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This paper describes a new technique for generating convex, strictly concave and
indefinite (bilinear or not) quadratic programming problems. These problems have a
number of properties that make them useful for test purposes. For example, strictly
concave quadratic problems with their global maximum in the interior of the feasible
domain and with an exponential number of local minima with distinct function
values and indefinite and jointly constrained bilinear problems with nonextreme
global minima, can be generated.

Unlike most existing methods our construction technique does not require the
solution of any subproblems or systems of equations. In addition, the authors know of
no other technique for generating jointly constrained bilinear programming problems.
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1 Introduction.

The testing and development of new algorithms and the benchmarking of avail-
able software for quadratic programming and for global optimization benefit
from the availability of test problems [2, 4, 5, 6]. These test problems nor-
mally come from two sources: collections of real-world problems and randomly
generated problems. In the latter case the types of problems generated are of-
ten based on complexity issues. References (7, 9, 12, 16, 18, 19, 20] provide a
discussion of these issues.

Several authors have proposed methods for generating quadratic program-
ming test problems. One of the earliest of these was a technique proposed by
Rosen and Suzuki [23]. Their idea was implemented by Michaels and O’Neil [15)
to construct convex quadratic programs with a user specified global solution.
Lenard and Minkoff [13] describe an alternative technique for randomly gen-
erating strictly convex quadratic programs in the form of linearly constrained

Authors’ addresses: P. H. Calamai, University of Waterloo, Department of Systems Design
Engineering, Waterloo, Ontario, Canada N2L 3G1; L. N. Vicente and J.J. Jidice, Universidade
de Coimbra, Departamento de Matematica, 3000 Coimbra, Portugal.

This paper was completed when the first author was on a research sabbatical at Rice
University.

Support of this work has been provided by the Instituto Nacional de Investigagao Cientifica
de Portugal (INIC) under contract 89/EXA/S and by the Natural Sciences and Engineering
Research Council of Canada operating grant 5671.






linear least-squares problems.

Other construction techniques make use of the fact that the minima of a
concave quadratic function over a closed bounded polyhedron occur at the ex-
treme points of the feasible region. In [22] Rosen presents a method for con-
structing concave quadratic programming problems with a global minimum at
a selected vertex of a prespecified bounded convex polyhedron. Problems with
the same characteristics are generated by the method proposed by Sung and
Rosen [24]. Unlike Rosen’s technique, which requires the solution of a single
linearly constrained convex program and one linear program in n variables,
Sung and Rosen’s technique requires the solution of n linear programs in n
variables, where n is the dimension of the constructed problem.

Kalantari and Rosen [11] and Pardalos [17] describe different methods for
constructing large-scale nonconvex quadratic programs which have a global min-
imum at a selected nondegenerate vertex of a prespecified bounded polytope.
Both methods require the solution of a linear program and a system of linear
equations. One disadvantage of such test problems is that algorithms that sys-
tematically visit vertices, by finding a sequence of local solutions (or otherwise),
may perform quite well on these problems but poorly on others. To address
this possibility the authors in [7] propose a method for generating indefinite
quadratic programs that have, as their global minimizer, an arbitrarily speci-
fied boundary point (extreme or nonextreme). An alternative approach to this
possibility, proposed by Kalantari [10], involves generating box constrained con-
cave quadratic programs with an exponential number of local minima. While
the former approach is much more flexible than the latter one advantage of
Kalantari’s approach is that it is simple and does not require an orthogonal
factorization or the solution of linear programs.

In this paper we describe a new technique for generating random quadratic
programming problems that was motivated by some earlier work on generating
random bilevel programming problems [3]. Our approach involves combining m
two-variable problems to construct a separable quadratic program in 2m vari-
ables. We demonstrate how convex, strictly concave and indefinite quadratic
programming test problems can be constructed by simply selecting the appro-
priate parameters for these two-variable problems. We then show how this
separability can be disguised, and randomness introduced, via a simple linear
transformation of variables.

