Simulation of Systolic Arrays
on the Connection Machine

Nariankadu D. Hemkumar
Joseph R. Cavallaro

CRPC-TR92228
August 1992

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

To appear in Proceedings of the Society
N _ for Computer Simulation (SCS) 1992 Inter-
national Simulation Technology Conference
SimTec '92, Houston, TX (November 1992)

SIMULATION OF SYSTOLIC ARRAYS ON THE
CONNECTION MACHINE

Nariankadu D. Hemkumar and Joseph R. Cavallaro

Department of Electrical and Computer Engineering
Rice University
Houston, TX 77251-1892

ABSTRACT

In this paper, we present a systolic array simulator,
a simulation tool for the Connection Machine (model
CM2)!, to aid the verification of algorithms for systolic
arrays. Especially as recent advances have automated
the design, there is a need for a verification environ-
ment to prototype these arrays. Given their character-
istics, the SIMD paradigm of computation is suitable
for the simulation of systolic arrays. The Connection
Machine, a SIMD computer with powerful interproces-
sor communication capabilities, is an ideal choice. Pri-
marily a simulation tool, the systolic array simulator
also helps identify inefficiencies and motivates optimal
design prior to implementation in either custom VLSI
or DSP systems. Currently, we are updating the tool
to allow the simulation of dynamic array reconfigura-
tion algorithms under transient and permanent fault
conditions.

INTRODUCTION

Many definitions of systolic arrays exist in the litera-
ture (Gentleman and Kung, 1981; Ullman, 1984). In
their paper on systolic arrays, Kung and Leiserson
(Kung and Leiserson, 1980) define a systolic system as
a “network of processors which rhythmically compute
and pass data through the system”. Systolic arrays as
a class of pipelined array architectures display regular
.modular structures locally interconnected to allow a
high degree of pipelining and synchronized multipro-
cessing capability (Kung, 1987). The primary reasons
for the use of systolic arrays in special-purpose pro-
cessing are simple and regular design, concurrency and
communication, with balanced computation and I/O
(Kung, 1982).

Due to the massive parallelism and data flow pos-
sible with locally interconnected computing networks,

1Unless otherwise specified, all future references to the Con-
nection Machine pertain to model CM2.

such as systolic and wavefront processor arrays, a large
number of algorithms of practical significance in the
area of signal processing and other engineering appli-
cations, can be efficiently implemented. These archi-
tectures are capable of real-time solutions to a wide va-
riety of advanced computational problems. The com-
putations in systolic arrays are spread over the entire
index set of processor elements (PEs).

Recent work has automated the design of systolic
arrays (Moldovan, 1987; Rajopadhye and Fujimoto,
1990). The transformation of algorithms for parallel
processing on processor arrays (Fortes and Moldovan,
1985; Rao, 1986) has further advanced the theory. In
the previous decade considerable research effort has
been devoted to the realization of processor arrays and
their optimal design. Between the realization of a sys-
tolic algorithm from a high-level problem description
and its implementation using custom VLSI/WSI or
DSP chips, there is a need for a verification environ-
ment to prototype these arrays.

In this paper, we present a systolic array sim-
ulator written for the Connection Machine (Thinking
Machines, 1990b) to allow a systolic array design to be
tested for functionality. The systolic array simulator
may also help in identifying performance bottlenecks
and inefficiencies to motivate optimal design and im-

- plementation. Once the algorithm has been verified

and optimized, a general simulation environment like
the Rice Parallel Processing Testbed (Covington et al.,
1991) may be employed to simulate arrays of simple
instruction set processors (Dawkins, 1989).

Although, systolic/wavefront array processor
hardware is realized through the replication of rela-
tively simple units, its high interconnection and syn-
chronous communication requirements complicate re-
alization and operation. Failure of PEs that make up
the array is highly probable in large-scale implemen-

. tations. Fault-tolerance is of significant importance in

the arrays used for real-time computations, especially
when used as dedicated processors with little or no ac-
cessibility. We are currently working on extending the
capabilities of the simulator to allow the simulation of
dynamic array reconfiguration algorithms under tran-
sient and permanent fault conditions.

