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Abstract

This paper presents an efficient algorithm for computing the procedure call graph, the pro-
gram representation underlying most interprocedural optimization techniques. The algorithm
computes the possible bindings of procedure variables in languages where such variables only
receive their values through parameter passing, such as Fortran. We extend the algorithm to
accommodate a limited form of assignments to procedure variables. The resulting algorithm
can also be used in analysis of functional programs that have been converted to Continuation
Passing Style.

1 Introduction

Although most compilers optimize procedures as separate units, there is increasing evidence that
optimization across procedure boundaries can yield significant improvements in program execution
times. Interprocedural analysis and optimization have proven to be important to automatic par-
allelization of loops containing procedure calls [TIF86, LY88, EB91, HK91, HKM91, McK92], en-
hancing memory hierarchy performance [BCHT90, McK92] and compiling for distributed-memory
multiprocessors [HHKT91]. The above research focuses on analyzing languages used by scientific
programmers, usually Fortran. However, interprocedural optimization is perhaps even more impor-
tant for functional languages, where functions are small and calls occur quite frequently. This idea
inspired research in applying traditional data-flow analysis to functional languages; in this context,
data-flow analysis must be formulated as an interprocedural problem [Shi91a].

Any technique performing analysis or optimization across procedure boundaries requires some
underlying representation of the program structure. Most often the structure used is the call
graph, a static structure describing the dynamic invocation relationships between procedures in a
program. A node in the call graph represents a procedure (or function), and an edge (p — q) exists
if procedure p can invoke procedure g. Note that the call graph is actually a multigraph since each
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static invocation from p to g is represented by a distinct edge; for historical reasons, we refer to it
as a graph.

The approach to building the call graph depends on the language being compiled. When all
invoked procedures are statically bound to procedure constants, the call graph is constructed in a
single sweep over the procedures and call sites in the program. For languages where dynamically
bound calls can occur, the compiler must perform analysis to determine all possible bindings for
invoked procedures. We call this problem call graph analysis. Dynamically bound calls result from
a number of language features including the parameter passing mechanism and variable assignment.
In this paper, we focus on the first case, supporting languages where dynamically bound calls arise
from invocations of procedure-valued formal parameters that only receive their values via parameter
passing. We extend the algorithm to provide a simple solution when assignment to procedure-valued
variables is allowed.

Our algorithm produces essentially the same call graph described by other less efficient al-
gorithms [Spi71, Wal76, Wei80, Bur87, Shig88]. More precise algorithms exist, but they may be
prohibitively expensive depending on the language features [Ryd79, CCHK90, Shi91b]. While most
of these approaches were designed for imperative languages, Shivers proposed an approach for
analyzing control flow of Scheme in Continuation Passing Style (CPS) form.

The paper is organized into nine remaining sections and a conclusion. The next section explains
how CPS-conversion can be used to make the algorithm applicable to a wider variety of languages.
Section 3 provides a description of the call graph analysis problem. Section 4 presents the algorithm,
and Section 5 gives an example that exercises all of its steps. Section 6 proves the algorithm is
correct, and Section 7 presents its time complexity. Section 8 briefly describes an implementation of
the algorithm. Section 9 shows the extensions needed to handle assignment to procedure variables.
Section 10 discusses previous work, including an in-depth comparison with the precise algorithms.

2 Continuation Passing Style and Analyzing Scheme

Continuation Passing Style provides an intermediate program representation where all transfers
of control are represented by tail recursive procedure calls [Fis72, Rey72]. A procedure is passed
a continuation as one of its parameters. A continuation is another procedure representing the
position in the code in which to transfer control; rather than returning, a procedure simply invokes
its continuation on exit.

Shivers provides a formulation of control flow analysis in Scheme, analyzing a program after
CPS conversion [Shi88]. CPS conversion eliminates procedure-valued returns, replacing them with
invocations to a formal parameter. The call graph analysis algorithm presented in this paper,
while designed to analyze languages where the only dynamically bound procedure calls are through
procedure-valued formal parameters, can also analyze languages with procedure-valued returns
after CPS conversion.