Among the features of our unified approach is the ability to generate the
problems that have proven to be computationally hard (see, for example, (7, 8,
21]), namely;

e strictly concave quadratic programs with an exponential number of local
minima (with distinct function values), with global solutions in the strict
interior of the feasible domain and with a restricted number of linear
variables, and

e indefinite quadratic programs (including jointly constrained bilinear prob-
lems [1]) with an exponential number of local minima and with nonextreme
minima (local and/or global).

As well, the size, density and geometry of the generated problems can by con-
trolled. Moreover, the proposed construction technique is simple and does not
require the solution of linear (or convex) programs or systems of equations. In
addition, the authors know of no other technique for generating jointly con-
strained bilinear test problems.



In section 2 we define a general quadratic programming problem in 2m vari-
ables and specify the set of conditions we use to replace this general problem
by a disjoint set of m two-variable problems. In section 3 we demonstrate how
convex, strictly concave or indefinite (bilinear or not) quadratic problems can
be constructed using these two-variable problems and describe the properties of
the corresponding separable quadratic programming problems that result from
these constructions. In section 4 we describe the transformation that is used to
disguise the separability of this problem and establish an equivalence between
the transformed problem and the original problem. Special considerations for
large-scale test problems are then discussed in section 5. An example that illus-
trates the technique appears in section 6 and concluding remarks are made in
section 7.

2 Problem Definition and Motivation.

Define quadratic programming problem QP(Q, s, A, c) as:

e e =3[ [ 8 & 1[3]-[2] [3]+

subject to
[ 4= 4] [:]Sc

where s*,z € R"*, s¥,y € R™, Q € R™=*"=, Q¥ € R™v*™, Q*¥ = QveT ¢
R"=*™v AT ¢ R"*"= AY € R"™*™,c€e R" and £ € R.

Our technique for constructing test problems starts with a separable ver-
sion of problem QP(Q, s, A, c), exploits the separability to construct problems
with favorable properties and then disguises the separability (without destroying
those properties) via a nonsingular transformation of variables.

To arrive at a separable version of problem QP(Q,s, A, c) we select some
integer m > 0 and set n; = ny, = m and vy = 3m. We also make matrices
Q7, Q¥ and Q*Y diagonal, with Q* = diag(qf, ), QY = diag(q!{: e '>qyn)
and QY = diag(q7¥, -, ¢ZY), and matrices A* and AY block diagonal with m
three-by-one blocks. With these selections problem QP(Q, s, A, c) is separable
in the pairs of variables (z;,3), | € M where M = {1,...,m}, and can be
rewritten as

o 1 1
minimize F(z,y) = » (591’2? + 0¥ + g Ty = sfa = sy +€z)
leM

subject to
afri+aly < i€{31-2,31-13l}, le M,

where £ = 3o &1

In the section that follows we exploit the fact that the properties of this
separable version of problem QP(Q, s, A, c) are related to the way the following
m subproblems SQP; (I € M) are constructed

SQP,: minimize 1¢fz? + 1qf v} + g T — sTTi —s{y + &

subject to
afz+aly <o i€ {31-2,31-1,31}.

We also exploit the fact that if (zF,yf) are minima of problems SQF;, 1 € M,
then (zL,yL) = (zF - 2%, yF - -y5)7T is a minima of problem QP(Q, s, 4, c).



3 Problem Construction and Properties.

In this section we define strictly concave, indefinite (bilinear or not) and convex
versions of problem QP(Q, s, A, c¢) by defining specific instances of subproblems
SQP,leM.

3.1 Constructing Strictly Concave Problems.

Our technique for constructing a strictly concave version of problem QP(Q,s, A, c)
involves defining all subproblems SQP;, | € M, using:

‘If=‘1y=4h qu=0, sf:s*;’:s, and

of j=ou, af ;=P and o, = i+ B + i,

ai, ;=14 ,==(B+ 1) and ¢, = 0,

al,;=—(u+1), af ;=1and a, =0,

where, for 6; € {0,1}, we have ¢ = — (4"1‘)1-0', s = 4%q and § = 16%qi,
and where {l, 12,13} = {31 - 2,31 = 1,31}, a1, B € {3/2,2} and a1 # G-

To avoid numerical difficulties in the construction of concave problems with
an exponential number of local minima having distinct function values the inte-
ger parameter L > 0 should be chosen so that if 6; = 0 then —4/-L apd —2.4'-L
are computationally distinguishable from 0 and —oo respectively.