THE ARRAY MODEL ON THE
CONNECTION MACHINE

The distinguishing features of systolic arrays map well
onto the SIMD (Single Instruction Multiple Data)
(Flynn, 1966) paradigm of computation. Althongh
there are significant differences between systolic ar-
rays and SIMD computers (Dew and Manning, 1986),
the SIMD architecture (Figure 1) provides excellent
hardware support for the simulation of systolic arrays.
The Connection Machine, a SIMD computer with 64K
processors and powerful inter-processor communica-
tion capabilities, was chosen for the simulation of these
arrays.

DS,
PU, MM,
e [
Y [J
Is
cu ® L
DS -
PU,, MM,
DS,
PU, - MM,
CU : Control Unit
PU : Processor Unit
MM : Memory Module
IS : Instruction Stream
DS : Data Stream

Figure 1: SIMD Architecture

The Connection Machine employs the data par-
allel model of computation. Each instruction is ex-
ecuted by all processors in parallel. However, each
processor may be selectively activated or deactivated
to allow variations in computations. Each processor
on the Connection Machine has its own memory. The
Connection Machine communication primitives allow
the transfer of data from one processor’s memory to
another. Parallel transfer of data in a regular man-

ner is a very useful feature of the Connection Machine

hardware.

Connection Machine Hardware

L]

Ll it |]
Ll |]
| | |)ll]
| | |
Systolic Array

Figure 2: Mapping of a Systolic Array onto the
Connection Machine

The logical unit of simulation is the PE. Each
PE is represented in hardware by a physical proces-
sor (equivalent to the PU of a generic SIMD machine)
on the Connection Machine in a one-to-one mapping
(Figure 2). All PEs in a systolic array are virtually
identical though some systolic arrays have boundary
PEs which are different. They perform similar compu-
tations with minor variations depending on their loca-
tion in the index set of processors. In our simulation
of the PE, each processor is modeled as a set of regis-
ters. The library routines in the simulation tool allow
the designer to specify the array configuration and the
allocation of registers and type of data stored for the
PEs (Table 1).

Registers may store fixed or floating point data
of user defined bit precision. This is possible due to the
special bit-addressable memory and bit-serial math ca-
pability of each Connection Machine processor. Inter-
action of PEs is through the exchange of data stored in
these registers. In most systolic designs local intercon-
nections and communication is predominant. Random
and global communication patterns are rare. However,
both forms of communication are supported in the sim-
ulation model.

USING THE SYSTOLIC ARRAY
SIMULATOR

The systolic array simulator is essentially a set of rou-
tines to assist the designer/implementor of systolic ar-
rays to set up, simulate, examine the behavior and

Function
Set up an array of di-
mensions m x n

Primitive
setup.array(m, n)

setup_regs(r,type) | Set up r registers
of specified type (float,
fixed etc.)

load_reg(reg,type) | Data input to register
req of specified type
Data output from regis-

ter reg of specified type

dump_reg(reg,type)

send_reg(type, src,

dst, dir, wrap_mode) Data transfer from reg-

ister src of specified type
of all active PEs to reg-
ister dst of neighbor-
ing PEs in the direction
dir with exchange across
edges determined by the

wrap_mode
Data transfer to regis-

ter dst of specified type
of all active PEs from
register src of neighbor-
ing PEs in the direction
dir with exchange across
edges determined by the
wrap_mode

Loop of length i of differ-
ent activation patterns
stored at *activefiJfm//n
Code to be executed by
active processors during
activation pattern i

recv_reg(type, src,
dst, dir,wrap_mode)

activationseq(s,

*active[iJ[m][n])

pe_computation(s)

Table 1: Primitives for Simulation

verify the results/correctness of the code executed by
each PE. The simulator provides the user with a model
of the array and the PE as described in the previous
section. The principal simulation primitives available
and their functions are tabulated in Table 1.

