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The following changes have been made in this draft since the publication of Version 0.4
- at Supercomputing ’92:

Chapter 2 The first paragraph of section 2.3 (about Fortran 90 notation) was moved to section
- 1.5.

Clarification that HPF directives may not be trailing commentary, however HPF may
have trailing commentary.

.
Syntactic catagories were changed and constraints were added to specify where HPF
directives may occur in a scoping unit.

- Changed name to be “view-directive” for consistency.

Chapter 3 Reorganized and rewritten for clarity. INHERIT added.
Chapter 4 BNF symbol subscript-name is now called index-name.
‘ The constraint: “The variable of an assignment-stmt must be a distinct object for

- each active combination of subscript-name values. In this context, two objects are
considered distinct if they have no subobjects in common.” has been moved to the
interpretation section, as it is not statically checkable. A similar change has been

= made for the pointer-target constraint of the same flavor.
The set of examples has been significantly enlarged.

- Scalarizations have been made more clearly into pseudocode, and explanations to some
difficult-to-handle cases added. Some of the scalarizations have also been simplified
(with the general case explained in text).

-~
The WHERE construct is now allowed within a FORALL construct (the BNF previ-
ously omitted this case).

- Pure procedures may now have dummy arguments with explicit distributions, if those
distributions are inherited from the caller.

- Chapter 5 Changed the names of the new reductions AND, OR, and EOR to IALL, IANY, and

IPARITY.
Fixed a bug in the GRADE_UP example.
Fixed various stylistic problems.

Moved the mapping inquiry subsection to the intrinsics section, out of the library
- section.

Chapter 9 Clarified the status of the character array language to be not in the subset, and as a
~ result, removed the character array intrinsics.

Noted that the HPF_LIB module is not part of the subset, along with the HPF library.

Only very restricted forms of alignment subscript expressions (of the form m* i+ n
where m and n are integer expressions) are part of the subset.

Appendix A No changes.

Bibliography Correctly spell “Mehrotra” and “Gerndt”. Add Metcalf and Reid.
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Chapter 1

Overview

This document specifies the form and establishes the interpretation of programs expressed
in the High Performance Fortran (HPF) language. It is designed as a set of extensions and
modifications to the established International Standard for Fortran (ISO/IEC 1539:1991(E)
and ANSI X3.198-1992), informally referred to as “Fortran 90.” Many sections of this
document reference related sections of the Fortran 90 standard to facilitate its incorporation
into new standards, should ISO and national standards committees deem that desirable.

1.1 Goals and Scope of High Performance Fortran

The goals of HPF, as defined at an early HPFF meeting, were to define language extensions
and feature selection for Fortran supporting:

¢ Data parallel programming (defined as single threaded, global name space, and loosely
synchronous parallel computation);

e Top performance on MIMD and SIMD computers with non-uniform memory access
costs (while not impeding performance on other machines); and

o Code tuning for various architectures.

The FORALL construct and several new intrinsic functions were designed primarily to meet
the first goal, while the data distribution features and some other directives are targeted
toward the second goal. Extrinsic procedures allow access to low-level programming in
support of the third goal, although performance tuning using the other features is also
possible.

A number of subsidiary goals were also established:

¢ Deviate minimally from other standards, particularly those for FORTRAN 77 and
Fortran 90;

o Keep the resulting language simple;

¢ Define open interfaces to other languages and programming styles;

Provide input to future standards activities for Fortran and C;

¢ Encourage input from the high performance computing community through widely
distributed language drafts;



2 CHAPTER 1. OVERVIEW

e Produce validation criteria,

Present the final proposals in November 1992 - nd accept the final draft in January
1993;

e Make compiler availability feasible in the near term with demonstrated performance
on an HPF test suite; and

e Leave an evolutionary path for research.

These goals were deemed quite aggressive when they were adopted in March 1992, and
led to a number of compromises in the final language. In particular, support for explicit
MIMD computation, message-passing, and synchronization was limited due to the difficulty
in forming a consensus among the participants. We hope that future efforts will address
these important issues.

1.2 Fortran 90 Binding

HPF is an extension of Fortran 90. The array calculation and dynamic storage allocation
features of Fortran 90 make it a natural base for HPF. The HPF language features fall into
four categories with respect to Fortran 90:

e New directives;
¢ New language syntax;
e Library routines; and

e Language restrictions.

The new directives are structured comments that suggest implementation strategies
or assert facts about a program to the compiler. They may affect the efficiency of the
computation performed, but do not change the value computed by the program. The form
of the HPF directives has been chosen so that a future Fortran standard may choose to
include these features as full statements in the language by deleting the initial comment
header.

A few new language features, namely the FORALL statement and certain intrinsic func-
tions, are also defined. They were made first-class language constructs rather than com-
ments because they can affect the interpretation of a program, for example by returning
a value used in an expression. These are proposed as direct extensions to the Fortran 90
syntax and interpretation.

The HPF library of computational functions defines a standard interface to routines
that have proven valuable for high performace computing including additional reduction
functions, combining scatter functions, prefix and suffix functions, and sorting functions.

Full support of Fortran sequence and storage association is not compatible with the
data distribution features of HPF. Some restrictions on the use of sequence and storage
association are defined. These restrictions may in turn require insertion of HPF directives
into standard Fortran 90 programs in order to preserve correct semantics.

' —
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1.3 New Features in High Performance Fortran
HPF extends Fortran 90 in several areas, including:
e Data distribution features;
e Paralle] statements;

Extended intrinsic functions and standard library;

EXTRINSIC procedures;

Parallel i/o statements; and
o Changes in sequence and storage association.

In addition, a subset of HPF suitable for earlier implementation is defined.

1.3.1 Data Distribution Features

Modern parallel and sequential architectures attain their fastest speed when the data ac-
cessed exhibits locality of reference. Often, the sequential storage order implied by FOR-
TRAN 77 and Fortran 90 conflicts with the locality demanded by the architecture. To
avoid this, HPF includes features which describe the collocation of data (ALIGN) and the
partitioning of data among memory regions (DISTRIBUTE). Compilers may interpret these
annotations to improve storage allocation for data, subject to the constraint that semanti-
cally every data object has only a single value at any point in the program. In all cases,
users should expect the compiler to arrange the computation to minimize communication
while retaining parallelism. Chapter 3 describes the distribution features.

1.3.2 Parallel Statements

To express parallel computation explicitly, HPF offers a new statement and a new directive.
The FORALL construct expresses assignments to sections of arrays; it is similar in many ways
to the array assignment of Fortran 90, but allows more general sections and computations to
be specified. The INDEPENDENT directive asserts that the statements in a particular section
of code do not exhibit any sequentializing dependences; when properly used, it does not
change the semantics of the construct, but may provide more information to the language
processor to allow optimizations. Chapter 4 describes these features.

1.3.3 Extended Intrinsic Functions and Standard Library

Experience with massively parallel machines has identified several basic operations that
are very valuable in parallel algorithm design. The Fortran 90 array intrinsics anticipated
some of these, but not all. HPF adds several classes of parallel operations to the language
definition as intrinsics and as standard library functions. In addition, several system inquiry
functions useful for controlling parallel execution are provided in HPF. Chapter 5 describes
these functions and subroutines.
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1.3.4 Extrinsic Pro- ‘dures

Because HPF is designed as a high-level, machine-independent language, there are certain
operations that are difficult or impossible to express directly. For example, many applica-
tions benefit from finely-tuned systolic communications on certain machines; HPF’s global
address space does not express this well. Extrinsic procedures define an explicit interface to
procedures written in other paradigms, such as explicit message-passing subroutine libraries.
Chapter 6 describes this interface and its use.

1.3.5 Parallel I/O Statements

By a narrow vote, explicitly parallel I/0 statements were excluded from HPF. There were
several reasons for this, including the possibility of providing operating system support for
parallel files, the lack of a clearly portable paradigm for parallel 1/0, and lack of imple-
mentation experience. In making this decision, the committee expressed the hope that a
follow-on effort would add I/O features later. Chapter 7 gives more details on the decision
and its rationale. Section A.7 in the Journal of Development (at the end of this document)
details some of the alternatives that were considered.

1.3.6 Sequence and Storage Association

A goal of HPF was to maintain compatibility with Fortran 90. Full support of Fortran
sequence and storage association, however, is not compatible with the goal of high perfor-
mance through distribution of data in HPF. Some forms of associating subprogram dummy
arguments with actual values make assumptions about the sequence of values in physical
memory which may be incompatible with data distribution. Certain forms of EQUIVALENCE
statements are recognized as requiring a modified storage association paradigm. In both
cases, HPF provides a directive to assert that full sequence and storage association for af-
fected variables must be maintained. In the absence of such explicit directives, reliance on
the properties of association is not allowed. An optimizing compiler may then choose to
distribute any variables across processor memories in order to improve performance. To
protect program correctness, a given implementation should provide a mechanism to ensure
that all such default optimization decisions are consistent across an entire program. Chap-
ter 8 describes the restrictions and a directive related to storage and sequence association.

1.4 Fortran 90 and HPF Subset

An important goal for HPF is early compiler availability. In recognition of the facts that
full Fortran 90 compilers may not be available in a timely fashion on all platforms and that
implementation of some of the HPF extensions proposed is more complex than for others,
a formal HPF subset has been defined. HPF users who are most concerned about multi-
machine portability may choose to stay within this subset initially. This subset language
includes the Fortran 90 array language, dynamic storage allocation, and long names as
well as the MIL-STD-1753 features, which are already commonly used with FORTRAN 77
programs. The subset does not include features of Fortran 90, such as generic functions
and free source form, that are not closely related to high performance on parallel machines.
Chapter 9 describes the HPF subset.

|
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1.5 Notation -

This document uses the same notation as the Fortran 90 standard. In particular, the same
conventions are used for syntax rules. BNF descriptions of proposed language features
are given in the style used in the Fortran 90 standard. Nonterminals not defined in this
document are defined in the Fortran 90 standard. Also note that certain technical terms
such as “storage unit” are defined by the Fortran 90 standard. References in parentheses
in the text refer to the Fortran 90 standard.

1.6 Organization of this Document

Chapter 1, this chapter, presents an overview of HPF.
Chapter 2 sets out some basics of HPF, including:

o The reasons for using Fortran 90 as a base language;
e A partial cost model for HPF programs; and
¢ Lexical rules for HPF directives.

Chapter 3 describes the facilities for data partitioning in HPF. These include:

e The distribution model;
e Features for aligning array elements which are accessed together;
o Features for distributing array elements among processors; and

e Features for ALLOCATABLE arrays and pointers.
Chapter 4 describes the explicitly parallel statement types in HPF. These include:

o The single- and multi-statement forms of the FORALL parallel construct;
e Pure functions callable from within FORALL; and
e The INDEPENDENT assertion for loops.
Chapter 5 describes new standard functions available in HPF. These include:
e New computational intrinsic functions and extensions to existing intrinsic functions;
o Inquiry intrinsic functions to check system and data partitioning status; and

e A standard library of computational functions.
Chapter 6 describes extrinsic procedures in HPF. This includes:

e The extrinsic procedure interface; and

e A Fortran 90 binding for the extrinsic interface.
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Chapter 7 describes Input/Output in HPF. Its primary focus is explaining why HPF
does not extend Fortran 90 1/0.
Chapter 8 describes the treatment of sequence and storage association in HPF. This

includes:

e Limitations on storage association of explicitly distributed variables; and

¢ Limitations on sequence association of explicitly distributed variables.

Chapter 9 describes subset HPF, which may be implemented more quickly than full
HPF. This includes:

e A list of Fortran 90 features that are in the subset;
e A list of HPF features that are not in the subset; and

¢ Discussions of why these decisions were made.

Appendix A, the Journal of Development, describes several features that were consid-
ered but not accepted into HPF. In many of these cases, features were rejected for lack of
time or consensus rather than because of technical flaws. We offer them to future language
designers for consideration.

The Bibliography provides references to various HPF sources:

¢ Fortran standards;
e Fortran implementations;
e Books about Fortran 90; and

e Technical papers.



Chapter 2

High Performance Fortran
Terms and Concepts

This chapter presents some rationale for the selection of Fortran 90 as HPF’s base language,
HPF’s model of computation, and the high level syntax and lexical rules for HPF directives.

2.1 Fortran 90

The facilities for array computations in Fortran 90 will make it the programming language of
choice for scientific and engineering numerical calculations on high performance computers.
Indeed, some of these facilities are already supported in compilers from a number of vendors.
The introductory overview in the Fortran 90 standard states:

Operations for processing whole arrays and subarrays (array sections) are in-
cluded in [Fortran 90] for two principal reasons: (1) these features provide a more
concise and higher level language that will allow programmers more quickly
and reliably to develop and maintain scientific/engineering applications, and
(2) these features can significantly facilitate optimization of array operations on
many computer architectures.

Other features of Fortran 90 that improve upon the features provided in FORTRAN 77
include:

¢ Additional storage classes of objects. The new storage classes such as allocatable,
automatic, and assumed-shape objects as well as the pointer facility of Fortran 90 add
significantly to those of FORTRAN 77 and should reduce the use of FORTRAN 77
constructs that can lead to less than full computational speed on high performance
computers, such as EQUIVALENCE between array objects, COMMON definitions with non-
identical array definitions across subprograms, and array reshaping transformations
between actual and dummy arguments.

e Modules. The module facilities of Fortran 90 enable the practice of design implemen-
tation using data abstractions. These facilities support the specification of modules,
including user-defined data types and structures, defined operators on those types,
and generic procedures for implementing common algorithms to be used on a variety
of data structures. In addition to modules, the definition of interface blocks enables
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the application programmer to specify s “.program interfaces explicitly, allowing a
high quality compiler to use the informas specified to provide better checking and
optimization at the interface to other su. :ograms.

e Additional intrinsic procedurs. Fortran 90 includes the definition of a large number of
new intrinsic procedures. Many of these support mathematical operations on arrays,
including the construction and transformation of arrays. Also, there are numerical
accuracy intrinsic procedures designed to support numerical programming, and bit
manipulation intrinsic procedures derived from MIL-STD-1753.

HPF conforms to Fortran 90 except for additional restrictions placed on the use of
storage and sequence association. Because the effort involved in producing a full Fortran 90
compiler, HPF is defined at two levels: subset HPF and full HPF. Subset HPF is a subset
of Fortran 90 with a subset of the HPF extensions. HPF is full Fortran 90 with all of the
approved HPF language features.

2.2 The HPF Model

An important goal of HPF is to achieve code portability across a variety of parallel machines.
This requires not only that HPF programs compile on all target machines, but also that a
highly-efficient HPF program on one parallel machine be able to achieve reasonably high
efficiency on another parallel machine with a comparable number of processors. Otherwise,
the effort spent by a programmer to achieve high performance on one machine would be
wasted when the HPF code is ported to another machine. Although SIMD processor arrays,
MIMD shared-memory machines, and MIMD distributed-memory machines use very differ-
ent low-level primitives, there is sufficient broad similarity with respect to the fundamental
factors that affect the performance of parallel programs on these machines. Thus, achieving
high efficiency across different parallel machines with the same high level HPF program is a
feasible goal. While describing a full execution model is beyond the scope of this language
specification, we focus here on two fundamental factors and show how HPF relates to them:

e The parallelism inherent in a computation; and

¢ The communication inherent in a computation.

The quantitative cost associated with each of these factors is machine-dependent; ven-
dors are strongly encouraged to publish estimates of these costs in their system documen-
tation. Note that, like any execution model, the<~ may not reflect all of the factors relevant
to performance on a particular architecture.

The parallelism in a computation can be expressed in HPF by the following “parallel”
constructs:

e Fortran 90 array expressions and assignment (including conditional assignment in the
WHERE statement);

e Array intrinsics, including both the Fortran 90 intrinsics and the new intrinsic func-
tions;

e The FORALL statement and construct;

e The INDEPENDENT assertion on DO loops; and

d

"
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e The extrinsic procedure mechanism.

The above features allow the explicit user specification of a high degree of potential
parallelism in a machine-independent fashion. In addition, extrinsic procedures provide
an escape mechanism in HPF to allow the use of efficient machine-specific primitives by
explicitly executing on a set number of processors.

A compiler may choose not to exploit information about parallelism, for example be-
cause of lack of resources or excessive overhead. In addition, some compilers may detect
parallelism in sequential code by use of dependence analysis. This document does not
discuss such techniques.

The interprocessor data communication that occurs during the execution of an HPF
program is partially determined by the HPF data distribution directives in Chapter 3. The
compiler will determine the actual mapping of data objects to the physical machine and will
be guided in this by the directives. The actual mapping and the computation specified by
the program determine the needed actual communication, and the compiler will generate
the code required to perform it. In general, if two data references in an expression or
assignment are mapped to different processors then communication is required to bring
them together. The examples below illustrate how this may occur.

Clearly, there is a tradeoff between parallelism and communication. If all the data are
mapped to one processor, then a sequential computation with no communication is possible,
although the memory of one processor may not suffice to store all the program’s data.
Alternatively, mapping data to multiple processors may permit computational parallelism
but also may introduce communications overhead. The optimal resolution of such conflicts
is very dependent on the architecture and underlying system software.

The examples below illustrate simple cases of communication, parallelism, and their
interaction. Note that the examples used are chosen for illustration and do not necessarily
reflect efficient data layouts or computational methods for the program fragments shown.

2.2.1 Simple Communication Examples

The following examples illustrate the communication requirements of scalar assignment
statements. The purpose is to illustrate the implications of data distribution specifications
on communication requirements for parallel execution and does not necessarily reflect the
actual compilation process.

Consider the statements below:

REAL a(1000), b(1000), c(1000), x(500), y(0:501)
INTEGER inx(1000)
'HPF$ PROCESSORS procs(10)
'HPF$ DISTRIBUTE (BLOCK) ONTO procs :: a, b, inx
'HPF$ DISTRIBUTE (CYCLIC) ONTO procs :: c
'HPF$ ALIGN x(i) WITH y(i+1)

a(i) = b(i)

! Assignment 1
x(i) = y(i+1) ! Assignment 2
a(i) = c(i) ! Assignment 3
a(i) = a(i-1) + a(i) + a(i+1) ! Assignment 4
c(i) = c(i-1) + c(i) + c(i+1) ! Assignment 5
x(i) = y(@i) ! Assignment 6
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a(i) = a(inx(i)) + b(inx(i)) ! Assignment 7

In this example, the PROCESSORS directive specifies a linear arrangement of 10 pro-
cessors. The DISTRIBUTE directives recommend to the compiler that the arrays a, b, and
inx should be distributed among the 10 processors with blocks of 100 contiguous elements
per processor. The array c is to be cyclically distributed among the processors with (1),
c(11), ..., c(991) mapped onto processor procs(1); c(2), c(12), ..., c(992) mapped
onto processor procs(2); and so on. The complete mapping of arrays x and y onto the
processors is not specified, but their relative alignment is indicated by the ALIGN directive.
The ALIGN statement causes x(i) and y(i+1) to be stored on the same processor for all
values of i, regardless of the actual distribution chosen by the compiler for x and y (y(o
and y(1) are not aligned with any element of x).

In Assignment 1 (a(i) = b(i)), the identical distribution of a and b ensures that for
all i, a(i) and b(i) are mapped to the same processor. Therefore, the statement requires
no communication.

Assignment 2 (x(i) = y(i+1)), there is no inherent communication. In this case,
the relative alignment of the two arrays matches the assignment statement for any actual
distribution of the arrays.

Assignment 3 (a(i) = c(i)) looks very similar to the first assignment, the com-
munication requirements are very different due to the different distributions of a and
c. Array elements a(i) and c(i) are mapped to the same processor for only 10% of
the possible values of i. The elements are located on the same processor if and only if
[(: = 1)/100] = (i — 1) mod 10. For example, the assignment involves no inherent commu-
nication (i.e., both a(i) and c(i) are on the same processor) if ¢ = 1 or ¢ = 102, but does
require communication if 7 = 2.

In Assignment 4 (a(i) = a(i-1) + a(i) + a(i+1)), the references to array a are all
on the same processor for about 98% of the possible values of i. The exceptions to this are
i = 100k for any k = 1,2,...,9, (when a(i) and a(i-1) are on procs(k) and a(i+1) is
on procs(k+1)) and i« = 100k + 1 for any k = 1,2,...,9 (when a(i) and a(i+1) are on
procs(k+1) and a(i-1) is on procs(k)). Thus, except for “boundary” elements on each
processor, this statement requires no inherent communication.

Assignment 5, c(i) = c(i-1) + c(i) + c(i+1), while superficially similar to the
last, has very different communication behavior. Because the distribution of c is CYCLIC
rather than BLOCK, the three references c(i), c(i-1), and c(i+1) are mapped to three
distinct processors for any value of i. Therefore, this statement requires communication for
at least two of the right-hand side references, regardless of the implementation strategy.

The final two assignments have very limited information regarding the communication
requirements. In Assignment 6 (x(i) = y(i)) the only information available is that x(i)
and y(i-1) are on the same processor; this has no logical consequences for the relationship
between x(i) and y(i). Thus, nothing can be said regarding communication in the state-
ment without further information. In Assignment 7 (a(i) = a(inx(i)) + b(inx(i))), it
can be proved that a(inx(i)) and b(inx(i)) are always mapped to the same processor.
Similarly, it is easy to deduce that a(i) and inx(i) are mapped together. Without knowl-
edge of the values stored in inx, however, the relation between these two pairs of references
is unknown.

The inherent communication for a sequence of assignment statements is the union of
the communication requirements for the individual statements. An array element used in
several statements may contribute to the total inherent communication only once (assuming
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an optimizing compiler that eliminates common subexpressions), unless the array element
may have been changed since its last use. For example, consider the code below:

REAL a(1000), b(1000), c(1000)
'HPF$ PROCESSORS procs(10)
'HPF$ DISTRIBUTE (CYCLIC) ONTO procs :: a, b, ¢

a(i)

= b(i+2) ! Statement 1
b(i) = c(i+3) ! Statement 2
b(i+2) = 2 * a(i+2) ! Statement 3
c(i) = a(i+1) + b(i+2) + c(i+3) ! Statement 4

Statements 1 and 2 each require one array element to be communicated for any value of
i. Statement 3 has no inherent communication. To simplify the discussion, assume that
statement 4 is executed on the processor storing c(i). (This is an optimal strategy for this
example, although not for others.) Then:

o Element a(i+1) induces communication, since it is not local and was not communi-
cated earlier;

e Element b(i+2) induces communication, since it is nonlocal and has changed since
its last use, although it is easy for a compiler to notice the update and remember the
value; and

¢ Element c(i+3) does not induce new communication, since it was used in statement 1
and not changed since.

Thus, the total inherent communication in this program fragment is four array elements.

2.2.2 Aggregate Communication Examples

The following examples illustrate the communication implications of some more complex
constructs. The purpose is to show how communication can be quantified, but again this
does not necessarily reflect the actual compilation process. It is important to note that
the communication requirement for each statement in this section is estimated without
considering the surrounding context.

Consider the statements below:

REAL a(1000), b(1000), c(1000)
'HPF$ PROCESSORS procs(10)
'HPF$ DISTRIBUTE (BLOCK) ONTO procs :: a, b, ¢

FORALL ( i

= 1:1000 ) a(i) = b(i) ! Forall 1
FORALL ( i = 1:1000 ) a(i) = c(i) ! Forall 2
! Forall 3
FORALL ( i = 2:999 ) a(i) = a(i-1) + a(i) + a(i+1)
! Forall 4

FORALL ( i

2:999 ) c(i) = c(i-1) + c(i) + c(i+1)




12 CHAPTER 2. HIGH PERFORMANCE FORTRAN TERMS AND CONCEPTS

The FORALL statement conceptually evaluates its right-hand side for all values of
its indexes, then assigns to the left-hand side for all index values. These semantics allow
parallel execution. The aggregaie communication requirements of these statements follow
directly from the inherent communication of the corresponding examples in Section 2.2.1.

In Forall 1, there is no inherent communication for any value of i; therefore, there is
no communication for the aggregate construct.

In Forall 2, 90% of the references to c(i) are mapped to a processor different from that
containing the corresponding a(i). The aggregate communication must therefore transfer
900 array elements. Furthermore, analysis based on the definitions of BLOCK and CYCLIC
shows that to update the values of a owned locally, each processor requires data from every

other processor. For example, procs(1) must somehow receive:

o Elements {2,12,22,...,92} from procs(2);
o Elements {3,13,23,...,93} from procs(3); and

e So on for the other processors.

This produces an all-to-all communication pattern similar to the pattern for transposing
a 2-dimensional array with certain distributions. The details of implementing such a pattern
are very machine-dependent and beyond the scope of this document.

In Forall 3, the array references are all mapped to the same processor except for the
first and last values of i on each processor. The aggregate communication requirement
is therefore two array elements per processor (except procs(1) and procs(10)), or 18
elements total. Each processor must receive values from its left and right neighbors (again,
except for procs(1) and procs(10)). This leads to a simple shift communication pattern
(without wraparound).

In Forall 4, the update of each array element requires two off-processor values, each from
a different processor. The total communication volume is therefore 1996 array elements.
Further analysis reveals that all elements on processor procs (k) require elements from
procs(k © 1) and procs(k & 1) (where © and @ represent base-10 “clock arithmetic”).
This leads to a massive shift communication pattern (with wraparound).

The aggregate communication for other constructs can be computed similarly. Iterative
constructs generate the sum of the inherent communication for nested statements, while
conditionals require at least the communication needed by the conditional branch that is
taken. Repeated communication of the same array elements in any construct is not necessary
unless the values of those elements may change.

Array expressions require an analysis similar to that for FORALL statements. In these
cases, the inherent communication for each element of the result can be analyzed and the
aggregate formed on that basis. The following statements have the same communication
requirements as the above FORALL statements:

REAL a(1000), b(1000), c(1000)
'HPF$ PROCESSORS procs(10)
'HPF$ DISTRIBUTE (BLOCK) ONTO procs :: a, b, ¢

! Assignment 1 (equivalent to Forall 1)
a(:) = b(:)
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! Assignment 2 (equivalent to Forall 2)
a(1:1000) = c(1:1000)

! Assignment 3 (equivalent to Forall 3)
a(2:999) = a(1:998) + a(2:999) + a(3:1000)

! Assignment 4 (equivalent to Forall 4)
c(2:999) = c(1:998) + c(2:999) + c(3:1000)

Some array intrinsics have inherent communication costs as well. For example, consider:

REAL a(1000), b(1000), scalar
'HPF$ PROCESSORS procs(10)
'HPF$ DISTRIBUTE (BLOCK) ONTO procs :: a, b

! Intrinsic 1
scalar = SUM( a )

! Intrinsic 2
a = SPREAD( b(1), DIM=1, NCOPIES=1000 )

! Intrinsic 3
a = CSHIFT(a,-1) + a + CSHIFT(a,1)

In general, the inherent communication derives from the mathematical definition of the
function. For example, the inherent communication for computing SUM is one element for
each processor storing part of the operand, minus one. (Further communication may be
needed to store the result.) The optimal communication pattern is very machine-specific.
Similar remarks apply to any accumulation operation; prefix and suffix intrinsics may require
a larger volume based on the distribution. The SPREAD operation above requires a broadcast
from procs(1) to all processors, which may take advantage of available hardware. The
CSHIFT operations produce a shift communication pattern (with wraparound). This list of
examples illustrating array intrinsics is not meant to be exhaustive.

Some other examples of situations in which nonaligned data must be communicated:

REAL a(1000), ¢(100,100), d(100,100)
'HPF$ PROCESSORS procs(10)
'HPF$ ALIGN c(i,j) WITH d(j,i)
'HPF$ DISTRIBUTE a(BLOCK), d(BLOCK,*) ONTO procs

a(1:200) = a(1:200) + a(2:400:2)
c=c+d

In this example, the use of different strides in the two references to a will cause commu-
nication to align the two sections on the right-hand side of the first statement. The second
assignment statement requires a latent transpose.

A REALIGN directive may change the location of every element of the array. This will
cause communication of all elements that change their home processor; in some compilation
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schemes, data wil' also be mo-2d to new locations on the same processor. The communica-
tion voirme is the same as «  rray assignment from an array with the original alignment
to anotiier array with the ne- ignment. The REDISTRIBUTE statement changes the distri-
bution for every array aligned to a template. Therefore, its cost is similar to the cost of a
REALIGN on many arrays simultaneously. Advanced compiler analysis may sometimes detect
that data movement is not needed because an array has no values that could be accessed;
such analysis and the resulting optimizations are beyond the scope of this document.

2.2.3 |nteraction of Communication and Parallelism

The examples in Sections 2.2.1 and 2.2.2 were chosen so that parallelism and communication
were not in conflict. The purpose of this section is to show cases where there is a tradeoff.
The best implementation of all these examples will be machine-dependent. As in the other
sections, these examples do not necessarily reflect good programming practice.

Analyzing communication as in Sections 2.2.1 and 2.2.2 does not completely determine
a program’s performance. Consider the code:

REAL x(1000), y(1000)
'HPF$ DISTRIBUTE x(BLOCK), y(BLOCK) ONTO P

DO k = 3, 98

x(k) = y(k) * (x(k-1) + x(k) + x(k+1)) / 3.0
y(k) = x(k) + (y(k-1) + y(k-2) + y(k+1) + y(k+2)) / 4.0
ENDDO

Only a few values need be communicated at the boundary of each processor. However,
every iteration of the DO loop uses data computed on previous iterations for the references
x(k-1), y(k-1), and y(k-2). Therefore, although there is little inherent communication,
the computation will run sequentially.

In contrast, consider the following code:

REAL x(100), y(100), z(100)
IHPF$ DISTRIBUTE x(BLOCK), y(BLOCK), z(BLOCK) ONTO P

'HPF$ INDEPENDENT
DO k = 3, 98

x(k) = y(k) * (z(k-1) + z(k) + z(k+1)) / 3.0
y(&) = x(k) + (z(k-1) + z(k-2) + z(k+1) + z(k+2)) / 4.0
ENDDO

The INDEPENDENT directive asserts to the compiler that the iterations of the DO loop are
completely independent of each other and nome of the data accessed in the loop by an
iteration is written by any other iteration.! Therefore, the loop has substantial potential
parallelism and will likely execute much faster than the last example.

Partitioning a computation may itself require communication. Consider the following
code:

1Many compilers would detect this without the assertion. What cases of implicit parallelism are detected
is highly compiler-dependent and beyond the scope of this document.
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INTEGER indx(1000), inv(1000)
'HPF$ DISTRIBUTE indx(BLOCK), inv(BLOCK) ONTO P

FORALL ( j = 1:1000 ) inv(indx(j)) = j**2

Since the location of the reference inv(indx( j)) depends on the values stored in indx,
some data must be communicated simply to determine where the results will be stored.
Two possible implementations of this are:

e Each processor calculates the squares for elements of indx that it owns and performs
a scatter operation to communicate those values to the elements of inv where the
final results are stored.

e Each processor determines the owner of inv(indx(j)) for all elements of indx that
it owns and notifies those processors. Each processor then computes the squares for
all elements for which it received notification.

The optimal sharing scheme, its implementation and its cost will be highly architecture-
dependent.

A specified data distribution could create a trade-off between exploitable parallelism
and communication overhead. Consider the following code:

REAL a(1000,1000), b(1000,1000)
'HPF$ DISTRIBUTE a(BLOCK,*), b(BLOCK,*) ONTO P

ﬁé.i = 2, 1000
a(i,:) = a(di,:) - (b(i,:)**2)/a(i-1,:)
ENDDO

Here, each iteration of the DO loop has a potential parallelism of 1000. However, all elements
of a(i,:) and b(i,:) are located on the same processor. Therefore, exploitation of any
of the potential parallelism will require scattering the data to other processors. (This is
independent of the inherent communication required for the reference to a(i-1,:).) There
are several implementation strategies available for the overall computation.

¢ Redistribute a and b before the DO loop to achieve the effect of
'HPF$ DISTRIBUTE a(*,BLOCK), b(*,BLOCK)

Redistribute back to the original distributions after the DO loop. This allows parallel
updates of columns of a, at the cost of two all-to-all communication operations.

e Divide each column of A into blocks, then operate on the blocks separately. This
strategy can produce a pipelined effect, allowing substantial parallelism. It sends
many small messages to the neighboring processor rather than one large message.

o Execute the vector operations sequentially. This results in totally sequential operation,
but avoids overhead from process start-up and small messages.



16 CHAPTER 2. HIGH PERFORMANCE FORTRAN TERMS AND CONCEPTS

This list is not exhaustive. The optimal strategy will be highly machine-dependent.

There is often a choice regarding where th- result of an intermediate array expression
will be stored, and different choices may lea. :o0 different communication performance.
A straightforward implementation of the following code, for example, would require two
transposition (communication) operations:

REAL, DIMENSION(100,100) :: X, ¥y, 2
'HPF$ ALIGN WITH x :: y, 2
x = TRANSPOSE(y) + TRANSPOSE(z) + x

Despite two occurrences of the TRANSPOSE intrinsic, the operation can be implemented
as:

REAL, DIMENSION(100,100) :: x, y, 2, ti
'HPF$ ALIGN WITH x :: y, 2z, ti

ti=y +2z

x = TRANSPOSE(t1) + x

with only one use of transposition.
Choosing an intermediate storage location is sometimes more complex, however. Con-
sider the following code:

REAL a(1000), b(1000), c(1000), d(1000)
INTEGER ix(1000)
'HPF$ DISTRIBUTE (CYCLIC) :: a, b, ¢, d, ix

a = b(ix) + c(ix) + d(ix)

and the following implementation strategies:

o Evaluate each element of the right-hand side on the processor where it will be stored.
This strategy potentially requires fetching three values (the elements of b, ¢, and d)
for each element computed. It always uses the maximum parallelism of the machine.

o Evaluate each element of the right-hand side on the processor where the corresponding
elements of b(ix), c(ix), and d(ix) are stored. Ignoring set-up costs, this potentially
communicates one result for each element computed. If the values of ix are evenly
distributed, then it also uses the maximum machine parallelism.

On the basis of communication, the second strategy is better by a factor of 3; adding
additional terms can make this factor arbitrarily large. However, that analysis does not
consider parallel execution costs. If there are repeated values in ix, the second strategy
may produce poor load balance. (For example, consider the case of ix(i) = 10 for all i.)
Minimizing this cost is a compiler optimization and is outside the scope of this language
specification.
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2.3 Syntax of Directives

A goal of the HPF design is that HPF directives be consistent with Fortran 90 syntax in
the following sense: if any HPF directive were to be adopted as part of a future Fortran
standard, the only change necessary to convert an HPF program could be to remove the
comment character and directive prefix from each directive.

hpf-directive-line is directive-origin hpf-directive
directive-origin is 'HPF$

or CHPF$

or *HPF$
hpf-directive is declarative-directive

or ezecutable-directive

declarative-directive is  processors-directive

or view-directive

or align-directive

or distribute-directive
or dynamic-directive
or inherit-directive
or template-directive
or combined-directive
or pure-directive

or ezrtrinsic-directive
or local-directive

or sequence-directive

ezecutable-directive is  realign-directive

Constraint:

Constraint:

Constraint:

Constraint:

Constraint:

or redistribute-directive
or independent-directive

An hpf-directive-line cannot be commentary following another statement on
the same line.