With this data each subproblem SQP;, | € M, becomes

minimize fi(zi, y1) = - (4"[')1—0' {z3/24 4} /2 — 4%z — 4%y + 16% )}
— (@ T @ -+ -4 /2

subject to
az + By < 13/2
zr — (B+Dy <0
—(ar+ 1)z + w < 0.

The properties of this subproblem can be stated in terms of the value of .

When 6; = 0 the point (1,1) = argmax fi(z:, ) is in the strict interior of
the feasible domain ©; and all vertices of ; are local minima. Thus (zf,y) €
{(1,14 a1), (1 + 1, 1),(0,0)} are the local minima. In addition, the restrictions
on a; and f, and the definition of g;, s; and &, guarantee that the objective
function fi(z1, i) takes a unique value (in the interval [—2 -4l-L _41-L]) at each
of these local minima. Specifically, fi(1,1+ o)) = —4'"La?/2, (1 + B1,1) =
—41-Lg2/2 and £i(0,0) = —4/-L_ Figure 1 depicts this case (ie. 6; = 0) when
ar=3/2and B =2.

When 6; = 1 the point (4,4) = argmax fi(z;, u1) is outside the feasible
domain ;. In this case, the vertex of Q; farthest from this point is the
global minimum of problem SQP; and there are no other minima. Specifically,
(z€,yF) = (0,0) with £(0,0) = —16.

To analyze the properties of problem QP(Q, s, A, c) (that result as a conse-
quence of the properties of subproblems SQP;, | € M) we define the following
partitions of the set M: M® = {le M : 6, =0} and M = {le M : 6, = 1}
with cardinalities m® and m! respectively.

Property 3.1 Problem QP(Q,s,A,c) is strictly concave and has 3™ local
minima including an unique global minimum (z%,y%) with function value

F(z¢,y%) = —16m! -2 ) _ 4L
leM®
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Figure 1: SQP, concave with ¢;j =3/2, /i =2 and 6, =0

Property 3.2 Alllocal minima of problem QP(Q, s, A, c¢) have distinct function
values.

Proof. In order to simplify the proof assume, without loss of generality,
that m! = 0.

If M° = {1} the result follows immediately from the uniqueness of f; at the
corresponding local minima (zf,yf). Assume that the result also holds when
M® = {1,...,1}, for some ! € {1,...,m — 1}, and that the largest (absolute)
gap in the value of the objective function F' among the local minima for this
case is denoted by g™3*. The proof that the property holds relies on proving
that g™2* is less than g}“_,_ii‘, where gﬁ_‘i‘ is defined to be the smallest (absolute)
gap in the value of fi;; between all local minima {(:r:f,’,,1 , y,I_',_l)}. In order to do
this, define g%, i = 1,...,l, to be the largest absolute gap in the value of f;

between all local minima {(zF, yF)} and note that

!
gmax = Zg:nax = 23 .4i-L = 4I+1-L _ 41—L.
i=1 i=1
The proof then follows since gf}if = (5/4)4'+!~L > gm2x. O
Property 3.3 If m! = 0 then e = argmaxF(z,y) is interior to the feasi-

ble domain of problem QP(Q,s,A,c), where e is the ones-vector of dimen-
sion n. Otherwise argmax F(z,y) is ezterior to the feasible domain of problem

QP(Q,s,A,c).
Property 3.4 The gradients of the active constraints at all minima of problem
QP(Q,s, A,c) are linearly independent.