The user specifies the physical layout of the ar-
ray in terms of the number of processors (PEs) and
the organization of data storage within each PE. The
data to be input or loaded into the array at specific
times during the simulation is then initialized. Before
simulation can begin, the user needs to specify the
computations that occur at each PE along with the
synchronous communication of data between PEs. Fi-

nally, an activation sequence of the PEs/systolic array

is necessary.

The setup routines listed in Table 1 allow the user
to specify the layout of the array and the PE organiza-
tion. The load_reg and dump_reg routines permit data
I/0 to and from the array into and out of the host. The
data for the input is determined prior to the simula-
tion and stored in data files with a specialized naming
convention which includes a timestamp corresponding
to the time in simulation at which the data is utilized.
The data captured by the output routines is stored
in files with a naming convention similar to that used
for input. The data files reside on the front-end to
the Connection Machine and this interaction mimics
the interaction between systolic arrays and their host
processors (see following section).

The state of a processor (PE) at any time during
computation is characterized by the data in its reg-
isters. A snapshot is the cumulative state of all the
processors in the array at any time during simulation.
Snapshots capture significant details of array activity
and are extremely useful in the verification of designs
and the correctness of algorithms. The dump_reg rou-
tine may be used to obtain snapshots of the array’s
activity when suitably inserted at different times dur-
ing the simulation.

Systolic arrays are synchronized by a global
clock. Also, the times at which the different PEs be-
come active follows a cyclic pattern that is mostly in-
dependent of the size of the array and a property of
the problem being solved. An activation sequence is
the periodic time sequence of activity/inactivity of the
PEs of a systolic array. Each step in the activation
sequence is termed an activation pattern and may be
specified as a bitmap laid out in the shape of the array.
The activation_seq routine is the simulation primitive
that helps specify the activation sequence for the array
being simulated. :

The computations that are performed by the PEs
of a systolic array are similar with minor variations
depending upon the location of the PE in the index
set of processors. It is therefore possible to specify the
computation of all PEs in a single subroutine with con-
ditional branches to handle the variations. However,
in view of the fact that multirate systolic arrays do
exist, i.e. PE computations vary significantly with the
activation pattern, it is preferable to index the com-
putations at PEs by the corresponding step/activation
patternin the activation sequence. The pe_computation
simulation primitive shown in Table 1 relates activa-
tion patterns and PE computations.

Communication between PEs is an essential

characteristic of systolic arrays. The type of syn-
chronous communication that is seen in these proces-
sor arrays is predominantly near-neighbor. The sim-
ulation primitives support an eight-way near-neighbor
type of interconnection. The communication primi-
tives send_reg and recv.reg provide the basic support
for near-neighbor data exchange. The physical pro-
cessors on the Connection Machine are placed on the
nodes of a hypercube. It is therefore possible to have
toroidal interconnections across the edges/boundaries

of the array, if indeed desired. General communica- .

tion among PEs is also possible. However, it is advis-
able to cast regular non-near-neighbor communication
as combinations of near-neighbor communication steps
for performance reasons. It is important to note that
interconnections between PEs are modeled implicitly
through the data communication specified as part of
the PEs’ computation.

With a view to extending the capabilities of the
simulator, it has been designed with two principal op-
erational modes during simulation. In the fault-free
(FF) mode, there are no faults in the array and nor-
mal PE and array behavior is observed. In the fault-
tolerant (FT) mode, the array is modified to reflect the
effect of the specific fault-reconfiguration algorithm be-

ing invoked. The modification is performed at two lev-

els. It may be architectural to reflect physical reconfig-
uration, or it may be behavioral to reflect the change
in PE activity under fault conditions. The primitives
for the FT mode are under development. '

SIMULATION METHOD AND
IMPLEMENTATION

As mentioned in the previous section, the user provides
the description of the array configuration and PE orga-
nization. Information on the computations at PEs and
how they differ across the index set of processors is also
necessary. In the current implementation, the user de-
scription of the array and PE behavior is in the form
of a high-level language program aided by a library
of simulation primitives. Once the array architecture
and PE behavior are specified, the simulation library
manages the simulation. An event-driven simulation
environment simulates array behavior. The algorithm
followed in the simulation of systolic arrays is shown
in Figure 3. '