This point is illustrated with the following example. Here, assume that the language has call-
by-value parameter-passing semantics.

program main function a(f) procedure c(f)
call c(a(print)) return f call f(1)

In this program, the function call a(print) is evaluated, and the result is passed to c. The return
value is the procedure print, which ¢ subsequently invokes. A CPS form for this code segment is

as follows.
program main procedure a(f, g) procedure m-c (f) procedure c(f)
call a(print, m-c) call g(f) call c(f, K) call f(1, g)

We have added the procedure m-c to represent the control flow following the call to a. The function
a is now a procedure that passes its return value to its continuation. The continuation invokes c
with this parameter and passes the top continuation K to ¢, which ¢ passes along to the function
it invokes. In this form, determining the value of ¢’s invoked formal f (and the continuations for a
and c) involves simple analysis of the parameter passing in the program.

The observation that CPS conversion permits call graph analysis to consider only parameter
passing of procedure values is due to Shivers. Once the connection between the two problems was
understood, we became interested in applying our algorithm to analyzing Scheme. However, there
were some additional issues to be addressed. First, Shivers allows assignments to data structures,
so it is possible to store a function in a data structure and later retrieve and invoke it. We provide
a simple extension to the algorithm to accommodate assignments in Section 9, which is at least as
precise as what Shivers suggests. Second, he analyzes incomplete programs where some functions
can be invoked by the external environment and invocations appear to external functions. We
ignore this issue in the rest of the paper. It should not be any more difficult to deal with incomplete
programs as long as we can determine which functions can be invoked by the external environment.

3 Simultaneous Equations

We can determine the structure of the call graph by simulating the parameter passing during
execution. For a given procedure formal pf, we calculate the set Boundto(pf), the procedure
constant bindings for pf. For some call site invoking formal pf, Boundto(pf)is the set of procedures
that may be invoked at the call. Let pc represent a procedure constant and pf, a procedure formal
of procedure p. Then, the Boundto sets can be described with the following simultaneous equations.

Boundto(pc) = {pc}
Boundto(pf,) = Ue invokes p Boundto(Passed'(pfp,c))

The above equations indicate that a procedure constant has itself as its only binding. A procedure
formal receives bindings from the actual parameters passed to it at calls invoking the procedure in
which it appears. The function Passed provides the procedure formal or procedure constant passed
to pfp at call site c. Passed’is a slight modification to Passed needed to improve the precision of

the algorithm. The equation for Passed’is as follows.



Passed' (pfp,c) =

{r} if pf, is invoked at ¢ A Passed(pfy,c) = pf,
Passed(pfp,c) otherwise

To understand the difference between Passed and Passed’, consider a procedure parameter pf, with
multiple values in its Boundto set, one of which is p. If pf, is invoked at call ¢ and also appears
as the actual parameter passed to pf,, Boundto(Passed(pfp, c)) would include all of the values in
Boundto(pf,). However, we know that p can only be invoked at this call when pf, has binding p,
so we are introducing imprecision by propagating bindings other than p to p fp-

These simultaneous equations could easily be formulated into a simple iterative algorithm for
call graph analysis, but the resulting solution requires reanalysis on the graph each time a new
binding is located for an invoked procedure variable (i.e., a new edge is added to the call graph).
Several algorithms presented in Section 10 suffer from this inefficiency. Instead, our algorithm
propagates new bindings on demand as they are located.

4 Algorithm

The algorithm for call graph analysis is given in Figure 1. The procedure InitializeNode is called
on a newly reachable procedure to initialize the Boundto sets for its procedure parameters and to
locate entries for Worklist. It recursively calls itself to initialize procedures that become reachable
through statically bound edges. By initializing procedures only as they become reachable, we ensure
that procedure parameter bindings result only from reachable call chains.

The main algorithm Build relies on a list of pairs Worklist. A pair (a,pfp) is in Worklist if a can
be bound to pf, through parameter passing along some chain of calls and a is possibly not yet in
Boundto(pf,). Initially, Worklist contains those pairs representing bindings from statically bound
calls; that is, a would be the actual parameter passed to pf, at some call to p. The job of Build is
to propagate bindings for procedure formals at statically bound calls, and handle both procedure
constants and procedure formals at dynamically bound calls.