3.2 Constructing Jointly Constrained Bilinear Problems.

Our technique for constructing an indefinite (jointly constrained bilinear) ver-
sion of problem QP(Q, s, A, c) involves defining all subproblems SQP;, | € M,



Yi

\l’ i‘-'l"!ﬂ:l
(l-nn.H-o_l) ‘,' /
AT T T e el @ 7
14 fr==ef o T A= -
V. Ty, aizi+(a+1)yi=3ar+1
[ Lo
. L s
RS U IS (et
L
".'.'.'.',f/(air.l/a)
| 7
IRz
o
L
17 T
4 . ]
, | (1,0) 2
4 \
s

! —(ai+l)z1—oyi=—ay—1

1

Figure 2: SQP, jointly constrained bilinear with a; = g

using:

T ¢4 — —_—
qf:q,yzo, qu::s, =s§’-61_land
af, ;| = au, a,yh, =a;+1and ¢, =3 +1,

af,; = —(ar + 1), a,yz., = —q and ¢, = —(a1 + 1),
T Y — o —
al;,' = —a,s’, =Cly; = 1,

where {l;,l2,13} = {31 — 2,31 - 1,31} and &y > 0. Thus SQP, for l € M,
becomes .
minimize fi(z;, y) = iy — 1 —y + 1

subject to
ar; + (+Dy < 3a+1
—(q+ 1)z - ay < —(u+1)
n - w < L

As in the concave case direct observation of figure 2, which depicts problem
SQP, (1 € M) when a; = 1/8, allows the following claims to be made:

e When o; € (0,1/2) the point (zf, yF) = (3/2,1/2), a nonextreme point of
the feasible region €, is a global minima with fi(z{,yf) = —1/4 and the
point (zF, yF) = (1 — a1, 1+ ay), is a local minima with filzF, yF) = —al.

e When oy = 1/2 the points (z&,yf) € {(3/2,1/2),(1/2,3/2)} are both
global minima with fi(zf,yf) = —1/4. The first of these is a nonextreme
point of the feasible region ;.

e When a; > 1/2 the point (zf,yF) = (1 — a1, 1 + &), an extreme point of
the feasible region €, is a global minima with fi(z¢,yf) = —a} and the
point (z£, yF) = (3/2,1/2) is a local minima with fi(zf, ) = —1/4.

The following properties of problem QP(Q,s, A,c), constructed using the
jointly constrained bilinear subproblems SQP;, | € M, are expressed in terms
of the partitions of the set M defined by: M< ={le M : oy < 1/2}, M= =
{leM:a;=1/2} and M> = {l € M : oy > 1/2}, with cardinalities m<, m=
and m> respectively.




Property 3.5 Problem QP(Q,s, A, c) is an indefinite problem (more specific a
Jjointly constrained bilinear problem) with 2™ local minima including 2™ global
minime with function value

m< + m=
po-mEm S
leM>

Property 3.6 The gradients of the active constraints at all minima of problem
QP(Q,s,A,c) are linearly independent.

Property 3.7 If m< > 0 then all global minima of the jointly constrained
bilinear problem QP(Q,s, A,c) are nonezireme points of the feasible domain.
However, if m< = 0 and m™ > 0 then one global minima is an ertreme point.

3.3 Constructing Convex Problems.

Our technique for constructing a convex version of problem QP(Q, s, 4, ¢c) in-
volves defining all subproblems SQP;, | € M, using:

=14 =pm¢g"=0, =3 s =p3", & =(1+p)9"/2 and

af ;= -3, a,yh, =-2and ¢, = —ay,
aj | = -2, a,ya’, = -3 and ¢, = —ay,

T _ g = =
aj,1 =a;,;,=1and c, =3,

where {l1,1l3,13} = {31 -2,31 - 1,31}, 5 < &y < 15/2 and 6; = 1 — pjw; with
pi,wi € {0,1}. Thus SQP,, for | € M, becomes

minimize fi(z1, 1) = z{/2+pyi /2 - 3"z — p3%y + (1 + p1)9% /2
= {(@1-3") +p(w —3")%} /2
subject to
=3z1 - 2y < -o
-2z; - 3y < -o
o+ w < 3
The properties of this subproblem depend on the values of the parameters
91 and pl.

When p; = 1 the objective function fi(z;, 1) has quadratic and linear terms
in both z; and y and 6 can equal either 0 or 1. Otherwise, when p; = 0,
the terms in y vanish and 6; must equal 0. Each of these three possibilities is
discussed in greater detail below.