A declarative-directive may appear only where a declaration-construct may ap-
pear.

An ezecutable-directive may appear only where an ezecutable-construct may
appear.

An hpf-directive-line follows the rules of either Fortran 90 free form (3.3.1.1)
or fixed form (3.3.2.1) comment lines, depending on the source form of the
surrounding Fortran 90 source form in that program unit. (3.3)

An hpf-directive conforms to the rules for blanks in free source form (3.3.1),
even in an HPF program otherwise in fixed source form. However an HPF-
conforming processor is not required to diagnose extra or missing blanks in an
HPF directive.

Note that, due to Fortran 90 rules, the directive-origin may only be the characters !HPF$
in free source form. HPF directives may be continued, in which case each continued line
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also begins with a directive-origin. No statements may be interspersed within a continued
HPF-directive. HPF directive lines n. st not appear within a continued statement. HPF
directive lines may include trailing cor.:nentary.

An example of an HPF directive continuation in free source form is:

'HPF$ ALIGN ANTIDISESTABLISHMENTARIANISM(I,J,K) &
'HPF$ WITH ORNITHORHYNCHUS_ANATINUS(J,K,I)

An example of an HPF directive continuation in fixed source form (note that column
6 must be blank, except when signifying continuation) is:

'HPF$ ALIGN ANTIDISESTABLISHMENTARIANISM(I,J,K)
'HPF$*WITH ORNITHORHYNCHUS_ANATINUS(J,K,I)

An example of an HPF directive continuation which is “universal” in that it can be
treated as either fixed source form or free source form (note that the “&” in the first line is
in column 73) is:

VHPF$ ALIGN ANTIDISESTABLISHMENTARIANISM(I,J,K) ' &
'HPF$&WITH ORNITHORHYNCHUS_ANATINUS(J,K,I)



Chapter 3

Data Alignment and Distribution
Directives

3.1 Model

HPF adds directives to Fortran 90 to allow the user to advise the compiler on the allocation
of data objects to processor memories. The model is that there is a two-level mapping of
data objects to abstract processors. Data objects (typically array elements) are first aligned
relative to one another; this group of arrays is then distributed onto a rectilinear arrange-
ment of abstract processors. (The implementation then uses the same number, or perhaps
some smaller number, of physical processors to implement these abstract processors. This
mapping of abstract processors to physical processors is language-processor-dependent.)
The following diagram illustrates the model:

Abstract
Processors as a
Arrays or Group of user-declared .
other objects aligned objects Cartesian mesh Physical
Processors
ALIGN (static) DISTRIBUTE Optional
or REALIGN (static) or implementation-

(dynamic) REDISTRIBUTE dependent

(dynamic) directive

The underlying assumptions are that an operation on two or more data objects is
likely to be carried out much faster if they all reside in the same processor, and that it may
be possible to carry out many such operations concurrently if they can be performed on
different processors.

Fortran 90 provides a number of features, notably array syntax, that make it easy
for a compiler to determine that many operations may be carried out concurrently. The
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HPF dirc. .ves provide a way to inform the compiler of the recommendation that certain
data objects should reside in the same processor: if two data objects are mapped (via
the two-level mapping of alignment and distribution) to the same abstract processor, it
is a strong recommendation to the implementation that they ought to reside in the same
physical processor. There is also a provision for recommending that a data object be stored
in multiple locations, which may complicate any updating of the object but makes it faster
for multiple processors to read the object.

There is a clear separation between directives that serve as specification statements
and directives that serve as executable statements (in the sense of the Fortran standards).
Specification statements are carried out on entry to a program unit, pretty much as if all
at once; only then are executable statements carried out. (While it is often convenient to
think of specification statements as being handled at compile time, some of them contain
specification expressions, which are permitted to depend on run-time quantities such as
dummy arguments, and so the values of these expressions may not be available until run
time, specifically the very moment that program control enters the scoping unit.)

The general idea is that every array (indeed, every ob ject) is created with some distri-
bution onto some arrangement of processors. If the specification statements contain explicit
specification directives specifying the alignment of an array A with respect to another array
B, then the distribution of A will be dictated by the distribution of B; otherwise, the distri-
bution of A itself be may be specified explicitly. In either case, any such explicit declarative
information is used when the array is created. (This model gives a better picture of the
actual amount of work that needs to be done than a model that says “the array is created
in some default location, and then realigned and/or redistributed if there is an explicit
directive.” Using ALIGN and DISTRIBUTE specification directives doesn’t have to cause
any more work at run time than using the implementation defaults.)

In the case of an allocatable object, we say that the object is created whenever it is
allocated. Specification directives for allocatable objects (and allocated pointer targets)
may appear in the specification-part of a program unit, but take effect each time the array
is created, rather than on entry to the scoping unit.

If an object A is aligned (statically or dynamically) with an object B, which in turn is
already aligned to an object C, this is regarded as an alignment of A with C directly, with
B serving only as an intermediary at the time of specification. (This matters only in the
case where B is subsequently realigned; the result is that A remains aligned with C.) We
say that A is immediately aligned with B but ultimately aligned with C. If an object is not
explicitly aligned with another object, we say that it is ultimately aligned with itself.

Every object is created as if according to some complete set of specification directives;
if the program does not include complete specifications for the mapping of some object, the
compiler provides defaults. By default an object is not aligned with any other object; it
is ultimately aligned with itself. The default distribution is language-processor-dependent,
but must be expressible as explicit directives for that implementation. Identically declared
objects need not be provided with identical default distribution specifications; the compiler
may, for example, take into account the contexts in which objects are used in executable
code. The programmer may force identically declared objects to have identical distributions
by specifying such distributions explicitly. (On the other hand, identically declared pro-
cessor arrangements are guaranteed to represent “the same processors arranged the same
way.” This is discussed in more detail below.)

Once an object has been created, it can be remapped by realigning it or redistributing
an object to which it is ultimately aligned; but communication is required in moving the
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data around. Redistributing an object causes all objects then ultimately aligned with it
also to be redistributed so as to maintain the alignment relationships.

Alignment is considered an attribute (in the Fortran 90 sense) of an array or scalar.
Distribution is technically an attribute of the index space of the array. Sometimes we speak
loosely of the distribution of an array, but this really means the distribution of the index
space of the array, or of another array to which it is aligned. The relationship of an array to
a processor arrangement is properly called the mapping of the array. (Even more technically,
these remarks also apply to a scalar, which may be regarded as having an index space whose
sole position is indicated by an empty list of subscripts.)

Sometimes it is desirable to consider a large index space with which several smaller
arrays are to be aligned, but not to declare any array that spans the entire index space.
HPF provides the notion of a TEMPLATE, which is like an array whose elements have no
content and therefore occupy no storage; it is merely an abstract index space that can be
distributed and with which arrays may be aligned.

By analogy with the Fortran 90 ALLOCATABLE attribute, HPF includes the at-
tribute DYNAMIC. It is not permitted to REALIGN an array that has not been declared
DYNAMIC. Similarly, it is not permitted to REDISTRIBUTE an array or template that
has not been declared DYNAMIC.

3.2 Syntax of Data Alignment and Distribution Directives

Specification directives in HPF have two forms: specification statements, analogous to
the DIMENSION and ALLOCATABLE statements of Fortran 90; and an attributed form
analogous to type declaration statements in Fortran 90 using the “::” punctuation.

The attributed form allows more than one attribute to be described in a single directive.
HPF goes beyond Fortran 90 in not requiring that the first attribute, or any of them, be a
type specifier.

For syntactic convenience, the executable directives REALIGN and REDISTRIBUTE also
come in two forms (statement form and attributed form) but may not be combined with
other attributes in a single directive.

combined-directive is combined-attribute-list :: hpf-entity-decl-list

combined-attribute is ALIGN align-attribute-stuff
or DISTRIBUTE dist-attribute-stuff
or DYNAMIC
or INHERIT
or VIEW view-attribute-stuff
or TEMPLATE
or PROCESSORS
or DIMENSION ( ezplicit-shape-spec-list )

hpf-entity-decl is entity-decl
or processor-view-entity

Constraint: The same combined-attribute must not appear more than once in a given
combined-directive.

The following rules constrain the declaration of various attributes, whether in separate
directives or in a combined-directive.
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The HPF keywords PROCESSORS and TEMPLATE play the role of type specifiers in
declaring processor arrangements and templates. The HPF keywords ALIGN, DISTRIBUTE,
DYNAMIC, INHERIT, and VIEW play the role of attributes. Attributes referring to processor
arrangements, to templates, to entities with other types (such as REAL) may be combined
in an HPF directive without having the type specifier appear.

Dimension information may be specified after an object-name or in a DIMENSION
attribute. If both are present, the one after the object-name overrides the DIMENSION
attribute (this is consistent with the Fortran 90 standard). For example, in:

'HPF$ TEMPLATE,DIMENSION(64,64) :: A,B,C(32,32),D

A, B, and D are 64 x 64 templates; C is 32 x 32.

Fortran 90 attributes appearing in an HPF directive must also be declared by standard
Fortran 90 statements (for the practical reason that Fortran processors that ignore HPF
directives would not observe the attribute information).

A comment on asterisks: The asterisk character “*” appears in the syntax rules for
HPF alignment and distribution directives in three distinct roles:

e When a lone asterisk appears as a member of a parenthesized list, it indicates either
a collapsed mapping, wherein many elements of an array may be mapped to the same
processor, or a replicated mapping, wherein each element of an array may be mapped
to many processors. See the syntax rules for align-source and align-subscript (see
section 3.4) and for dist-format (see section 3.3).

e When an asterisk appears before a left parenthesis “(” or after the keyword WITH
or ONTO, it indicates that the directive constitutes an assertion about the current
mapping of a dummy argument on entry to a subprogram, rather than a request for a
desired mapping of that dummy argument. This use of the asterisk may appear only
in directives that apply to dummy arguments (see section 3.11).

e When an asterisk appears in an align-subscript-use expression, it represents the usual
integer multiplication operator.

3.3 DISTRIBUTE and REDISTRIBUTE Directives

The DISTRIBUTE directive declaratively specifies a mapping of data objects to abstract
processors in a processor arrangement. For example,

REAL SALAMI(10000)
'HPF$ DISTRIBUTE SALAMI(BLOCK)

specifies that the array SALAMI should be distributed across some set of processors by slicing
it uniformly into blocks of contiguous elements. If there are 50 processors, the directive
implies that the array should be divided into groups of 200 elements, with SALAMI(1:200)
mapped to the first processor, SALAMI(201:400) mapped to the second processor, and so
on. If there is only one processor, the entire array is mapped to that processor as a single
block of 10000 elements.

The block size may be specified explicitly:

REAL WEISSWURST(10000)
'HPF$ DISTRIBUTE WEISSWURST(BLOCK(256))
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This specifies that groups of exactly 256 elements should be mapped to successive pro-
cessors. (There must be at least [10000/256] = 40 processors if the directive is to be
satisfied. The fortieth processor will contain a partial block of only 16 elements, namely
WEISSWURST(9985:10000) .)

HPF also provides a cyclic distribution format:

REAL DECK_OF_CARDS(52)
'HPF$ DISTRIBUTE DECK_OF_CARDS(CYCLIC)

If there are 4 processors, then the first processor will contain DECK_OF_CARDS(1:49:4),
the second processor will contain DECK_OF_CARDS (2:50:4), the third processor will contain
DECK_OF _CARDS(3:51:4), and the fourth processor will contain DECK_OF_CARDS(4:52:4).
Successive array elements are dealt out to successive processors in round-robin fashion.
Distributions may be specified independently for each axis of a multidimensional array:

INTEGER CHESS_BOARD(8,8), GO_BOARD(19,19)
'HPF$ DISTRIBUTE CHESS_BOARD(BLOCK,BLOCK)
'HPF$ DISTRIBUTE GO_BOARD(CYCLIC,*)

The CHESS_BOARD array will be carved up into contiguous rectangular patches, which will
be distributed onto a two-dimensional arrangement of processors. The GO_BOARD array will
have its rows distributed cyclically over a one-dimensional arrangement of processors. (The
“*” specifies that GO_BOARD is not to be distributed along its second axis; thus an entire row
is to be distributed as one object.)

The REDISTRIBUTE directive is similar to the DISTRIBUTE directive but is considered
executable. An array (or template) may be redistributed at any time, provided it has been
declared DYNAMIC—see section 3.5. Any other arrays currently aligned with an array (or
template) when it is redistributed are also remapped to reflect the new distribution, in such
a way as to preserve alignment relationships (see section 3.4). (This can require a lot of
computational effort at run time; the programmer must take care when using this feature.)

The DISTRIBUTE directive may appear only in the declaration-part of a scoping unit.
The REDISTRIBUTE directive may appear only in the ezecution-part of a scoping unit. The
principal difference between DISTRIBUTE and REDISTRIBUTE is that DISTRIBUTE must con-
tain only a specification-ezpr as the argument to a BLOCK or CYCLIC option, whereas in
REDISTRIBUTE such an argument may be any integer expression. Another difference is that
DISTRIBUTE is an attribute, and so can be combined with other attributes as part of a
combined-directive, whereas REDISTRIBUTE is not an attribute (although a REDISTRIBUTE
statement may be written in the style of attributed syntax, using “: :” punctuation).

Formally, the syntax of the DISTRIBUTE and REDISTRIBUTE directives is:

distribute-directive is DISTRIBUTE distributee dist-attribute-stuff

redistribute-directive is REDISTRIBUTE distributee dist-attribute-stuff
or REDISTRIBUTE dist-attribute-stuff :: distributee-list

dist-attribute-stuff is dist-format-clause | dist-onto-clause ]
or dist-onto-clause

distributee is object-name
or template-name
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dist-format-clause is  ( dist-format-list )

dist-format
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or * ( dist-format-list )
or x*

is BLOCK [ ( int-ezpr ) ]

or CYCLIC [ ( int-ezpr ) ]
or x*

dist-onto-clause is ONTO dist-target

dist-target

Constraint:

Constraint:

Constraint:

Constraint:

Constraint:

Constraint:

Constraint:

Constraint:

Constraint:

Constraint:

is processors-name
or * processors-name
or *

If either the dist-format-clause or the dist-target begins with *, then the direc-
tive must be DISTRIBUTE (rather than REDISTRIBUTE) and every distributee
must be a subprogram dummy argument.

An object-name mentioned as a distributee may not appear as an alignee in an
ALIGN or REALIGN directive.

A distributee that appears in a REDISTRIBUTE directive must have the DYNAMIC
attribute (see section 3.5).

If a dist-format-list is specified, its length must equal the rank of each distribu-
tee.

If both a dist-format-list and a processors-name appear, the number of elements
of the dist-format-list that are not “*” must equal the rank of the named
processors arrangement.

If a processors-name appears but not a disi-format-list, the rank of each dis-
tributee must equal the rank of the named processors arrangement.

If either the dist-format-clause or the dist-target in a DISTRIBUTE directive
begins with “*” then every distributee must be a dummy argument.

Neither the dist-format-clause nor the dist-target in a REDISTRIBUTE may begin
with “*”,

A DISTRIBUTE or REDISTRIBUTE directive must not cause any data object as-
sociated with the distributee via storage association (COMMON or EQUIVALENCE)
to be mapped such that storage units are split across more than one abstract
PTrocessor.

Any int-ezpr appearing in a dist-format of a DISTRIBUTE directive must be an
specification-ezpr.

Examples:

'HPF$ DISTRIBUTE D1 (BLOCK)
'HPF$ DISTRIBUTE (BLOCK,*,BLOCK) ONTO P:: D2,D3,D4
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The meanings of the alternatives for dist-format are given below.

Define the ceiling division function CD(J,K) = (J+K-1)/K.

Define the ceiling remainder function CR(J,K) = J-K*CD(J,K).

Let d be the size of a distributee in a certain dimension and let p be the size of the
processor arrangement in the corresponding dimension. For simplicity, assume indexing
on all arrays is 1-based. Then BLOCK(m) means that a distributee position whose index
along that dimension is j is mapped to a processor whose index along the corresponding
dimension of the processor arrangement is CD(j,m) (note that m x p > d must be true),
and is position number m+CR(j,m) among positions mapped to that processor. The first
distributee position in processor k along that axis is position number 1+m*(k-1).

BLOCK by definition means the same as BLOCK(CD(d,p)).

CYCLIC(m) means that a distributee position whose index along that dimension is J
is mapped to a processor whose index along the corresponding dimension of the processor
arrangement is 1+MODULO(CD(j,m)-1,p). The first distributee position in processor k along
that axis is position number 1+m*(k-1).

CYCLIC by definition means the same as CYCLIC(1).

CYCLIC(m) and BLOCK(m) imply the same distribution when m -p > d, but BLOCK(m)
additionally asserts that the distribution will not wrap around in a cyclic manner, which
a compiler might not be able to determine at compile time if m is an expression. Note
that CYCLIC and BLOCK (without argument expressions) do not imply the same distribution
unless p > d, a degenerate case in which the block size is 1 and the distribution does not
wrap around.

The statement form of a DISTRIBUTE or REDISTRIBUTE directive may be considered a
mellisonant abbreviation for an attributed form that happens to mention only one alignee;
for example,

'HPF$ DISTRIBUTE distributee ( dist-format-list ) ONTO dist-target
is equivalent to
'HPF$ DISTRIBUTE ( dist-format-list ) ONTO dist-target :: distributee

Note that, to prevent syntactic ambiguity, the dist-format-clause must be present in the
statement form, so in general the statement form of the directive may not be used to
specify the alignment of scalars.

If the dist-format-clause is omitted from the attributed form, it is assumed to consist
of a parenthesized list of “BLOCK” entries, equal in number to the rank of the distributees.
So the directive

'HPF$ DISTRIBUTE ONTO P :: D1,D2,D3
means

'HPF$ DISTRIBUTE (BLOCK,BLOCK) ONTO P :: D1,D2,D3
which in turn means the same as

'HPF$ DISTRIBUTE D1(BLOCK,BLOCK) ONTO P
'HPF$ DISTRIBUTE D2(BLOCK,BLOCK) ONTO P
'HPF$ DISTRIBUTE D3(BLOCK,BLOCK) ONTO P
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In either the statement form or the attributed form, if the ONTO clause is present, it
specifies the processor array that is the target of the distribution. If the ONTO clause is
omitted, then a language-processor-dep: dent processor arrangement is chosen arbitrarily
for each distributee. So, for example,

REAL, DIMENSION(1000) :: ARTHUR, ARNOLD, LINUS, LUCY
'HPF$ PROCESSORS EXCALIBUR(32)
'HPF$ DISTRIBUTE (BLOCK) ONTO EXCALIBUR :: ARTHUR, ARNOLD
'HPF$ DISTRIBUTE (BLOCK) :: LINUS, LUCY

causes the arrays ARTHUR and ARNOLD to have the same mapping, so that corresponding
elements reside i the same processor, because they are the same size and distributed
in the same way (BLOCK) onto the same processor arrangement (EXCALIBUR). However,
LUCY and LINUS do not necessarily have the same mapping because they might, depending
on the implementation, be distributed onto differently chosen processor arrangements; so
corresponding elements of LUCY and LINUS might not reside on the same processor. (The
ALIGN directive provides a way to ensure that two arrays have the same mapping without
having to specify an explicit processor arrangement.)

3.4 ALIGN and REALIGN Directives

The ALIGN directive is used to specify that certain data objects are to be mapped in the
same way as certain other data objects. Operations between aligned data objects are likely
to be more efficient than operations between data objects that are not known to be aligned
(because two objects that are aligned are intended to be mapped to the same abstract
processor). The ALIGN directive is designed to make it particularly easy to specify explicit
mappings for all the elements of an array at once. While objects can be aligned in some
cases through careful use of matching DISTRIBUTE directives, ALIGN is more general and
frequently more convenient.

The REALIGN directive is similar to the ALIGN directive but is ~onsidered executable. An
array (or template) may be realigned at any time, provided it has been declared DYNAMIC—
see section 3.5. Unlike redistribution (see section 3.3), realigning a data object does not
cause any other object to be remapped. (However, realignment of even a single object, if it
is large, could require a lot of computational effort at run time; the programmer must take
care when using this feature.)

The ALIGN directive may appear only in the declaration-part of a scoping unit. The
REALIGN directive is similar but may appear only in the execution-part of a scoping unit.
The principal difference between ALIGN and REALIGN is that ALIGN must contain only a
specification-ezpr as a subscript or in a subscript-triplet, whereas in REALIGN such subscripts
may be any integer expressions. Another difference is that ALIGN is an attribute, and so
can be combined with other attributes as part of a combined-directive, whereas REALIGN is
not an attribute (although a REALIGN statement may be written in the style of attributed
syntax, using “::” punctuation).

Formally, the syntax if ALIGN and REALIGN is as follows:

align-directive is ALIGN alignee align-attribute-stuff

realign-directive is REALIGN alignee align-attribute-stuff
or REALIGN align-attribute-stuff :: alignee-list
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align-attribute-stuff is [ ( align-source-list ) | align-with-clause
alignee is  object-name

align-source

is
or
or align-dummy

align-dummy is  scalar-int-variable

Constraint:

Constraint:

Constraint:

Constraint:

Constraint:

An object-name mentioned as an alignee may not appear as a distributee in a
DISTRIBUTE or REDISTRIBUTE directive.

Any alignee that appears in a REALIGN directive must have the DYNAMIC at-
tribute (see section 3.5).

The align-source-list (and its surrounding parentheses) must be omitted if the
alignee is scalar. (In some cases this will preclude the use of the statement
form of the directive.)

If the align-source-list is present, its length must equal the rank of the alignee.

An object may not have both the INHERIT attribute and the ALIGN attribute.
(However, an object with the INHERIT attribute may appear as an alignee in
a REALIGN directive, provided that it does not appear as a distributee in a
DISTRIBUTE or REDISTRIBUTE directive.)

The statement form of an ALIGN or REALIGN directive may be considered a mellivident
abbreviation of an attributed form that happens to mention only one alignee:

'HPF$ ALIGN alignee ( align-source-list ) WITH align-spec

is equivalent to

'HPF$ ALIGN ( align-source-list ) WITH align-spec :: alignee

If the align-source-list is omitted from the attributed form and thealignees are not
scalar, the align-source-listis assumed to consist of a parenthesized list of “:” entries, equal
in number to the rank of the alignees. Similarly, if the align-subscript-list is omitted from
the align-spec in either form, it is assumed to consist of a parenthesized list of “:” entries,
equal in number to the rank of the align-target. So the directive

'HPF$ ALIGN WITH B :: A1, A2, A3

means

'HPF$ ALIGN (:,:) WITH B(:,:) :: A1, A2, A3

which in turn means the same as

'HPF$ ALIGN A1(:,:) WITH B(:,:)
'HPF$ ALIGN A2(:,:) WITH B(:,:)
'HPF$ ALIGN A3(:,:) WITH B(:,:)
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because an attributed-form directive that mentions more than one alignee is equivalent to
a series of identical directives, one for each alignee; allalignees must have the same rank.
With this understanding, we will assume below, for the sake of simplifying the description,
that an ALIGN or REALIGN directive has a single alignee.

Fach align-source corresponds to one axis of the alignee, and is specified as either
or “¥” or a dummy variable:

“.”
.

e Ifitis “:”, then positions along that axis will be spread out across the matching axis
of the align-spec (see below).

e If it is “*”, then that axis is collapsed: positions along that axis make no difference
in determining the corresponding position within the align-target. (Replacing the “*”
with a dummy variable name not used anywhere else in the directive would have the
same effect; “*” is merely a convenience that saves the trouble of inventing a variable
name and makes it clear that no dependence on that dimension is intended.)

e A dummy variable is considered to range over all valid index values for that dimension
of the alignee.

The WITH clause of an ALIGN has the following syntax:

.

align-with-clause is WITH align-spec

align-spec is align-target [ ( align-subscript-list ) ]
or * align-target [ ( align-subscript-list ) ]

align-target is object-name

or template-name

align-subscript is int-ezpr
or align-subscript-use
or subscript-triplet

or
align-subscript-use is [ [ align-subscript-use | add-op ] align-add-operand
align-add-operand is [ align-add-operand * | align-mult-operand
align-mult-operand is align-dummy

or ( align-subscript-use )
or int-mult-operand

align-subscript-use-subset is [ add-op ] align-product [ add-op int-add-operand ]
or [ add-op ] int-mult-operand add-op align-product

align-product is [ int-add-operand * | align-dummy

Constraint: If the align-spec begins with “*”, then the directive must be ALIGN (rather
than REALIGN) and every alignee must be a subprogram dummy argument.

Constraint: The int-mult-operand used as the last alternative for an align-mult-operand
must not contain any occurrences of an align-dummy.

Constraint: An align-subscript-use expression may contain occurrences of at most one align-
dummy (but there may be multiple occurrences of that one dummy name).
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Constraint: An align-dummy variable may not appear anywhere in the align-spec except
where explicitly permitted to appear by virtue of the grammar shown above.

Constraint: Implementations of the HPF subset may require that align-subscript-use ex-
pressions obey the more restrictive syntax described by the rule for align-
subscript-use-subset.

The syntax rules for an align-subscript-use are a bit tricky because of operator prece-
dence issues, but the basic idea is simple: an align-subscript-use is intended to be a linear
function of a single align-dummy variable. In the subset, the expression must have the ex-
plicit form of a single occurrence of an align-dummy, possibly negated or multiplied by an
integer expression and then possibly added to (or subtracted from) an integer expression.
In the full HPF language, the single align-dummy variable may appear more than once in
an align-subscript-use expression, but the expression is syntactically limited to forms that
can be reduced to an explicitly linear form through appropriate algebraic transformations
without cancellation.

For example, the following align-subscript-use expressions are valid in the subset (as-
suming that J, K, and M are align-dummy variables and N is not an align-dummy):

J  J+1 3-K 2*M N*M 100-3*M
=J +J  -K+3 M+2%%3 M+N -(4%7+I0R(6,9))*K-(13-5/3)

The following align-subscript-use expressions are valid in the full HPF language but
not in the subset:

J+J  2%(J+1) 3%kK-2%K Mx*2 MxN 10000-M*3
J=J 2%J-3%J+J 5-K+3 M+2-3 N*(M-N) 2%(3%(K-1)+13)-100

The following expressions are not valid align-subscript-use expressions:

J*xJ  J+K 3/K  2%*M MxK K-3%M
K-J IOR(J,1) -K/3 M*x(2+M) Mx(M-N) 2*x(2%J-3*J+J)

Note that even though 2#*(2%J-3%J+J) happens to represent a (degenerate) linear function
of J, it is regarded as syntactically invalid for use as an align-subscript-use expression.

The align-spec must contain exactly as many subscript-triplets as the number of colons
(“:”) appearing in the align-source-list. These are matched up in corresponding left-to-right
order, ignoring, for this purpose, any align-source that is not a colon and any align-subscript
that is not a subscript-triplet. Consider a dimension of the alignee for which a colon appears
as an align-source and let the lower and upper bounds of that array be LA and UA. Let
the corresponding subscript triplet be LT:UT:ST or its equivalent. Then the colon could
be replaced by a new, as-yet-unused dummy variable, say J, and the subscript triplet by
the expression (J-LA)*ST+LT without affecting the meaning of the directive. Moreover,
the axes must conform, which means that

(UA-LA+1) .EQ. MAX((UT-LT+ST)/ST,0)

must be true. (This is entirely analogous to the treatment of array assignment.)

To simplify the remainder of the discussion, we assume that every colon in the align-
source-list has been replaced by new dummy variables in exactly the fashion just described,
and that every “*” in the align-source-list has likewise been replaced by an otherwise unused
dummy variable. For example,
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'HPF$ ALIGN A(:,*,K,:,:,*) WITH B(31:,:,K+3,20:100:3)
may be transformed into its equivalent

'HPF$ ALIGN A(I,J,K,L,M,N) WITH B(I-LBOUND(A,1)+31, &
'HPF$ L-LBOUND(A,4)+LBOUND(B,2),K+3,(M-LBOUND(A,S))*3+20)

with the attached requirements

SIZE(A,1) .EQ. UBOUND(B,1)-30
SIZE(A,4) .EQ. SIZE(B,2)
SIZE(A,5) .EQ. (100-20+3)/3

Thus we need consider further only the case where every align-source is a dummy variable
and no align-subscript is a subscript-triplet.

Each dummy variable is considered to range over all valid index values for the cor-
responding dimension of the alignee. Every combination of possible values for the index
variables selects an element of the alignee. The align-spec indicates a corresponding element
(or section) of the align-target with which that element of the alignee should be aligned; this
indication may be a function of the index values, but the nature of this function is syntac-
tically restricted (as discussed above) to linear functions in order to limit the complexity of
the implementation. Each align-dummy variable may appear at most once in the align-spec
and only in certain rigidly prescribed contexts. The result is that each align-subscript ex-
pression may contain at most one align-dummy variable and the expression is constrained
to be a linear function of that variable. (Therefore skew alignments are not possible.)

An asterisk “*” as an align-subscript indicates a replicated representation. Each ele-
ment of the alignee is aligned with every position along that axis of the align-target.

It may seem strange to use “*¥” to mean both collapsing and replication; the rationale
is that “*” always stands conceptually for a dummy variable that appears nowhere else in
the statement and ranges over the set of indices for the indicated dimension. Thus, for
example,

'HPF$ ALIGN A(:) WITH D(:,*)

means that a copy of A is aligned with every column of D, because it is conceptually equivalent
to

for every legitimate indez j, align A(:) with D(:,J)
just as
'HPF$ ALIGN A(:,*) WITH D(:)
is conceptually equivalent to
for every legitimate indez j, align A(:,j7) with D(:)
Please note, however, that while HPF syntax allows
'HPF$ ALIGN A(:,*) WITH D(:)
to be written in the alternate form

'HPF$ ALIGN A(:,J) WITH D(:)
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it does not allow
'HPF$ ALIGN A(:) WITH D(:,*)
to be written in the alternate form
'HPF$ ALIGN A(:) WITH D(:,J)

because that has another meaning (only a variable appearing in the align-source-list follow-
ing the alignee is understood to be an align-dummy, so the current value of the variable J
is used, thus aligning A with a single column of D).

Replication allows an optimizing compiler to arrange to read whichever copy is closest
to hand. (Of course, when a replicated data object is written, all copies must be updated,
not just one copy. Replicated representations are very useful for such tricks as small lookup
tables, where it much faster to have a copy in each physical processor but you don’t want
to be bothered giving it an extra dimension that is logically unnecessary to the algorithm.)

By applying the transformations given above, all cases of an align-subscript may be
conceptually reduced to either an int-ezpr (not involving an align-dummy) or an align-
subscript-use; and the align-source-list may be reduced to a list of index variables with no
“¥” or “:”. An align-subscript-list may then be evaluated for any specific combination of
values for the align-dummy variables simply by evaluating each align-subscript as an expres-
sion. The resulting subscript values must be legitimate subscripts for the align-target. The
selected element of the alignee is then considered to be aligned with the indicated element of
the align-target; or, more accurately, the selected element of the alignee is considered to be
ultimately aligned with the same object with which the indicated element of the align-target
is currently ultimately aligned (possibly itself).

Once a relationship of ultimate alignment is established, it persists, even if the ultimate
align-target is redistributed, unless and until the alignee is realigned by a REALIGN directive,
which is permissible only if the alignee has the DYNAMIC attribute.

More examples of ALIGN directives:

INTEGER D1(N)

LOGICAL D2(N,N)

REAL,DIMENSION(N,N):: X,A,B,C,AR1,AR2A,P,Q,R,S
'HPF$ ALIGN X(:,*) WITH D1(:)
'HPF$ ALIGN (:,*) WITH D1:: A,B,C,AR1,AR2A
'HPF$ ALIGN WITH D2,DYNAMIC:: P,Q,R,S

Note that, in a multiple-align, the alignees must all have the same rank but need not all
have the same shape; the sizes need match only for dimensions that correspond to colons
in the align-source-list. This turns out to be an extremely important convenience; one of
the most common cases in current practice is aligning arrays that match in distributed
(“parallel”) dimensions but may differ in collapsed (“on-processor”) dimensions:

REAL A(3,N), B(4,N), C(43,N), Q(N)
'HPF$ DISTRIBUTE Q(BLOCK)
IHPF$ ALIGN (*,:) WITH Q:: A,B,C

The idea here is that you know there are processors (perhaps N of them) and you want arrays
of different sizes (3, 4, 43) within each processor. It’s okay as far as HPF is concerned for
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the numbers 3, 4, and 43 to be different, because those axes will be collapsed. Thus array
elements with indices differing only along that axis will all be aligned with the same element
of Q (and thus be specified as residing in the same processor).

In the following examples, each directive in the group means the same thing, assuming
that corresponding axis upper and lower bounds match:

!Second axis of X is collapsed
'HPF$ ALIGN X(:,*) WITH D1(:)
'HPF$ ALIGN X(J,*) WITH D1(J)
'HPF$ ALIGN X(J,K) WITH D1(J)

!Replicated representation along second axis of D3
'HPF$ ALIGN X(:,:) WITH D3(:,*,:)
'HPF$ ALIGN X(J,K) WITH D3(J,*,K)

!Transposing two axes

'HPF$ ALIGN X(J,K) WITH D2(K,J)

'HPF$ ALIGN X(J,:) WITH D2(:,J)

'HPF$ ALIGN X(:,K) WITH D2(K,:)

!But there isn’t any way to get rid of *both* index variables;

! the subscript-triplet syntax alone cannot express transposition.

!Reversing both axes
'HPF$ ALIGN X(J,K) WITH D2(M-J+1,N-K+1)
'HPF$ ALIGN X(:,:) WITH D2(M:1:-1,N:1:-1)

!Simple case

'HPF$ ALIGN X(J,K) WITH D2(J,K)
'HPF$ ALIGN X(:,:) WITH D2(:,:)
'HPF$ ALIGN (J,K) WITH D2(J,K):: X
'HPF$ ALIGN (:,:) WITH D2(:,:):: X
'HPF$ ALIGN WITH D2:: X

'HPF$ ALIGN X WITH D2

3.5 DYNAMIC Directive

dynamic-directive is DYNAMIC alignee-or-distributee-list

alignee-or-distributee is alignee

Constraint:

Constraint:

or distributee

An object in COMMON may not be declared DYNAMIC and may not be aligned to
an ob ject (or template) that is DYNAMIC. (If you want to get this kind of effect,
use Fortran 90 modules instead of COMMON blocks.)