When a pair (a,pf,) is removed from Worklist, we must examine all call sites in procedure p,
looking for uses of pf,. There are three distinct situations that may arise at each call site.

1. The call site is statically bound.
Then, pf, may appear as an actual at the call; the binding a is propagated to the correspond-
ing parameter of the called procedure (step 1 of the algorithm).

2. The call site is dynamically bound, but invokes some formal other than pf,.
Again, pf, may appear as an actual at the call; the binding a is propagated to the corre-
sponding parameter of all procedures currently bound to the invoked formal (step 1).

3. The call site invokes pf,.

We propagate procedure constants at the call to the corresponding formals of a (step 2b). We
also propagate known bindings for the other procedure formals appearing at the call to the



/* Add a reachable node and all of its statically bound edges */
procedure Initialize N ode(p)
add p to Nodes
foreach formal procedure parameter pf,
Boundto(pf,) — 0
foreach call sitec=(p—¢q)inp
if ¢ is a procedure constant then
if ¢ € Nodes then call InitializeN ode(q)
add edge (p — ¢) to call graph
foreach procedure constant pc € WalkConstants(c)
foreach pf, in isPassed(pc,c,q)
add (a,pf;) to Worklist
end /* InitializeNode */

/* Build call graph starting at root procedure */
program Build

Worklist — 0

Nodes — 0

call InitializeNode(main)

while Worklist # 0

select and delete a pair (a,pf,) from Worklist
if a ¢ Boundto(pf,) then

add a to Boundto(pf,)

foreach call sitec=(p—¢)inp

(1) if ¢ # pfp then
foreach b € Boundto(q)
foreach pf, € isPassed(pfp,c,b)
add (a,pfs) to Worklist

(2) else /* pf, is invoked at the call */
if a € Nodes then call Initialize N ode(a)
add edge (p — a) to call graph
foreach procedure-valued actual pa € WalkActuals(c)
(2a) if (pa = pfp) then
foreach pf, € isPassed(pfp,c,a)
add (a,pfs) to Worklist
(2b) else
foreach procedure constant pc € Boundto(pa)
foreach pf, € isPassed(pa,c,a)
add (pc,pf.) to Worklist
end /* Build */

Figure 1 Algorithm for call graph analysis.



corresponding parameters of a (step 2b). In the special case that p f» appears as an actual at
the call, we propagate a to the corresponding formal of a (step 2a).

Steps 1 and 2 of the algorithm complement each other. If we receive a binding b for formal pf
passed at a dynamically bound call before bindings for the invocation, step 2b will propagate b
when bindings for the invoked formal become available. If we receive a binding for an invoked
formal before bindings for the formals passed as actuals at the call, step 1 propagates bindings for
the actuals as they become available.

The algorithm relies on a few definitions. First, isPassed is the inverse function for Passed. For
a procedure formal pf, that appears in one or more actual parameter positions at call site ¢ in p,
isPassed(pf,, c,b) returns the corresponding formal parameters of procedure b. If ¢ is a dynamically
bound call, then b is in the Boundto set of the invoked procedure formal. For convenience, we also

define two iterator functions.

WalkConstants(c): the set of procedure constants passed as actual parameters at call ¢
WalkActuals(c): the set of procedure-valued actual parameters passed at call ¢

5 An Example

This section works through the steps of the algorithm to make them clearer. Consider the following

program.
program main procedure a(fi, f2) procedure b(f3, fs)
call a(b,c) call b(a, f2) call f3(f3,d)
call fi(f1, f2) call fy

The initialization step locates the passing of procedure constants in main at the call to a, and
further, in a at the call to b. The initial Worklist entries are {(b, f1), (¢, f2), (@, f3)}, and the initial
edges are (main — a) and (a — b).

Now the pairs on Worklist are processed. The steps are as shown in Figure 2. Each Worklist
entry is annotated with the step of the algorithm that caused it to be added. After the last step
shown in Figure 2, the remaining pairs on Worklist are {(b, f3),(d, fa), (a, fi), (¢, fa), (d, f2)}, all
of which have already been processed by the algorithm. The algorithm terminates with the final
values for Boundto and the resulting call graph as shown in Figure 3.