When p; =1 and 6; = 0 (w; = 1) we have the situation depicted in figure 3
(with ay = 6). In such cases the point (a;/5, a;/5) is the feasible point closest,
in the Euclidean sense, to the point (1,1) = arg min fij(z;, ). Thus the extreme
point (zf,yf) = (a1/5, 1/5) is the unique global minimum with fi(zf,y€) =
(cr/5—1)%/2.

When p; = 1 and 6; = 1 (w; = 0) the point (3/2,3/2) is the feasible point
closest, in the Euclidean sense, to the point (3,3) = argmin fi(zi, ). In such
cases the global minimum is the nonextreme point (z¢, yf) = (3/2,3/2), with
filzf,yf) = 9/4.

Finally, when p; = 0 (implying §; = 1) the objective function of SQP,
becomes fi(z1, ) = (zi — 3)?/2 and the unique global minimum is the extreme
point (zf,yF) = (9 — ay, a1 — 6) with fi(zf,y€) = (6 — a1)?/2.
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Figure 3: SQP; convex with a; =6,6, =0and py =1

In order to state the properties of problem QP(Q, s, A, ¢), which depend on
these various cases, we define the following partition of the set M: M%! =
{leM:6=0andp =1}, M = {Il € M : 6, = 1and pp = 0} and
MY = {l e M : 6 = 1and p = 1}, with cardinalities m®!, m!:* and m!!
respectively.

Using these definitions we make the following observations regarding convex

problem QP(Q,s, A, c).

Property 3.8 Problem QP(Q,s, A, c) has an unique global minimum (=%,¥%)
with function value

F(z%, ) =omb/a+ > (6-wm)?/2+ D (a/5-1)%/2.
leM1o0 leMo.!

This minimum occurs at a noneztreme point of the feasible domain ezcept when
1,1
m> =0.

Property 3.9 The gradients of the active constraints ai (z%,yC) are linearly
independent.

Property 3.10 Problem QP(Q, s, A,c) is strictly convez when m'® = 0.

3.4 Constructing Indefinite Problems.

In order to describe how indefinite instances of problem QP(Q, s, A,c) can be
constructed let set M = {1, ..., m} be partitioned into the three sets M;, M, and



M3, where set M; has m; members (j = 1,2, 3). Assume, for convenience only,
that the sets M;, M, and M3 are nonempty and, without loss of generality, that
M, ={1,..,m}, My = {m +1, .ymmi+my} and M3 = {m; + ma+1,...,m}.
For each | € M define subproblem SQP; as in section 3.1. Similarly, for each ! €
M, and | € M3 define subproblem SQP,; as in sections 3.2 and 3.3 respectively.
In this way problem QP(Q, s, A, c) is composed of m; concave subproblems, m3
jointly constrained bilinear subproblems and mj convex subproblems.

In order to describe the properties of problem QP(Q,s, A, c) that results
from this construction we use the same criteria as used in each of the proceeding
subsections to: partition M; into the two sets M{ and M{ with cardinalities md
and m} respectively; partition M into the three sets MZ, M5 and M3, with
cardinalities ma<, m5 and m3 respectively; and to partition M3 into the three
sets Mo'', M3'® and M}'!, with cardinalities ma!, my° and my"! respectively.

The following properties are exhibited by indefinite problem QP(Q,s,A,c):

Property 3.11 Problem QP(Q,s, A,c) has 3™ . 2™3 local minima including
2m3 global minima with function value

< =
_ 1 1-L _ My +m3 2
F o= -16mi-2) 47F-—2——2- %" qf
leM? leM3
+omit/a+ 3 (6-a)?/2+ Y (a/5-1)°/2.
leM;® leM2?

Thus if m5 = 0 problem QP(Q, s, A, c) has an unique global solution.

Property 3.12 If msg > 0, or if mzl,'1 > 0, then all global minima of the

indefinite problem QP(Q, s, A, c) are nonezireme points of the feasible domain.
However, if my > 0, my = 0 and m;'l = 0, then all but one global minima
occur at nonezireme points.

