compensate for the blocking. If automatic block-
ing is to succeed, machine-independent expression of
block algorithms, such as that proposed in Section 6,
must be developed.

Our goal has been to find compiler techniques that
make it possible for the user to express numerical
algorithms naturally with the expectation of good
memory hierarchy performance. We have demon-
strated that there exist readily implementable meth-
ods that can automatically block many, but not all,
linear algebra codes. Currently, we have implemented
triangular, trapezoidal and rhomboidal blocking in an
experimental system. In the future, we plan to add
IndezSetSplit and commutativity knowledge. Then,
we will apply the resulting compiler to a collection of
scientific programs in order to better understand the
breadth of coverage supplied by these methods. In
addition, we will continue to investigate language ex-
tensions that would make it possible to express block
algorithms in a machine-independent style.

Given that future machine designs are certain to
have increasingly complex memory hierarchies, com-
pilers will need to adopt increasingly sophisticated
memory-management strategies so that programmers
can remain free to concentrate on program logic. In
this paper we have established that, with a few ad-
ditional methods, the compiler can do a good job on
many key algorithms from linear algebra. If these re-
sults extend to more general computations, it will
represent a significant step toward fully automatic
memory-hierarchy management.

Acknowledgments

Preston Briggs, Rebecca Carr, Uli Kremer and
Kathryn McKinley made many helpful suggestions
during the preparation of this document. Danny
Sorensen provided us with block and point versions of
the LAPACK algorithms and gave us guidance in un-
derstanding these algorithms. To all of these people
go our heartfelt thanks.

References

J.R. Allen and K. Kennedy. Automatic transla-
tion of Fortran programs to vector form. ACM
Transactions on Programming Languages and
Systems, 9(4):491-542, October 1987.

[AK87]

[Car92] S. Carr. Memory-Hierarchy Management. PhD
thesis, Rice University, Department of Computer
Science, 1992.

[CCK90] D. Callahan, S. Carr, and K. Kennedy. Improv-

ing register allocation for subscripted variables.
In Proceedings of the SIGPLAN ’90 Conference

[CK87]

[CK89]

[DDSvdV91]

[HK91]

[ITs8]

[KKP+81])

[Kuc78]

[LRW91]

[Por89]

[Sew90]

[Ste73]

[WL91]

[Wol82]

[Wol86]

[Wol87]

[Wol89]

on Programming Language Design and Imple-
mentation, White Plains, NY, June 1990.

D. Callahan and K. Kennedy. Analysis of
interprocedural side effects in a parallel pro-
gramming environment. In Proceedings of the
First International Conference on Supercomput-
ing. Springer-Verlag, Athens, Greece, 1987.

S. Carr and K. Kennedy. Blocking linear algebra
codes for memory hierarchies. In Proceedings of
the Fourth SIAM Conference on Parallel Pro-
cessing for Scientific Computing, Chicago, IL,
December 1989.

J.J. Dongarra, 1.S. Duff, D.C. Sorensen, and
H.A. van der Vorst. Solving Linear Systems on
Vector and Shared-Memory Computers. SIAM,
Philadelphia, 1991.

P. Havlak and K. Kennedy. An implementation
of interprocedural bounded regular section anal-
ysis. IEEE Transactions on Parallel and Dis-
tributed Systems, 2(3):350-360, July 1991.

F. Irigoin and R. Triolet. Supernode partition-
ing. In Conference Record of the Fifteenth ACM
Symposium on the Principles of Programming
Languages, pages 319-328, January 1988.

D. Kuck, R. Kuhn, D. Padua, B. Leasure, and
M. Wolfe. Dependence graphs and compiler op-
timizations. In Conference Record of the Eight
ACM Symposium on the Principles of Program-
ming Languages, 1981.

D. Kuck. The Structure of Computers and Com-
putations Volume 1. John Wiley and Sons, New
York, 1978.

M.S. Lam, E.E. Rothberg, and M.E. Wolf. The
cache performance and optimizations of blocked
algorithms. In Proceedings of the Fourth In-
ternational Conference on Architecural Support
for Programming Languages and Operating Sys-
tems, April 1991.

A K. Porterfield. Software Methods for Improve-
ment of Cache Performance on Supercomputer
Applications. PhD thesis, Rice University, May
1989.

G Sewel.l.‘ Computational Methods of Linear Al-
gebra. Ellis Horwood, England, 1990.

G.W. Stewart. Introduction to Matriz Compu-
tations. Academic Press, New York, 1973.

M.E. Wolf and M.S. Lam. A data locality opti-
mizing algorithm. In Proceedings of the SIG-
PLAN ’91 Conference on Programming Lan-
guage Design and Implementation, June 1991.

M. Wolfe. Optimizing Supercompilers for Super-
computers. PhD thesis, University of Illinois, Oc-
tober 1982.

M. Wolfe. Advanced loop interchange. In Pro-
ceedings of the 1986 International Conference on
Parallel Processing, August 1986.

M. Wolfe. Iteration space tiling for memory hi-
erarchies. In Proceedings of the Third SIAM
Conference on Parallel Processing for Scientific
Computing, December 1987.

M. Wolfe. More iteration space tiling. In Pro-
ceedings of the Supercomputing ’89 Conference,
1989.