6 Proof of Correctness

Lemma 1 The algorithm Build terminates after no more than ¢, EP iterations of the while loop.

Proof. Each iteration of the while loop removes a pair from Worklist. Each addition to Worklist
represents the propagation of a new binding of a formal procedure parameter along a distinct edge.
Let E be the number of edges in the final call graph. (We refer to an edge rather than a call since
a dynamically bound call generates a distinct edge for each of its bindings.)



Process (b, f1): Process (c, fs):
Boundto(f;) «— {b} Boundto(fy) « {c}
add edge (a — b) to call graph add edge (b — c) to call graph
add (b, f3) to Worklist (1)
Process (d, f2):

Process (c, fa): Boundto(f;) « {c,d}
Boundto( f2) — {c} add (d, f4) to Worklist
add (c, f4) to Worklist (added twice) (1)

(really added twice) (1)
Process (a, fi1):

Process (a, f3): Boundto(f,) « {b,a}
Boundto(f3) — {a} add edge (a — a) to call graph
add edge (b — a) to call graph add (a, f1) to Worklist (2a)
add (d, f2) to Worklist (2b) add (c, f2) to Worklist (2b)
add (a, fi) to Worklist (2a) add (d, f2) to Worklist (2b)

Process (b, f3): Process (d, f4):

Boundto( f3) — {a,b} Boundto(fs) « {c,d}

add edge (b — b) to call graph add edge (b — d) to call graph
add (d, f4) to Worklist (2b)
add (b, f3) to Worklist (2a)

Figure 2 Steps of algorithm for example program.

For each edge, the maximum number of pairs added to Worklist is equal to the number of
unique bindings of the procedure formals appearing as actual parameters at this call. Let P be
the number of unique procedure constants passed as parameters in the program. If we assume a
procedure has at most ¢, parameters, where c, is some small constant, then the number of pairs
added to Worklist as a result of a single call site is O(c, P). Thus, the number of pairs added to
Worklist and the number of iterations of the while loop are bounded by O(c,EP).

Lemma 2 The algorithm Build constructs the portion of the static call graph reachable from the
root node through statically bound calls before entering the while loop.

The proof is obvious from the definition of InitializeNode.

Lemma 3 The algorithm adds a pair (a,pf,,) to Worklist if and only if through some chain of

C. C o
calls ng = ny = ... = n,, a is bound to pfn,, atcm.

Proof.
=: By induction on the while loop iteration count.

Basis. By Lemma 2, on entry to the while loop Worklist contains the set of pairs (a,pfp,) such
that procedure constant a is passed directly to pf, at some statically bound call site invoking p.



main

Boundto(f1) = {b,a}
Boundto( f3) = {c,d}
Boundto(f3) = {a, b}
Boundto( fs) = {c,d}

Figure 3 Resulting call graph and Boundto sets from example.

Induction. Assume the lemma is true after the first n iterations of the loop. The pair (a,pfp)
selected on iteration n + 1 must then be an element in the final set Boundto(pf,). If the binding
has already been propagated, we ignore this pair and continue to the first iteration that contributes
a new binding.

The proof follows from considering what Worklist pairs are generated by the new binding. We
visit each call site in p such that pf, is either invoked or is an actual parameter. The propagation
at these calls corresponds to the rules set forth in Section 4. In each case, it can be shown that
for any generated Worklist pair (pf,b), b € Boundto(pf) is true. (A detailed proof can be found
elsewhere [Hal91].)

If pf, is invoked, then a may have become a reachable procedure as a result of this call. In
this case, InitializeN ode will add bindings from any static calls through a. That these statically
bound calls are correctly processed follows from Lemma 2.

<: By induction on the length of the call chain.
Basis. The only length-0 call chain just contains the root node, which contributes no bindings.
Induction. Assume that for every call chain ng — ... —=» n,, of length m, pairs (a, fr,,) are

inserted into Worklist representing bindings for the formal parameters of nm. Let ng —> ny —

o 22 ™4 11 be some call chain in the program. By the induction hypothesis, all bindings
for the procedure formals of n,, that result from this call chain have been inserted into Worklist.