Property 3.13 The gradients of the active constraints at all minima of problem
QP(Q,s, A, c) are linearly independent.

In order to disguise the separability of problem QP(Q, s, 4, ¢) (and introduce
a random component to the construction) we perform a simple transformation
of variables. This transformation is described in the following section.

4 The Transformed Problem.

For n = 2m define the order-n matrix M = DH where H is a random House-
holder matrix satisfying H = I, — 2vvT, with I, the order-n identity and with
vTv = 1 where v € R" is sparse and random, and where D is a positive
definite diagonal matrix with 2-norm condition number x2(D) = 10% and let
W=M"1=HD!

The following propositions characterize the relationship between problem

QP(Q, s, A, c; and the transformed problem, namely problem QP(MTQM, MTs, AM,c):

Proposition 4.1 Problem QP(Q,s,A,c) in the variables z € R™ is equiva-
lent to problem QP(MTQM, MTs,AM,c) in the variables z € R™ under the
nonsingular transformation z = Wz.



Proof. For z = Mz problem QP(Q, s, A, c) becomes:
minimize F(2) = F(Mz) = -;-ET (MTQM)z —s"T Mz +¢
subject to
[AM]z<c
which is problem QP(MTQM, MTs, AM,c) in the variables Z € R". O

Proposition 4.2 Suppose that there ezists u € R" : Au < ¢ such that
F(u)-F(2) <0

forall{z € R™:z# u, Az < ¢, |lu—z||2 < €} for some € > 0 (ie. u is a strong
local minimum of problem QP(Q, s, A,c)). Then Wu is a strong local minimum

of problem QP(MTQM, MTs, AM,c).

Proof. We have [AM]Wu = Au < c which establishes the feasibility of the
point Wu for problem QP(MTQM, MTs, AM, c). Now for the points {Z € R" :
z# Wu, [AM)z < ¢, ||Wu - 2||2 < ¢/||M]|2} we have

||M(Wu — z)||2 where Mz = 2
IM|[2||Wu — 2|2
€, with z # u,

llu — =l[2

IANIA I

which by the assumption of the proposition implies that F(u)—F(z) < 0. Thus,
by proposition 4.1, we have F(Wu) — F(Z) < 0, where z = W2z. O

Using a similar argument we can establish the following proposition:

Proposition 4.3 Ifi € R" is a strong local minimum of problem QP(MTQM,MTs,AM,c)
then M is a strong local minimum of problem QP(Q,s, A,c).

Thus 26 = Wz€ is a global minima of problem QP(MTQM, MTs, AM,c)
provided z6 € R" is a global minima of problem QP(Q, s, 4, c) and this one-
to-one correspondence holds for all minima.

Remark 4.1 Two parameters of the transformation have a direct influence on
the structure of the problems generated. The sparsity of the vector v controls
the sparsity of M (and consequently the sparsity of the data that defines problem
QP(MTQM,MTs, AM,c)) and the spectrum of D influences the spectrum of M
(and consequently affects the spectrum of MTQM and the geometry of problem
QP(MTQM,MTs, AM,c)).

The next two propositions help clarify these relationships.

Proposition 4.4 If 7 € [1,n] equals the number of nonzeros in the Householder
generator v then the transformation matriz M has, at most, ny = 7 +(n—-1)
nonzeros. Similarly, the matriz AM has, at most, 39y nonzeros and the matriz
MTQM has, at most, Ty nonzeros, where 7 =1 (alternatively 7 = 2) when
my=0 (mz >0 )

10



Proposition 4.5 The following relationship ezists between the 2-norm condi-
tion number of matriz MTQM and the magnitudes of dj, gi and ¢/, 1€ M.

ko(MTQM) = ko(HDQDH)
= r2(DQD)
K2(B)

where B = diag(B; - -- By), a symmetric permutation of DQD, is a block di-
agonal matriz with B; = diag(dqf,d2,,q]), when | € My U M3, and By =
skew(didm+1, didm41) (where the operator skeu(-) infers the skew diagonal), when
le M.