An object with the SAVE attribute may not be declared DYNAMIC and may not
be aligned to an object (or template) that is DYNAMIC.

A REALIGN directive may not be applied to an alignee that does not have the DYNAMIC
attribute. A REDISTRIBUTE directive may not be applied to a distributee that does not have
the DYNAMIC attribute. '



'HPF$ DYNAMIC A,B,C,D,E

'HPF$ DYNAMIC: : A,B,C,D,E

'HPF$ DYNAMIC, ALIGN WITH SNEEZY:: X,Y,z
'HPF$ ALIGN WITH SNEEZY, DYNAMIC:: X,Y,z
'HPF$ DYNAMIC, DISTRIBUTE(BLOCK,BLDCK) :: X,Y
'HPF$ DISTRIBUTE(BLOCK,BLOCK), DYNAMIC :: X,Y

The first two examples mean exactly the same thing. The next two examples mean exactly
the same other thing. The last two examples mean exactly the same third thing.
The three directives

'HPF$ TEMPLATE A(64,64) ,B(64,64),C(64,64) ,D(64,64)
'HPF$ DISTRIBUTE(BLOCK,BLOCK) ONTO P:: A,B,C,D
'HPF$ DYNAMIC A,B,C,D

may be combined into a single directive as follows:

'HPF$ 'I'EMPLATE,DISTRIBUTE(BLOCK,BLOCK) ONTO P, &
'HPF$ DIMENSION(64,64) ,DYNAMIC :: A,B,C,D

3.6 Allocatable Arrays and Pointers

A variable with the POINTER or ALLOCATABLE attribute may appear as an alignee in an
ALIGN directive or as a distributee in a DISTRIBUTE directive. Such directives do not take
effect immediately, however; they take effect each time the array is allocated by an ALLOCATE
statement, rather than on entry to the scoping unit. The values of all specification expres-
sions in such a directive are determined once on entry to the scoping unit and may be used

multiple times (or not at all). For example:

SUBROUTINE MILLARD_FILLMORE(N,M)

REAL, ALLOCATABLE(:) :: A, B
'HPF$ ALIGN B(I) WITH A(I+N)
'HPF$ DISTRIBUTE A(BLOCK(M*2))

N = 43

M=091

ALLOCATE(A(27))

ALLOCATE(B(13))

The values of the expressions N and M*2 on entry to the subprogram are conceptually
retained by the ALIGN and DISTRIBUTE directives for later use at allocation time. When
the array A is allocated, it is distributed with a block size equal to the retained value of
Mx2, not the value 182. When the array B is allocated, it is aligned relative to A according
to the retained value of N, not its new value 43.

If an ALLOCATE statement is immediately followed by REDISTRIBUTE and /or REALIGN
directives, the meaning in principle is that the array is first created with the statically
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REAL,ALLOCATABLE(:,:) :: TINKER,EVERS
\HPF$ DYNAMIC :: TINKER,EVERS

POINTER,REAL :: CHANCE(:)
'HPF$ DISTRIBUTE(BLOCK) ,DYNAMIC :: CHANCE

READ 6,M,N
ALLOCATE(TINKER(N*M,N*M))

|HPF$ REDISTRIBUTE TINKER(CYCLIC,BLOCK)
ALLOCATE (EVERS(N,N))

\HPF$ REALIGN EVERS(:,:) WITH TINKER(M: :M,1::M)
ALLOCATE (CHANCE(10000))

'HPF$ REDISTRIBUTE CHANCE(CYCLIC)

While CHANCE is by default always allocated with a BLOCK distribution, it should be easy for
a compiler to notice that it will immediately be remapped to a CYCLIC distribution. Similar
remarks apply to TINKER and EVERS.

An array pointer may be used in REALIGN and REDISTRIBUTE as an alignee, align-target,
or distributee if and only if it is currently associated with a whole array, not an array section.
One may remap an object by using a pointer as an alignee or distributee only if the object
was created by ALLOCATE but is not an ALLOCATABLE array.

Any directive that remaps an object constitutes an assertion on the part of the program-
mer that the remainder of program execution would be unaffected if all pointers associated
with any portion of the object were instantly to acquire undefined pointer association status,
except for the one pointer, if any, used to indicate the object in the remapping directive.

(If HPF directives were ever to be absorbed as actual Fortran statements, the previous
paragraph could be written as “Remapping an object causes all pointers associated with any
portion of the object to have undefined pointer association status, except for the one pointer,
if any, used to indicate the object in the remapping directive.” The more complicated
wording here is intended to avoid any implication that the remapping directives, in the
form of structured comment annotations, have any effect on the execution semantics, as
opposed to the execution speed, of the annotated program.)

When an array is allocated, it will be aligned to an existing index space if there is an
explicit ALIGN directive for the allocatable variable. If there is no explicit ALIGN directive,
then the array will be ultimately aligned with itself. It is forbidden for any other object
to be ultimately aligned to an array at the time the array becomes undefined by reason
of deallocation. All this applies regardless of whether the name originally used in the

ALLOCATE statement when the array was created had the ALLOCATABLE attribute or the
POINTER attribute.

3.7 PROCESSORS Directive

The PROCESSORS directive declares one or more rectilinear processor arrangements, specify-
ing for each one its name, its rank (number of dimensions), and the size of each dimension.
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It may only appear in the declaration-part of a scoping unit. The product of the dimensions
must be greater than zero.

In the language of section 14.1.2 of the Fortran 90 standard, processor arrangements
are local entities of class (1); therefore a processor arrangement may not have the same
name as a variable, named constant, internal procedure, etc., in the same scoping unit.
Names of processor arrangements obey the same rules for host and use association as other
names in the long list in section 12.1.2.2.1 of the Fortran 90 standard.

If two processor arrangements have the same shape and neither has the VIEW attribute,
then corresponding elements of the two arrangements are understood to refer to the same
abstract processor. The use of the VIEW attribute may also cause an element of one processor
arrangement to refer to the same abstract processor as an element of some other arrange-
ment. (It is anticipated that language-processor-dependent directives provided by some
HPF implementations could overrule the default correspondence of processor arrangements
that have the same shape.)

If directives collectively specify that two objects be mapped to the same abstract pro-
cessor at a given point during the program execution, the intent is that the two objects be
mapped to the same physical processor at that point.

The intrinsics NUMBER_OF_PROCESSORS and PROCESSORS_SHAPE may be used to inquire
about the total number of actual physical processors used to execute the program. This
information may then be used to calculate appropriate sizes for the declared abstract pro-
cessors arrangements.

processors-directive is PROCESSORS processors-decl-list

processors-decl is processors-name
[ C ezplicit-shape-spec-list ) ]

processors-name is object-name
Examples:

'HPF$ PROCESSORS P(N)

'HPF$ PROCESSORS Q(NUMBER_OF_PROCESSORS()), &
'HPF$ R(8,NUMBER_OF _PROCESSORS()/8)
'HPF$ PROCESSORS BIZARRO(1972:1997,-20:17)

'HPF$ PROCESSORS SCALARPROC

If no shape is specified, then the declared processors arrangement is conceptually scalar.

(Rationale: A scalar processors arrangement may be useful as a way of indicating that
certain scalar data should be kept together but need not interact strongly with distributed
data. Depending on the implementation architecture, data distributed onto such a processor
arrangement may reside in a single “control” or “host” processor (if the machine has one), or
may reside in an arbitrarily chosen processor, or may be replicated over all processors. For
target architectures that have a set of computational processors and a separate scalar host
computer, a natural implementation is to map every scalar processors arrangement onto
the host processor. For target architectures that have a set of computational processors
but no separate scalar “host” computer, data mapped to a scalar processors arrangement
might be mapped to some arbitrarily chosen computational processor or replicated onto all
computational processors.)
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An HPF compiler is required to accept any PROCESSORS declaration in which the prod-
uct of the dimensions of each declared processors arrangement is equal to the number of
physical processors that would be returned by the call NUMBER_OF _PROCESSORS (). It must
also accept all declarations of scalar PROCESSOR arrangements. Other cases may be handled
as well, depending on the implementation.

For compatibility with Fortran 90 attribute syntax, an optional “::
The shape may also be specified with the DIMENSION attribute:

” may be inserted.

'HPF$ PROCESSORS :: RUBIK(3,3,3)
'HPF$ PROCESSORS,DIMENSION(3,3,3) :: RUBIK

As in Fortran 90, an ezplicit-shapc-spec-list in a processors-decl will override an explicit
DIMENSION attribute:

'HPF$ PROCESSORS,DIMENSION(3,3,3) :: &
'HPF$ RUBIK, RUBIKS_REVENGE(4,4,4), SOMA

Here RUBIKS_REVENGE is 4 X 4 x 4 while RUBIK and SOMA are each 3 x 3 x 3. (By the rules
enunciated above, however, such a statement may not be completely portable because no
HPF language processor is required to handle shapes of total sizes 27 and 64 simultaneously.)

Returning from a subprogram causes all processor arrangements declared local to that
subprogram to become undefined. It is forbidden for any array or template to be distributed
onto a processor arrangement at the time the processor arrangement becomes undefined
unless at least one of two conditions holds:

e The array or template itself becomes undefined at the same time by virtue of returning
from the subprogram.

e Whenever the subprogram is called, the processor arrangement is always locally de-
fined in the same way, with identical lower bounds, identical upper bounds, and
identical view attribute information (if any).

(Note that second condition is slightly less stringent than requiring all expressions
to be constant. This allows calls to NUMBER_OF_PROCESSORS or PROCESSORS_SHAPE to
appear without violating the condition.)

Variables in COMMON or having the SAVE attribute may be mapped to a locally declared
processors arrangement, but because the first condition cannot hold for such variables (they
don’t become undefined), the second condition must be observed. This allows COMMON
variables to work properly through the customary strategy of putting identical declarations
in each scoping unit that needs to use them, while allowing the processors arrangements to
which they may be mapped to depend on the value returned by NUMBER_OF_PROCESSORS.

The remainder of this section is advice to implementors and is not part of HPF:

It may be desirable to have a way for the user to specify at compile time the num-
ber of physical processors on which the program is to be executed. This might
be specified either by an language-processor-dependent directive, for example, or
through the programming environment (for example, as a UNIX command-line
argument). Such facilities are beyond the scope of the HPF specification, but
as food for thought we offer the following illustrative hypothetical examples:
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!Declaration for multiprocessor by ABC Corporation

!ABC$ PHYSICAL PROCESSORS(8)

!Declaration for mpp by XYZ Incorporated

'XYZ$ PHYSICAL PROCESSORS(65536)

!Declaration for hypercube machine by PDQ Limited

!PDQ$ PHYSICAL PROCESSORS(2,2,2,2,2,2,2,2,2,2)
!Declaration for two-dimensional grid machine by TLA GmbH
!TLA$ PHYSICAL PROCESSORS(128,64)

!One of the preceding might affect the following

'HPF$ PROCESSORS P(NUMBER_OF_PROCESSORS())

It may furthermore be desirable to have a way for the user to specify the pre-
cise mapping of the processor arrangement declared in a PROCESSORS statement
to the physical processors of the executing hardware. Again, this might be
specified either by an language-processor-dependent directive or through the
programming environment (for example, as a UNIX command-line argument);
again, such facilities are beyond the scope of the HPF specification, but as food
for thought we offer the following illustrative hypothetical example:

!PDQ$ PHYSICAL PROCESSORS(2,2,2,2,2,2,2,2,2,2,2,2,2)
'HPF$ PROCESSORS G(8,64,16)
'PDQ$ MACHINE LAYOUT G(:GRAY(0:2),:GRAY(6:11),:BINARY(3:5,12))

This might specify that the first dimension of G should use hypercube axes 0, 1,
2 with a Gray-code ordering; the second dimension should use hypercube axes
6 through 11 with a Gray-code ordering; and the third dimension should use
hypercube axes 3, 4, 5, and 12 with a binary ordering.

3.8 VIEW Directive

The VIEW attribute provides a mechanism to allow the same set of abstract processors to be
viewed as having different rectilinear geometries, possibly of differing rank. (This feature is
sometimes loosely called “EQUIVALENCE for processors arrangements.”)

view-directive is VIEW processor-view view-attribute-stuff
view-attribute-stuff is OF processor-viewed
processor-view is processor-name [ permutation |
processor-view-entity is processor-name [ ( array-spec ) |

[ permutation ]
processor-viewed is processor-name | permutation ]
permutation is array-constructor

Constraint: A permutation, if present, must be a constant integer array, syntactically ex-
pressed as an array constructor, whose elements are a permutation of the values
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(1,2,...,n), where n is the rank of the associated processor-name. If it is omit-
ted and the processor-name .:ames a non-scalar processors arrangement, it is
as if the identity permutation (/ 1, 2, ..., n /) had been specified.

Constraint: The VIEW directive may only appear in a declaration-part of a program.

The VIEW directive relates each of a list of processors arrangement names, each with an
optional permutation array, to one specific other processors arrangement, which may also
have a permutation array. The relationship between a view A and a viewed arrangement
B is established as follows. If A is scalar, B must be scalar, and the permutation must
be absent or empty; in this case A and B designate the same abstract processor. If Ais
non-scalar, B must be non-scalar, with the same size as A but not necessarily the same
shape or rank. Let P be the permutation array for A and @ be the permutation array for
B: let M be the rank of A (and thus the length of P) and let N be the rank of B (and
thus the length of Q). Permute the dimensions of A, yielding a processor array A’ such
that dimension J of A’ corresponds to dimension P(J) of A for1 < J < M. Similarly
permute the dimensions of B, yielding a processor array B’ such that dimension K of B’
corresponds to dimension Q(K) of B for 1 < K < N. The permuted processor arrays A’
and B’ are then “equivalenced” using Fortran’s usual column-major order.

PARAMETER (A = (/2,1/))

'HPF$ PROCESSORS P(10,10), Q(100), R(100)
'HPF$ PROCESSORS S(10,10), T(100)

'HPF$ VIEW OF P :: Q
‘HPF$ VIEW OF P(/2,1/) :: R

'HPF$ VIEW S(/A/) OF T

In the code fragment above, the processor arrays P, Q and R designate the same set of
100 abstract processors in different ways. Because P has no VIEW attribute, it designates
the same two-dimensional arrangement as any other 10 X 10 processor arrangement with no
VIEW attribute.

The first VIEW directive specifies that Q names the same set of processors as P, in such a
way that, for all Iin the range 1:10 and all J in the range 1:10, P(I,J) and Q((J-1)*10+I)
designate the same processor.

The second VIEW directive specifies that R names the same set of processors as P after
permuting the dimensions of the latter. Thus, in this case P(I,J) and R((I-1)*10+J)
designate the same processor.

The third VIEW directive specifies that S, taken in row-major order, provides a view
of the one-dimensional processor arrangement T. A named parameter constant A is used to
specify the permutation.

The VIEW attribute may appear in a combined-directive such as

'HPF$ PROCESSORS WILL_YOU_STILL_NEED_ME__WHEN_IM(64)
'HPF$ PROCESSORS, VIEW OF WILL_YOU_STILL_NEED_ME__WHEN_IM, &

'HPF$ DIMENSION(4,4,4) :: RUBIKS_REVENGE
'HPF$ PROCESSORS,VIEW OF RUBIKS_REVENGE(/2,3,1/) :: &
'HPF$ CHESSBOARD(8,8) (/2,1/)

= e e e e e e e e e e e e L
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For all I in the range 1:8 and all J in the range 1:8, CHESSBOARD(I,J) means the same
processor as RUBIKS_REVENGE((I-1)/2+1, IAND(J-1,3)+1, 2*IAND(I-1,1)+(J-1)/4+1).

3.9 INHERIT Directive

inherit-directive is INHERIT dummy-argument-list

The INHERIT directive causes the named subprogram dummy arguments to have the
INHERIT attribute. Only dummy arguments may have the INHERIT attribute. An object
may not have both the INHERIT attribute and the ALIGN attribute. The INHERIT directive
in a may only appear in a declaration-part of a program.

The INHERIT attribute specifies that the index space (template) for a dummy argument
should be inherited, by making it a copy of the index space of the actual argument. (The
actual argument must be a whole array or an array section; it may not be an expression
of any other form.) Moreover, the INHERIT attribute implies a default distribution of
DISTRIBUTE * ONTO *. See section 3.11 for further exposition.

Without the INHERIT attribute, the index space of a dummy argument has the same
shape as the dummy itself and the dummy argument is aligned to its index space by the
identity mapping.

An INHERIT directive may be combined with other directives, with the attributes stated
in any order, more or less consistent with Fortran 90 attribute syntax.

3.10 TEMPLATE Directive

The TEMPLATE directive declares one or more templates, specifying for each the name,
the rank (number of dimensions), and the size of each dimension. It must appear in the
declaration-part of a scoping unit.

In the language of section 14.1.2 of the Fortran 90 standard, templates are local entities
of class (1); therefore a template may not have the same name as a variable, named constant,
internal procedure, etc., in the same scoping unit. Template names obey the rules for host
and use association as other names in the long list in section 12.1.2.2.1 of the Fortran 90
standard.

A template is simply an abstract space of indexed positions; you can think of it as an
“array of nothings” (as compared to an “array of integers,” say). If an array is a cat, then
a template is a Cheshire cat, and the index space is the grin. A template may be used as
an abstract align-target that may then be distributed.

template-directive is TEMPLATE template-decl-list

template-decl is template-name [ ( ezplicit-shape-spec-list ) |
template-name is object-name

Examples:

'HPF$ TEMPLATE A(N)
'HPF$ TEMPLATE B(N,N), C(N,2*N)
'HPF$ TEMPLATE DOPEY(100,100) ,SNEEZY(24) ,GRUMPY(17,3,5)
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If the “::” syntax is used, then the declared templates may optionally be distributed
in the same “combined-directive.” In this case all templates declared by the directive must
have the same rank so that the DISTRIBUTE attribute will be meaningful. The DIMENSION
attribute may also be used.

IHPF$ TEMPLATE,DISTRIBUTE(BLOCK,*) :: &
'HPF$ WHINEY (64,64) ,MOPEY(128,128)

'HPF$ TEMPLATE,DIMENSION(91,91) :: BORED,WHEEZY,PERKY

Templates are useful in the odd situation where one must align several arrays relative
to one another but there is no need to declare a single array that spans the entire index
space of interest. For example, one might want four N X N arrays aligned to the four corners
of an index space of size (N + 1) x (N +1):

'HPF$ TEMPLATE,DISTRIBUTE(BLOCK,BLOCK) :: EARTH(N+1,N+1)
REAL ,DIMENSION(N,N) :: NW,NE,SW,SE

'HPF$ ALIGN NW(I,J) WITH EARTH( I , J)

1HPF$ ALIGN NE(I,J) WITH EARTH( I ,J+1)

'HPF$ ALIGN SW(I,J) WITH EARTH(I+1i, J )

'HPF$ ALIGN SE(I,J) WITH EARTH(I+1,J+1)

Templates may also be useful in making assertions about the mapping of dummy arguments
(see section 3.11).

Unlike arrays, templates cannot be in COMMON. So two templates declared in different
scoping units will always be distinct, even if they are given the same name. The only way
for two program units to refer to the same template is to declare the template in a module
that is then used by the two program units.

Templates are not passed through the subprogram argument interface. The template
(index space) to which a dummy argument is aligned is always distinct from the template
to which the actual argument is aligned, though it may be a copy (see section 3.9). On
exit from a subprogram, an actual argument must be aligned with the same template with
which it was aligned before the call.

Returning from a subprogram causes all templates declared local to that subprogram
to become undefined. It is forbidden for any variable to be aligned to a template at the
time the template becomes undefined unless at least one of two conditions holds:

e The variable itself becomes undefined at the same time by virtue of returning from
the subprogram.

o Whenever the subprogram is called, the template is always locally defined in the same
way, with identical lower bounds, identical upper bounds, and identical distribution
information (if any) onto identically defined processor arrangements (see section 3.7).

(Note that this second condition is slightly less stringent than requiring all expressions
to be constant. This allows calls to NUMBER_OF_PRC :ESSORS or PROCESSORS_SHAPE to

appear without violating the condition.)

Variables in COMMON or having the SAVE attribute may be mapped to a locally declared
template, but because the first condition cannot hold for such variable (they don’t become
undefined), the second condition must be observed.
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3.11 Alignment, Distribution, and Subprogram Interfaces

Alignment directives may be applied to dummy arguments in the same manner as for
other variables. However, there are additional options that may be used only with dummy
arguments: asterisks, indicating that a specification is descriptive rather than prescriptive,
and the INHERIT attribute.

Suppose that we wish to speak explicitly about the distribution of a dummy argument.
First we must decide what is the index space that is subject to distribution. A dummy
argument always has a fresh index space (a template) to which it is ultimately aligned;
this index space is constructed in one of two ways. If the dummy argument does not have
the INHERIT attribute, then the template has the same shape and bounds as the dummy
argument; this is called the natural template for the dummy. If the dummy argument has the
INHERIT attribute, then the index space is “inherited” from the actual argument according
to the following rules:

e If there is an explicit interface for the called subprogram and that interface contains
prescriptive directives for the dummy argyment in question, the actual argument will
be remapped if necessary to conform to the directives in the explicit interface. The
index space of the dummy will then be as declared in the interface.

e Otherwise:

— If the actual argument is a whole array, the index space of the dummy is a copy
of the index space with which the actual argument is ultimately aligned.

— If the actual argument is an array section, let A be the array; the index space of
the dummy is a copy of the index space with which A is ultimately aligned.

— If the actual argument is any other expression, the index space may be chosen
arbitrarily by the language processor.

In all of these cases, we say that the dummy has an inherited template rather than a natural
template.
Consider the following example:

LOGICAL FRUG(1024),TWIST(1024)

'HPF$ PROCESSORS DANCE_FLOOR(16)

'HPF$ DISTRIBUTE (BLOCK) ONTO DANCE_FLOOR::FRUG,TWIST
CALL TERPSICHORE(FRUG(1:400:3),TWIST(1:400:3))

The two array sections FRUG(1:400:3) and TWIST(1:400:3) are mapped onto processors
in the same manner. However, the subroutine TERPSICHORE will view them in different ways
because it inherits the template for the second dummy but not the first:

SUBROUTINE TERPSICHORE(FOXTROT,TANGO)
LOGICAL FOXTROT(:),TANGO(:)
'HPF$ INHERIT TANGO

For now, suffice it to say that within subroutine TERPSICHORE it would be correct to declare
'HPF$ DISTRIBUTE TANGO *(BLOCK)

but it would not be correct to declare
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1HPF$ DISTRIBUTE FOXTROT *(BLOCK) !WRONG

Fach of these asserts that the index space of the specified dummy argument is already dis-
tributed BLOCK on entry to the subroutine. The index space for TANGO is 1:1024, inherited
(copied) from the array TWIST, whose section was passed as the corresponding actual argu-
ment, and that index space does indeed have a BLOCK distribution. But the index space for
FOXTROT is 1:134; the layout of the elements of the actual argument FRUG(1:400:3) (22 on
the first processor, 21 on the second processor, 21 on the third processor, 22 on the fourth
processor, ...) cannot properly be described as a BLOCK distribution of a length-134 index
space, so the DISTRIBUTE declaration for FOXTROT shown above would indeed be erroneous.
(On the other hand, the layout of FRUG(1:400: 3) can be described in terms of an alignment
to a length-1024 index space, which can be described by declaring a template (see section
3.10), so the directives

'HPF$ PROCESSORS DANCE_FLOOR(16)
\HPF$ TEMPLATE,DISTRIBUTE(BLOCK) ONTO DANCE_FLOOR::GURF(1024)
'HPF$ ALIGN FOXTROT(J) WITH GURF(3%J-2)

could be correctly included in TERPSICHORE to describe the layout of FOXTROT on entry to
the subroutine.)

The simplest case is the use of the INHERIT attribute alone. If a dummy argument has
the INHERIT attribute and no explicit ALIGN or DISTRIBUTE attribute, the net effect is to
tell the compiler to leave the data exactly where it is—don’t attempt to remap the actual
argument. The dummy argument will be mapped in exactly the same manner as the actual
argument; the subprogram must be compiled in such a way as to work correctly no matter
how the actual argument may be mapped onto processors. (It has this effect because an
INHERIT attribute on a dummy D implicitly specifies the default distribution

'HPF$ DISTRIBUTE D * ONTO *

rather than allowing the compiler to choose any distribution it pleases for the dummy
argument. The meaning of this implied DISTRIBUTE directive is discussed below.)

Let us now consider the general case of a DISTRIBUTE directive where every distributee '
is a dummy argument. Either the dist-format-clause or the dist-target, or both, may begin
with, or consist of, an asterisk.

e Without an asterisk, a dist-format-clause or dist-target is prescriptive; the clause de-
scribes a distribution and constitutes a request of the language processor to make it
so. This might entail remapping or copying the actual argument at run time in order
to satisfy the requested distribution for the dummy.

e Starting with an asterisk, a dist-format-clause or dist-target is descriptive; the clause
describes a distribution and constitutes an assertion to the language processor that it
will already be so. The programmer claims that, for every call to the subprogram, the
actual argument will be such that the stated distribution already accurately describes
the mapping of that data. (The intent is that if the argument is passed by reference,
no movement of the data will be necessary at run time.)

e Consisting of only an asterisk, a dist-format-clause or dist-target is transcriptive; the
clause says nothing about the distribution but constitutes a request of the language
processor to copy that aspect of the distribution from that of the actual argument.
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(The intent is that if the argument is passed by reference, no movement of the data
will be necessary at run time.)

It is possible that, in a single DISTRIBUTE directive, the dist-format-clause might have an
asterisk but not the dist-target, or vice versa.
Consider, then, these amusing examples of DISTRIBUTE directives for dummies:

'HPF$ DISTRIBUTE URANIA (CYCLIC) ONTO GALILEO

Compiler, please do whatever it takes to cause URANIA to have a CYCLIC distribution on the
processors arrangement GALILEOD.

'HPF$ DISTRIBUTE POLYHYMNIA * ONTO ELVIS

Compiler, please do whatever it takes to cause POLYHYMNIA to be distributed onto the
processors arrangement ELVIS, using whatever distribution format it currently has (which
might be on some other processors arrangement).

'HPF$ DISTRIBUTE THALIA *(CYCLIC) ONTO FLIP

Compiler, please do whatever it takes to cause THALIA to have a CYCLIC distribution on
the processors arrangement FLIP; for whatever it’s worth, I claim that THALIA already has
a cyclic distribution, though it might be on some other processors arrangement.

'HPF$ DISTRIBUTE CALLIOPE (CYCLIC) ONTO *HOMER

Compiler, please do whatever it takes to cause CALLIOPE to have a CYCLIC distribution on
the processors arrangement HOMER; for whatever it’s worth, I claim that CALLIOPE is already
distributed onto HOMER, though it might be with some other distribution format.

'HPF$ DISTRIBUTE MELPOMENE * ONTO *EURIPIDES

Compiler, I claim that MELPOMENE is already distributed onto EURIPIDES; use whatever
distribution format the actual had (and I hope that means you won’t have to move any
data around).

'HPF$ DISTRIBUTE CLIO *(CYCLIC) ONTO *HERODOTUS

Compiler, I claim that CLIO is already distributed CYCLIC onto HERODOTUS and I like it that
way (so I hope you won’t have to move any data around).

'HPF$ DISTRIBUTE EUTERPE (CYCLIC) ONTO *

Compiler, please do whatever it takes to cause EUTERPE to have a CYCLIC distribution onto
whatever processors arrangement the actual was distributed onto.

'HPF$ DISTRIBUTE ERATO * ONTO *

Compiler, just leave ERATO alone. Please. Wherever the actual argument was, that’s a good
place for ERATO.

'HPF$ DISTRIBUTE ARTHUR_MURRAY *(CYCLIC) ONTO *
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Compiler, I claim that ARTHUR MURRAY is already distributed CYCLIC onto whatever proces-
sors arrangement the u-tual was distributed onto. I like it that way (so I hope you won’t
have to move any data around).

One may also omit either the dist-format-clause or the dist-target-clause for a dummy.
If such a clause is omitted and the dummy has the INHERIT attribute, then the compiler
must handle the directive as if * or ONTO * had been specified explicitly. If such a clause
is omitted and the dummy does not have the INHERIT attribute, then the compiler may
choose the distribution format or a target processors arrangement arbitrarily. Examples:

'HPF$ DISTRIBUTE DAVID_LETTERMAN ONTO *TV

Compiler, I claim that DAVID_LETTERMAN is already distributed on TV, though I’'m not saying
how. As far as I'm concerned, you can change the distribution format as long as you keep
him on TV.

'HPF$ DISTRIBUTE WHEEL_OF_FORTUNE *(CYCLIC)

Compiler, I claim that WHEEL_OF_FORTUNE is already CYCLIC. As long as you keep it CYCLIC,
you’re free to remap it onto some other processors arrangement (though I can’t imagine
why you’d want to).

The asterisk convention allows the programmer to make claims about the pre-existing
distribution of a dummy based on knowledge of the mapping of the actual argument. But
what claims may the programmer correctly make?

If the dummy has an inherited template, then the subprogram may contain directives
corresponding to the directives describing the actual argument. Sometimes it is necessary
to introduce a named template (using a TEMPLATE directive); an example of this (GURF)
appears above, near the beginning of this section.

If the dummy has a natural template (no INHERIT attribute) then things are more
complicated. In certain situations the programmer is justified in inferring a pre-existing
distribution for the natural template from the distribution of the actual’s template, that is,
the template that would have been inherited if the INHERIT attribute had been specified.
In all these situations, the actual argument must be a whole array or array section, and
the template of the actual must be coextensive with the array along any axes having a
distribution format other than “*.”

If the actual argument is a whole array, then the pre-existing distribution of the natural
template of the dummy is identical to that of the actual argument.

If the actual argument is an array section, then from each section-subscript and the
distribution format for the corresponding axis of the array being subscripted one constructs
an axis distribution format for the corresponding axis of the natural template:

o If the section-subscript is scalar and the array axis is collapsed (as by an ALIGN direc-
tive) then no cutry should appear in the distribution for the natural template.

e If the section-- :bscript is a subscript-triplet and the array axis is collapsed (as by an
ALIGN directive), then * should appear in the distribution for the natural template.

e If the section-subscript is scalar and the array axis corresponds to an actual template
axis distributed *, then no entry should appear in the distribution for the natural
template.
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e If the section-subscriptis a subscript-triplet and the array axis corresponds to an actual
template axis distributed *, then * should appear in the distribution for the natural
template.

o If the section-subscript is a subscript-triplet |:u:s and the array axis corresponds to
an actual template axis distributed BLOCK(n) (which might have been specified as
simply BLOCK, but there will be some n that describes the resulting distribution) and
LB is the lower bound for that axis of the array, then BLOCK(n/s) should appear in
the distribution for the natural template, provided that s divides n evenly and that
I-LB<s.

o If the section-subscript is a subscript-triplet l:u:s and the array axis corresponds to
an actual template axis distributed CYCLIC(n) (which might have been specified as
simply CYCLIC, in which case n = 1) and LB is the lower bound for that axis of the
array, then CYCLIC(n/s) should appear in the distribution for the natural template,
provided that s divides n evenly and that [ — LB < s.

If the situation of interest is not described by the cases listed above, then the programmer
cannot assert a claim about the distribution of the natural template of a dummy with any
certitude of portability.

Here is a typical example of the use of this feature. The main program has a two-
dimensional array TROGGS, which is to be processed by a subroutine one column at a time.
(Perhaps processing the entire array at once would require prohibitive amounts of temporary
space.) Each column is to be distributed across many processors.

REAL TROGGS(473,1024)
'HPF$ DISTRIBUTE TROGGS (BLOCK,*)
D0 J=1,473
CALL WILD_THING(TROGGS(:,J))
END DO

It is perfectly clear that each column of TROGGS has a BLOCK distribution. The rules listed
above justify the programmer in saying so:

SUBROUTINE WILD_THING(GROOVY)
REAL GROOVY(:)
'HPF$ DISTRIBUTE GROOVY *(BLOCK) ONTO *

Consider now the ALIGN directive. The presence or absence of an asterisk at the start
of an align-spec has the same meaning as in a dist-format-clause: it specifies whether the
ALIGN directive is descriptive or prescriptive, respectively.

If an align-spec that does not begin with * is applied to a dummy argument, the
meaning is that the dummy argument will be forced to have the specified alignment on
entry to the subprogram (which may require temporarily remapping the data of the actual
argument or a copy thereof).

Note that a dummy argument may also be used as an align-target.

SUBROUTINE NICHOLAS(TSAR,CZAR)
REAL,DIMENSION(1918) :: TSAR,CZAR
'HPF$ INHERIT :: TSAR
'HPF$ ALIGN WITH TSAR :: CZAR
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In this example the first dummy argument, TSAR, is allowed to remain aligned with the
corresponding actual, while the second dummy argument, CZAR, is forced to be aligned with
the first dummy. If the two actuals are already aligned, no remapping of the data will be
required at run time; but the subprogram will operate correctly even if the actuals are not
already aligned, at the cost of remapping the data for the second dummy argument at run
time.

If the align-specis “x” or begins with “*”, then the alignee must be a dummy argument
and the directive must be ALIGN and not REALIGN. The “*” indicates that the ALIGN directive
constitutes a guarantee on the part of the programmer that, on entry to the subprogram,
the indicated alignment will already be satisfied by the dummy argument, without any
action to remap it required at run time. For example:

SUBROUTINE GRUNGE(PLUNGE,SPONGE)
REAL PLUNGE(1000),SPONGE(1000)
'HPF$ ALIGN PLUNGE WITH *SPONGE

This asserts that, for every J in the range 1:1000, on entry to subroutine GRUNGE, the
directives in the program have specified that PLUNGE(J) is currently mapped to the same
abstract processor as SPONGE(J). (The intent is that if the language processor has in fact
honored the directives, then no interprocessor communication will be required to achieve
the specified alignment.)

The alignment of a general expression is up to the language processor and therefore
unpredictable by the programmer; but the alignment of whole arrays and array sections is
predictable. In the code fragment

REAL FIJI(5000),SQUEEGEE(2000)
'HPF$ ALIGN SQUEEGEE(K) WITH FIJI(2*K)
CALL GRUNGE(FIJI(2002:4000:2),SQUEEGEE(1001:))

it is true that every element of the array section SQUEEGEE(1001:) is aligned with the corre-
sponding element of the array section FIJI(2002:4000:2), so the claim made in subroutine
GRUNGE is satisfied by this particular call.

It is not permitted to say simply “ALIGN WITH *”; an align-target must follow the
asterisk. (The proper way to say “accept any alignment” is INHERIT.)