Consider the effect of propagating bindings of n,,’s formals to nn,4; across call cp41. If et

is a dynamically bound call invoking some formal f,,,, then one binding for f,, must be nm41.

By the induction hypothesis, the pair (m+1, fn,,) must have been added to Worklist when actuals

passed at c,, were propagated to n,.



Bindings for all other formals of n,, through this call chain arise from the procedure constants
and procedure formals passed as actuals at cm41- For actuals that are procedure constants, the
bindings are either added by InitializeNode (if cm41 is statically bound to ny,41) or during pro-
cessing of the pair (m+1, fam). Actuals that are procedure formals of 7, will contribute their
bindings once they are processed. By the induction hypothesis, all bindings for formals of n,, have
been added to Worklist, and by Lemma 1, will eventually be processed. O

Theorem 1 Build correctly calculates the Boundto sets as defined in Section 3, and as a result,
correctly computes the call graph for any input program.

Proof. By Lemma 1, the algorithm terminates, and by Lemma 2, InitializeNode correctly builds
the static portion of the call graph. Lemma 3 establishes that bindings for procedure parameters
are correctly determined based on parameter passing along chains of calls in the graph. With these
bindings, edges representing dynamically bound calls are correctly added to the graph. Since we
have shown that both statically and dynamically bound calls are correctly added, we have the
desired result. O

7 Time Complexity
Theorem 2 The entire call graph analysis algorithm is bounded by O(N + EP) time.

Proof. The procedure InitializeNode examines a procedure’s call sites once for each formal pro-
cedure parameter. It is invoked once for each node in the final call graph. Let ¢, be the max-
imum number of procedure parameters of any procedure. Then the initialization step requires
O(cp(N + E)), where E and c, are as before, and N is the number of nodes in the final call graph.
We assume c, is bounded by a small constant and omit it in the remaining discussion, consistent
with assumptions made in other work [CK88, CK89)].

The procedure Build processes a Worklist entry on each iteration of the loop. Lemma 1 asserted
that the number of pairs appearing on Worklist is bounded by O(EP). Consider the number of
unique pairs on Worklist. As part of the processing of a pair (a,pf), the procedure constant a
is added to the Boundto set of the procedure parameter pf. If this pair is ever selected from
Worklist again, it will not be processed since a already appears in Boundto(pf). Thus, the number
of iterations of the while loop that proceed past the initial test is no greater than the number
of possible pairs in Worklist. These are ( procedure constant, procedure parameter ) pairs, so the
bound is O(N P). Since the number of unique Worklist pairs for a given procedure is bounded by
P, in the for loop we visit a distinct call site O(P) times. As a result, examining call sites takes
O(EP) time.

Consider the inner loops that propagate newly determined bindings of procedure parameters.
Each operation inside these loops adds pair to Worklist. These steps are then bounded by the size
of Worklist or O(EP).



8 Implementation Results

The algorithm has been fully implemented. It provides the basis for interprocedural optimization
in ParaScope, an environment designed for supporting scientific Fortran programmers [CCH*88].
The research in ParaScope has focused on aggressive compilation of scientific Fortran codes for a
variety of architectures and has pioneered the incorporation of interprocedural optimization into
an efficient compilation system.

The call graph algorithm was largely implemented directly from the presentation here. There
is one interesting difference worthy of note. As we locate a call invoking a procedure formal during
initialization, we add a dummy node to the call graph to represent the call. We add an edge from
the caller to the dummy node. During propagation, when a new binding is located for the procedure
formal, we add an edge from the dummy node to the procedure that is potentially invoked at the
call.

This indirection has no effect on the results of interprocedural analysis, but it simplifies queries
on the call graph. When an invoked procedure formal has multiple bindings, a single call through
the formal corresponds to multiple edges in the graph based on the algorithm in Figure 1. Queries
about the interprocedural information at the call would need to examine each edge and form the
meet of the information. By adding indirection, a call with multiple bindings corresponds to a
single edge from the caller to the dummy node. The queries need only examine the information at
this edge.