Thus ko(MT QM) = Brax/Bmin, where

Bmax = ma‘x{{dlzlqﬂ:drzn+l|qy| :le M, U M3} U {dldm+l e Mz}} )

Bunin = min { {@?1gF|, d%y/la?] : 1 € My UMs} U {didmar : 1 € Ma}},

and where (by convention) ka(MTQM) = co when Bpin = 0 (ie. if, and only
if, my' =0).

Furthermore, if A is an eigenvalue of the matriz DQD with corresponding
eigenvector € then X is an eigenvalue of MT QM with corresponding eigenvector
HCA.

Remark 4.2 When problem QP(Q, s, A, c) is bilinear the transformed problem
QP(MTQM,MTs, AM,c) is indefinite but not bilinear (since, unlike M, the
matriz MTQM is not skew block diagonal). In order to preserve jointly con-
strained bilinear problems the transformation has to be modified so that the trans-
formation matriz M is block diagonal with two order-m blocks. This is easily
accomplished by setting M = diag(M*, MY) where M* and MY are two order-m
transformation matrices constructed using the process previously described. If
the Householder generators for M* and MY have the same zero/nonzero pat-
tern with ) € [1, m) nonzeros each then M and MT QM will have, at most, 2nps
nonzeros, where Ny = n®+(m—n), and AM will have, at most, 3nps nonzeros.

5 Special Considerations for Large-scale Test
Problems

Problem QP(MTQM, MTs, AM, c) has n (= n;+n, = 2m) variables, y (= 3m)
constraints and no more than 77y quadratic terms in F, where 7)s is defined
as in section 4 and 7 = 1 (alternatively v = 2) when mz = 0 (m2 > 0).

In order to produce large-scale test problems suitable for some solution tech-
niques it may be desirable to reduce either v/n or r/n (or both).

One way of reducing the ratio y/n is to reduce the number of constraints
(ie. reduce v). This can be accomplished by eliminating any (or all) noncrucial
constraints in each of the subproblems SQP;, | € M; U M3, used in constructing
problem QP(MTQM, MTs, AM,c). Here noncrucial should be interpreted to
mean those constraints that are nonbinding in all global and local solutions of
the corresponding subproblems.

Another possibility, which also reduces the second ratio rna/n, is to in-
troduce additional two-variable linear subproblems (into the construction of
problem QP(Q, s, A, ¢)), say SQP, in (z;,y) for | > m, having linear objective
functions and fewer than 3 linear constraints in each of the two-variable pairs
(1, y1) respectively.
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The one drawback to both of these approaches is that the feasible region of
problem QP(MTQM, MTs, AM,c) will no longer be closed.

Another aspect of the technique that may be significant when constructing
large-scale problems has to do with the integer parameter L associated with
concave subproblems (see section 3.1). This parameter limits the size of m® =
m{ which, in turn, controls the number of local minima. In this sense, increasing
L (and mP) allows for greater problem complexity. Unfortunately, there is an
upper bound on L that results from the restriction given in section 3.1. This
restriction can be relaxed in several ways while maintaining the integrity of the
proposed approach. One way, which is in keeping with the proof of uniqueness
given for property 3.1, involves redefining subproblem fi, I € MY, to be:

fiznw) = — (375" {(=1 - 3%)2 + (w = 3")?} /2,

setting oy, 1 € {\/5,2}, a # P and choosing L so that —3-L and -2-3'-L
are computationally distinguishable from 0 and —oco. (The disadvantage of this
approach is that it involves working with V/3.) Another approach, with its
foundation in number theory, involves removing L from the formulation and
redefining the parameters (qi,51,&1), | € M 0 so that the relationship between
g™2* and g{"_‘f{‘ (as defined in the proof of property 3.1) is maintained.

6 A Simple Example.

The following example demonstrates how this method can be used to generate
quadratic programming problems.

Suppose the following values were chosen:
m=3, n=2m=6, m =2, my=1, and m3 =0.

This would yield a problem with 6 (= 2m) variables and 9 (= 3m) constraints.
The untransformed problem would be composed of m; = 2 concave subproblems
(one in variables z; and y1 and the other in z3 and y2) and m; = 1 indefinite
(jointly constrained bilinear) subproblem (in variables z3 and y3). Consequently
the overall (separable) untransformed problem would be an indefinite quadratic
programming problem.