If a dummy argument has no explicit ALIGN or DISTRIBUTE attribute, then the compiler
provides an implicit alignment and distribution specification, one that could have been
described explicitly without any “assertion asterisks”.

Up to this point we have spoken about dummy arguments as if the REALIGN and
REDISTRIBUTE directives did not exist. Here are the rules on the interaction of these direc-
tives with the subprogram argument interface.

1. A dummy argument may be declared DYNAMIC. However, it is subject to the general
restrictions concerning the use of the name of an array to stand for its associated
index space.

2. If an array or any section thereof is accessible by two or more paths, it is illegal to
remap it through any of those paths. For example, if an array is passed as an actual
argument, it is forbidden to realign that array, or to redistribute an array or template
to which it was aligned at the time of the call, until the subprogram has returned
from the call. This prevents nasty aliasing problems. An example:
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'HPF$

'HPF$

MODULE FOO
REAL A(10,10)
DYNAMIC :: A
END

PROGRAM MAIN

USE FOO

CALL SUB(A(1:5,3:9))
END

SUBROUTINE SUB(B)
USE FOO

REAL B(:,:)
REDISTRIBUTE A

END

'Illegal

Situations such as this are forbidden, for the same reasons that an assignment to A at
the statement marked “illegal” would also be forbidden. In general, in any situation
where assignment to a variable would be illegal by reason of aliasing, remapping of
that variable by an explicit REALIGN or REDISTRIBUTE directive is also forbidden.
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Chapter 4

Statements

The purpose of the FORALL statement and construct is to provide a convenient syntax for
simultaneous assignments to large groups of array elements. Such assignments lie at the
heart of the data parallel computations that HPF is designed to express. The multiple
assignment functionality it provides is very similar to array assignments and WHERE con-
structs in Fortran 90. FORALL differs from these constructs in its syntax, which is intended
to be more suggestive of local operations on each element of an array, and in its generality,
which allows a larger class of array sections to be specified. In addition, FORALL may call
user-defined functions on the elements of an array, which is not possible in Fortran 90 array
assignments. Both single-statement and block FORALL forms are defined in this chapter.

The purpose of the INDEPENDENT directive is to allow the programmer to give
additional information to the compiler. The user can assert that no data object is defined
by one iteration of a DO loop and used (read or written) by another; similar information can
be provided about the combinations of index values in a FORALL statement or construct.
Such information is sometimes valuable to enable compiler optimizations, but may require
knowledge of the application that is available only to the programmer. Therefore, HPF
allows a user to specify these assertions, on which the compiler may in turn rely in its
translation process. If the assertion is true, the semantics of the program are not changed;
if it is false, the program is not standard conforming and has no defined meaning.

4.1 The FORALL Statement

Fortran 90 places several restrictions on array assignments. In particular, it requires that
operands of the right side expressions be conformable with the left hand side array. These
restrictions can be relaxed by introducing the element array assignment statement, usually
referred to as the FORALL statement. This statement essentially preserves the semantics of
Fortran 90 array assignments and allows for convenient assignments like

FORALL ( i=1:n, j=1:m ) a(d,j)=i+j
as opposed to standard Fortran 90

a = SPREAD((/(i,i=1,n)/), DIM=2, NCOPIES=m) + &
SPREAD((/(i,i=1,m)/), DIM=1, NCOPIES=n)

Later examples will show other uses of FORALL which are difficult to express using array
assignment or other means.

49
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The FORALL statement is used to specify an array assignment in terms of array elements
or groups of array sections, possibly masked with a scalar logical expression. In functionality,
it is similar to array assignment statements; however, more general array sections can be
assigned in FORAL -, and functions ran be called within the expression. It is important to
note that FORALL is not intended to be a general parallel construct; for example, it does not
express functional parallelism or pipelined computations well. This was an explicit design
decision made i der to simplify the construct and promote agreement on the statement’s
semantics.

411 General Form of Element Array Assignment

Rule R215 in the Fortran 90 standard for ezecutable-construct is extended to include the
forall-stmt.

forall-stmt is FORALL forall-header forall-assignment
forall-header is ( forall-triplet-spec-list [ , scalar-mask-ezpr | )
forall-triplet-spec is indez-name = subscript : subscript [ : stride ]
forall-assignment is assignment-stmt

or pointer-assignment-stmt

Constraint: Any procedure referenced in a forall-stmt, including one by a defined operation
or assignment in the forall-assignment, must be a pure function, as defined in
Section 4.3, and is syntactically guaranteed not to have side effects.

Constraint: indez-name must be a scalar-name of type integer.

Constraint: A subscript or a stride in a forall-triplet-spec must not contain a reference to
any inder-name in the forall-triplet-spec-list.

For each indez-name in the forall-assignment, the set of permitted values is determined
on entry to the statement and is m1+ (k- 1) x m3, k = 1,2,..., l_yrn—_;n:;gm_sj and where
m1, m2, and m3 are the values of the first subscript, the second subscript, and the stride
respectively in the forall-triplet-spec. If stride is missing, it is as if it were present with
a value of the integer 1. The expression stride must not have the value 0. If for some
indez-name |(m2 — m1+ m3)/m3| < 0, the forall-assignment is not executed.

Examples of the FORALL statement syntax are:

FORALL (k=1:m) x(k,1:m) = y(1i:m,k)
FORALL (i=1:n, j=1:n) x(i,j) = 1.0 / REAL(i+j-1)
FORALL (i=1:n, j=1:n, y(i,j).NE.0.0) x(i,j) = 1.0 / y(i,j)

4.1.2 Interpretation of Element Array Assignments
Execution of an element array assignment consists of the following steps:
1. Evaluation in any order of the subscript and stride expressions in the forall-triplet-

spec-list. The set of valid combinations of indez-name values is then the Cartesian
product of the sets defined by these triplets.
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2. Evaluation of the scalar-mask-ezpr for all valid combinations of indez-name values.
The mask elements may be evaluated in any order. The set of active combinations of
indez-name values is the subset of the valid combinations for which the mask evaluates
to true.

3. Evaluation in any order of the ezpr or target and all subscripts contained in the
array-element or array-section in the forall-assignment for all active combinations of
indez-name values. In the case of pointer assignment where the target is not a pointer,
the evaluation consists of identifying the object referenced rather than computing its
value.

4. Assignment of the computed ezpr values to the corresponding elements specified by
array-element or array-section. The assignments may be made in any order. In the
case of a pointer assignment where the target is not a pointer, this assignment consists
of associating the array-element with the object referenced.

If the scalar mask expression is omitted, it is as if it were present with the value true.

The scope of an indez-name is the FORALL statement itself.

The forall-stmt must not cause any atomic data object to be assigned a value more
than once. A data object is atomic if it contains no subobjects; thus, an integer variable is
an atomic object, but an array of integers is an object that is not atomic. An assignment to
a non-atomic object is considered to also assign to all subobjects of that object. A pointer
assignment is considered to assign to the pointer object, not to the target of the pointer.
The forall-stmt assigns to all data objects assigned by its forall-assignment.

Since a function called from a FORALL construct must be pure, it is impossible for that
function’s evaluation to affect other expressions’ evaluations, either for the same combina-
tion of indez-name values or for a different combination. In addition, it is possible that the
compiler can perform more extensive optimizations when all functions are declared pure.

4.1.3 Examples of FORALL Statement Interpretation

The FORALL statements

FORALL (j=1:m, k=1:n) x(k,j) = y(j,k)
FORALL (k=1:n) x(k,1:m) = y(1:m,k)

each copy columns 1 through n of array y into rows 1 through 7 of array z. This is equivalent
to the standard Fortran 90 statement

x(1:n,1:m) = TRANSPOSE(y(1i:m,1:n))
The FORALL statement

FORALL (i=1:n, j=1:n) x(i,j) = 1.0 / REAL(i+j-1)

sets array element z(,7) to the value 1+,1+l for values of 7 and j between 1 and n. In

Fortran 90, the same operation can be performed by the statement

x(1:n,1:n) = 1.0/REAL( SPREAD((/(i,i=1,n)/),DIM=2,NCOPIES=n) &
+ SPREAD((/(j,j=1,n)/),DIM=1,NCOPIES=n) - 1 )
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Note that the FORALL statement does not imply the creation of temporary arrays and is
much more readable.
The FORALL statement

FORALL (i=1:n, j=1:n, y(i,j).NE.0.0) x(i,j) = 1.0 / y(i,j)

takes the reciprocal of each nonzero element of array y(1 : n,1 : n) and assigns it to the
corresponding element of array z. Elements of y that are zero do not have their reciprocal
taken, and no assignments are made to the corresponding elements of z.

The FORALL statement

TYPE monarch

INTEGER, POINTER :: p
END TYPE monarch
TYPE(monarch) :: a(n)
INTEGER b(n)

! Set up a butterfly pattern
FORALL (j=1:n) a(j)%p => b(1+IEOR(j-1,2**k))

sets the elements of array a to point to a permutation of the elements of . When n = 8
and k = 1, then elements 1 through 8 of a point to elements 3, 4, 1, 2, 7, 8, 5, and 6 of b,

respectively. This requires a DO loop or other control flow in Fortran 90.
If the FORALL statement

FORALL (i=2:4) x(i) = x(i-1) + x(i) + x(i+1)
is executed with
x=(/ 1.0, 20.0, 300.0, 4000.0, 50000.0 /)
then after execution the new values of array z will be
x=(/ 1.0, 321.0, 4320.0, 54300.0, 50000.0 /)
This has the same effect as the Fortran 90 statement
x(2:4) = x(1:3) + x(2:4) + x(3:5)
Note that it does not have the same effect as the Fortran 90 loop

DO i = 2,4
x(i) = x(i-1) + x(i) + x(i+1)
END DO

The FORALL statement
FORALL (i=1:n) a(i,i) = x(i)

sets the elements of the main diagonal of matrix a to the elements of vector z. This cannot

be done by an array assignment in Fortran 90 unless EQUIVALENCE is also used.
The FORALL statement

FORALL (i=1:4) a(i,ix(i)) = x(i)
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sets one element in each row of matrix a to an element of vector z. The particular elements
in a are chosen by the integer vector iz. If

x = (/ 10.0, 20.0, 30.0, 40.0 /)
ix=(/1:2a2,5/)

and array a represents the matrix

0.0 0.0 0.0 0.0 0.0
1.0 1.0 1.0 1.0 1.0
20 2.0 2.0 2.0 2.0
3.0 3.0 3.0 3.0 3.0

before execution of the FORALL, then a will represent

100 0.0 0.0 0.0 0.0
1.0 20.0 1.0 1.0 1.0
2.0 300 2.0 2.0 2.0
3.0 3.0 3.0 3.0 40.0

after its execution.
The FORALL statement

FORALL (k=1:9) x(i) = SUM(x(1:10:k))

computes nine sums of subarrays of z. (SUM is allowed in a FORALL because it is an intrinsic
function, and intrinsic functions are pure; see Section 4.3.) If before the FORALL

x=(/ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 /)
then after the FORALL
x=(/ 5§5.0, 25.0, 22.0, 15.0, 7.0, 8.0, 9.0, 10.0, 11.0, 10.0 /)

This computation cannot be done by Fortran 90 array expressions alone.

4.1.4 Scalarization of the FORALL Statement

One way to understand the semantics of the FORALL statement is to exhibit a naive trans-
lation to scalar Fortran 90 code. We provide such a translation below. Note, however,
that such a translation is meant for illustration rather than as the definitive reference to
the FORALL semantics of or practical implementation in the compiler. In particular, imple-
menting a FORALL using DO loops imposes an apparent order on the operations that is not
implied by the formal definition. Additionally, compiler analysis of particular cases may
allow significant simplification and optimization. For example, if an array assigned in a
FORALL statement is not referenced in any other expression in the FORALL (including its
use in functions called from the FORALL), it is legal and, on many machines, more efficient
to perform the computations and final assignments in a single loop nest. Also note the
discussion at the end of this section regarding other difficulties of a Fortran 90 translation.
A forall-stmt of the general form

FORALL (wn=h:u;:s, vw=h:up:sy, ..., vp=l,:uy:s,, mask) aley,...,en) = rhs
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is equivalent to the following code similar to Fortran 90:

! Evaluate subscript and stride ezpressions.
! These assignments may be ezecuted in any order.

templ, = |
tempu; = U
temps; = 8§
temply, =
tempuy = uy
tempsy, = S

templ, = I,
tempu, Uy
temps, Sn

! Evaluate the scalar mask ezpression, and evaluate the
! forall-assignment suberpressions where the mask is true.
! The iterations of this loop nest may be erecuted in any order.
! The assignments in the loop body may be ezecuted in any order,
! provided that the mask element is evaluated before any other
! ezrpression in the same iteration.
! The loop body need not be executed atomically.
DO v =templ; ,tempu, ,temps,
DO w=temply,tempusy,temps,

DO v,=templ, ,tempu, ,temps,
tempmask(vy,v2,...,v,) = mask
IF (tempmask(v,,v5,...,v,)) THEN
temprhs(vy ,v3,...,v,) = rhs
tempe; (11 ,12,...,0,) = €
tempez (v1,12,...,v,) = €

tempem(vl sV25 .0 avn) = €ém
END IF
END DO
END DO
END DO
! Perform the assignment of these values to the corresponding
! elements of the array on the left-hand side.
! The iterations of this loop nest may be ezecuted in any order.

DO v =templ ,tempu; ,temps,
DO wv=temply,tempu, , temps;

DO v,=templ, ,tempu, ,temps,
IF (tempmask(v,v3,...,v,)) THEN
a(tempe; (v ,v2,...,03), ..., tempe, (v1,02,...,0,)) = &
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temprhs(vy ,v2, ... ,0,)
END IF
END DO
END DO
END DO

Several subtleties are not specified in the above outline to promote readability. When
rhs is an array-valued expression, then several of the statements cannot be translated di-
rectly into Fortran 90. In particular, at least one of the e; will be a triplet; both bounds
and stride must be saved in tempe;, possibly by using derived type assignment or adding a
dimension to the data structure. The translation of the subscripts in the final assignment
to a must also be generalized to handle triplets. Storage allocation for temprhs may be
complicated by the fact that it must store arrays (possibly with different sizes for different
values of vy,...,vy,). If the forall-assignment is a pointer-assignment-stmt, then the assign-
ments to both arrays temprhs and a must be changed to pointer assignments (and a suitable
derived type must be produced for temprhs). The assignments to tempe,, .. ., tempe,, must,
however, remain true (integer) assignments. Finally, there may also be more than seven
indexes; this may forbid a direct translation on implementations that support a limited
number of dimensions in arrays.

4.1.5 Consequences of the Definition of the FORALL Statement

The scalar-mask-ezpr may depend on the indez-name values. This allows a wide range of
masking operations.

A syntactic consequence of the semantic rule that no two execution instances of the
body may assign to the same atomic data object is that each of the indez-name variables
must appear on the left-hand side of a forall-assignment. The converse is not true (i.e.,
using all indez-name variables on the left-hand side does not guarantee there will be no
interference). Because the condition is not sufficient, we have not stated it as a syntax
constraint.

Right-hand sides and subscripts on the left hand side of a forall-assignment are defined
as evaluated only for combinations of indez-names for which the scalar-mask-ezpr is true.
This has implications when the masked computation might create an error condition. For
example,

FORALL (i=1:n, y(i).NE.0.0) x(i) = 1.0 / y(i)

does not cause a division by zero.

4.2 FORALL Construct

The FORALL construct is a generalization of the FORALL statement allowing multiple as-
signments, masked array assignments, and nested FORALL statements and constructs to be
controlled by a single forall-triplet-spec-list.



56 CHAPTER 4. STATEMENTS

4.2.1 General Form of the FORALL Construct

Rule R215 of the Fortran 90 standard for ezecutable-construct is extended to include the
forall-construct.

ezecutable-construct is ...
or forall-construct
forall-construct is FORALL forall-header
forall-body-stmt-list
END FORALL
forall-body-stmt is forall-assignment

or where-stmt
or where-construct
or forall-stmt
or forall-construct

Constraint: Any procedure referenced in a forall-construct, including one referenced by a
defined operation or assignment in a forall-body-stmt, must be a pure function
as defined in Section 4.3.

Constraint: If a forall-stmt or forall-construct is nested in a forall-construct, then such
an inner FORALL may not redefine any indez-name used in an outer forall-
construct.

For each indez-name in the forall-assignments, the set of permitted values is determined
on entry to the construct and is

m2 —ml + m3
m3 J
and where m1, m2, and m3 are the values of the first subscript, the second subscript, and
the stride respectively in the forall-triplet-spec. If stride is missing, it is as if it were present
with a value of the integer 1. The expression stride must not have the value 0. If for some
indez-name |(m2 — m1+ m3)/m3] < 0, the forall-assignments are not executed.
Examples of the FORALL construct are:

FORALL ( i=2:n-1, j=2:n-1 )
a(i,j) = a(i,j-1) + a(i,j+1) + a(i-1,j) + a(i+1,j)
b(i,j) = a(i,j)

END FORALL

ml+ (k- 1) *xm3,where k = 1,2,..., l.

FORALL ( i=1:n-1)
FORALL ( j=i+1:n )
a(i,j) = a(j,1i) ! make a be symmetric
END FORALL
END FORALL

FORALL ( i=1:n, j=1:n )
a(i,j) = MERGE( a(i,j), a(i,j)**2, i.EQ.j )
WHERE ( .NOT. done(i,j,1:m) )
b(i,j,1:m) = b(i,j,1:m)*x
END WHERE
END FORALL
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4.2.2 Interpretation of the FORALL Construct

Execution of a FORALL construct consists of the following steps:

1. Evaluation in any order of the subscript and stride expressions in the forall-triplet-
spec-list. The set of valid combinations of indez-name values is then the Cartesian
product of the sets defined by these triplets.

2. Evaluation of the scalar-mask-ezpr for all valid combinations of indez-name values.
The mask elements may be evaluated in any order. The set of active combinations of
indez-name values is the subset of the valid combinations for which the mask evaluates
to true.

3. Execute the forall-body-stmts in the order they appear. FEach statement is executed
completely (that is, for all active combinations of indez-name values) according to the
following interpretation:

(a) Statements in the forall-assignment category (i.e. assignment statements and
pointer assignment statements) evaluate the right-hand side ezpr and any left-
hand side subscripts for all active indez-name values, then assign the right-hand
side results to the corresponding left-hand side references.

(b) Statements in the where-stmt and where-construct categories evaluate their mask-
ezpr for all active combinations of values of inder-names. All elements of all
masks may be evaluated in any order. The WHERE statement’s assignment (or
assignments within the WHERE branch of the construct) are then executed in order
using the above interpretation of array assignments within the FORALL, but the
only array elements assigned are those selected by both the active indez-name
values and the WHERE mask. Finally, the assignments in the ELSEWHERE branch
are executed if that branch is present. The assignments here are also treated as
array assignments, but elements are only assigned if they are selected by both
the active combinations and by the negation of the WHERE mask.

(c) Statements in the forall-stmt and forall-construct categories first evaluate the
subscript and stride expressions in the forall-triplet-spec-list for all active combi-
nations of the outer FORALL constructs. The set of valid combinations of indez-
names for the inner FORALL is then the union of the sets defined by these bounds
and strides for each active combination of the outer indez-names, the outer indez
names being included in the combinations generated for the inner FORALL. The
scalar mask expression is then evaluated for all valid combinations of the inner
FORALL’s indez-names to produce the set of active combinations. If there is no
scalar mask expression, it is as if it were present with the constant value .TRUE.
Each statement in the inner FORALL is then executed for each active combina-
tion (of the inner FORALL), recursively following the interpretations given in this
section.

If the scalar mask expression is omitted, it is as if it were present with the value true.

The scope of an indez-name is the FORALL construct itself.

Each forall-assignment must obey the same restrictions in a forall-construct as in a
simple forall-stmt. (Note that any innermost statement within nested FORALL constructs
must always be a forall-assignment.) In addition, each where-stmt or assignment nested
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within a where-construct must obey these restrictions. For example, an assignment may
not cause the same array element to be assigned more than once. Different statements may,
however, assign to the same array element, and assignments made in one statement may
affect the execution of a later statement.

4.2.3 Scalarization of the FORALL Construct

As with the FORALL statement, the following translations of FORALL constructs to DO loops
are meant to illustrate the meaning, not necessarily to serve as an implementation guide.
The caveats for the FORALL statement scalarization apply here as well.

A forall-construct of the form:

FORALL (... € ... €& ... €5 ...)
S1
S2

8n
END FORALL

where each si is a forall-assignment is equivalent to the following code:

tempy
temp,

€1
€2

temp, = e,
FORALL (... temp, ... tempy ... temp, ...) &
FORALL (... temp; ... tempy ... temp, ...) S

FORALL (... temp, ... tempy ... temp, ...) S,

A similar remark can be made when the s; may be WHERE or FORALL constructs.
A forall-construct of the form:

FORALL ( mn=h:uy:8, mask; )
WHERE ( mask; )
a(ly:uy:83) = rhsy
ELSEWHERE
a(lz:uz:s3) = rhsy
END WHERE
END FORALL

is equivalent to the following code:

! Evaluate subscript and stride ezpressions.

! These assignments can be made in any order.
temph = |

tempu; =

temps; 81

! Evaluate the FORALL mask ezpression.
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! The iterations of this loop may be erecuted in any order.
DO v =templ, ,tempu; , temps;

tempmask, (v;) = mask;
END DO

! Evaluate the bounds and masks for the WHERE.
! The iterations of this loop may be executed in any order.
! The assignments in the loop body may be ezecuted in any order,

! provided the mask bounds and stride are computed before the mask.

! The loop body need not be ezxecuted atomically.
DO v =templ ,tempu, ,temps,
IF (tempmask(v;)) THEN
tempmask; (vl) = mask,
END IF
END DO

! Evaluate the WHERE branch.
! The iterations of this loop may be ezecuted in any order.
DO v =templ, ,tempu, ,temps;
IF (tempmask(v,)) THEN
tmpl (v1) = b
tmpuy (v1) = uy
tmps; (1) = s,
WHERE ( tempmask, )
temprhs; (tmply (v;) : tmpuy (vy) :tmpse (v1)) = rhs
END WHERE
END IF
END DO
! The iterations of this loop may be ezecuted in any order.
DO v =templ; ,tempu, , temps,
IF (tempmask(v,)) THEN
WHERE ( tempmask; )
a(tmply (vy) :tmpuy (vy) s tmpsy (1)) = &
temprhs, (tmply (v1) : tmpug (vy) : tmpsy (v1) )
END WHERE
END IF
END DO

! Evaluate the ELSEWHERE branch.
! The iterations of this loop may be executed in any order.
DO v =temply , tempu, , temps,
IF (tempmask(v,)) THEN
tmpl3 (1) =
tmpuz (1) = ug
tmpsz(v1) = s3
WHERE ( .NOT. tempmask; )
temprhs; (tmpls (vy) : tmpuz (vy) : tmps3 (1)) = rhs,
END WHERE
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END IF
END DO
! The iterations of this loop may be ezecuted in any order.
DO v =templ; , tempu, , temps;
IF (tempmask(v,)) THEN
WHERE ( .NOT. tempmask; )
a(tmplz (vy) : tmpuz (vy) :tmpsz (1)) = &
temprhs; (¢mpls (vy) : tmpug (v1) : tmpsz (v1))
END WHERE
END IF
END DO

Note that the assignments to tempmasky are array assignments and require special
treatment (including saving of bounds and stride information) similar to that for array
assignments in the FORALL statement scalarization. The extension to multiple dimensions
(in either the FORALL index space or the array dimensions) is straightforward. If there are
multiple statements in a branch of the WHERE construct, each will generate two loops similar
to those shown above.

A forall-construct of the form:

FORALL ( wn=h:uy:8, mask; )
FORALL ( vo=ly:up:sy, masky )
a(ey) = rhs
b(ey) = rhsy
END FORALL
END FORALL

is equivalent to the following Fortran 90 code:

! Evaluate subscript and stride ezpressions and outer mask.
! These assignments may be ezecuted in any order.
temph = |
tempuy (]
temps; = $§
! The iterations of this loop may be erecuted in any order.
D0 v =templ, ,tempu, , temps;
tempmask; (v1) = mask;
END DO

! Evaluate the inner FORALL bounds, etc
! The iterations of this loop may be ezecuted in any order.
' The assignments in the loop body may be ezecuted in any order,
| provided that the mask bounds are computed before the mask itself.
! The loop body need not be erecuted atomically.
D0 v =templ; ,tempuy,; ,temps;
IF (tempmask;(v;)) THEN
templa(1n) = b
tempuy (v1) = up
tempss (vp) S2



4.2. FORALL CONSTRUCT

DO v, = temply(v;),tempuy (vy) ,tempsy (vy)
tempmask, (v, 1) = mask,
END DO
END IF
END DO

! Ewvaluate first statement
! The iterations of this loop may be ezecuted in any order.
! The assignments in this loop body may be ezecuted in any order.
! The loop body need not be ezecuted atomically.
DO v =templ, ,tempu, ,temps,
IF (tempmask, (v;)) THEN
DO v, = temply(v1),tempug(vy) ,tempsy (1y)
IF ( tempmasky(vy,v2) ) THEN
temprhs, (v;,v12) = ths
tmpe; (v1,v2) = €
END IF
END DO
END IF
END DO
! The iterations of this loop may be erecuted in any order.
DO v =templ ,tempu, , temps;
IF (tempmask(v,)) THEN
DO v, = temply(v1),tempuy(vy),tempsy (vy)
IF ( tempmasky(vy,v2) ) THEN
a(tmpe; (v1,12)) = temprhs; (vy,v3)
END IF
END DO
END IF
END DO

! Evaluate second statement. :
! Ordering constraints are as for the first statement.
DO v =templ; ,tempu, , temps,
IF (tempmask,(v;)) THEN
DO v, = templ(v,),tempuy(vy),tempsy (vy)
IF ( tempmasky(v;,v3) ) THEN
temprhs, (v ,v2) = rthsy
tmpez (v1,v2) = €
END IF
END DO
END IF
END DO
DO v =temply ,tempu, ,temps;
IF (tempmask;(v,)) THEN
DO v, = templ(vy),tempuy(vy),tempsy (vy)
IF ( tempmasky(vy,v2) ) THEN
b(tmpes (vy,13)) = temprhsy (vy,v2)

61
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END IF
END DO
END IF
END DO

Again, the extensions to higher dimensions are straightforward, as is the extension to deeper
nesting levels. Each statement at the deepest nesting level will generate two loops of the
types shown.

4.2.4 Examples of FORALL Construct Interpretation

The FORALL construct

FORALL ( i=2:n-1, j=2:n-1 )
a(i,j) = a(i,j-1) + a(i,j+1) + a(i-1,j) + a(i+1,j)
b(i,j) = a(i,j)

END FORALL

is equivalent to the two Fortran 90 statements

a(2:n-1)

a(2:n-1,1:n-2)+a(2:n-1,3:n) &
+a(1:n-2,2:n-1)+a(3:n,2:n-1)
b(2:n-1)

a(2:n-1)

In particular, note that the assignment to array b uses the values of array a computed in
the first statement, not the values before the FORALL began execution.
The FORALL construct

FORALL ( i=1:n-1 )
FORALL ( j=i+1:n )
a(i,j) = a(j,i)
END FORALL
END FORALL

assigns the transpose of the lower triangle of array a (i.e., the section below the main
diagonal) to the upper triangle of a. For example, if n = 5 and a originally contained the

matrix
0.0 0.0 0.0 0.0 0.0

1.0 1.0 1.0 1.0 1.0
20 4.0 8.0 16.0 32.0
3.0 9.0 27.0 81.0 243.0
4.0 16.0 64.0 256.0 1024.0

then after the FORALL it would contain

0.0 1.0 2.0 3.0 4.0
1.0 1.0 4.0 9.0 16.0
20 4.0 8.0 27.0 64.0
3.0 9.0 27.0 81.0 256.0
4.0 16.0 64.0 256.0 1024.0

This cannot be done using array expressions without introducing mask expressions.
The FORALL construct
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FORALL ( i=1:5 )
WHERE ( a(i,:) .NE. 0.0 )
a(i,:) = a(i-1,:) + a(i+1,:)
ELSEWHERE
b(i,:) = a(n-i+1,:)

END WHERE
END FORALL

when executed with the input arrays

0.0 0.0 0.0 0.0 0.0 0.0 00 0.0 0.0 0.0
1.0 1.0 1.0 0.0 1.0 10.0 10.0 10.0 10.0 10.0
a=1] 2.0 2.0 0.0 2.0 2.0 |,b=| 20.0 20.0 20.0 20.0 20.0
3.0 0.0 3.0 3.0 3.0 30.0 30.0 30.0 30.0 30.0
0.0 0.0 0.0 0.0 0.0 40.0 40.0 40.0 40.0 40.0
will produce as results
0.0 0.0 0.0 0.0 0.0 00 00 0.0 0.0 0.0
2.0 2.0 0.0 0.0 2.0 10.0 10.0 10.0 2.0 10.0
a=| 4.0 1.0 0.0 3.0 40 |,bdb=1] 20.0 20.0 0.0 20.0 20.0
2.0 0.0 0.0 2.0 2.0 30.0 2.0 30.0 30.0 30.0
0.0 0.0 0.0 0.0 0.0 00 00 0.0 0.0 0.0

Note that, as with WHERE statements in ordinary Fortran 90, assignments in the WHERE
branch may affect computations in the ELSEWHERE branch.

4.2.5 Consequences of the Definition of the FORALL Construct

A block FORALL means roughly the same as replicating the FORALL header in front of each
array assignment statement in the block, except that any expressions in the FORALL header
are evaluated only once, rather than being re-evaluated before each of the statements in
the body. The exceptions to this rule are nested FORALL statements and WHERE statements,
which introduce syntactic and functional complications into the copying.

One may think of a block FORALL as synchronizing twice per contained assignment state-
ment: once after handling the right-hand side and other expressions but before performing
assignments, and once after all assignments have been performed but before commencing
the next statement. In practice, appropriate analysis will often permit the compiler to
eliminate unnecessary synchronizations.

In general, any expression in a FORALL is evaluated only for valid combinations of all
surrounding indez-names for which all the scalar mask expressions are true.

Nested FORALL bounds and strides can depend on outer FORALL indez-names. They
cannot redefine those names, even temporarily (if they did, there would be no way to avoid
multiple assignments to the same array element).

Statements can use the results of computations in lexically earlier statements, including
computations done for other name values. However, an assignment never uses a value
assigned in the same statement by another indez-name value combination.
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4.3 Pure Procedures

A pure function is one that obeys certain syntactic constraints that ensure it produces no
side effects. This means that the only effect of a pure function reference on the state of a
program is to return a result—it does not modify the values, pointer associations, or data
mapping of any of its arguments or global data, and performs no 1/0. A pure subroutine is
one that produces no side effects except for modifying the values and/or pointer associations
of certain arguments.

A pure procedure (i.e., function or subroutine) may be used in any way that a normal
procedure can. However, a procedure is required to be pure if it is used in any of the
following contexts:

e A FORALL statement or construct;
e Within the body of a pure procedure; or

e As an actual argument in a pure procedure reference.

The freedom from side effects of a pure function ensures that it can be invoked con-
currently in a FORALL without such undesirable consequences as nondeterminism, and ad-
ditionally assists the efficient implementation of concurrent execution.

4.3.1 Pure procedure declaration and interface

If a user-defined procedure is used in a context that requires it to be pure, then its interface
must be explicit in the scope of that use, and both its interface body (if provided) and its
definition must contain the PURE declaration. The form of this declaration is a directive
immediately after the function-stmt or subroutine-stmt of the procedure interface body or
definition:

pure-directive is 'HPF$ PURE [procedure-name]

Intrinsic functions, including HPF intrinsic functions, are always pure and require no
explicit declaration of this fact; intrinsic subroutines are pure if they are elemental (e.g.,
MVBITS) but not otherwise. A statement function is pure if and only if all functions that it
references are pure.

Pure function definition

To define pure functions, Rule R1215 of the Fortran 90 standard is changed to:

function-subprogram is function-stmi
[pure-directive]
[specification-part]
[ezecution-part]
[internal-subprogram-part]
end-function-stmt

with the following constraints in addition to those in Section 12.5.2.2 of the Fortran 90
standard:
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Constraint:

Constraint:

Constraint:

Constraint:

Constraint:

Constraint:

Constraint:

Constraint:

Constraint:

If a procedure-name is present in the pure-directive, it must match the function-
name in the function-stmt.

In a pure function, a local variable must not have the SAVE attribute. (Note
that this means that a local variable cannot be initialised in a type-declaration-
stmt or a data-stmt, which imply the SAVE attribute.)

A pure function must not use a dummy argument, a global variable, or an
object that is storage associated with a global variable, or a subobject thereof,
in the following contexts:

e As the assignment variable of an assignment-stmit,

e As a DO variable or implied DO variable, or as a indez-name in a forall-
triplet-spec;
o In an assign-stmt;

o As the pointer-object or target of a pointer-assignment-stmt;

o As the ezpr of an assignment-stmt whose assignment variable is of a de-
rived type, or is a pointer to a derived type, that has a pointer component
at any level of component selection;

e As an allocate-object or stat-variable in an allocate-stmt or deallocate-
stmt, or as a pointer-object in a nullify-stmt; or

e As an actual argument associated with a dummy argument with INTENT
(OUT) or (INOUT) or with the POINTER attribute.

Any procedure referenced in a pure function, including one referenced via a
defined operation or assignment, must be pure.

In a pure function, a dummy argument must not appear in an explicit mapping
directive unless it has the INHERIT attribute.

In a pure function, a local variable may be explicitly aligned only with another
local variable or a dummy argument. A local variable may not be explicitly
distributed.

In a pure function, a dummy argument or local variable must not have the
DYNAMIC attribute.

In a pure function, a global variable must not appear in a realign-directive or
redistribute-directive.

A pure function must not contain a pause-stmt, stop-stmt, or I/O statement
(including a file operation).

To declare that a function is pure, a pure-directive must be given.

The above constraints are designed to guarantee that a pure function is free from side
effects (i.e., modifications of data visible outside the function), which means that it is safe
to reference concurrently, as explained earlier.
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Rationale

It is worth mentioning why the above constraints - re sufficient to eliminate side effects.

The second constraint (disallowing SAVE variables) ensures that a pure function does
not retain an internal state between calls, which would allow side-effects between calls to
the same procedure.

The third constraint (the restrictions on use of global variables and dummy arguments)
ensures that dummy arguments and global variables are not modified by the function. In
the case of a dummy or global pointer, this applies to both its pointer association and its
target value, so it cannot be subject to a pointer assignment or to an ALLOCATE,DEALLOCATE
or NULLIFY statement. Incidentally, these constraints imply that only local variables and
the dummy result variable can be subject to assignment or pointer assignment.