9 Extensions for Assignment to Procedure Variables

We propose a simple approach to analyzing assignments that is at least as precise as the Shivers
definition. In the following discussion, we consider assignments of the form a = b, where a is a
procedure variable and b is either a procedure constant or a procedure variable.!

9.1 Extensions to the Algorithm

Let us define a set 4 containing those procedure constants that may be bound to any procedure
variable through assignment. 7 is initialized by a preliminary examination over all the procedures
in the program, adding procedure constant pc to 7 if pc appears as the right-hand operand of an
assignment or if it appears as an actual parameter at a call site.

Once v has been initialized, the algorithm proceeds as before with a few minor changes. During
InitializeNode, we need to incorporate three changes.

1. While examining the actual parameters at statically bound calls, we look for procedure vari-

ables that are not formals. We treat these as procedure constants, adding the appropriate
pairs to Worklist for each of the bindings in 7.

1Shivers instead restricts assignment to data structures via primitive functions such as “cons.” The above analysis can
be made equivalent by considering the side effects due to such operations as the left and right sides of an assignment.
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2. We look for dynamically bound calls invoking procedure variables that are not formals. We
treat the invocations as statically bound calls to each of the procedure constants in 7, adding
the appropriate Worklist entries as dictated by the initialization algorithm.

3. We examine the procedure for assignments to procedure-valued formal parameters. These
formals may receive their values either from parameter passing or assignment. When such a
procedure formal pf is located, we add the pairs (pc, pf) to Worklist for each of the procedure
constants in 7.

During propagation, we make the following two changes.

1. When iterating over the calls in Build, if the call invokes a procedure variable ¢ that is not a
formal, we assume Boundto(g) = v and perform step 1 of the algorithm.

2. When propagating a new binding for a procedure formal that is invoked at a dynamically
bound call, we may encounter in the actual parameter list some procedure variable pv that is
not a formal. In such instances, we assume Boundto(pv) = v and execute step 2b accordingly.

A call invoking a procedure variable generates |y| = P edges in the graph. However, because
E represents the edges in the final graph, the time complexity for the propagation algorithm is
still O(N + EP). We have added an additional initialization cost to locate elements of v and to
examine assignments to procedure variables, but these can be accomplished in a single pass over

each procedure in the program.

9.2 Further Extensions for Increased Precision

This simple algorithm extension differs from the rest of the paper in that we add elements to ¥y
from every procedure, without proving that the procedure is reachable. We also assume that any
procedure constant passed as a parameter may eventually be propagated to a variable appearing
on the right-hand side of an assignment. Both these assumptions allow the changes to the original
algorithm to be small but also introduce imprecision into the call graph.

We can improve precision while maintaining the same time complexity by constructing v during
propagation. This involves propagating new values for 4 through previously located calls and
tracking values of procedure formals that appear on the right-hand side of assignment statements.

Much greater precision is possible if we maintain separate 7 sets for each procedure vari-
able [Wei80]. Weihl’s approach could be made even more precise by analyzing control flow within
procedures, using something similar to constant propagation (but with U as the meet function
rather than N) [Kil73]. However, separate 7 sets mean that we must propagate an additional O(V)
global procedure variables on Worklist and track newly propagated bindings through the assign-
ments in the procedure. Examining control flow within the procedure will prevent initialization
from being performed in a single pass over each procedure. These changes greatly increase the costs
of the algorithm.

11



10 Comparison to Other Work

This section reviews the literature on call graph analysis. We consider several algorithms that
compute essentially the same call graph, but less efficiently. We also compare against the costs of

more precise solutions.

10.1 Iterative Algorithms

Several algorithms have been proposed that iteratively evaluate a set of simultaneous equations
(similar to those in Section 3). When a new binding is located for an invoked procedure variable,
an edge is added to the graph. The entire graph is reanalyzed in case bindings along this edge
affected the solution elsewhere. The worst case number of times for performing analysis is O(PE,),
where E, is the number of dynamically bound call sites appearing in the program. This bound
represents all possible bindings for all dynamically bound call sites. For each of the following
algorithms, the time complexity for a single stage of analysis must be multiplied by O(PEj) to
derive the complexity of the algorithm.