Suppose that, in addition to these values, the following data was used for
the remaining parameters for the two concave subproblems:

a; =15, f1 =2, az =2, 2 = 1.5, 6 =6;=0and L =1,
which correspond to m? = 2, m! =0, (q1,51,&) = (-1,—1,-1)and (2, 2,€2) =
(—4, —4,—4), and that the remaining parameter (for the indefinite subproblem)
is a3 = 0.5, which corresponds to m5 =m3 =0and m7 = 1.

The untransformed indefinite quadratic programming problem, problem QP(Q, s, 4, c),
that would result from these specifications would be:

minimize F(z,y) = -%(:1 -1) - %(y1 —1)2 = 2(z2 — 1)? = 2(y2 — 1)?

+z3y3 —z3—ys+1
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subject to

6.5
0
0
6.5

1.5z, + 2y;
T - 3u
—2.5z, + wn

2z, + 1.5y2

T - 2.5y2 0

=3z, + ¥ < 0

0.5z3 + 15y3 < 2.5

—1.51:3 - 0.5y3 S -1.5

I3 - Y3 _<_ 1.0.

ANINIANININIA

Since m; = 2 and my = 1 this problem has (3™ .2™2 =) 18 local minima in-
cluding (2™ =) 2 global minima; namely (z%,3¢)=[3 1 15 1 3 0.5]
and (z6,3°) =[3 1 05 1 3 1.5 ] with value F(2%,y%) = —(1/2)4 -
(2)4 - (1/4) = —41/4.

If the following data was used in the transformation:

vT=[05 0 07 01 05 0]
D = diag(50, 10, 10, 50, 10, 10).

then the resulting transformed indefinite quadratic programming problem, prob-
lem QP(MTQM, M7Ts, AM, c), would be:

 17[-750 0 700 350 700-707 [ % ]
%o 0 —400 0 0 0 0f] 2
o 1| s 700 0-1470 140-770 2| | zs
minF(z,5) = 3| 3 350 0 140-2430 140-14| | %
2 700 0 =770 140-750-70| | %
7 -70 0 2 -14 -70 0] | # |
F 70717 2 ]
—40.0 E %)
_ 70.2 I3 —4
—41.4 o
3.0 Y2
L 10.0 J | Y3 |
subject to
27.5%, — 66.5%3 + 90.5§; — 47.57, < 65
40.0z, — 14.0z3 — 152.0%; — 10.0y. < 0.0
—67.5%, + 80.53 + 61.5§; + 57.5%, < 0.0
—75%  20%; — 10.553 — 15§ + 7.5§» < 65
12.5z, 102, + 17.5Z3 + 2.54 — 12.5%, < 0.0
—5.0%, — 308, — 7.023 — 1.0§1 + 5.0% < 0.0
—3.5%, + 0.1%5 — 0.75; — 3.552 + 1555 < 2.5
10.5%, - 03%3+ 214 + 1055, — 5§3 < —1.5
—7.0%, + 0233 — 14§ — 7.05, — 10§s < 1.0.

The two (transformed) global minima for problem QP(M TQM,MTs, AM,c)
are: (£6,3%) = [ —0.277 0.1 —0.2518 —0.0374 0.013 0.05 ]and (£¢,3%) =
[ -0.157 0.1 -0.2538 -—0.0234 0.083 0.15 ] with value .7"(:EG,§G) = —41/4.
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7 Concluding Remarks.

Care must be exercised in the testing and benchmarking of algorithms and in
the interpretation and dissemination of the corresponding results [4, 5, 14]. Part
of the challenge is in selecting a set of problems on which the experiments will
be conducted. This paper describes a computationally efficient and unified ap-
proach for generating a broad range of quadratic programming test problems
with a number of user adjustable features including; the problem size and den-
sity, the number and type of minima and the geometry and curvature of the
objective. A Fortran 77 code that implements this approach can be obtained
by sending an e-mail request to

phcalamai@dial waterloo.edu
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