In addition, a dummy or global data object cannot be the target of a pointer assignment
(i.e., it cannot be used as the right hand side of a pointer assignment to a local pointer or
to the result variable), for then its value could be modified via the pointer. (An alternative
approach would be to allow global objects to be pointer targets, but disallow assignments
to those pointers; those constraints are even more complex than the current ones.)

In connection with the last point, it should be noted that an ordinary (as opposed
to pointer) assignment to a variable of derived type that has a pointer component at any
level of component selection may result in a pointer assignment to the pointer component
of the variable. That is certainly the case for an intrinsic assignment. In that case the
expression on the right hand side of the assignment has the same type as the assignment
variable, and the assignment results in a pointer assignment of the pointer components of
the expression result to the corresponding components of the variable (see section 7.5.1.5 of
the Fortran 90 standard). However, it may also be the case for a defined assignment to such
a variable, even if the data type of the expression has no pointer components; the defined
assignment may still involve pointer assignment of part or all of the expression result to
the pointer components of the assignment variable. Therefore, a dummy or global object
cannot be used as the right hand side of any assignment to a variable of derived type with
pointer components, for then it, or part of it, might be the target of a pointer assignment,
in violation of the restriction mentioned above.

(Incidentally, the last two paragraphs only prevent the reference of a dummy or global
object as the only object on the right hand side of a pointer assignment or an assignment
to a variable with pointer components. There are no constraints on its reference as an
operand, actual argument, subscript expression, etc. in these circumstances.)

Finally, a dummy or global data object cannot be used in a procedure reference as an
actual argument associated with a dummy argument of INTENT (OUT) or (INOUT) or with
a dummy pointer, for then it may be modified by the procedure reference. This constraint,
like the others, can be statically checked, since any procedure referenced within a pure
function must be either a pure function, which does not modify its arguments, or a pure
subroutine, whose interface must specify the INTENT or POINTER attributes of its arguments
(see below). Incidentally, notice that in this context it is assumed that an actual argument
associated with a dummy pointer is modified, since Fortran 90 does not allow its intent to
be specified.

Constraint 4 (only pure procedures may be called) ensures that all procedures called
from a pure function are themselves side-effect free, except, in the case of subroutines,
for modifying actual arguments associated with dummy pointers or dummy arguments
with INTENT(OUT) or (INOUT). As we have just explained, it can be checked that global or
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dummy objects are not used in such arguments, which would violate the required side-effect
freedom.

Constraints 5 through 8 (constraints on explicit mapping statements) protect dummy
and global data objects from realignment and redistribution (another type of side effect).
In addition, constraint 5 restricts explicit declaration of the mapping of dummy arguments
and local variables. This is because the function may be invoked concurrently, with each
invocation operating on a segment of data whose distribution is specific to that invocation.
Thus, the distribution of a dummy object may be inherited from the corresponding actual
argument. For similar reasons, local variables may be aligned with dummy arguments
(either directly or through other local variables), but may not have arbitrary mappings.

The last constraint prevents I/O, whose order would be non-deterministic in the context
of concurrent execution. A PAUSE statement requires input and so is disallowed for the same
reason. Finally, a STOP brings execution to a halt, which is a rather drastic side effect.

Pure subroutine definition
To define pure subroutines, Fortran 90 Rule R1219 is changed to:

subroutine-subprogram is  subroutine-stmt
[pure-directive]
[specification-part]
[ezecution-part)
[internal-subprogram-part)
end-subroutine-stmt

with the following constraints in addition to those in Section 12.5.2.3 of the Fortran 90
standard:

Constraint: If a procedure-name is present in the pure-directive, it must match the subrou-
tine-name in the subroutine-stmt.

Constraint: The specification-part of a pure subroutine must specify the intents of all non-
pointer and non-procedure dummy arguments.

Constraint: In a pure subroutine, a local variable must not have the SAVE attribute. (Note
that this means that a local variable cannot be initialized in a type-declaration-
stmt or a data-stmt, which imply the SAVE attribute.)

Constraint: A pure subroutine must not use a dummy parameter with INTENT (IN), a global
variable, or an object that is storage associated with a global variable, or a
subobject thereof, in the following contexts:

e As the assignment variable of an assignment-stmdt;

e As a DO variable or implied DO variable, or as a indez-name in a forall-
triplet-spec;

e In an assign-stmt;

e As the pointer-object or target of a pointer-assignment-stmt;

e As the ezpr of an assignment-stmt whose assignment variable is of a de-
rived type, or is a pointer to a derived type, that has a pointer component
at any level of component selection;
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e As an nallocate-»hject or stat-variable in an allc-ate-stmt or deailocate-
stmt, or as a p:  ler-object in a nullify-stmt;

e As an actual argument associated with a dummj argument with INTENT
(0UT) or (INOUT) or with the POINTER attribute.

Constraint: Any procedure referenced in a pure subroutine, including one referenced via a
defined operation or assignment, must be pure.

Constraint: In a pure subroutine, a dummy argument must not appear in an explicit map-
ping directive unless it has the INHERIT attribute.

Constraint: In a pure subroutine, a local variable may be explicitly aligned only with
another local variable or a dummy argument. A local variable may not be
explicitly distributed.

Constraint: In a pure subroutine, a dummy argument or local variable must not have
theDYNAMIC attribute.

Constraint: In a pure subroutine, a global variable must not appear in a realign-directive
or redistribute-directive.

Constraint: A pure subroutine must not contain a pause-stmt, stop-stmt or 1/O statement
(including a file operation).

To declare that a subroutine is pure, a pure-directive must be given.

The constraints for pure subroutines are based on the same principles as for pure func-
tions, except that now side effects to INTENT (OUT) and INTENT(INOUT) dummy arguments
are permitted. Pointer dummy arguments are always treated as INTENT (INOUT).

Pure procedure interfaces
To define interface specifications for pure procedures, Fortran 90 Rule R1204 is changed to:

interface-body is function-stmt
[pure-directive]
[specification-part]
end-function-stmt

or subroutine-stmt

[pure-directive]
[specification-part]
end-subroutine-stmt

with the following constraint in addition to those in Section 12.3.2.1 of the Fortran 90
standard:

Constraint: An interface-body of a pure subroutine must specify the intents of all non-
pointer and non-procedure dummy arguments.

The procedure characteristics defined by an interface body must be consistent with the
procedure’s definition. Regarding pure procedures, this is interpreted as follows:

e A procedure that is declared pure at its definition may be declared pure in an interface
block, but this is not required.
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o A procedure that is not declared pure at its definition must not be declared pure in
an interface block.

That is, if an interface body contains a pure-directive, then the corresponding procedure
definition must also contain it, though the reverse is not true. When a procedure definition
with a pure-directive is compiled, the compiler may check that it satisfies the necessary
constraints.

4.3.2 Pure procedure reference

To define pure procedure references, the following extra constraint is added to Section 12.4.1
of the Fortran 90 standard:

Constraint: In a reference to a pure procedure, a procedure-name actual-arg must be the
name of a pure procedure.

4.3.3 Examples of pure procedure usage

Pure functions may be used in expressions in FORALL statements and constructs, unlike gen-
eral functions. Because a forall-assignment may be an array assignment, the pure function
can have an array result. For example:

INTERFACE
FUNCTION f(x)
'HPF$ PURE f

REAL, DIMENSION(3) :: f, x
END FUNCTION f
END INTERFACE
REAL v (3,10,10)

FORALL (i=1:10, j=1:10) v(:,i,j) = £(v(:,i,j))

Such functions may be particularly helpful for performing row-wise or column-wise opera-
tions on an array.

A limited form of MIMD parallelism can be obtained by means of branches within the
pure procedure that depend on arguments associated with array elements or their subscripts,
for example in

FUNCTION £ (x, i)

'HPF$ PURE £

REAL x ! associated with array element

INTEGER i ! associated with array subscript

IF (x > 0.0) THEN ! content-based conditional

ELSE IF (i==1 .OR. i==n) THEN ! subscript-based conditional
ENDIF

END FUNCTION

REAL a(n)
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INTEGER i
FORALL (i=1:n) a(i) = f£( a(i), i)

This may sometimes provide an alternative to using sequences of masked FORALL statements
with their potential synchronization overhead.

Because pure procedure have no constraints on their internal control flow (except that
they may not use the STOP statement), they also provide a means for encapsulating more
complex operations than could otherwise be nested within a FORALL. For example, the
following fragment performs an iterative algorithm on every element of an array:

FUNCTION iter(x)
'HPF$ PURE iter
COMPLEX x, xtmp
INTEGER iter, i
i=0
xtmp = -x
DO WHILE (ABS(xtmp).LT.2.0 .AND. i.LT.1000)
Xtmp = xtmp * xtmp - X
i=31i+1
ENDDO
iter = i
END FUNCTION

FORALL (i=1:n, j=1:m) ix(i,j) = iter(COMPLX(a+i*da,b+j*db))

Note that different amounts of computation may be required for different inputs. Some
machines may not be able to take advantage of this flexibility.

4.3.4 Comments on Pure Procedures

The constraints for a pure procedure guarantee freedom from side-effects, thus ensuring
that it can be invoked concurrently at each “element” of an array (where an “element” may
itself be referenced as a data structure, including an array).

The constraints on PURE procedures may appear complicated, but it is not necessary
for a programmer to be intimately familiar with them. From the programmer’s point of
view, these constraints can be summarized as follows: a pure procedure must not contain
any operation that could conceivably result in an assignment or pointer assignment to a
global variable or dummy argument (in the case of a function), or perform any I/O or STOP
operation. Note the use of the word conceivably; it is not sufficient for a pure function merely
to be side-effect free in practice (e.g., a function that contains an assignment to a global
variable but in a branch that is not executed in any invocation of the function is nevertheless
not a pure function). The exclusion of some functions of this nature is unavoidable if strict
compile-time checking is to be used, due to the undecidability of the halting problem. In
the choice between compile-time checking and flexibility, the HPF committee decided in
favor of enhanced checking.

It is expected that most HPF library procedures will conform to the constraints required
of pure procedures (by the very nature of library procedures), and so can be declared pure
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and referenced in FORALL statements and constructs (if they are functions) and within
user-defined pure procedures. It is also anticipated that most library procedures will not
reference global data, whose use may sometimes inhibit concurrent execution.

The constraints on pure procedures are limited to those necessary for statically check-
able side-effect freedom and the elimination of saved internal state. Subject to these re-
strictions, maximum functionality has been preserved in the definition of pure procedures.
This has been done to make function calls in FORALL as widely available as possible, and so
that quite general library procedures can be classified as pure.

A drawback of this flexibility is that pure procedures permit certain features whose
use may hinder, and in the worst case prevent, concurrent execution in FORALL (that is,
such references may have to be implemented by sequentialization). Foremost among these
features are the access of global data, particularly distributed global data, and the fact
that the arguments and, for a pure function, the result may be pointers or data structures
with pointer components, including recursive data structures such as lists and trees. The
programmer should be aware of the potential performance penalties of using such features.

4.4 The INDEPENDENT Directive

The INDEPENDENT directive can precede a DO loop or FORALL statement or construct. It
asserts to the compiler that the operations in the following construct may be executed
independently—that is, in any order, or interleaved, or concurrently—without changing the
semantics of the program.

The syntax of the INDEPENDENT directive is

independent-directive is INDEPENDENT [ (integer-variable-list) | [ , new-clause ]
new-clause is NEW (variable-list)

Constraint: An independent-directive must immediately precede a DO or FORALL statement.

Constraint: If the integer-variable-list is present in an independent-directive, then the vari-
ables named must be the index variables of a set of perfectly nested DO loops or
index-names from the same FORALL header. A set of loops is perfectly nested
if each loop (except the innermost loop) encloses one other loop in the set
directly and no other statements.

Constraint: The NEW option may be used only with perfectly nested loops.

Constraint: A variable named in theNEW option or any component or element thereof must
not:

¢ Be a pointer, dummy argument, common block, module, program unit or
entry point;

o Have the SAVE or TARGET attribute; nor

e Be associated with any data object that is used in the execution part of
the nest of DO loops and not named in this NEW option.

The directive is said to apply to the indexes named in its integer-variable-list, or equiv-
alently to the loops or FORALL indexed by those variables. If no integer-variable-list is
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present, then it is as if it were present and contained the index variable for the DO or
FORALL immediately following the directive.

When applied to a nest of DO loops, an INDEPENDENT directive is an assertion by the
programmer that no iteration can affect any other iteration, either directly or indirectly.
Any change of state to data used by an iteration is considered to affect that iteration, even
if the results are mathematically equivalent. Thus, an INDEPENDENT loop can be executed
safely in parallel if computation resources are available. The directive is purely advisory
and a compiler is free to ignore it if it cannot make use of the information. The following
are some consequences of the INDEPENDENT assertion:

e No iteration assigns to any atomic data object which is accessed (read or written) by
another iteration. (An atomic data object is a Fortran 90 data object that has no
subobjects.)

o There are no exits from any loop in the nest other than normal termination.

e No data realignment or redistribution is performed in the loop.

The NEW option specifies that the assertion by the INDEPENDENT directive would be
correct if distinct storage units are used for the named variables for each iteration of the DO
loop nest. More formally, it asserts that the remainder of program execution is unaffected
if all variables in the variable-list and any variables associated with them become undefined
immediately before execution of every iteration of the loop nest, and also become undefined
immediately after the completion of each iteration of the loop nest. (This is similar to the
treatment of realignment through pointers in Section 3.6. As with that section, it may be
reworded if HPF directives are absorbed as actual Fortran statements.)

For example:

'HPF$ INDEPENDENT
D0 i=1,100

a(p(i)) = b(i)
END DO

asserts that the array p does not have any repeated entries (else they would cause in-
terference when a was assigned). It also limits how a and b may be storage associated.
(The remaining examples in this section assume that no variables are storage or sequence
associated.)

Another example:

'HPF$ INDEPENDENT (i1,i2,i3)
DO i1 = 1,n1

DO i2 = 1,n2
DO i3 = 1,n3
DO i4 = 1,n4 ! The inner loop is NOT independent!
a(i1,i2,i3) = a(i1,i2,i3) + b(i1,i2,i4)*c(i2,i3,iq)
END DO
END DO
END DO

END DO
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The inner loop is not independent because each element of a is assigned repeatedly. However,
the three outer loops are independent because they access different elements of a. It is not
relevant that the outer loops read the same elements from b and c, because those arrays
are not assigned.

Another example:

'HPF$ INDEPENDENT (i,j), NEW(vl, vr, ul, ur)
DOi=1,n, 2
D0j=1,n,2

vl = p(i,j) - p(i-1,j)
vr = p(i+1,j) - p(i,j)
ul = p(i,j) - p(i,j-1)
ur = p(i,j+1) - p(i,j)
p(i,j) = £(i,3j) + p(i,j) + 0.25 * (vr - vl + ur - ul)
END DO
END DO

Without the NEW option this loop would not be independent, because an interleaved exe-
cution of loop iterations might cause other values of v1, vr, ul, and ur to be used in the
assignment of p(i,j) than those computed in the same iteration of the loop. The NEW
option, however, specifies that this is not true if distinct storage units are used in each
iteration of the loop. Using this implementation makes iterations of the loops independent
of each other.

The interpretation of INDEPENDENT for FORALL is similar to that for DO: it asserts that
no combination of the indexes that INDEPENDENT applies assigns to an atomic storage unit
that is read by another combination. (Note that the form of a FORALL does not allow exits
from the construct, etc.) A DO and a FORALL with the same body are equivalent if they
both have the INDEPENDENT directive. In the case of a FORALL, any of the variables may be
mentioned in the INDEPENDENT directive:

'HPF$ INDEPENDENT (i1,i3)

FORALL ( i1=2:n1-1, i2=2:n2-1, i3=2:n3-1 )
a(i1,i2,i3) = a(i1,i2-1,i3)

END FORALL

This means that for any given values for i1 and i3, all the right-hand sides for all values
of i2 must be computed before any assignment are done for that specific pair of (i1,i3)
values; but assignments for one pair of (i1,i3) values need not wait for evaluation of the
right-hand side for a different pair of (i1,i3) values.

Graphically, the INDEPENDENT directive can be visualized as eliminating edges from
a precedence graph representing the program. Figure 4.1 shows some of the dependences
that may normally be present in a DO an a FORALL. (Transitive dependences are not shown.)
An arrow from a left-hand side node (for example, “lhsa(1)”) to a right-hand side node
(“rhsb(1)”) means that the right-hand side computation might use values assigned in the
left-hand side nodel; thus the right-hand side must be computed after the left-hand side
completes its store. Similarly, an arrow from a right-hand side node to a left-hand side
node means that the left-hand side may overwrite a value needed by the right-hand side
computation, again forcing an ordering. Edges from the “BEGIN” and to the “END”
nodes represent control dependences. The INDEPENDENT directive asserts that the only
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DOi=1, 3
lhsa(i) = rhsa(i)
1hsb(i) = rhsb(i)
END DO
D [ GeazD
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(rhsb(1) ) (rhsb(2) ) (rhsb(3))
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FORALL ( i = 1:3)
lhsa(i) = rhsa(i)
1lhsb(i) = rhsb(i)

END FORALL
BEGIN
rhsa(1 (rhsa(2)) rhsa(3
(Thsa(1 hsa(2 lhsa(3
rhsb(1 rhsb(2 rhsb(3) )
(Thsb(1 sb(2 Thsb(3) )
(_END )

Figure 4.1: Dependences in DO and FORALL without INDEPENDENT assertions

'HPF$ INDEPENDENT

DOi=1,
lhsa(i)
lhsb(i)

END DO

3
= rhsa(i)
rhsb(i)

BEGIN

(hsal) (RsaRD  (hsaBD
END

'HPF$ INDEPENDENT
FORALL ( i = 1:3)
lhsa(i) = rhsa(i)
1hsb(i) = rhsb(i)
END FORALL

(thsb(TD)

“Thsb(1) )

END

(hsb2)D)

(hsb(2) )

hsa(3) )

GEsEED)

sb

Figure 4.2: Dependences in DO and FORALL with INDEPENDENT assertions
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dependences that a compiler need enforce are those in Figure 4.2. That is, the programmer
who uses INDEPENDENT is certifying that if the compiler enforces only these edges, then the
resulting program will be equivalent to the one in which all the edges are present. Note that
the set of asserted dependences is identical for INDEPENDENT DO and FORALL constructs.

The compiler is justified in producing a warning if it can prove that one of these
assertions is incorrect. It is not required to do so, however. A program containing any false
assertion of this type is not standard conforming, is not defined by HPF, and the compiler
may take any action it deems appropriate.
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Chapter 5

Intrinsic and Library Procedures

HPF includes Fortran 90’s intrinsic procedures. It also adds a number of new intrinsic
procedures in three categories: system inquiry intrinsic functions, mapping inquiry intrinsic
subroutines, and computational intrinsic functions.

The definitions of two Fortran 90 intrinsic functions, MAXLOC and MINLOC, are
extended by the addition of an optional DIM argument.

In addition to the new intrinsic procedures, HPF defines a library module, HPF_LIB,
that must be provided by vendors of any full HPF implementation.

5.1 System Inquiry Intrinsic Functions

In a multi-processor implementation, the processors may be arranged in an implementa-
tion-dependent n-dimensional processor array. The system inquiry functions return values
related to this underlying machine and processor configuration, including the size and shape
of the underlying processor array. NUMBER_OF_PROCESSORS returns the total number
of processors available to the program or the number of processors available to the program
along a specified dimension of the processor array. PROCESSORS_SHAPE returns the
shape of the processor array.

The values returned by the system inquiry intrinsic functions remain constant for the
duration of one program execution. Accordingly, NUMBER_OF_PROCESSORS and PRO-
CESSORS_SHAPE have values that are restricted expressions and may be used wherever
any other Fortran 90 restricted expression may be used. In particular, NUMBER_OF_PRO-
CESSORS may be used in a specification expression.

5.1.1 NUMBER_OF_PROCESSORS(DIM)

Optional Argument. DIM

Description. Returns the total number of processors available to the program or the
number of processors available to the program along a specified dimension of the processor
array.

Class. System inquiry function.

Arguments. DIM (optional) must be scalar and of type integer with a value in the range
(1 £ DIM < n) where n is the rank of the processor array.

Result Type, Type Parameter, and Shape. Default integer scalar.

Result Value. The result has a value equal to the extent of dimension DIM (1 < DIM
< n), where n is the rank of the processor-dependent hardware processor array or, if DIM
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is absent, the total number of elements, equ: to or greater than one, of the processor-
dependent hardware processor array.

Examples: For a computer with 8192 processors arranged in a 128 by 64 rectangular grid,
the value of:

e NUMBER_-OF_PROCESSORS( ) is 8192,
e the value of NUMBER.OF_PROCESSORS(DIM=1) is 128, and
o the value of NUMBER.OF_PROCESSORS(DIM=2) is 64.

For a single processor workstation, the value of

¢ NUMBER_-OF_PROCESSORS( ) is 1, and
e the value of NUMBER_OF_PROCESSORS(DIM=1) is 1.

5.1.2 PROCESSORS_SHAPE()

Description. Returns the shape of the implementation-dependent processor array.
Class. System inquiry function.

Arguments. None

Result Type, Type Parameter, and Shape. The result is a default integer array of
rank one whose size is equal to the rank of the implementation-dependent processor array.
Result Value. The value of the result is the shape of the implementation-dependent
Processor array.

Example: For a computer with 8192 processors arranged in a 128 by 64 rectangular
grid, the value of PROCESSORS_SHAPE() is (/ 128,64 /). For a computer with 8192
processors arranged in a hypercube, the value of PROCESSORS_SHAPE() might be (/
2,2,2,2,2,22222222 /). For a single processor workstation, the value of PROCES-
SORS_SHAPE()is (/ 1 /).

5.1.3 Discussion and Pragmatic Usage

The values of system inquiry functions are always restricted expressions; thus they may be
used in specification expressions. They may not, however, occur in initialization expressions,
because they may not be assumed to be constants. In particular, HPF programs may be
compiled to run on machines whose configurations are not known at compile time.

Note that the system inquiry functions query the physical machine, and have nothing
to do with any PROCESSORS directive that may occur.

References to system inquiry functions may occur in HPF directives, as in:

'HPF$ TEMPLATE T(100, 3*NUMBER_OF_PROCESSORS())

The definition of NUMBER_OF_PROCESSORS is modeled on the definition of the
SIZE intrinsic function.

The definition of PROCESSORS_SHAPE is modeled on the definition of the SHAPE
intrinsic function.

The rank of the processor array is returned by

SIZE(PROCESSORS_SHAPE())
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an expression that may occur in any specification expression.

As a result of being a restricted expression, suitably constrained references to system
inquiry functions may occur in specification expressions as, for example, lower or upper
bounds of an ezplicit-shape-spec of an array-spec in a type-declaration-stmt, as in:

INTEGER, DIMENSION(SIZE(PROCESSORS_SHAPE())) :: PS
PS = PROCESSORS_SHAPE()
! PS(2) = NUMBER_OF_PROCESSORS(DIM=2)

5.2 Computational Intrinsic Functions

This section extends the set of Fortran 90 computational intrinsic functions and generalizes
some Fortran 90 intrinsic functions.

5.2.1 Extension to MAXLOC and MINLOC

The MAXLOC and MINLOC intrinsic functions are redefined to have a third, optional DIM
argument that works exactly as does the DIM argument of MAXVAL. If such an argument
is present, then the shape of the result equals the shape of the first argument with one
dimension (the one indicated by the DIM argument) deleted; it is as if a series of rank-one
MAXLOC or MINLOC operations were performed. The rank of the result is one less than
the rank of the first argument. If the smallest (MINLOC) or largest (MAXLOC) element
along a given dimension is not unique, then the location of the first one is returned. The
declared lower bounds of the input array play no role in determining the output: The values
returned by MAXLOC and MINLOC are computed as if the lower bounds of all dimensions
were 1. The optional MASK argument is retained and may be used together with the DIM
argument.

Note that the behavior of MAXLOC and MINLOC without the DIM argument is
quite different. In this case, a rank-one integer array of size equal to the rank of ARRAY is
returned, giving the subscripts of the first element in array element order with the smallest
(MINLOC) or largest (MAXLOC) value.

Thus, if A has DIMENSION(3,4), then

SHAPE (MAXLOC(A)) has the value (/ 2 /)
SHAPE(MAXLOC(A,DIM=1)) has the value (/ 4 /)
SHAPE (MAXLOC(A,DIM=2)) has the value (/ 3 /).

Example: If A has the value

0 -5 8 -3

3 4 -1 2

0 4 6 -4

then

MINLOC(A) has the value (/ 1,2 /)
MAXLOC(A) has the value (/ 1,3 /)
MINLOC(A, DIM=1) has the value (/ 1,1,2,3 /)
MAXLOC(A, DIM=1) has the value (/ 2,2,1,2 /)
MINLOC(A, DIM=2) has the value (/ 2,3,4 /)
MAXLOC(A, DIM=2) has the value (/ 3,2,3 /).
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5.2.2 ILEN -

An elemental, integer length intrinsic function. Its action on a scalar is:

ILEN(X) = ceiling(log2( IF x < O THEN -x ELSE x+1 ))

ILEN(x) is the number of bits required to store a 2’s-complement signed integer x.
As examples of its use, 2¥**ILEN(N-1) rounds N up to a power of 2 (for N > 0), whereas
2**(ILEN(N)-1) rounds N down to a power of 2.

Note that a given integer value will always produce the same result from ILEN, without
regard to the number of bits in the representation of the integer. That is because ILEN
counts bits from the least significant bit.

Argument. X must be integer. It may be scalar or array valued.
Result shape, type, and type parameters. Same as X.

As an elemental, integer-valued intrinsic, ILEN may appear in a specification expres-

sion.

5.3 Mapping Inquiry Intrinsic Subroutines

HPF provides a rich set of data mapping directives. These directives are advisory in nature.
The mapping inquiry intrinsic subroutines allow the program to determine the actual map-
ping of an array at run time. It may be especially important to know the exact mapping
when a non-HPF subprogram is invoked. For these reasons, HPF includes mapping in-
quiry intrinsic subroutines which describe how an array is actually mapped onto a machine.
To keep the number of routines small, the inquiry procedures are structured as intrinsic
subroutines with optional arguments.

5.3.1 Alignment Inquiry Subroutine

SUBROUTINE HPF_ALIGNMENT(ARRAY, LB, UB, STRIDE, AXIS_MAP, &
IDENTITY_MAP, DYNAMIC, NCOPIES)

INTEGER, OPTIONAL, INTENT(OUT), DIMENSION(:) :: &
LB, UB, STRIDE, AXIS_MAP

INTEGER, OPTIONAL, INTENT(OUT) :: NCOPIES

LOGICAL, OPTIONAL, INTENT(OUT) :: IDENTITY_MAP, DYNAMIC

Mandatory ARRAY

Optional LB, UB, STRIDE, AXIS_.MAP, IDENTITY_-MAP, DYNAMIC,
NCOPIES

The HPF_ALIGNMENT subroutine returns information regarding the correspondence of
an array and the entity (array or template) to which it is ultimately aligned. ARRAY is the
only INTENT(IN) argument; all the remaining arguments are optional, INTENT(OUT).

ARRAY The array about which alignment information is requested. ARRAY may not be
a pointer that is disassociated or an allocatable array that is not allocated.

LB An integer array. The first element of the ith axis of ARRAY is ultimately aligned to
the LB(i)th align-target element along the axis of the align-target associated with the
ith axis of ARRAY.
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UB An integer array. The last element of the ith axis of ARRAY is ultimately aligned to
the UB(i)th align-target element along the axis of the align-target associated with the
ith axis of ARRAY.

STRIDE An integer array The ith element of STRIDE contains the stride used in aligning
the elements of ARRAY along its ith axis.

AXIS_MAP An integer array. The ith element of AXIS_.MAP contains the alignee axis
associated with the ith array axis. If AXIS_MAP is 0, the axis is a collapsed axis.

IDENTITY_-MAP A logical scalar variable that will be true if the ultimate align-target
associated with ARRAY has a shape identical to ARRAY, the axes are mapped using the
identity permutation, and the strides are all positive. if an array is ultimately aligned
to itself, then IDENTITY_MAP has a .TRUE. value.

DYNAMIC A logical scalar variable that will be true if ARRAY has the DYNAMIC at-
tribute.

NCOPIES An integer scalar variable equal to the product of the extents of all align-target
axes over which ARRAY has been replicated. For a non-replicated array, for example,
this will be 1.

5.3.2 Template Inquiry Subroutine

SUBROUTINE HPF_TEMPLATE(ARRAY, TEMPLATE_RANK, LB, UB, AXIS_TYPE, &
AXIS_INFO, NUMBER_ALIGNED, DYNAMIC)

INTEGER, OPTIONAL, INTENT(OUT), DIMENSION(:) :: LB, UB, AXIS_INFO

CHARACTER* (%), OPTIONAL, INTENT(OUT) :: AXIS_TYPE(:)

INTEGER, OPTIONAL, INTENT(OUT) :: NUMBER_ALIGNED, TEMPLATE_RANK

LOGICAL, OPTIONAL, INTENT(OUT) :: DYNAMIC

Mandatory ARRAY

Optional LB, UB, AXIS_TYPE, AXIS_.INFO, NUMBER_ALIGNED,
TEMPLATE_RANK, DYNAMIC

The HPF_TEMPLATE subroutine returns information regarding the ultimate align-target
associated with an array. The main difference between HPF_TEMPLATE and HPF_ALIGNMENT
is that the former returns information concerning the array from the template’s point of view
(assuming the alignment is to a template rather than to an array), while the latter returns
information from the array’s point of view. ARRAY is the only INTENT(IN) argument; all
the remaining arguments are optional, INTENT(OUT).

Result Shape. Array outputs are rank one and of size equal to the rank of the template,
which is returned in TEMPLATE_RANK.

ARRAY The array about which ultimate align-target information is requested. ARRAY
may not be a pointer that is disassociated or an allocatable array that is not allocated.

TEMPLATE_RANK An integer scalar variable giving the number of axes in the ultimate
align-target. This can be different than the number of ARRAY axes, due to collapsing
and replicating.



82 CHAPTER 5. INTRINSIC AND LIBRARY PR( EDURES

LB An integer array. The ith element of LB contains the declared align-target lower bound
for the ith template axis.

UB An integer array. The ith element of UB contains the declared align-target upper
bound for the ith template axis.

AXIS_TYPE A rank one array of type default character, of length at least 10; element (i)
of the result returns information about the ith axis of the align-target. The following
values are defined by HPF (implementations may define other values):

'NORMAL’ The axis has an axis of ARRAY aligned to to it. AXIS_INFO contains the
axis of ARRAY aligned with the axis of the align-target.

'SINGLE’ ARRAY is aligned with one coordinate of the align-target axis. AXIS_INFO
contains the coordinate to which ARRAY is aligned.

'REPLICATED’ ARRAY is replicated along this align-target axis. AXIS_INFO con-
tains the number of copies of ARRAY along the axis. This is an implementation-
specific quantity.

AXIS_INFO See the desciption of AXIS_TYPE above.

Example: Given

REAL A(4, 20)
'HPF$ TEMPLATE T(30, 150, 8, 200)
INTEGER AINFO(4)
CHARACTER*10 ATYPE(4)
'HPF$ ALIGN A(I,J,*) WITH T(J+5, 100, 10-2*I, *)
CALL HPF_TEMPLATE(A, AXIS_TYPE=ATYPE, AXIS_INFO=AINFO)

then

ATYPE = (/’NORMAL’, *SINGLE’, ’NORMAL’, ’REPLICATED’/)
and

AINFO = (/2, 100, 1, 200/)

NUMBER_ALIGNED An integer scalar variable giving the total number of arrays
aligned to the ultimate align-target. This is the number of arrays that will be moved
when the align-target is redistributed.

DYNAMIC A logical scalar variable that will be true if the align-target is dynamic.

5.3.3 Distribution Inquiry Subroutine

SUBROUTINE HPF_DISTRIBUTION(ARRAY, AXIS_TYPE, AXIS_INFO, &
PROCESSORS_RANK, PROCESSORS_SHAPE)

INTEGER, OPTIONAL, INTENT(OUT) :: AXIS_INFO(:), PROCESSORS_RANK

CHARACTER*(*), OPTIONAL, INTENT(OUT) :: AXIS_TYPE(:)

INTEGER, OPTIONAL, INTENT(OUT) :: PROCESSORS_SHAPE(:)
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Mandatory ARRAY
Optional AXIS_TYPE, AXIS_INFO, PROCESSORS_SHAPE, PROCESSORS_RANK

The HPF_DISTRIBUTION subroutine returns information regarding the distribution of
the ultimate align-target associated with an array. ARRAY is the only INTENT(IN) argu-
ment; all the remaining arguments are optional, INTENT(OUT).

ARRAY The array for which ultimate align-target distribution information is requested.
ARRAY may not be a pointer that is disassociated or an allocatable array that is not
allocated.

AXIS_TYPE A rank one array of type default character and of length at least 9, and size
equal to the rank of the align-target of ARRAY (which is returned by HPF_TEMPLATE
in TEMPLATE_RANK), that returns information about the distribution of each axis
of the align-target. The following values are defined by HPF (implementations may
define other values):

'BLOCK’ The axis is distributed BLOCK. AXIS_INFO contains the block size.
’CYCLIC’ The axis is distributed CYCLIC. AXIS_INFO contains the block size.
’COLLAPSED’ The axis is collapsed (distributed with the “*” specification)

AXIS_INFO A rank one integer array. See the desciption of AXIS_TYPE above.

PROCESSORS_RANK An integer scalar variable giving the rank of the processor ar-
rangement onto which ARRAY is distributed.

PROCESSORS_SHAPE An array of type default integer and of size equal to the value
returned in PROCESSORS_RANK, giving the shape of the processor arrangement
onto which ARRAY is mapped. It may be necessary to call HPF_DISTRIBUTION
twice, the first time to obtain the value of PROCESSORS_RANK in order to allocate
PROCESSORS_SHAPE.