Walter describes the call graph using boolean relations on the procedures, performing transitive
closure and composition of the relations on each cycle [Wal76]. Weihl extends Walter’s method
to handle aliasing, assignment and pointer manipulation [Wei80). Spillman presents a bit matrix
formulation to analyze PL/I that is at least O(N + E) for each cycle [Spi71]. Burke presents an
interval analysis formulation [Bur87]. One cycle of interval analysis and updates requires O(NE,+
dE) steps [Hal91]. Shivers describes his approach by defining simultaneous set equations, without
presenting an algorithm [Shi88].

10.2 Precise Algorithms

Ryder describes an algorithm to propagate simultaneous bindings of values to procedure param-
eters [Ryd79]. The algorithm computes a call graph that is precise, assuming all call sites are
invoked. It makes only a single forward pass over the program, but it cannot analyze languages
permitting recursion. We converted Ryder’s algorithm to analyze recursive programs using a work-
list approach similar to the one presented here [CCHK90]. Shivers also presents more precise
versions of his algorithm, but he retains a bounded amount of path information and propagates
the information that is unique to each path [Shi91b]. Retaining these paths increases the cost of
the algorithm and bounding the length of the paths reduces the precision.

The time complexity of the precise algorithm is bounded by the number of simultaneous bind-
ings of procedure formals across all procedures in the program. If ¢, is the maximum number
of procedure formals for any procedure, the algorithm is bounded by O(N + EP¢°) time. Even
with the assumption that c, is a constant (used in the previous analyses), the algorithm is still
polynomial in the size of the graph. Depending on language features, P°? could be too large for
efficient execution of the algorithm. In particular, for a program that has been converted to CPS
form, a parameter is added for the continuation so ¢, is increased by 1; P is increased to include

12



Figure 4 Call graph generated by precise method, with additional edges added by new
method shown in dashed lines.

all the continuations in the program.
The difference in the precision of the algorithms is illustrated by the following example.

program main procedure p(e, f) procedure a(g) procedure c(h)
call p(a,b) call e(f) call g call h
call p(c,d)

The call graph for this example is shown in Figure 4. The solid lines show edges added to the graph
by either method, and the dashed lines represent additional edges added by the new method.

The extra edges are added because the new algorithm tracks the bindings for the formals
individually, while the precise algorithm maintains simultaneous bindings contributed from each
call. Thus, the new algorithm produces a less precise graph whenever there exist two distinct calls
to a procedure propagating bindings where at least two of the bindings for the formals differ.2

11 Conclusion

This paper has presented a very efficient algorithm for calculating the call graph in the presence of
procedure-valued parameters, with a simple extension to handle assignment to procedure variables.
The algorithm is efficient because it is demand-driven: as they become available, new values for
procedure variables are propagated only to the points that they affect. The algorithm can be
used to analyze a broad range of languages. We have implemented the algorithm as part of an

2The precise algorithm can be thought of as a specialization of the efficient one. When at most one procedure formal
appears as a parameter at a call site, the algorithms are identical.
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interprocedural compilation system for scientific Fortran. We have shown that it can also replace
the Shivers algorithm in analyzing functional languages such as Scheme, following CPS-conversion.

The new algorithm is less precise than the modified Ryder algorithm. We believe the execution-
time cost of the precise algorithm may be too high to merit the gains in precision, depending on
language features. For a particular language, these differences will need to be explored. In the case
of Fortran, the two algorithms almost always yield the same call graph.

We have not addressed a number of language features affecting call graph analysis. Pointer
manipulation of procedure variables requires analysis similar to assignments. This issue has been
addressed by other researchers [Wei80, LMSS91]. Aliasing may arise from features other than
pointer manipulation. Aliasing due to call-by-reference parameter passing has been widely discussed
in the literature. Spillman and Weihl consider its effect on call graph analysis [Spi71, Wei80].
Compiling object-oriented languages contributes more difficult problems to constructing the call
graph. Inheritance and function overloading make it difficult to understand what procedures are
being invoked even when the function name appears at the call. This problem is addressed by
customization in SELF in cases where the compiler can statically determine the unique binding of
a call site [CU89]. Support for the above language features will increase the cost of the algorithm.
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