5.3.4 Examples

Consider the declarations below:

DIMENSION A(10,10),B(20,30),C(20,40,10),D(40)
'HPF$ TEMPLATE T(40,20)
'HPF$ DYNAMIC A
'HPF$ ALIGN A(I,:) WITH T(143%I,2:20:2)
'HPF$ ALIGN C(I,*,J) WITH T(J,21-I)
'HPF$ ALIGN D(I) WITH T(I,4)
'HPF$ PROCESSORS PROCS(4,2)
'HPF$ DISTRIBUTE T(BLOCK,BLOCK) ONTO PROCS
'HPF$ DISTRIBUTE B(CYCLIC,BLOCK) ONTO PROCS

The results of HPF_ALIGNMENT will be:
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l |l A [ B | C |
LB 4,2, ... 1,1, .. 1, N/JA I, ...
UB 31, 20, ... | 20, 30, ... | 20, N/A, 10, ...
STRIDE 3,2, ... L1, .. -1, N/A) 1, ...
AXIS_MAP 1,2, .. 1,2, .. 2,0,1, ..
IDENTITY_MAP | .FALSE. | .TRUE. .FALSE.
DYNAMIC .TRUE. | .FALSE. .FALSE.
NCOPIES 1 1 1

and the result of HPF_TEMPLATE will be

I | A | C | D |
LB 1,1, .. 1,1, .. 1,1, ..
UB 40, 20, ... 40, 20, ... 40, 20, ...
AXIS_-TYPE 'NORMAL’, 'NORMAL’, | 'NORMAL’,
'NORMAL’, ... | 'NORMAL’, ... | ’SINGLE’,...
AXIS_INFO 1,2, .. 3,1, ... 1,4, ..
NUM.AL. 3 3 3
TEMP. RANK 2 2 2
DYNAMIC .FALSE. .FALSE. .FALSE.

Finally HPF_DISTRIBUTION will produce

L | A | B |
AXIS_TYPE 'BLO_K’, BLOCK’, ... | ’CYCLIC’, 'BLOCK’, ...
AXIS_INFO 10, 10, ... 1, 15, ...
PROCESSORS_SHAPE 4,2, .. 4,2, ...
PROCESSORS_RANK 2 2

Note that the values of the block sizes (in AXIS_INFO0) are not specified by HPF, but
may be implementation-dependent.

5.4 Computational Library Functions

This section consists of five groups of computational library functions, to be available in
the HPF library module, HPF_LIB. Use of these functions must be accompanied by an
appropriate USE statement in each scoping unit in which they are used. They are not
intrinsic. Thus, they are not allowed in specification expressions.

5.4.1 New Reduction Functions

Just as Fortran 90 has the correspondences:

operator/intrinsic reduction intrinsic
+ SUM, COUNT
* PRODUCT
.AND. ALL
.OR. ANY
MAX MAXVAL

MIN MINVAL
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it is useful to have reduction versions of certain other operators and intrinsic functions in
the language that happen to be associative and commutative. Therefore the new functions
IALL, IANY, IPARITY, and PARITY are defined.

operator/intrinsic reduction function
IAND IALL
IOR IANY
IEOR IPARITY
.NEQV. PARITY

These reductions have the same argument lists (including optional DIM
and MASK arguments) as the Fortran 90 reductionms.

IALL(C (/ 7,3,10 /) ) yields 2
IANY( (/ 7,3,10 /) ) yields 15
IPARITY( (/ ,3,10 /) ) yields 14

LOGICAL T,F
PARAMETER (T = .TRUE., F = .FALSE.) !just for conciseness

PARITY( (/ T,F,F,T,T,F,F,F,T,T /) ) yields .TRUE.
PARITY( (/ T,F,F,T,T,F,F,F,T,F /) ) yields .FALSE.

Some of these are particularly valuable when used with the corresponding prefix func-
tions, Section 5.4.3.

The identity element for the reduction PARITY is false, for the reductions IANY and
IPARITY is zero, and for the reduction IALL is -1 (in twos-complement). COUNT does
not have an identity, as it maps logicals to integers and returns zero if there are no true
values to be counted. The identities for the other reductions are defined in the Fortran 90
standard.

5.4.2 Combining-Scatter Functions

For every reduction operation XXX in the language, HPF introduces a new function:
XXX_SCATTER(SOURCE,BASE,IDX1,..., IDXn, MASK)

The IDX arguments are integer arrays. The number of IDX arguments must equal
the rank of BASE. The SOURCE, MASK (if present), and all the IDX arguments must
be conformable. BASE must have rank m, where m is the number of IDX arrays actually
present. The result delivered by the function is conformable with BASE. The type and type
parameters of SOURCE and BASE must be the same (exception: COUNT_SCATTER),
and the result has the type and type parameters of BASE. The allowed types are:

XXX Allowed Types

SUM Real, Complex, Integer
COUNT BASE = Integer, SOURCE = Logical
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PRODUCT Real, Complex, Integer

MAXVAL Real, Ir-eger

MINVAL Real, Ir ager

IALL Integer

IANY Integer

IPARITY Integer

ALL Logical

ANY Logical

PARITY Logical

Since SOURCE and all the IDX arrays are conformable, for every element s in SOURCE
there is a corresponding element in each of the IDX arrays. Let i1 be the value of the element
of IDX1 that is indexed by the same subscripts as element s of SOURCE. More generally,
for each j = 1,2,...,7n, let ij be the value of the element of IDXj that corresponds to
element s in SOURCE, where n is the rank of BASE. The integers 7,57 = 1,...,n, form a
subscript selecting an element of BASE: BASE(i1,12,...,in).

Thus SOURCE and the IDX arrays establish a mapping from all the elements of
SOURCE onto selected elements of BASE. Viewed in the other direction, this mapping
associates with each element b of BASE a set S of elements from SOURCE.

Since BASE and the result of XXX_SCATTER are conformable, there is a correspond-
ing element of the result for each element of BASE.

If § is empty, then the element of the result corresponding to the element b of BASE
has the same value as b.

If § is non-empty, then the elements of S will be combined with element b to produce
an element of the result. Let the elements of S be s1,...,sm. Let @ denote an infix form
of operation XXX. The element of the result corresponding to the element b of BASE is
the result of evaluating s1@s2Q...@sm@b or any mathematically equivalent expression (as
defined in Section 7.1.7.3 of the Fortran 90 standard).

Thus, the order of operations is arbitrary, and may differ on two otherwise identical
runs of the same HPF program. This matters when the combining operation is not both
associative and commutative, for example floating-point addition. In fact, because machine
arithmetic is not associative (not even fixed-point, because of overflow) the programmer
must be sure that the nondeterministic order of evaluation of the result will not produce
undesirable effects.

If the optional argument MASK is present, then only the elements of SOURCE in posi-
tions for which MASK is true participate in the operation. All other elements of SOURCE
and of the IDX arrays are ignored.

Thus the result of the expression

SUM_SCATTER(SOURCE,BASE, IDX1,IDX2,...,IDXn,MASK)

could be computed as

result = BASE
DO J1=LBOUND(SOURCE, 1) ,UBOUND (SOURCE,1)
DO J2=LBOUND (SOURCE,2) ,UBOUND(SOURCE, 2)

DO Jk=LBOUND (SOURCE, k) ,UBOUND (SOURCE, k)

"\



"

5.4. COMPUTATIONAL LIBRARY FUNCTIONS 87

IF (MASK(J1,J2,...,Jk)) &

result(IDX1(J1,J2,...,Jk), &

IDX2(J1,J2,...,Jk), &

“ee &

I1DXn(J1,J2,...,Jk)) = &

result(IDX1(J1,J2,...,Jk), &

IDX2(J1,J2,...,Jk), &

e &
IDXn(J1,J2,...,Jk)) + SOURCE(J1,J2,...,Jk)

END DO
END DO
END DO

where k is the rank of SOURCE. (However, this nest of DO loops makes a greater commit-
ment to the particular order in which the combining operations are carried out than the
order—namely, none!— guaranteed by the XXX_SCATTER function.)

In addition, COPY_SCATTER is the combining-send function generated by the (non-
commutative) binary operator

COPY_operation(x,y) = x

When COPY_SCATTER combines source elements sl, s2,...,sm with base element b, the
processor may apply the operations in the expression s1@s2@...@sm@b in any order it
chooses, not defined by HPF (where 2@y denotes COPY _operation(x,y)). Since b oc-
curs on the right in the expression, the processor cannot select b as the result, because

COPY_operation selects its first argument as its result. Thus an element of the result
delivered by

COPY_SCATTER(SOURCE, BASE, IDX1, ..., IDXn)

corresponding with an element of BASE that is associated with a non-empty set from
SOURCE has the same value as some SOURCE element from that set. So if multiple
elements of SOURCE are sent to the same result element, one of them will be assigned and
the rest, as well as the corresponding element of BASE, will be effectively discarded.

Example:
A= (/ 10., 20., 30., 40., -10./)
X=(1., 2., 3., 4./
v=(/3, 2, 2, 1, 1/)
X = SUM_SCATTER(A,X,V, MASK=(A > 0) )

yields the result X = (/41., 52., 13., 4./).
If all elements of V were distinct, one could write this in Fortran 90 as

X(V) = X(V) + MERGE(A, 0., A > 0.)

The function SUM_SCATTER is applicable even if V contains duplicate values. Note
that the rank-two case
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X(V,W) = X(V,W) + B
must be rendered using SPREAD:

X = SUM_SCATTER(B,X,SPREAD(V,DIM=2,NCOPIES=SIZE(X,2)), &
SPREAD (W,DIM=1,NCOPIES=SIZE(X,1)))

in order to duplicate the cross-product effect of ordinary array subscripting. (This definition
of XXX_SCATTER does not perform such a cross product of indices because it is more
general and in practice more useful without the cross-product effect built in.)

When scatter along one or more axes of a multidimensional array is required, a sur-
rounding FORALL may be used. For example, the idiom used to SUM_SCATTER the (j,k)
planes of an (i,j,k)-indexed rank-three array, using the rank-one index vector V is

REAL, ARRAY(NI, NJ, NK) :: SRC, DEST
LOGICAL MASK(NI, NJ, NK)
INTEGER V(NI)
FORALL (J = 1:NJ, K = 1:NK)
DEST(:, J, K) = SUM_SCATTER(SRC(:,J,K), DEST(:,J,K), &
V, MASK(:, J, K))

4

which has the same effect as

DOI =1, NI
WHERE (MASK(I, :, :)) &
DEST(V(I), :, :) = DEST(V(I), :, :) + SRC(I, :, :)
ENDDO

but may be more efficient, and makes no guarantees as to the order of evaluation.

5.4.3 Prefix and Sufix Functions

For every reduction operation XXX in the language, HPF introduces the two new functions
XXX_PREFIX and XXX_SUFFIX. They take the same arguments as the corresponding
reduction function, (an array of appropriate type, an optional scalar integer DIM argument,
an optional, logical array argument MASK conformable with ARRAY) plus two additional
optional arguments:

XXX_PREFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)
XXX_SUFFIX(ARRAY, DIM, MASK, SEGMENT, EXCLUSIVE)

Each element of the result is the reduction under the operator XXX of a (possibly empty)
set of elements of ARRAY.

Example:

MAXVAL_PREFIX((/ 3, 2, 4, 1, 2/))
is
(/ 3’ 3, 4’ 4’ 4/)’

MAXVAL_SUFFIX((/ 3, 2, 4, 1, 2/))
is
(/ 4, 4, 4, 2, 2/).

rd

11
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The value of these functions is conformable with ARRAY.

The result has the same type and type parameters as ARRAY, with the exception of
COUNT_PREFIX and COUNT_SUFFIX which take a logical array argument and return
an integer array result. The allowed operations and the corresponding allowed types for
ARRAY are given in the table below.

XXX Allowed Types

SUM Real, Complex, Integer
COUNT Result = Integer, ARRAY = Logical
PRODUCT Real, Complex, Integer
MAXVAL Real, Integer

MINVAL Real, Integer

IALL Integer

IANY Integer

IPARITY Integer

ALL Logical

ANY Logical

PARITY Logical

If the DIM argument is omitted, then the arrays are processed in array element order
(“column-major”), as if temporarily regarded as rank-one. If it is present, then it must be
an integer scalar between one and the rank of ARRAY. In this case, completely independent
prefix or suffix operations occur along the selected dimension of ARRAY.

Example: If A has the value

0 -5 8 -3
3 4 -1 2
0 4 6 -4
then SUM_PREFIX(A) has the value
0 -2 14 16 |
3 2 13 18
3 6 19 14
SUM_PREFIX(A, DIM=1) has the value
0 -5 8 -3]
3 -1 7 -1
3 3 13 -5 |
SUM_PREFIX(A, DIM=2) has the value
0 -5 30
3 7 6 8
0 4 10 6

Array elements corresponding to positions where the MASK is false do not contribute
to the running accumulation. However, the result is still defined for corresponding positions
in the result.

Example:
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MAXVAL_PREFIX( (/ 3, 2, 4, 5, 6/), &
MASK = (/ T, F, F, T, F/))

has the value
(/ 3, 3, 3,5, 5/)

In actual practice, results may not be required in those positions; in such cases the pro-
grammer may be able to use the WHERE statement to inform the compiler:

WHERE (F00) A=SUM_PREFIX(B,MASK=F00)

The first additional optional argument is called SEGMENT, which is of type logical
and conformable with the ARRAY argument. If present, the array is divided into pieces
corresponding to contiguous sequences of true or false elements of SEGMENT. The begin-
ning of a piece is a place where the running accumulation is to be reset before processing
the corresponding array element.

Example:

LOGICAL T,F
PARAMETER (T = .TRUE., F = .FALSE.)

MAXVAL_PREFIX((/ 3, 2, 4, 1, 6/), &
SEGMENT=(/ T, T, T, F, F/)) yields (/ 3, 3, 4, 1, 6/).

two input segments two independent results

The second additional optional argument, a scalar logical, is called EXCLUSIVE, de-
fault value false, which determines whether the prefix or suffix operation is inclusive (the
default) or exclusive. (The inclusive sum-prefix of (/ 1,2,3,4 /) is (/ 1,3,6,10 /) whereas the
exclusive sum-prefix is (/ 0,1,3,6 /).)

In every case, every element of the result has a value equal to the reduction of certain
selected elements of ARRAY, or an identity value (zero for SUM_PREFIX or SUM_SUFFIX,
for example) if no elements of ARRAY are selected for that result element. The optional
arguments affect the selection of elements of ARRAY for each element of the result; the
selected elements of ARRAY are said to contribute to the result element.

The identity element for the reduction PARITY is false, for the reductions IANY and
IPARITY is zero, and for the reduction IALL is -1 (assuming twos-complement). COUNT
does not have an identity, as it maps logicals to integers and returns zero if there are no
true values to be counted. The identities for the other reductions are defined in the Fortran
90 standard.

For any given element R of the result, let A be the corresponding element of ARRAY.
Every element of ARRAY contributes to R unless disqualified by one of the following rules.

For xxx_PREFIX, no element that follows A in the array element ordering of ARRAY
contributes to R. For xxx_SUFFIX, no element that precedes A in the array element ordering
of ARRAY contributes to R. This rule applies even when the DIM argument is present, since
array element order increases with an increase in any component of an array element index.

If the DIM argument is provided, an element Z of ARRAY does not contribute to R
unless all its indices, excepting only the index for dimension DIM, are the same as the
corresponding indices of A.
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If the MASK argument is provided, an element Z of ARRAY does not contribute to R
if the element of MASK corresponding to Z is false.

If the SEGMENT argument is provided, an element Z of ARRAY does not contribute
unless the elements B and Y of SEGMENT corresponding to A and Z (respectively), and the
intervening elements of SEGMENT as well, all have the same value. If the DIM argument is
not present, then the “intervening” elements are all elements between them in array element
order; if the DIM argument is present, then the “intervening” elements are those having
indices the same as those of both B and Y, except the index for dimension DIM, which
must be between (and possibly equaling) the indices of B and Y for dimension DIM. Thus,
the prefix or suffix operation is performed on groups of elements of ARRAY, where a group
corresponds to a maximal contiguous run of like-valued elements of SEGMENT.

If the SEGMENT argument is omitted, then the result is computed using a default
SEGMENT all elements of which are true. Thus, without the DIM argument, there is
exactly one group, while if DIM is present, there is one group for each valid set of indices
of ARRAY other than the index selected by DIM.

If the EXCLUSIVE argument is provided and is true, then A itself does not contribute
to R.

In addition, the operation COPY_PREFIX replicates the first (lowest-indexed) element
of each segment throughout the segment, and the operation COPY_SUFFIX replicates the
last (highest-indexed) element of each segment throughout the segment.

Examples:

(a) SUM_PREFIX( (/1,3,5,7/) ) yields (/1,4,9,16/)
(b) SUM_SUFFIX( (/1,3,5,7/) ) yields (/16,15,12,7/)

LOGICAL T,F
PARAMETER (T = .TRUE., F = .FALSE.)

(c) COUNT_PREFIX( (/T,F,F,T,T,T,F,T,F/) )

yields (/1,1,1,2,3,4,4,5,5/)
(d) COUNT_PREFIX( (/T,F,F,T,T,T,F,T,F/), EXCLUSIVE=T)

yields (/0,1,1,1,2,3,4,4,5/)

(e) SUM_PREFIX( (/1,2,3,4,5,6,7,8,9/), &
SEGMENT=(/T,T,T,T,F,F,T,F,F/))

four input segments
yields

(/1,3,6,10,5,11,7,8,17/)

(f) COPY_PREFIX( (/1,2,3,4
SEGMENT=(/T,T,T,T,

four input segments
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yields

(/1,1,1,1,5,5,7,8,8/)

four independent result segments

A new segment begins at every transition from false to true or true to false; thus a
segment is indicated by a maximal contiguous subsequence of like logical values:

(t,1,1,F,T,F,F,F,T,F,F,T/)
-==== = = ==--- - --- - seven segments

Note: Connection Machine software delimits the segments by indicating the start of
each segment. Cray MPP Fortran delimits the segments by indicating the stop of each
segment. Each method has its advantages. There is also the question of whether this
convention should change when performing a suffix rather than a prefix. HPF adopts the
symmetric representation above. The main advantages of this representation are:

A) It is symmetrical, in that the same segment specifier may be meaningfully used for
g
parallel prefix and parallel suffix without changing its interpretation (start versus

stop).

(B) It seems to be equally inconvenient for every existing architecture! However, it is not
that hard to accommodate.

(C) The start-bit or stop-bit representation is easily converted to this form by using PAR-
ITY_PREFIX or PARITY_SUFFIX.

Examples:

SUM_PREFIX(F00,SEGMENT=PARITY_PREFIX(START_BITS))
SUM_PREFIX(F00,SEGMENT=PARITY_SUFFIX(STOP_BITS))
SUM_SUFFIX(F00,SEGMENT=PARITY_SUFFIX(START_BITS))
SUM_SUFFIX(F00,SEGMENT=PARITY_PREFIX(STOP_BITS))

These might be standard idioms for a compiler to recognize.

5.4.4 Sorting Functions
This section introduces two sorting functions, GRADE_UP and GRADE_DOWN.

GRADE_UP (ARRAY ,DIM)

The argument ARRAY may be of type integer, real, or character.

The result is an integer array with shape as explained below.

If the optional DIM argument is present, then the result has the same shape as the
ARRAY. Suppose DIM has the value k; then the result R has the property that if one
computes the array

B(i1,i2,...,ik,...,in)=ARRAY(il1,i2,...,R(i1,i2,...,ik,...,in),...,in)

J

W
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then for all i1,42,...,(omitik), ...,in, the vector B(:1,:2,...,:,...,in) is sorted in ascending
order; moreover, R(71,42,...,:,...,4n) is a permutation of all the integers in the range

LBOUND (ARRAY , k) : UBOUND (ARRAY, k) .

The sort is stable; that is, if j < m and B(<1,:2,...,5,...,in) = B(i1,42,...,m, ..., in),
then R(i1,42,...,7,...,in) < R(i1,42, ...,m,...,in).

If the optional DIM argument is absent, then the result S is an array of rank two, with
shape (/ SIZE(SHAPE(ARRAY)), PRODUCT(SHAPE(ARRAY)) /) and the property that
if one computes the rank-one array

B(k)=ARRAY(S(1,k),S(2,k),...,S(n,k))

where n=SIZE(SHAPE(ARRAY)), then B is sorted in ascending order; moreover, all of the
columns of S are distinct, that is, if j # m then ALL(S(:,j) .EQ. S(:,m)) will be false. The
sort is stable; if 7 < m and B(j) = B(m), then ARRAY(5(1,j),5(2,j),---,5(n,j)) precedes
ARRAY(S(1,m),S(2,m),...,S(n,m)) in the array element ordering of ARRAY.

GRADE_DOWN (ARRAY,DIM)

The argument ARRAY may be of type integer, real, or character.

The result is an integer array.

If the optional DIM argument is present, then the result has the same shape as the
ARRAY. Suppose DIM has the value k; then the result R has the property that if one
computes the array

B(it,i2,...,ik,...,in)=ARRAY(i1,i2,...,R(i1,i2,...,ik,...,in),...,in)

then for all 71,42, ..., (omitik), ..., in, the vector B(i1,142,...,:,...,in) is sorted in descending
order; moreover, R(71,%2,...,:,...,4n) is a permutation of all the integers in the range

LBOUND (ARRAY, k) : UBOUND (ARRAY k) .

The sort is stable; that is, if j < m and B(il,i2,...,j,...,in) .EQ. B(il,i2,...,m,...,in), then
R(i1,i2,...,jy...in) < R(i1,i2,...,m,...,in). (Note that the last “<” sign really should be a “<”, -
not a “>”.)

If the optional DIM argument is absent, then the result S is an array of rank two, with
shape (/ SIZE(SHAPE(ARRAY)), PRODUCT(SHAPE(ARRAY)) /) and the property that
if one computes the rank-one array

B(k)=ARRAY(S(1,k),S(2,k),...,S(n,k))

where n=SIZE(SHAPE(ARRAY)), then B is sorted in descending order; moreover, all of
the columns of S are distinct, that is, if j # m then ALL(S(:,j) .EQ. S(:,m)) will be false. The
sort is stable; if j < m and B(j) .EQ. B(m), then ARRAY(S(1,j),5(2,j),---,3(n,j)) precedes
ARRAY(S(1,m),S(2,m),...,S(n,m)) in the array element ordering of ARRAY.

Examples:

Because of the stability requirement, GRADE_DOWN(A(1:N)) does not, in general,
equal GRADE_UP(A(N:1:-1)). Indeed, these results are equal if and only if A contains no
duplicate values.

The stability requirement allows one to cascade grading operations in order to sort on
multiple fields. For example, suppose one had the following derived type (example taken
from section 4.4.1 of the Fortran 90 standard):
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TYPE PERSON

INTEGER AGE

CHARACTER (LEN = 50) NAME
END TYPE PERSON

Now consider two arrays of persons:

TYPE(PERSON), DIMENSION(100000) :: MEMBERS, ROSTER
Also assume a work vector for indices:

INTEGER, DIMENSION(100000) :: V
Then the statements

V = GRADE_UP(MEMBERSYAGE, DIM=1)
V = V(GRADE_UP (MEMBERS(V)%NAME, DIM=1))
ROSTER = MEMBERS(V)

cause ROSTER to be a rearrangement of MEMBERS that is sorted primarily by name and
secondarily by age (that is, members with the same name are grouped together in order of
ascending age). Note that the minor sort field is graded first, and that more statements like
the second one may be inserted to sort on additional fields. Without the use of the DIM
argument, GRADE_UP returns a rank-two result of shape (/ 1, 100000 /), which would
make the example more cumbersome.

To list members with the same name in descending order of age, change the first
GRADE_UP to GRADE_DOWN:

V = GRADE_DOWN(MEMBERSY,AGE, DIM=1)
V = V(GRADE_UP(MEMBERS(V)%NAME, DIM=1))
ROSTER = MEMBERS(V)

5.45 POPCNT, POPPAR, and LEADZ Functions

This section introduces three bit-manipulation functions.

POPCNT

An elemental, integer population count function. Its action on a scalar is:
POPCNT(x) = COUNT( (/ (BTEST(x,J), J=0, BIT_SIZE(x)-1) /) )

The result is the number of 1-bits in the integer x, according to the bit-manipulation
model in section 13.5.7 of the Fortran 90 standard.

POPPAR

An elemental, integer population-parity function. Its action on a scalar is:
POPPAR(x) = MERGE(1,0,BTEST(POPCNT(x),0))

The result is 1 if the number of 1-bits in the integer x is odd, or 0 if the number of
1-bits in the integer x is even.
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LEADZ

An elemental, integer count-leading-zeros function. Its action on a scalar is:

LEADZ(x) = MINVAL( (/ (J, J=0,BIT_SIZE(x)) /), &
MASK=(/ (BTEST(x,J), J=BIT_SIZE(x)-1,0,-1), .TRUE. /) )

The result is a count of the number of leading 0-bits in the integer x, according to the
bit-manipulation model in section 13.5.7 of the Fortran 90 standard.

Note that a given integer value may produce different results from LEADZ, depending
on the number of bits in the representation of the integer. That is because LEADZ counts
bits from the most significant bit.
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Chapter 6

Extrinsic Procedures

This chapter defines the mechanism by which HPF programs may call non-HPF subpro-
grams as eztrinsic procedures. It provides the information needed to write an explicit inter-
face for a non-HPF procedure. It defines the means for handling distributed and replicated
data at the interface. This allows the programmer to use non-Fortran language facilities,
perhaps to descend to a lower level of abstraction to handle problems that are not effi-
ciently addressed by HPF, to hand-tune critical kernels, or to call optimized libraries. This
interface can also be used to interface HPF to other languages, such as C.

This chapter also defines a mechanism for coding single-processor “node” code in single-
processor Fortran 90 or in a single-processor subset of HPF; the idea is that only data
that is mapped to a given physical processor is accessible to it. This allows the program-
ming of MIMD multiprocessor machines in a single-program multiple-data (SPMD) style.
Implementation-specific libraries may be provided to facilitate communication between the
physical processors that are independently executing this code, but the specification of such
libraries is outside the scope of HPF.

6.1 Overview

It may be desirable for an HPF program to call a procedure written in a language other
than HPF. Such a procedure might be written in any of a number of languages:

e A single-thread-of-control language not unlike HPF, where one copy of the procedure
is conceptually executing and there is a single locus of control within the program
text.

e A multiple-thread-of-control language, perhaps with dynamic assignment of loop it-
erations to processors or explicit dynamic process forking, where again there is, at
least initially (upon invocation) one copy of the procedure is conceptually executing
and but there may be multiple loci of control, possibly changing in number over time,
within the program text.

e Any programming language targeted to a single processor, with the understanding
that many copies of the procedure will be executed, one on each processor; this is
frequently referred to as SPMD (Single Program, Multiple Data) style. HPF refers to
a procedure written in this fashion as a local procedure.

97
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A local procedure might be written in Fortran 77, Fortran 90, C, Ada, or Pascal, for
example. A particularly interesting possibility is that a local procedure might be written
in HPF! Not all HPF facilities may be used in wr ng local code, because some facilities
address the question of executing on multiple proc sors and local code by definition runs
on a single processor.

The extrinsic procedure interface is an escape mechanism for calling a particular kind of
non-HPF code from an HPF program, namely, code it is implemented as a local procedure
on each processor. Such local procedures might resu. :rom an elaborate compilation process
applied to a parallel programming language; they might also be identical copies of a SPMD
procedure written in a conventional sequential language. HPF separates the question of
local procedures as an implementation mechanism from the question of the programming
language from which such local procedures are produced by a compiler.

A called procedure that is written in a language other than HPF and that uses the
local procedure execution model should be declared EXTRINSIC within an HPF program
that calls it.

From the caller’s standpoint, an invocation of an extrinsic procedure from a “global”
HPF program has the same semantics as an invocation of a regular procedure. The callee
sees a different picture. All HPF arrays accessible to the extrinsic procedure (arrays passed
as arguments) are logically carved up into pieces; the local procedure executing on a par-
ticular physical processor sees an array containing just those elements of the global array
that are mapped to that physical processor.

It is important not to confuse the extrinsic procedure, which is conceptually a single
procedural entity called from the HPF program, with the local procedures, which are exe-
cuted on each node, one apiece. An invocation of an extrinsic procedure results in a separate
invocation of a local procedure on each processor. The erecution of an extrinsic procedure
consists of the concurrent execution of a local procedure on each executing processor. Each
local procedure may terminate at any time by executing a RETURN statement; the extrinsic
procedure as a whole terminates only after every local procedure has terminated.

An extrinsic procedure can be defined as explicit SPMD code by specifying the local
procedure code that is to execute on each processor. HPF provides a mechanism for defining

local procedures in a subset of HPF that excludes only prescriptive data mapping directives, -

which are not relevant to local code; local procedures written in HPF may be intermixed
with global HPF code. The use of HPF to define local procedures is discussed in Section 6.3.

It is technically feasible to define extrinsic procedures in any other parallel language
that maps to this basic SPMD execution model, or in any sequential language, including
single-processor Fortran 90, with the understanding that one copy of the sequential code
is executed on each processor. The extrinsic procedure interface is designed to ease im-
plementation of local procedures in languages other than HPF; however, it is beyond the
scope of this HPF specification to dictate implementation requirements for such languages
or implementations. Nevertheless, a recommended way to use Fortran 90 to define local
procedures is discussed in Section 6.4.

With the exception of return: ~from a local procedure to the global caller that initiated
local execution, there is no impli  synchronization of the locally executing processors. A
local procedure may use any co: -ol structure whatsoever. To access data outside the
processor requires either preparatc:y communication to copy data into the processor before
running the local code, or communication between the separately executing copies of the
local procedure. Individual implementations may provide implementation-dependent means
for communicating, for example through a message-passing library or a shared-memory
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mechanism. Such communication mechanisms are beyond the scope of this specification.
Note, however, that many useful portable algorithms that require only independence of
control structure can take advantage of local routines, without requiring a communication
facility.

This proposal assumes only that array axes are mapped independently to axes of a
rectangular processor grid, each array axis to at most one processor axis (no “skew” dis-
tributions) and no two array axes to the same processor axis. This restriction suffices to
ensure that each physical processor contains a subset of array elements that can be locally
arranged in a rectangular configuration. (Of course, to compute the global indices of an
element given its local indices, or vice versa, may be quite a tangled computation—but it
will be possible.)

This chapter is divided into three parts:

1. The HPF interface to extrinsic routines, and the contract between the caller and the
callee.

2. A specific version of this interface for the case where extrinsic procedures are defined
as explicit Single Program Multiple Data (SPMD) code with each local procedure
coded in HPF. Such local procedures may be compiled separately or included as part
of the text of a global HPF program.

3. A specific version of this interface for the case where extrinsic procedures are defined
as explicit SPMD code with each local procedure coded in Fortran 90. Ideally these
local procedures may be separately compiled by a Fortran 90 compiler and then linked
with HPF code, though this depends on implementation details.

6.2 Extrinsic Procedure Interface

6.2.1 Definition and Invocation of Extrinsic Procedures

An explicit interface must be provided for each extrinsic procedure entry in the scope where
it is called, using an interface block. This interface defines the “HPF view” of the extrinsic
procedure. The HPF directive EXTRINSIC occurs in the specification part for each extrinsic
procedure entry.

extrinsic-directive is EXTRINSIC [ procedure-name ]
Examples:

INTERFACE
FUNCTION BAGEL(X)
'HPF$ EXTRINSIC
REAL X(:)
REAL BAGEL(100)
'HPF$ DISTRIBUTE (CYCLIC) :: X, BAGEL
END FUNCTION
END INTERFACE

INTERFACE OPERATOR (+)
FUNCTION LATKES(X, Y) RESULT(Z)
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'HPF$ EXTRINSIC
REAL, ARRAY(:,:) :: X
REAL, ARRAY(SIZE(X,1), SIZE(X,2)) :: Y, 2
'HPF$ ALIGN WITH X :: Y, Z
'HPF$ DISTRIBUTE (BLOCK, BLOCK) X
END FUNCTION
END INTERFACE

INTERFACE KNISH
FUNCTION RKNISH(X) ‘normal interface
REAL X(:), RKNISH
END RKNISH

FUNCTION CKNISH(X) lextrinsic interface
'HPF$ EXTRINSIC
COMPLEX X(:), CKNISH
END CKNISH
END INTERFACE

In the last example, two external procedures, one of them extrinsic and one not, are
associated with the same generic procedure name, which returns a scalar of the same type
as its array argument. (If both kinds of knishes are extrinsic, then EXTRINSIC directives go
in their individual declarations, not in the containing declaration of generic knishes.)

Convention

The default mapping of scalar dummy arguments and of scalar function results is such that
the argument is replicated on each physical processor. These mappings may, optionally, be
explicit in the interface, but any other explicit mapping is illegal.

As in the case of non-extrinsic subprograms, actual arguments may be mapped in any
way; if necessary, they are copied automatically to correctly mapped temporaries before
invocation of and after return from the extrinsic procedure.

Restrictions

1. Scalar dummy arguments must be mapped so that each processor has a copy of the
argument. This holds true, by convention, if no mapping is specified for the argument
in the interface. Thus, the constraint only disallows explicit alignment and distribution
directives that imply that a scalar dummy argument is not replicated on all processors.

Each dummy argument must be nonsequential.
Extrinsic procedures may not be RECURSIVE.

Extrinsic procedures may not have alternate returns.

AN A

Extrinsic procedures may not be invoked, either directly or indirectly, in the body of
a FORALL construct or in the body of an INDEPENDENT loop.

e

A dummy argument may not be a procedure name.

7. A dummy argument may not have the POINTER attribute.
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6.2.2 Calling Sequence

The actions detailed below have to occur prior to the invocation of the local procedure on
each processor. These actions are enforced by the compiler of the calling routine, and are
not the responsibility of the programmer, nor do they impact the local procedure. (The
next section discusses restrictions on the local procedure.)

1. The processors are synchronized. In other words, all actions that logically precede the
call are completed.

2. Each actual argument is remapped, if necessary, according to the directives (explicit
or implicit) in the declared interface for the extrinsic procedure. Thus, mapping direc-
tives appearing in the interface are binding—the compiler must obey these directives
in calling extrinsic procedures. (The reason for this rule is that data mapping is explic-
itly visible in local routines). Consequently, actual arguments corresponding to scalar
dummy arguments are replicated (by broadcasting, for example) in all processors.

3. If a variable accessible to the called routine has a replicated representation, then all
copies are updated prior to the call to contain the correct current value according to
the sequential semantics of the source program.

After these actions have occurred, the local procedure is invoked on each processor.
The information available to the local invocation is described below in Section 6.2.4.
The following actions must occur before control is transferred back to the caller.

1. All processors are synchronized after the call. In other words, execution of every copy
of the local routine is completed before execution resumes.

2. The original distribution of arguments (and of the result of an extrinsic function) is
restored, if necessary.

6.2.3 Requirements on the Callee

The callee must satisfy the constraints implied by the explicit interface to the procedure.

1. IN/OUT restrictions declared in the interface for the local subroutine must be obeyed.

2. Replicated variables, if updated, must be updated consistently. More precisely, if a
variable accessible to a local subroutine has a replicated representation and is updated
by (one or more copies of) the local subroutine, then all copies of the replicated data
must have identical values when the last processor returns from the local procedure.
(This applies by default to all scalar arguments and to the result variable of a scalar-
valued extrinsic function.)

3. No HPF variable is modified, unless it could be modified by an HPF procedure with
the same explicit interface.

The call to an extrinsic procedure that fulfills these rules is semantically equivalent to
the execution of a “global” HPF procedure, with the specified external interface.
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6.2.4 Information Available to the Local Procedure

The local procedure invoked on each processor is passed a local argument for each global
argument passed by the caller to the (global) extrinsic procedure interface. Each global
argument is a distributed HPF array or a replicated scalar. The corresponding local argu-
ment is the part of the global array stored locally, or the local copy of a scalar argument.
We shall refer to an array actual argument passed by an HPF caller as a global array; the
subgrid of that global array passed to one copy of a local routine (because it resides in that
processor) is called a local array.

If the extrinsic procedure is a function, then the local procedure is also a function. Each
local invocation of that function will return the local part of the extrinsic function return
value. If the extrinsic function is scalar valued then the implicit mapping of the return value
is replicated. Thus, all local functions must return the same value. If one desires to return
one, possibly distinct, value per processor, then the extrinsic function must be declared to
return a distributed rank-one array of size NUMBER_OF_PROCESSORS.

The run-time interface should provide enough information that each local function
can discover for each local argument the mapping of the corresponding global argument,
translate global indices to local indices, and vice-versa. A specific set of procedures that
provide this information is listed in section 6.3.2. The manner in which this information is
made available to the local routine depends on the implementation and the programming
language used for the local routine.

6.3 Local Routines Written in HPF

This section provides a specific design for providing the required information to local pro-
cedures in the case these procedures are written in HPF.

Local procedures may be declared within an HPF program (and be compiled by an
HPF compiler). The definition of a local procedure must include the HPF LOCAL directive
in its scope.

local-directive is LOCAL

Any program unit may be declared to be LOCAL, possibly including the main program.
(There are no globally mapped data objects if the main program is local). A LOCAL directive
implies that the procedure is EXTRINSIC.

A local program unit may invoke only local program units, or internal procedures.
Local program units can use all HPF constructs except for DISTRIBUTE, REDISTRIBUTE,
ALIGN, REALIGN, and INHERIT directives. The distribution query intrinsics HPF_ALIGNMENT,
HPF_TEMPLATE, and HPF_DISTRIBUTION may be applied to local arrays. Their outcome is
the same as for a global array that happens to have all its elements on a single node.

6.3.1 Argument Association

If a dummy argument in the HPF extrinsic interface is an array, then the corresponding
dummy argument in the specification of the local procedure must be an array of the same
rank, type, and type parameters. When the extrinsic procedure is invoked, the local dummy
argument is associated with the local array that consists of the subgrid of the global array
that is stored locally. This local array will be a valid Fortran 90 array.
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If a dummy argument in the HPF extrinsic interface is a scalar then the corresponding"
dummy argument of the local procedure must be a scalar of the same type. When the
extrinsic procedure is invoked then the local procedure is passed an argument that consists
of the local copy of the replicated scalar. This copy will be a valid Fortran 90 scalar.

If the extrinsic HPF interface defines a function, then the local procedure is a function
that returns a scalar of the same type and type parameters, or an array of the same rank,
type, and type parameters, as the HPF extrinsic function. The value returned by each local
invocation is the local part of the value returned by the HPF invocation.

Each physical processor has at most one copy of each HPF variable.

Consider the following extrinsic interface

INTERFACE
FUNCTION MATZOH(X, Y)  RESULT(Z)
'HPF$ EXTRINSIC
REAL, DIMENSION(:,:) :: X
REAL, DIMENSION(SIZE(X,1)) :: Y, Z

'HPF$ ALIGN WITH X(:,*) :: Y(:)
'HPF$ DISTRIBUTE (BLOCK, CYCLIC) X
END FUNCTION

END INTERFACE
The corresponding local HPF (or Fortran 90) procedure is specified as follows.

FUNCTION MATZOH(XX, YY)  RESULT(ZZ)
'HPF LOCAL
REAL, DIMENSION(:,:) :: XX
REAL, DIMENSION(S : SIZE(XX,1)+4) :: YY, ZZ
NX1 = SIZE(XX, 1)
LX1 = LBOUND(XX, 1)
UX1 = UBOUND(XX, 1)
NX2 = SIZE(XX, 2)
LX2 = LBOUND(XX, 2)
UX2 = UBOUND(XX, 2)
NY = SIZE(YY, 1)
LY = LBOUND(YY, 1)
UY = UBOUND(YY, 1)

END FUNCTION

Assume that the function is invoked with an actual (global) array X of shape 3 x 3 and
an actual vector Y of length 3 on a 4-processor machine, using a 2 X 2 processor arrangement

(assuming one abstract processor per physical processor).
Then each local invocation of the function MATZOH receives the following actual argu-

ments:

Processor (1,1) Processor (1,2)

X(1,1) X(1,3) X(1,2)
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L_INDEX An array of local coordinates of an element of the local array ARRAY.
G_INDEX The array of coordinates of the same element in the global array G_ARRAY.

L_INDEX has intent IN and G_INDEX has intent OUT.

7. CALL GLOBAL_TO_LOCAL(ARRAY, G_INDEX, L_INDEX, LOCAL)

G_INDEX An array of coordinates of an element of the global array G_ARRAY.

L_INDEX The array of local coordinates of the same element in the local array
ARRAY.

LOCAL A logical variable—set to .TRUE. if the local array has a copy of the global
array element, .FALSE. otherwise.

G_INDEX has intent IN, L_INDEX and LOCAL have itent OUT. Both L_INDEX and LOCAL
are optional. The value returned by L_INDEX is undefined when LOCAL returns with
value .FALSE..

6.3.3 Restrictions

A local HPF routine that is invoked from global HPF code has to fulfill certain restrictions
(these follow from the restrictions on the extrinsic interface):

1. A dummy argument may not be a procedure name.
2. A dummy argument may not have the POINTER attribute.

3. A dummy array argument must have assumed shape, even when it is explicit shape in
the interface. Note that the shape of a dummy array argument differs from the shape
of the corresponding actual argument, unless there is a single executing processor.

4. Explicit mapping directives for dummy arguments and function result variables may
not appear in the declaration section of a local procedure, although they may appear
(in the case of the result of an array-valued function, they must appear) in the required
explicit interface.

5. The attributes (type, kind, rank, optional, intent) of the dummy arguments must
match the attributes of the corresponding dummy arguments in the explicit interface.

6. The local procedure may not be recursive.

7. The local procedure may not have alternate returns.

Local procedures may invoke other local HPF routines. Local blocks of global arrays
may be passed as actual parameters to these routines. Local procedures may not invoke,
either directly or indirectly, (global) HPF procedures. They may not access global HPF data
other then data that is accessible, either directly or indirectly, via the actual parameters.

A local procedure may have several ENTRY points. The HPF program must contain a
seperate extrinsic interface for each entry point that can be invoked from the HPF program.
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6.4 Local Routines Written in Fortran 90

The suggested interface to local SPMD routines written is Fortran 90 is the same as that
for HPF local routines, with these few exceptions:

e Only Fortran 90 constructs should be used; it may not be possible to use extensions
peculiar to HPF such as FORALL and the HPF library routines.

e It is recommended that Fortran 90 implementations be extended to support the distri-
bution query routines GLOBAL_ALIGNMENT, GLOBAL _TEMPLATE, and GLOBAL_DISTRIBU-
TION and the PROCID derived type as described in Section 6.3.2. (Because these
routines cannot be used in initialization or specification expressions, it is possible to
implement them as generic procedures. A module might contain the specification of
these procedures and of the new PROCID type, so that no additions are required to
Fortran 90 code beyond a USE HPF statement.)

¢ Assuming that the intent is to compile such routines with a non-HPF Fortran 90 com-
piler, the Fortran 90 program text should be in separate files rather than incorporated
into HPF source code.

The restrictions listed in Section 6.3.3 ought to apply as well to local routines written
in Fortran 90.

6.4.1 Argument Association

If a dummy argument in the HPF extrinsic interface is an array, then the corresponding
dummy argument in the specification of the local procedure must be an array of the same
rank, type, and type parameters. When the extrinsic procedure is invoked, the local dummy
argument is associated with the local array that consists of the subgrid of the global array
that is stored locally. This local array will be a valid Fortran 90 array.

If a dummy argument in the HPF extrinsic interface is a scalar then the corresponding
dummy argument of the local procedure must be a scalar of the same type. When the
extrinsic procedure is invoked then the local procedure is passed an argument that consists
of the local copy of the replicated scalar. This copy will be a valid Fortran 90 scalar.

If the extrinsic HPF interface defines a function, then the local procedure is a Fortran
90 function that returns a scalar of the same type and type parameters, or an array of the
same rank, type, and type parameters, as the HPF extrinsic function. The value returned
by each local invocation is the local part of the value returned by the HPF invocation.

6.5 Example HPF Extrinsic Procedures

The first example shows an INTERFACE, call, and subroutine definition for matrix multi-
plication:

! The NEWMATMULT routine computes C=A*B. A copy of row A(I,*) and
! column B(*,J) is broadcast to the processor that computes C(I,J)
! before the call to NEWMATMULT.

INTERFACE
SUBROUTINE NEWMATMULT(A,B,C)
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'HPF$ EXTRINSIC
REAL, DIMENSION(:,:), INTENT(IN) :: A,B
REAL, DIMENSION(:,:), INTENT(OUT) :: C
'HPF$ ALIGN A(I,J) WITH C(I,*)
'HPF$ ALIGN B(I,J) WITH C(%,J)
END SUBROUTINE NEWMATMULT
END INTERFACE
CALL NEWMATMULT(A,B,C)
! The Local Subroutine Definition:
! Each processor is passed 3 arrays of rank 2. Assume that the
! global HPF arrays A,B and C have dimensions LxM, MxN and LxN,
! respectively. The local array CC is (a copy of) a rectangular
! subarray of C. Let I1,I2,...,Ir and J1,J2,...,Js be,
! respectively, the row and column indices of this subarray at a
! processor. Then AA is (a copy of) the subarray of A with row
! indices Ii,...,Ir and column indices 1,...,M; and BB is (a copy
! of) the subarray of B with row indices 1,...,M and column
! indices Ji1,...,Js. C may be replicated, in which case copies
! of C(I,J) will be consistently updated at various processors.
SUBROUTINE NEWMATMULT(AA,BB,CC)
'HPF$ LOCAL
REAL AA(:,:), BB(:,:), cc(:,:)
INTEGER I,J
! loop uses local indices
DO I=LBOUND(CC,1), UBOUND(CC,1)
DO J=LBOUND(CC,2), UBOUND(CC,2)
cc(1,J) = DOT_PRODUCT( AA(I,:), BB(:,J))
END DO
RETURN
END
The second example shows an INTERFACE, call, and subroutine definition for sum
reduction:

- sem cam cem e

The SREDUCE routine computes at each processor the sum of
the local elements of an array of rank 1. It returns an
array that consists of one sum per processor. The sum
reduction is completed by reducing this array of partial
sums. The function fails if the array is replicated.
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INTERFACE
FUNCTION SREDUCE(A)
'HPF$ EXTRINSIC
REAL, DIMENSION(NUMBER_OF_PROCESSORS()) :: SREDUCE
'HPF$ DISTRIBUTE (BLOCK) :: SREDUCE
REAL, DIMENSION(:), INTENT(IN) :: A
END FUNCTION SREDUCE
END INTERFACE

TOTAL = SUM(SREDUCE(A))

! The Local Subroutine Definition
SUBROUTINE SREDUCE(AA)
'HPF$ LOCAL
REAL AA(:)
INTEGER COPIES

CAll GLOBAL_ALIGNMENT(AA, NUMBER_OF_COPIES = COPIES)
IF (COPIES > 1)
! ARRAY IS REPLICATED
THEN CALL ERROR()

! ADDITIONAL CODE TO CHECK THAT TEMPLATE IS NOT REPLICATED

! ARRAY IS NOT REPLICATED -- COMPUTE LOCAL SUM
ELSE RETURN(SUM(AA))
END IF
END
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it likes, and distribute it as is appropriate for the machine, but it is not up to the user
to say all this.

The proposals made to the 10 subgroup were based on the following observations:

e A massively parallel machine needs massively parallel 1/0;

e Efficient programs must avoid sequential bottlenecks from processors to file systems;
and

o Fortran specifies that a file appears in element storage order; this conflicts with striped
files (for example, an array distributed by rows may be written to a file striped by
columns).

The proposals were that HPF should provide explicit control to obtain high perfor-
mance 1/0. In essence the three proposals were:

1. On a write, give a hint about how the data will be read.

'HPF$ DISTRIBUTE (CYCLIC) :: a

|

'HPF$ IO_DISTRIBUTE * :: a
WRITE a, b, ¢

When an array is written, it can be easily read back in the given distribution. The
annotation can be associated with either the declaration or the write itself; in the
first case it applies to all writes of the array, while in the second it only applies to the
one statement. The intent is that metatdata is kept in the file system to record the
“right” data layout. The advantages of this proposal include notation and efficiency

. Give hints about the physical layout (number of spins, record length, striping function,
etc.) of the file when it is opened.

This uses the HPF array mapping mechanisms. (A file is a 1-dimensional array of -

records.) The syntax needs a “name” for the file “template”; the proposal is to use
FILEMAP. The programmer can align/distribute FILEMAP (on I/O nodes), associate
FILEMAP with a file on OPEN, etc. There are no changes in semantics or file system.

. Introduce parallel read/write operations that are not necessarily compatible with se-
quential ones.

PWRITE a
PREAD a

Data can be read back only into arrays of the same shape and mapping. Data written
by PWRITE must be read by PREAD. This solution does not need metadata in file
system or changes in the file system but is incompatible with the standard READ and
WRITE.

!

18

([

k



b

I

i

Chapter 8

Sequence and Storage Association

High Performance Fortran (HPF) allows the mapping of variables across multiple proces-
sors in order to improve parallel performance. FORTRAN 77 and Fortran 90 both spec-
ify relationships between the storage for data objects associated through COMMON and
EQUIVALENCE statements, and the order of array elements during association at proce-
dure boundaries between actual arguments and dummy arguments. Otherwise, the location
of data is not constrained by the language.

COMMON and EQUIVALENCE statements constrain the alignment of different data
items based on the underlying model of storage units and storage sequences:

Storage association is the association of two or more data objects that occurs
when two or more storage sequences share or are aligned with one or more storage
units.

— Fortran Standard (14.6.3.1).

The model of storage association is a single linearly addressed memory, based on the tradi-
tional single address space, single memory unit architecture. This model can cause severe
inefficiencies on architectures where storage for variables is mapped.

Sequence association refers to the order of array elements that Fortran requires when
an array expression or array element is associated with a dummy array argument:

The rank and shape of the actual argument need not agree with the rank and
shape of the dummy argument, ...
— Fortran Standard (12.4.1.4).

As with storage association, sequence association is a natural concept only in systems with
a linearly addressed memory.

As an aid to porting FORTRAN 77 codes, HPF allows codes that rely on sequence and
storage association to be valid in HPF. Some modification to existing FORTRAN 77 codes
may nevertheless be necessary. This chapter explains the relationship between HPF data
mapping and sequence and storage association.

8.1 Storage Association

8.1.1 Definitions

1. COMMON blocks are either sequential or nonsequential, as determined by either ex-
plicit directive or compiler default. A sequential COMMON block has a single common
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8.1.4 Storage Association Rules

1. A sequence-di: ive with an empty association-name-list is treated as if it contained
the name of ali ussociation-names in the scoping unit.

2. An aggregate cover may be explicitly mapped. If more than one aggregate cover exists
for the aggregate variable group, only one may be explicitly mapped.

3. The only sequential variables that may be explicitly mapped are scalar or rank-one
variables. Multi-dimensional sequential variables may not be explicitly mapped.

4. No explicit mapping may be given for an assumed-size dummy argument array.

5. No explicit mapping may be given for a component of a derived-data type having the
Fortran 90 SEQUENCE attribute.

6. An HPF program is nonconforming if it specifies any mapping that would cause storage
units to be mapped onto more than one abstract processor.

7. If a COMMON block is nonsequential, then all of the following must hold:

(a) Every occurrence of the COMMON block has exactly the same number of com-
ponents with each corresponding component having a storage sequence of exactly
the same size;

(b) If a component is a nonsequential variable in any occurrence of the COMMON
block, then it must be nonsequential with identical type, shape, and mapping
attributes in every occurrence of the COMMON block; '

(c) If a component is sequential and explicitly mapped (either a variable or an aggre-
gate variable group with an explicitly mapped aggregate cover) in any occurrence
of the COMMON block, then it must be sequential and explicitly mapped with
identical and mapping attributes in every occurrence of the COMMON block. In
addition, the type and shape of the explicitly mapped variable must be identical
in all occurrences; and

(d) Every occurrence of the COMMON block must be nonsequential.

8.1.5 Storage Association Discussion

Under these rules, variables in a COMMON block can be mapped as long as the components
of the COMMON block are the same in every scoping unit that declares the COMMON
block. Rule 2 also allows variables involved in an EQUIVALENCE statement to be mapped
by the mechanism of declaring a rank-one array to cover exactly the aggregate variable
group and mapping that array.

As the examples below illustrate, there are many ways to use EQUIVALENCE with
COMMON blocks tha: impact mappability of the variables in subtle ways. In order to
allow maximum optimization for performance, the default for variables is to consider them
mappable. In order to get correct separate compilation for scoping units that use COMMON
blocks with different aggregate variable groups in different scoping units, it will be necessary
to insert the HPF SEQUENCE directive. This is an example of where a correct FORTRAN
77 or Fortran 90 program will not necessarily be correct, without modification, in HPF.
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In order to protect the user and to facilitate portability of older codes, two implemen-"
tation options are strongly recommended. First, every implementation should supply some
mechanism to verify that the type and shape of every mappable array and the sizes of ag-
gregate variable groups in a COMMON are the same in every scoping unit if the COMMON
is not declared to be sequential. This same check should also verify that identical mappings
have been selected for the variables in COMMON. Implementations without interprocedural
information can use a link-time check. The second implementation option recommended is
a global mechanism to declare that all COMMON blocks for a given compilation should be
considered sequential unless declared otherwise. The purpose of this feature is to permit
compilation of large old libraries or subprograms where storage association is known to exist
without requiring that the code be modified to apply the HPF SEQUENCE directive to
every COMMON block.

Since an HPF program is nonconforming if it specifies any mapping that would cause
storage units to be mapped onto more than one abstract processor, this puts a constraint on
the sequential variables and aggregate covers that can be mapped. In particular, programs
that direct double precision or complex arrays to be mapped such that their individual
numeric storage units are split because of some EQUIVALENCE statement or COMMON
block layout, are nonconforming.

8.1.6 Examples of Storage Association

IMPLICIT REAL (A-2)
COMMON /F00/ A(100), B(100), C(100), D(100), E(100)
DIMENSION X(100), Y(150), Z(200), 2Z(300)

EQUIVALENCE ( A(1), Y(1) )
!Aggregate variable group is not mappable.
!Sizes are 200, 100, 100, 100.

EQUIVALENCE ( B(100), Y(1) ), ( B(1), Z2Z(1) )

!Aggregate variable group is mappable only by mapping ZZ.
!ZZ is an aggregate cover for B, C, D, and Y.

!Sizes are 100, 300, 100.

EQUIVALENCE ( E(1), Y(1) )
!Aggregate variable group is mappable by mapping Y.
!Sizes are 100, 100, 100, 100, 150.

COMMON /TWO/ A(20, 40),E(10,10),G(10,100,1000) ,H(100),P(100)
REAL COVER(200)

EQUIVALENCE (COVER(1), H(1))

'HPF$ SEQUENCE A

'HPF$ ALIGN E ...

'HPF$ DISTRIBUTE COVER (CYCLIC(2))

Here A is sequential and implicitly mapped, E is explicitly mapped, G is implicitly mapped,
the aggregate cover of the aggregate variable group (H, P) is explicitly mapped . /TWO/
is a nonsequential COMMON block.

In another subprogram, the following declarations may occur:
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COMMON /TWO/ A(800), E(10,10), G(10,100,1000), Z(200)
'HPF$  SEQUENCE A, Z

'HPF$ ALIGN E .

'HPF$ DISTRIBUTE Z (CYCLIC(2))

There are four components of the same size in both occurrences. Components one and four
are sequential. Components two and four are explicitly mapped, with the same type, shape
and mapping attributes.

The first component, A, must be declared sequential in both occurrences because its
shape is different. It may not be explicitly mapped in either because it is not rank-one or
scalar in the first.

E and G must agree in type and shape. E must have the same explicit mapping and G
must have no explicit mapping in both occurrences, since they are nonsequential variables.

The fourth component must have the same explicit mapping in both occurrences, and
must be made sequential explicitly in the second.

8.2 Argument Passing and Sequence Association

For actual arguments in a procedure call, Fortran 90 allows an array element (scalar) to be
associated with a dummy argument that is an array. It furthermore allows the rank of a
dummy argument to differ from the rank of the corresponding actual array argument, in
effect reshaping the actual argument via the subroutine call. Storage sequence properties of
Fortran are used to identify the values of the dummy argument. This feature, carried over
from FORTRAN 77, has been widely used to pass starting addresses of subarrays, rows
or columns of a larger array to procedures. For HPF arrays that are potentially mapped
across processors, this feature is not fully supported.

8.2.1 Sequence Association Rules

1. When an array element or the name of an assumed-size array is used as an actual
argument, the associated dummy argument must be a scalar or a sequential array.

An array-element designator of a nonsequential array must not be associated with a
dummy array argument.

2. When an actual argument is an array and the corresponding dummy argument differs
from the actual argument in shape, then the dummy argument must be declared
sequential and the actual argument must be an entire, sequential array.

3. A variable of type character (scalar or array) is nonsequential if it conforms to the
requirements of Definition 5 of Section 8.1.1. If the length of an explicit-length char-
acter dummy argument differs from the length of the actual argument, then both the
actual and dummy arguments must be sequential.

8.2.2 Discussion of Sequence Association

Correct FORTRAN 77 (and hence Fortran 90) codes potentially require modification in
HPF. Explicit HPF SEQUENCE directives may be needed in some cases where sequence
association exists in order for arrays to be mappable.
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When the rank of the dummy array argument and its associated actual array argument
differ, the actual argument must not be an expression. There is no HPF mechanism for
declaring that the value of an array-valued expression is sequential. In order to associate
such an expression as an actual argument with a dummy argument of different rank, the
actual argument must first be assigned to a named array variable that is forced to be
sequential according to Definition 5 of Section 8.1.1.

The ideal method for porting such codes will be to use an array section as the actual
argument, which will allow both the dummy argument and its associated actual argument
to be mappable.

Examples: Given

SUBROUTINE HOME (X)
DIMENSION X (20,10)

By rule 1
CALL HOME (ET (2,1))

is legal only if X is declared sequential in HOME and ET is sequential in the calling routine.
Likewise, by rule 2

CALL HOME (ET)

requires either that ET and X are both sequential arrays or that ET is dimensioned exactly
as X.

There is a special consideration for variables of type character. Change of the length
of character variables across a call, as in

CHARACTER (LEN=100) one_long_word
CALL webster ( one_long_word )

SUBROUTINE webster( short_dictionary )
CHARACTER (LEN=5) short_dictionary ( 20 )

is conceptually legal in FORTRAN 77 and Fortran 90. It is allowed provided both actual
argument and dummy argument are sequential. This may mean that 'HPF$ SEQUENCE
directives are needed.



120 CHAPTER 8. SEQUENCE AND STORAGE ASSOCIATION



Chapter 9

Subset High Performance Fortran

High Performance Fortran is defined as full Fortran 90 with restrictions on storage associ-
ation and augmented by language features in three areas:

e Directives in the form of structured comments which, although they do not change
the meaning of a program, provide information to a compiler to enable optimization;

e A FORALL statement and construct; and

e Extended intrinsic functions and a library.

This chapter presents a subset of HPF capable of being implemented more rapidly than
the full HPF. A subset implementation will provide a standard interim capability and full
HPF implementations should be developed as rapidly as possible. The definition of the
subset language is intended to be a minimal requirement. A given implementation may
support additional Fortran 90 and HPF features.

9.1 Fortran 90 Features in Subset High Performance Fortran

The items listed here are the features of the HPF subset language. For reference, the section
numbers from the Fortran 90 standard are given along with the related syntax rule numbers:

e All FORTRAN 77 standard conforming features, except for sequence and storage
association.

e The Fortran 90 definitions of MIL-STD-1753 features:

DO WHILE statement (8.1.4.1.1 / R821)
END DO statement (8.1.4.1.1./ R825)
IMPLICIT NONE statement (5.3 / R540)
INCLUDE line (3.4)

scalar bit manipulation intrinsic procedures: IOR, IAND, NOT, IEOR, ISHFT,
ISHFTC, BTEST, IBSET, IBCLR, IBITS, MVBITS (13.13)

— binary, octal and hexadecimal constants for use in DATA statements (4.3.1.1 /
R407 and 5.2.9 / R533)
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e Arithmetic and logical array features:

array sections (6.2.2.3 / R618-621)
* subscript triplet notation (6.2.2.3.1)
* vector-valued subscripts (6.2.2.3.2)

— array constructors limited to one level of implied DO (4.5 / R431)

— arithmetic and logical operations on whole arrays and array sections (2.4.3,2.4,5,
and 7.1)

— array assignment (2.4.5, 7.5, 7.5.1.4, and 7.5.1.5)

— masked array assignment (7.5.3)

* WHERE statement (7.5.3 / R738)
* block WHERE . . . ELSEWHERE construct (7.5.3 / R739)

— array-valued external functions (12.5.2.2)

— automatic arrays (5.1.2.4.1)

— ALLOCATABLE arrays and the ALLOCATE and DEALLOCATE statements (5.1.2.4.3,
6.3.1 / R622, and 6.3.3 / R631)

— assumed-shape arrays (5.1.2.4.2 / R516)

e Intrinsic procedures:

The list of intrinsic functions and subroutines below is a combination of routines which
are entirely new to Fortran and routines that have always been part of Fortran, but
now have been extended to new argument and result types. The new or extended
definitions of these routines are part of the subset. If a FORTRAN 77 routine is not
included in this list, then only the original FORTRAN 77 definition is part of the
subset.

For all of the intrinsics that have an optional argument DIM, only values of DIM which
are initialization expressions and hence deliver a known shape at compile time are
part of the subset. The intrinsics with this constraint are marked with * in the list
below.

— the argument presence inquiry function: PRESENT (13.10.1)

— all the numeric elemental functions: ABS, AIMAG, AINT, ANINT, CEILING, CMPLX,
CONJG, DBLE, DIM, DPROD, FLOOR, INT, MAX, MIN, MOD, MODULO, NINT, REAL, SIGN
(13.10.2)

— all mathematical elemental functions: ACOS, ASIN, ATAN, ATAN2, COS, COSH, EXP,
LOG, LOG10, SIN, SINH, SQRT, TAN, TANH (13.10.3)

— all the bit manipulation elemental functions : BTEST, IAND, IBCLR, IBITS, IBSET,
IEOR, IOR, ISHFT, ISHFTC, NOT (13.10.10)

— all the vector and matrix multiply functions: DOT_PRODUCT, MATMUL (13.10.13)

— all the array reduction functions: ALL*, ANY*, COUNT*, MAXVAL*, MINVAL*,
PRODUCT*, SUM* (13.10.14)

— all the array inquiry functions: ALLOCATED, LBOUND*, SHAPE, SIZE*, UBOUND
(13.10.15)
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— all the array construction functions: MERGE, PACK, SPREAD*, UNPACK (13.10.16)
— the array reshape function: RESHAPE (13.10.17)

— all the array manipulation functions: CSHIFT*, EOSHIFT*, TRANSPOSE (13.10.18)
— all array location functions: MAXLOC*, MINLOC* (13.10.19)

— all intrinsic subroutines: DATE_AND_TIME, MVBITS, RANDOM_NUMBER, RANDOM_SEED,
SYSTEM_CLOCK (3.11)

e Declarations:

— Type declaration statements, with all forms of type-spec except kind-selector
and TYPE(type-name), and all forms of attr-spec except access-spec, TARGET, and
POINTER. (5.1 / R501-503, R510)

— attribute specification statements: ALLOCATABLE, INTENT, OPTIONAL, PARAMETER,
SAVE (5.2)

o Procedure features:

— INTERFACE blocks with no generic-spec or module-procedure-stmt (12.3.2.1)
— optional arguments (5.2.2)
— keyword argument passing (12.4.1 /R1212)

e Syntax improvements:

— long (31 character) names (3.2.2)

— lower case letters (3.1.7)

— use of “.” in names (3.1.3)

— “I” initiated comments, both full line and trailing (3.3.2.1)

9.2 Discussion of the Fortran 90 Subset Features

There are many Fortran 90 features which are useful and relatively easy to implement, but
are not included in the subset language. Features were selected for the subset language for
several reasons.

The MIL-STD-1753 features have been implemented so widely that many users have
forgotten that they are not part of FORTRAN 77. They are included in the HPF subset.

The biggest addition to FORTRAN 77 in the HPF subset language is the inclusion of
the array language. A number of vendors have identified the usefulness of array operations
for concise expression of parallelism and already support these features. However, the
character array language is not part of the subset.

The new storage classes such as allocatable, automatic, and assumed-shape objects
are included in the subset. They provide an important alternative to the use of storage
association features such as EQUIVALENCE for memory management.

Interface blocks have been added to the subset in order to facilitate use of the HPF
directives across subroutine boundaries. The interface blocks provide a mechanism to specify
the expected mapping of data, in addition to the types and intents of the arguments.
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There were other Fortran 90 features considered for the subset. Some features such
as CASE or NAMELIST were recognized as popular features of Fortran 90, but had no direct
bearing on high performance. Other features such as support for double precision complex
(via KIND) or procedureless MODULES were rejected because of the perception that the ad-
ditional implementation complexity might delay release of subset compilers. It was not a
goal of HPFF to define an “ideal” subset of Fortran 90 for all purposes.

Additional syntactic improvements are included, such as long names and the form
of comments because of their general usefulness in program documentation, including the
description of HPF itself.

@y

9.3 HPF Features Not in Subset High Performance Fortran

All HPF directives and language extensions are included in the HPF subset language with
the following exceptions:

o The REALIGN, REDISTRIBUTE, and DYNAMIC directives;

e Alignment subscripts more complicated than a multiple of the alignment dummy with
a constant offset (m * ¢ + n);

o The PROCESSOR_VIEW directive;

e The PURE directive;

e The forall-construct;

e The HPF library and the HPF_LIB module;

e Values of the optional DIM arguments to the Fortran 90 MAXLOC and MINLOC intrinsic
functions that are not initialization expressions; and

e The EXTRINSIC directive, LOCAL directive, definition of extrinsic procedures, and the
Fortran 90 SPMD binding.

9.4 Discussion of the HPF Extension Subset

The data mapping features of the HPF subset are limited to static mappings, plus the
possible remapping of arguments across the interface of subprogram boundaries. Since the
subset language does not include MODULES, and COMMON block variables cannot be remapped,
this restriction only impacts remapping of local variables and additional remapping of ar-
guments, after the subprogram boundary. There is a further restriction on the form of
expressions that can be used when aligning one array to another, with only very simple
expression forms allowed in the subset.

Only the simplest version of FORALL statement is required in the subset. Note that
the omission of the PURE directive from the subset means that only HPF and Fortran 90
intrinsic functions can be called from the FORALL statement. No other subprograms can be
called.

Only the intrinsics which are useful for declaration of variables and mapping inquiries
are included in the subset. The full set of extended operations proposed for the HPF library
is not required and since MODULE is not part of the subset, the HPF_LIB module is also not
part of the subset.



9.4. DISCUSSION OF THE HPF EXTENSION SUBSET 125

All of these HPF language reductions are made in the spirit of allowing vendors to
produce a usable subset version of HPF quickly so that initial experimentation with the
language can begin. This list of HPF features excluded from the subset should not be
interpreted as requiring implementors to omit the features from the subset. Implementations
with as many HPF features as possible are encouraged. The list does, however, establish
the features a user should avoid if an HPF application is expected to be move between
different HPF subset implementations.
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Appendix A

Journal of Development

A.1 Nested WHERE statements

Briefly put, the less WHERE is like IF, the more difficult it is to translate existing serial
codes into array notation. Such codes tend to have the general structure of one or more DO
loops iterating over array indices and surrounding a body of code to be applied to array
elements. Conversion to array notation frequently involves simply deleting the DO loops
and changing array element references to array sections or whole array references. If the
loop body contains logical IF statements, these are easily converted to WHERE statements.
The same is true for translating IF-THEN constructs to WHERE constructs, except in two
cases. If the IF constructs are nested (or contain IF statements), or if ELSE IF is used,
then conversion suddenly becomes disproportionately complex, requiring the user to create
temporary variables or duplicate mask expressions and to use explicit .AND. operators to
simulate the effects of nesting.

Users also find it confusing that ELSEWHERE is syntactically and semantically anal-
ogous to ELSE rather than to ELSE IF.

We therefore propose that the syntax of WHERE constructs be extended and changed
to have the form

where-construct is  where-construct-stmt
[ where-body-construct |...
[ elsewhere-stmt
[ where-body-construct ]... ]...
[ where-else-stmt
[ where-body-construct ... ]
end-where-stmt

where-construct-stmt is WHERE ( mask-ezpr )
elsewhere-stmt is ELSE WHERE ( mask-ezpr )
where-else-stmt is ELSE WHERE
end-where-stmt is END WHERE

mask-ezpr is logical-expr
where-body-construct is assignment-stmt

or where-stmt
or where-construct
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Constraint: In each assignment-stmt, the mask-expr and the variable being defined must be
arrays of the same shape. If a where-con: uct contains a where-stmt, an elsewhere-stmt,
or another where-construct, then the two .sk-expr’s must be arrays of the same shape.

The meaning of such statements may be understood by rewrite rules. First one may
eliminate all occurrences of ELSE WHERE:

WHERE (m1) WHERE (m1)
XXX XXX
ELSE WHERE (m2) becomes ELSE
yyy WHERE (m2)
END WHERE yyy
END WHERE
END WHERE

where xxx and yyy represent any sequences of statements, so long as the original
WHERE, ELSE WHERE, and END WHERE match, and the ELSE WHERE is the first
ELSE WHERE of the construct (that is, yyy may include additional ELSE WHERE or
ELSE statements of the construct). Next one eliminates ELSE:

WHERE (m) temp = m
XXX WHERE (temp)
ELSE becomes XXX
yyy END WHERE
END WHERE WHERE (.NOT. temp)
yyy
END WHERE

Finally one eliminates nested WHERE constructs:

WHERE (m1) temp = mi
XXX WHERE (temp)
WHERE (m2) XXX
yyy becomes END WHERE
END WHERE WHERE (temp .AND. (m2))
2ZZ yyy
END WHERE END WHERE
WHERE (temp)
22z
END WHERE

and similarly for nested WHERE statements.

The effects of these rules will surely be a familiar or obvious possibility to all the
members of the committee; I enumerate them explicitly here only so that there can be no
doubt as to the meaning I intend to support.

Such rewriting rules are simple for a compiler to apply, or the code may easily be
compiled even more directly. But such transformations are tedious for our users to make
by hand and result in code that is unnecessarily clumsy and difficult to maintain.
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One might propose to make WHERE and IF even more similar by making two other
changes. First, require the noise word THERE to appear in a WHERE and ELSE WHERE
statement after the parenthesized mask-expr, in exactly the same way that the noise word
THEN must appear in IF and ELSE IF statements. (Read aloud, the results might sound a
trifle old-fashioned—“Where knights dare not go, there be dragons!”-but technically would
be as grammatically correct English as the results of reading an IF construct aloud.) Second,
allow a WHERE construct to be named, and allow the name to appear in ELSE WHERE,
ELSE, and END WHERE statements. I do not feel very strongly one way or the other about
these no doubt obvious points, but offer them for your consideration lest the possibilities
be overlooked.

Now, for compatibility with Fortran 90, HPF should continue to use ELSEWHERE
instead of ELSE, but this causes no ambiguity:

WHERE(...)
ELéé‘WHERE(...)
ELééﬁHERE
ENb'&HERE

is perfectly unambiguous, even when blanks are not significant(fixed source form).
Since X3J3 declined to adopt the keyword THERE, it should not be used in HPF either
(alas), though it could be allowed optionally.

A.2 ALLOCATE in FORALL

Proposal: ALLOCATE, DEALLOCATE, and NULLIFY statements may appear in the
body of a FORALL.

Rationale: These are just another kind of assignment. They may have a kind of side
effect (storage management), but it is a benign side effect (even milder than random number
generation).

Example:

TYPE SCREEN

INTEGER, POINTER :: P(:,:)
END TYPE SCREEN
TYPE(SCREEN) :: S(N)
INTEGER IERR(N)

! Lots of arrays with different aspect ratios
FORALL (J=1:N) ALLOCATE(S(J)%P(J,N/J),STAT=IERR(J))
IF(ANY(IERR)) GO TO 99999

A.3 Generalized Data References

Proposal: Delete the constraint in section 6.1.2 of the Fortran 90 standard (page 63, lines
7 and 8):
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Constraint: In a data-ref, there must not be more than one part-ref with nonzero
rank. A part-name to the right of a part-ref with nonzero rank must not have
the POINTER attribute.

Rationale: Further opportunities for parallelism.
Example:

TYPE MONARCH

INTEGER, POINTER :: P
END TYPE MONARCH
TYPE(MONARCH) :: C(N), W(N)

! Munch that butterfly
C=C+ W= AJP ! Illegal in Fortran 90

A.4 FORALL with INDEPENDENT Directives

We propose that two new directives be added for use within the FORALL construct.

'HPF$BEGIN INDEPENDENT
'HPF$END INDEPENDENT

The two directives must be used in pair. A sub-block of statements parenthesized in the two
directives is called an asynchronous sub-block or independent sub-block. The statements
that are not in an asynchronous sub-block are in synchronized sub-blocks or non-independent
sub-block. The synchronized sub-block is the same as Guy Steele’s synchronized FORALL
statement, and the asynchronous sub-block is the same as the FORALL with the INDE-
PENDENT directive. Thus, the block FORALL

FORALL (e)
b1
'HPF$BEGIN INDEPENDENT
b2
'HPF$END INDEPENDENT
b3
END FORALL

means the same as

FORALL (e)

b1
END FORALL
'HPF$ INDEPENDENT
FORALL (e)

b2
END FORALL
FORALL (e)
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b3
END FORALL

The INDEPENDENT directives indicates to the compiler there is no dependence and con-
sequently, synchronizations are not necessary. It is users’ responsibility to ensure there is
no dependence between instances in an asynchronous sub-block.

A.41 What Does “No Dependence Between Instances” Mean?

It means that there is no true dependence, anti-dependence, or output dependence between
instances. Examples of these dependences are shown below:

1. True dependence:

FORALL (i = 1:N)
x(i) = ...
= x(i+1)
END FORALL

Notice that dependences in FORALL are different from that in a DO loop. If the
above example was a DO loop, that would be an anti-dependence.

2. Anti-dependence:

FORALL (i = 1:N)
= x(i+1)
x(i) = ...
END FORALL

3. Output dependence:

FORALL (i = 1:N)
x(i+1) = ...
x(i) = ...

END FORALL

A.4.2 Rationale

1. A FORALL with a single asynchronous sub-block is the same as a DO with an IN-
DEPENDENT assertion. A FORALL no INDEPENDENT directive is the same as a
tightly synchronized FORALL. We only need to define one type of parallel constructs
including both synchronized and asynchronous blocks. Furthermore, combining asyn-
chronous and synchronized FORALLs, we have a loosely synchronized FORALL which
is more flexible for many loosely synchronous applications.

2. With INDEPENDENT directives, the user can indicate which block needs not to be
synchronized. The INDEPENDENT directives can act as barrier synchronizations.
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A5 EXECUTE-ON-HOME and LOCAL-ACCESS Directives

The EXECUTE-ON-HOME directive is used to suggest where an iteration of a DO construct
or an indexed parallel assignment should be executed. The specified location of computa-
tion provides the reference with which the compiler determines which data access of the
computation should be local and which data access may be remote. The LOCAL-ACCESS
directive further asserts which data accesses are indeed local.

ezecute-on-home-directive is EXECUTE (align-source-list) ON_HOME align-spec
[, local-access-directive]

local-access-directive is LOCAL_ACCESS array-name-list

The EXECUTE-ON-HOME directive must immediately precede the corresponding DO
construct, array assignment, FORALL statement, FORALL construct or individual assign-
ment statement in a FORALL construct.

The scope of an EXECUTE-ON-HOME directive is the entire loop body of the following
DO construct, or the following array assignment, FORALL statement, FORALL construct
or assignment statement in a FORALL construct.

When an EXECUTE-ON-HOME directive is applied to a DO construct, a FORALL
statement, a FORALL construct or an assignment statement in a FORALL construct, the
align-source-list identifies a distinct iteration index or an indexed parallel assignment in the
corresponding scope and the align-spec identifies a template node. Every iteration index
or indexed assignment must be associated with one and only one template node. The
EXECUTE-ON-HOME directive states that each iteration or indexed parallel assignment
should be executed on the processor to where its associated template node is mapped. For
any subroutine call within a DO construct, the EXECUTE-ON-HOME directive specifies
only the execution location of the caller but not necessarily the execution location of the
called subroutine.

When an EXECUTE-ON-HOME directive is applied to an array assignment statement,
each align-sourceidentifies positions spread along one dimension (:) or a collapsed dimension
(*) of the assigned array, and the align-spec identifies the associated template or template
section. (Replication, i.e. “*”,is not allowed in align-spec.) The align-source-list must have
the same rank as the assigned array. The associated template or template section must
have the same size as the assigned array in all uncollapsed dimensions. The EXECUTE-
ON-HOME directive states that, for each element in the assigned array, the corresponding
evaluation and assignment should be executed on the processor to where the corresponding
template element of the associated template is mapped. For example,

{HPF$ EXECUTE (:,*) ON_HOME T(2:N)
A(1:N-1,2:N) = B(2:N,1:N-1)

A(1,j) = B(2,j-1) is executed on the processor to which T(2) is mapped, where j =
2,..N.
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(Align-spec in current HPF is restricted to simple expressions of align-dummy. Thus
only regular data mapping is supported. If array elements or functions are allowed in align-
spec for specifying irregular data mapping, the above EXECUTE-ON-HOME directive can
also be used to address the corresponding computation location problem.)

EXECUTE-ON-HOME directives can be nested, but only the immediately preceding
EXECUTE-ON-HOME directive is effective.

The optional LOCAL-ACCESS directive asserts that all data accesses to the specified
array-name-list within the scope of the EXECUTE-ON-HOME directive can be handled as
local data accesses if the related HPF data mapping directives are honored.

The LOCAL-ACCESS directive can also be used separately from the EXECUTE-ON-
HOME directive. When used alone, it applies only to the immediately following statement
or construct, and asserts that all specified data accesses are local data accesses provided
that the immediately preceding EXECUTE-ON-HOME directive and all related HPF data
mapping directives are honored. The assertion overrides any local-access assertions by
the preceding EXECUTE-ON-HOME directive. It is an error when a LOCAL-ACCESS
directive is not applied inside the scope of some EXECUTE-ON-HOME directive.

INDEPENDENT and EXECUTE-ON-HOME directives can be combined into a single
HPF directive when they are applied to the same DO or FORALL construct,

combined-assert-directive is assertion-directive-list

assertion-directive is independent-directive
or ezecute-on-home-directive

Example 1

REAL A(N), B(N), C(N)
'HPF$ TEMPLATE T(N)
'HPF$ ALIGN WITH T:: A, B, C
'HPF$ DISTRIBUTE T(CYCLIC(2))

'HPF$ INDEPENDENT, EXECUTE (I) ON_HOME T(2*I), LOCAL_ACCESS A, B, C
DOI =1, N/2
! we know that P(2%I-1) and P(2*I) is a permutation
! of 2*%I-1 and 2*I
A(P(2%I - 1)) = B(2*I - 1) + C(2*I - 1)
A(P(2%I)) = B(2%I) + C(2*I)
END DO

Example 2

REAL A(N,N), B(N,N)
'HPF$ TEMPLATE T(N,N)
'HPF$ ALIGN WITH T:: A, B
'HPF$ EXECUTE (I,J) ON_HOME T(I+1,J-1)
FORALL (I=1:N-1, J=2:N) A(I,J) = A(I+1,J-1) + B(I+1,J-1)
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Example 3

REAL A(N,N), B(N.N)
'HPF$ TEMPLATE T(N,N)
'HPF$ ALIGN WITH T:: A, B

'HPF$ EXECUTE (:,:) ON_HOME T(2:N,1:N-1)
A(1:N-1,2:N) = A(2:N,1:N-1) + B(2:N,1:N-1)

Example 4 The original program for this example is due to Michael Wolfe of Oregon
Graduate Institute.

This program performs matrix multiplication C = A X B by a systolic algorithm. Note
that without the EXECUTE-ON-HOME and LOCAL_ACCESS directive, the compiler will
have a hard time detecting that all A, B and C accesses are actually local.

REAL A(N,N), B(N,N), C(N,N)

PARAMETER(NOP = NUMBER_OF_PROCESSORS())
'HPF$ REALIGNABLE B
'HPF$ TEMPLATE T(2*N,N) ! to allow wrap around mapping
'HPF$ ALIGN (I,J) WITH T(I,J):: A, C
'HPF$ ALIGN B(I,J) WITH T(N+I,J)
‘HPF$ DISTRIBUTE T(CYCLIC(N/NOP),*) ! distributed by row blocks

IB = N/NOP
DO IT = 0, NOP-1

! rotate B by row-blocks
'HPF$ REALIGN B(I,J) WITH T(N-IT*IB+I,J)

! data parallel loop
'HPF$ INDEPENDENT
'HPF$ EXECUTE (IP) ON_HOME T(IP*IB+1,1), LOCAL_ACCESS A, B, C

DO IP = 0, NOP-1
ITP = MOD( IT+IP, NOP )

DO I =1, IB
poJ=1, N
DOK =1, IB
C(IP*IB+I,J) = C(IP*IB+I,J) +
1 A(IP*IB+I,ITP*IB+K)*B(ITP*IB+K,J)
ENDDO ! K
ENDDO ' J
ENDDO ! I

ENDDO ! IP
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ENDDO ! IT

A.6 Elemental Reference of Pure Procedures

Fortran 90 introduces the concept of “elemental procedures”, which are defined for scalar
arguments but may also be applied to conforming array-valued arguments. The latter type
of reference to an elemental procedure is called an “elemental” reference. Examples are the
mathematical intrinsics, e.g. SIN and the intrinsic subroutine MVBITS. However, Fortran 90
restricts elemental reference to a subset of the intrinsic procedures — programmers cannot
define their own elemental procedures. We propose that pure procedures may also be
referenced elementally, subject to certain additional constraints given below.

A.6.1 Elemental Reference of Pure Functions

A user-defined pure function may be referenced elementally, provided it satisfies the addi-
tional constraints that:

1. Its non-procedure dummy arguments and dummy result are scalar and do not have
the POINTER attribute.

2. The length of any character dummy argument or result is independent of argument
values (though it may be assumed, or depend on the lengths of other character argu-
ments and/or a character result).

We call non-intrinsic pure functions that satisfy these constraints “elemental non-
intrinsic functions”.

The interpretation of an elemental reference of such a function is as follows (adapted
from Section 12.4.3 of the Fortran 90 standard):

A reference to an elemental non-intrinsic function or to an elemental intrinsic
function is an elemental reference if one or more non-procedure actual arguments
are arrays and all array arguments have the same shape. If any actual argument
is a function, its result must have the same shape as that of the corresponding
function dummy procedure.

The result of such a reference has the same shape as the array arguments,
and the value of each element of the result, if any, is obtained by evaluating
the function using the scalar and procedure arguments and the corresponding
elements of the array arguments. The elements of the result may be evaluated
in any order.

Example:
INTERFACE
REAL FUNCTION foo (x, y, 2z, dummy_func)
'HPF$ PURE foo
REAL, INTENT(IN) :: x, y, 2
INTERFACE ! interface for ’dummy_func’’

REAL FUNCTION dummy_func (x)
'HPF$ PURE dummy_func
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REAL, INTENT(IN) :: x -
END FUNCTION dummy_func
END INTERFACE
END FUNCTION foo
END INTERFACE

REAL a(100), b(100), c(100)

¢ = foo (a, 0.0, b, sin)

A.6.2 Elemental Reference of Pure Subroutines

A user-defined pure subroutine may be referenced elementally, provided it satisfies the
additional constraints that:

1. Its non-procedure dummy arguments are scalar and do not have the POINTER at-
tribute.

2. The length of any character dummy argument is independent of argument values
(though it may be assumed, or depend on the lengths of other character arguments).

We call non-intrinsic pure subroutines that satisfy these constraints “elemental non-
intrinsic subroutines”.

The interpretation of an elemental reference of such a subroutine is as follows (adapted
from Section 12.4.5 of the Fortran 90 standard):

A reference to an elemental non-intrinsic subroutine or an elemental intrin-
sic subroutine is an elemental reference if all actual arguments corresponding
to INTENT(OUT) and INTENT(INOUT) dummy arguments are arrays that
have the same shape and the remaining non-procedure actual arguments are
conformable with them. If any actual argument is a function, its result must
have the same shape as that of the corresponding function dummy procedure.

The values of the elements of the arrays that correspond to INTENT(OUT)
and INTENT(INOUT) dummy arguments are the same as if the subroutine were
invoked separately, in any order, using the scalar and procedure arguments and
corresponding elements of the array arguments.

Example:

INTERFACE
SUBROUTINE solve_simul(tol, y, 2)
'HPF$ PURE solve_simul
REAL, INTENT(IN) :: tol
REAL, INTENT(INOUT) :: y, z
END SUBROUTINE
END INTERFACE

REAL a(100), b(100), c(100)
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CALL solve_simul( 0.1, a, b )
CALL solve_simul( c(10:100:10), a(1:10), b(1:10) )

A.6.3 Constraints

It is perhaps worth outlining the reasons for the extra constraints imposed on pure proce-
dures in order for them to be referenced elementally.

The dummy result of an elemental function or “output” arguments of a subroutine are
not allowed to have the POINTER attribute because Fortran 90 does not permit an array of
pointers to be referenced. The “input” arguments of an elemental reference are prohibited
from having the POINTER attribute for consistency with the output arguments or result.

In an elemental reference, any actual argument that is a function must have a result
whose shape agrees with that of the corresponding function dummy procedure. That is,
elemental usage does not extend to function arguments, as Fortran 90 does not support the
concept of an “array” of functions.

Finally, the length of any character dummy argument or a character dummy result
cannot depend on argument values (though it can be assumed, or depend on the lengths
of other character arguments). This ensures that under elemental reference, all elements
of an array argument or result of character type will have the same length, as required by
Fortran 90.

A.7 Parallel I/0

High Performance Fortran is primarily designed to obtain high performance on massively
parallel computers. Such massively parallel machines also need massively parallel 1/0.
There are difficulties in getting high performance 1/0:

o Efficient programs must avoid sequential bottlenecks from processors to file systems

o Fortran specifies that a file appears in element storage order; this conflicts with striped
files (for example, an array distributed by rows may be written to a file striped by
columns).

In particular Fortran file organization has limits:

¢ Files have a sequential organization. (Even direct access files have records in sequential
order, though they can be accessed out of order)

Fortran files are record oriented

Storage and sequence association are in force (when writing and then reading a file,
for instance)

No specification of the physical organization is possible

No compatibility with other languages/machines is guaranteed

With these in mind there are two major approaches that have been suggested:

1. Define hints (annotations) that do not change file semantics, in the spirit of data
distribution. (This gives some information to the compiler.)



138 APPENDIX A. JOURNAL OF DEVELOPMENT

2. Introduce parallel read/write operations that are not necessarily compatible with se-
quential ones.

A.7.1 Hints

Two ideas have been advanced which use the idea of giving hints to the compiler without
changing the Fortran file semantics.

The first is based on the observation that although the distribution of an array when it
is written may be available to the compiler or runtime system, the distribution into which
that array will be read cannot generally be known, even though the programmer may have
this knowledge. So the proposal is to provide on a write a hint about how the data will be
read.

DISTRIBUTE (CYCLIC) :: a
'HPF$ IO_DISTRIBUTE * :: a
WRITE a, b, c

'HPF$ IO_DISTRIBUTE * :: b

When an array is written, it can be easily read back in the given distribution. The
annotation can be associated with either the declaration or the write itself; in the first case
it applies to all writes of the array, while in the second it only applies to the one statement.
The intent is that meta-data is kept in the file system to record the “right” data layout.
The advantages of this proposal include notation and efficiency

The second proposal is to give hints about the physical layout (number of spins, record
length, striping function, etc.) of the file when it is opened.

This uses the HPF array mapping mechanisms. (A file is a 1-dimensional array of
records.) The syntax needs a “name” for the file “template”: we suggest FILEMAP. The
programmer can align/distribute FILEMAP (on I/O nodes), associate FILEMAP with a
file on OPEN, etc. There are again no changes in semantics or file system.

Mapping Files A Fortran file is a sequence of records. We treat such file as a 1-D
array of records with LB=1 and infinite UB. This array can be mapped to a (storage)
node arrangement in a manner analogous to the mapping of an array to a (processor) node
arrangement. Files are mapped using the same notation as for array mapping. The mapping
defines a partition of the file, and each part is associated with one abstract node.

The mapping of a file to a node arrangement can be interpreted in two ways:

1. The nodes may represent (abstract) independent storage units, each storing a fixed
part of the file.

2. The nodes may represent (abstract) independent file caches, with a fixed association
of each cache with a part of the file.

In both cases the file is mapped onto physical I/O devices so as to allow maximal
concurrency for accesses directed to distinct parts of the file. If the second interpretation
is used, then it is meaningful to align arrays and files onto the same templates.

We introduce a new filemap object. Filemaps are, essentially, named files. They
appear where an array names would appear in a array mapping expression. An actual file
is associated with a FILEMAP in an OPEN statement. Filemaps are introduced because
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files are not first class objects in FORTRAN (files are not declared). Also, Filemaps can
have rank > 1, giving more flexibility in the types of mappings that can be specified.
The following diagram illustrates the mapping

Node Physical
File Filemap Template arrangement storage units
(or caches)

OPEN ALIGN DISTRIBUTE Implementation
Dependent

Node Directive We suggest to replace the keyword PROCESSOR with the keyword NODE,
which is more neutral. Node arrangements (ex processor arrangements) can be targets both
for file mappings and for array mappings. Some implementations may disallow the use of
the same node arrangement name as a target both for array mappings and for file mappings.
In such case an AFFINITY directive, that specifies affinity between io nodes and processor
nodes, would be useful. (Such directive would also be useful to specify affinity between
nodes of different arrangements, e.g. nodes in arrangements of different rank.)

The set of allowable node arrangements that can be used to map files is implementation
dependent — however, a node arrangement with NUMBER_OF_IONODES nodes is always legal.

The mapping of nodes to physical storage units is implementation dependent.

For example:

'HPF$ NODE :: D1(2,4), D2(2,2)
PARAMETER (NOD=NUMBER_OF_IONODES())
'HPF$ NODE, DIMENSION(NOD) :: D3,D4

FILEMAP Directive A Fortran file is an infinite one-dimensional array of records, with
LB=1. A filemap can be thought of as an assumed-size array of records. This array is
associated with (one-dimensional) files, using storage association rules. The filemap name
is used to specify a mappings for files. The association between a filemap name and an
actual file is effected by the OPEN statement.

A FILEMAP directive declares filemap names. The syntax is

filemap-directive is FILEMAP [::]
filemap-name ( assumed-size-spec )
[, filemap-name (assumed-size-spec ) | ...
or FILEMAP, DIMENSION ( assumed-size-spec )
1t filemap-name-list

An assumed-size-spec is a specification of the form used for assumed sized arrays: All
dimensions are specified, with the exception of the last, which is assumed. In our case,
the last dimension is infinite. Only initialization expressions may occur in this specification
(including expressions that depend on NUMBER_OF_IONODES).

For example:
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'HPF$ FILEMAP :: F1(2,4,%)
'HPF$ FILEMAP, DIMENSION(2,.,1:%) :: F2,F3

A FILEMAP directive does not allocate space, neither in memory, nor on disk.

File mapping ALIGN and DISTRIBUTE statements are used to map FILEMAPs onto
nodes. The syntax is identical to the syntax for processor mappings, with one restriction:
Block distributions cannot be used for the last (infinite) dimension of the filemap.

For example:

'HPF$ DISTRIBUTE (CYCLIC,CYCLIC,*) ONTO D2 :: F2,F3
'HPF$ DISTRIBUTE F1(*,BLOCK,CYCLIC(2)) ONTO D1

Assume that F1, F2 are the filemaps and D1, D2 are the node arrangements from the
previous examples.

The first distribute statement specifies the following mapping for successive records of
a file associated with F2 or F3.

D2(1,1) D2(1,2)

1 (1,1,1) 3 (1,2,1)
5 (1,1,2) 7 (1,2,2)
D2(2,1) D2(2,2)

2 (2,1,1) 4 (2,2,1)
6 (2,1,2) 8 (2,2,2)

The second distribute statement specifies the following mapping for successive records
of a file associated with F1.

D1(1,1) D1(1,2) D1(1,3) D1(1,4)
1 (1,1,1) 17 33 49
2 (2,1,1)
3 (1,2,1) . . .
4 (2,2,1) 20 36 52
9 (1,1,2) 25 41 57

10 (2,1,2)
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11 (1,2,2) . .
12 (2,2,2) 28 44 60
65 81 97 113
D1(2,1) D1(2,2) D1(2,3) D1(2,4)
5 (1,3,1) 21 37 53
6 (2,3,1)
7 (1,4,1) . . .
8 (2,4,1) 24 40 56
13 (1,3,2) 29 45 61
14 (2,3,2)
15 (1,4,2) . . .
16 (2,4,2) 32 48 64
69 85 101 117

OPEN statement

A new connection specifier of the form FILEMAP = filemap-name associates a mapping with
the opened file. If the file exists then the mapping must be one of the mappings allowed for
the file. The set of allowed file mappings for an existing file is implementation dependent,
but always include the mapping under which the file was created. More generally, it will
include any mapping where the file is mapped onto the same storage node arrangement, and
with the same allocations of file records to storage nodes (different mappings may result
in the same allocation of records to storage nodes). One choice is to allow any mapping,
with possible degraded performance for ill matched mappings; another choice is to remap
an existing file when it is opened with a new mapping, either offline or online. Vendors are
expected to provide implementation dependent mechanisms to exercise such choices.

The default mapping is implementation dependent.

Only external files can be mapped.

Implementations may restrict the use of the FILEMAP connection specifier to files that
are open for direct access (i.e., fixed size record files).

Parallel Data Transfer

The READ, WRITE, CLOSE, INQUIRE, BACKSPACE, ENDFILE, REWIND statements
can be used to access distributed files; there are no changes in the syntax or semantics of
these statements.

PREAD and PWRITE statements are added to allow efficient input or output of dis-
tributed arrays. The PREAD and PWRITE statements have the same syntax as unformat-
ted I/0 statements with READ or WRITE, respectively; they are semantically different.
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The data representation created on a file by a PWRITE statement may be different from
the data representation that obtains if PWRITE is replaced by WRITE. In particular,
whereas an unformatted WRITE statement will create a single record (stored on one 1/0
node), a PWRITE statement may create multiple records, possibly on multiple I/O nodes.
Whereas an unformatted READ statement accesses a unique record, a PREAD statement
may access multiple records.

If a PWRITE statement was used to write a list of output items on a file, then a
PREAD that starts at the same point in the file, and has a compatible list of input items, will
return the values that were written. Two lists of items are compatible if the corresponding
items in each list occupy the same number of storage units and have compatible mappings
(informally, if the distribution of entries onto abstract processors is the same).

Examples

The program below exchanges the values of arrays A and B. The exchange is legal
because the arrays are compatible.

REAL, DIMENSION(1000,1000) :: A, B
ALIGN A WITH B

OPEN(UNIT = 15, ACTION = READWRITE)
PWRITE (UNIT = 15) A, B

REWIND (UNIT = 15)

PREAD (UNIT = 15) B, A

The behavior of the program below is undefined. More than one record could have
been created by the PWRITE statement, so that the BACKSPACE statement does not
necessarily return the file position to where it was before PWRITE executed.

REAL, DIMENSION(1000,1000) :: A, B
ALIGN A WITH B ...

OPEN(UNIT = 15, ACTION = READWRITE)
PWRITE (UNIT = 15) A, B

BACKSPACE (UNIT = 15)

PREAD (UNIT = 15) B, A

The behavior of the program below is undefined, since the two arrays A and B don’t
have compatible distributions.

REAL, DIMENSION(1000,1000) :: A, B
DISTRIBUTE A(BLOCK,BLOCK)
DISTRIBUTE B(CYCLIC, CYCLIC)

OPEN(UNIT = 15, ACTION = READWRITE)
PWRITE (UNIT = 15) A, B

REWIND (UNIT = 15)

PREAD (UNIT = 15) B, A

Data written by a WRITE statement cannot be read with PREAD, and data written
with PWRITE cannot be read with READ, or by a PREAD that does not start at exactly

the same point in the file (otherwise the program outcome is undefined).
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A.8 FORALL-ELSEFORALL construct

FORALL-ELSEFORALL construct is a natural generalization of Fortran 90 WHERE-
ELSEWHERE construct. A construct proposed in previous drafts of the HPF:

FORALL(I=1:N,J=1:N)
WHERE (MASK)
assignment
ELSEWHERE
assignment
ENDWHERE
ENDFORALL

seems to introduce unnecessary limitations coming from limitations of WHERE con-
struct: the mask array must conform with the variables on the right side in all of the array
assignment statements in the construct.

A.8.1 FORALL-ELSEFORALL Construct

The FORALL-ELSEFORALL construct is a generalization of the masked element array
assignment statement allowing multiple assignments, masked array assignments, and nested
FORALL statements to be controlled by a single forall-triplet-spec-list. Rule R215 for
ezecutable-construct is extended to include the forall-construct.

General Form of the FORALL-ELSEFORALL Construct

forall-construct is FORALL (forall-triplet-spec-list
[, scalar-mask-ezpr ])
forall-body-stmt-list
[ELSEFORALL]
[elseforall-body-stmt-list]
END FORALL

forall-body-stmt is  forall-assignment
or forall-stmt
or forall-construct

elseforall-body-stmt is  forall-body-stmt

Constraint: subscript-name must be a scalar-name of type integer.
Constraint: A subscript or a stride in a forall-triplet-spec must not contain a reference to
any subscript-name in the forall-triplet-spec-list.
Constraint: Any left-hand side array-section or array-element in any forall-body-stmt must
reference all of the forall-triplet-spec subscript-names.
Constraint: If a forall-stmt or forall-construct is nested within a forall-construct, then the
inner FORALL may not redefine any subscript-name used in the outer forall-construct. This
rule applies recursively in the event of multiple nesting levels.

For each subscript name in the forall-assignments, the set of permitted values is deter-
mined on entry to the construct and is

m2—ml+1)

ml+ (k — 1) * m3, where k = 1,2, ..., | 3

]
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PREAD and PWRITE can be used both for sequential access and for direct access. In

the later case, the REC specifier indicates the position in the file where from the transfer
starts. It is still the case that a transfer may involve several records.

Restrictions

The following restrictions allow for a simpler, more efficient implementation of parallel 1/0.
We may either put them in the language, or list them as recommended programming style.

1.

Items in the item list of a PREAD or PWRITE statements are restricted to be vari-
ables (no io-implied-do). [Compilers may want to relax this rule, by considering an
io-implied-do as being an operation that defines a new variable, akin to an array sec-
tion, with a distribution induced by the distribution of the variables appearing in the
implied-do-loop.]

. All values needed to determine which entities are specified by a parallel I/O item list

need be specified before the 1/O statement. That is, we prohibit a statement of the
form PREAD (...) N, A(1:N).

Extensions

We may want to write an array with a layout that is suited to the mapping of the
array that will appear in the input item list, rather than suited to the mapping of the
array in the output list. To achieve this, we need to add align/distribute information
as part of the PWRITE statement.

We may want a REMAP statement, to be used instead of the sequence CLOSE ..
OPEN, in order to associate a new mapping to an existing file.

We may want to extend the INQUIRE statement to return file mapping information
(alternatively, we may use the same query intrinsics used to query array partitions).

A new intrinsics of the form INDEX(filemap-name, list-of-indices) would be
handy, as it would allow to address random-access files as multi-dimensional arrays.
E.g.

READ (7, REC = INDEX(F1,3,5) ) A

Each data transfer operation specifies an association between parts of the file and
abstract processor nodes where from (where to) the data in the record is transferred.
We may want to add additional directives to the OPEN statement to indicate that
this association fulfills certain restrictions for as long as the file is open.

— Accesses to a file are independent if, in all data transfers, each file part is asso-
ciated with the same processor node. An INDEPENDENT argument in the OPEN
statement may be used to specify this condition (which simplifies file caching).

— A data transfer is aligned if each file part is associated with a unique proces-
sor node (is not split among two processor nodes). We may use an ALIGNED
argument in the OPEN statement to specify that all data transfers are aligned.
(INDEPENDENT implies ALIGNED, but not vice versa).
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and where m/, m2, and m3 are the values of the first subscript, the second subscript, and
the stride respectively in the forall-triplet-spec. If stride is missing, it is as if it were present
with a value of the integer 1. The expression stride must not have the value 0. If for some
subscript name [(m2 — m1+ 1)/m3] < 0, the forall-assignments are not executed.

Interpretation of the FORALL Construct
Execution of a FORALL construct consists of the following steps:

1. Evaluation in any order of the subscript and stride expressions in the forall-triplet-
spec-list. The set of valid combinations of subscript-name values is then the cartesian
product of the sets defined by these triplets.

2. Evaluation of the scalar-mask-ezpr for all valid combinations of subscript-name values.
The mask elements may be evaluated in any order. One set of active combinations
of subscript-name values is the subset of the valid combinations for which the mask
evaluates to true and a second one is the subset of the valid combinations for which
the mask evaluates to false.

3. Execute forall-body-stmtsin the order they appear for the set of the valid combination
of subscript-name for which mask was evaluated to true in the step 2. Each statement
is executed completely (that is, for all active combinations of subscript-name values)
according to the following interpretation:

(a) Assignment statements, pointer assignment statements, and array assignment
statements (i.e. statements in the forall-assignment category) evaluate the right-
hand side ezpr and any left-and side subscripts for all active subscript-name
values, then assign those results to the corresponding left-hand side references.

(b) FORALL statements and FORALL constructs first evaluate the subscript and
stride expressions in the forall-triplet-spec-list for all active combinations of the
outer FORALL constructs. The set of valid combinations of subscript-names for
the inner FORALL is then the union of the sets defined by these bounds and
strides for each active combination of the outer subscript-names. The scalar mask
expression is then evaluated for all valid combinations of the inner FORALL’s
subscript-names to produce the set(s) of active combinations, as in step 2. If there
is no scalar mask expression, it is assumed to be always true. Each statement
in the inner FORALL is then executed for each valid combination (of the inner
FORALL), recursively following the interpretations given in this section.

4. Execute elseforall-body-stmts for the set of active subscript-name for which the mask
was evaluated to false in the step 2, the same way as in 3.

If the scalar mask expression is omitted, it is as if it were present with the value true.
In that case ELSEFORALL statement is not allowed.

The scope of a subscript-name is the FORALL construct itself.

A single assignment or array assignment statement in a forall-construct must obey the
same restrictions as a forall-assignment in a simple forall-stmt. (Note that the lowest level
of nested statements must always be an assignment statement.) For example, an assignment
may not cause the same array element to be assigned more than once. Different statements
may, however, assign to the same array element, and assignments made in one statement
may affect the execution of a later statement.
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Scalarization of the FORALL-ELSEFORALL Construct

A forall-construct of the form:

FORALL ( v=l:u:s, mask )

a(l:u:s) = rhsi
ELSEFORALL

a(l:u:s) = rhs2
END FORALL

is equivalent to the following standard Fortran 90 code:

levaluate subscript and stride expressions in any order

templ = 1
tempu = u
temps = s

'then evaluate the FORALL mask expression

DO v=templ,tempu,temps
tempmask(v) = mask
END DO

'then evaluate the masks

DO vi=templ,tempu,temps
tempmask(v) = mask(v)
END IF
END DO

'then evaluate the first block of statements

DO v=templ,tempu,temps

IF (tempmask(v)) THEN
temprhsi(v) = rhsi

END IF

END DO

DO vi=templ,tempu,temps
IF (tempmask(v)) THEN

a(v)=temprhsi(v)

END IF

END DO

then evaluate the second block of statements

DO v=templ,tempu,temps
IF (not.tempmask(v)) THEN
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temprhs2(v) = rhs2

END IF
END DO
DO vi=templ,tempu,temps

IF (.not.tempmask(v)) THEN

a(v)=temprhs2(v)

END IF

END DO
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