The synchronous computation and communica-
tion characteristic of systolic arrays precludes hard-

ware/software conflict resolution. A SIMD program-

ming paradigm, where implicit instruction-level syn-

'

Initialize

Y

Set up next activation pattern e

Y

Execute PE code for current
activation pattern

i

Advance time-stamp

'

no

Termination criteria satisfied ?

yes

Figure 3: Systolic Array Simulation Algorithm

chronization is available on the hardware, is therefore
ideal for the simulation of systolic arrays and there is
no need to enforce any kind of synchronization. The
core loop in the execution of the simulation is the en-
forcing of the activation pattern followed by the ex-
ecution of the PE computation corresponding to the
index of the current activation pattern in the overall
activation sequence (Figure 3).

The programming environment of the Connec-
tion Machine supports parallel versions of several com-
mon high-level languages. The operations on the Con-
nection Machine hardware may also be specified using
Paris (PARallel Instruction Set). The Connection Ma-
chine hardware essentially operates as a co-processor
to a host or front-end computer. Most of the simula-
tion library routines are written in C/Paris (Think-

User Level Interface (C*)

Hardware Level Interface (C/ Paris)

Connection Machine Hardware

Figure 4: Organization of the Simulation Tools

ing Machines, 1990a), a front-end C compiler with
a Paris interface to control the Connection Machine
hardware. The use of C/Paris for most of the simula-
tion library improved code efficiency and performance
due to the low level control of the Connection Machine
hardware possible through Paris. The source code for
the simulator can be easily ported across the different
front-end architectures that can support the Connec-
tion Machine hardware.

The user code is written using C* (Thinking Ma-
chines, 1990c), a parallel C language compiler. The
syntax of C* is quite powerful while preserving ease of
notation. The C* language provides a variety of par-
allel programming primitives for user specified control
of computation. The organization of the various soft-
ware modules that make up the simulator is shown
in Figure 4. With the arrival of the CM5 (Thinking
Machines, 1992), a MIMD machine which is designed
to support C* code written for the earlier Connection
Machine models, the C/Paris interface module is being
modified to allow portability. Paris is a macro inter-
face for the microcode of the CM2 hardware and is
incompatible with the CM5 architecture which derives
its processing power from SPARC processors.

An Example Case Study

We have used the simulator in verifying an algorithm

for a systolic array to compute the Singular Value De-

composition (SVD) of complex matrices (Hemkumar

and Cavallaro, 1992). A singular value decomposition
(SVD) of a matrix M € C™*" is a factorization given
by

M = UTVH

where U € C™*™ and V' € C™*" are unitary matri-
ces and Z € R™*" is a real non-negative “diagonal”
matrix of singular values. As an example case study,
it illustrates the benefits from the use of such a sim-
ulator. The complex SVD array is a square array of
processors. Each PE stores a 2 x 2 sub-matrix of the
problem. As an atomic step in the iterative algorithm
based on the Jacobi method, the PEs on the main diag-
onal compute the SVD of the 2 x 2 sub-matrices stored
in them. These PEs then transmit the required param-
eters to the off-diagonal PEs so that they can update
the 2 x 2 matrices stored in them to reflect to changes
made along the main diagonal. The algorithm also
requires a complicated data exchange among the PEs
between each successive computation along the main
diagonal. The data exchange achieves a permutation
of the elements of the matrix so that eventually, only
the diagonal elements remain non-zero, thus comput-
ing the SVD. The activation sequence for the array is
of length 4 and each PE is active twice every four time
steps. Not only was the the simulation useful in the
verification of the data exchange algorithm, it was in-
strumental in validating the conjecture regarding the
number of permutations needed for convergence and
the comparison of the convergence behavior for real
and complex data matrices.

FUTURE WORK

Fault-tolerance is of significant importance in the ar-
rays used for real-time computations, especially when
used as dedicated processors with little or no accessi-
bility. Failure of PEs that make up the array is highly
probable in large-scale implementations. The goal of
any fault-tolerant hardware or software array reconfig-
uration scheme is to realize a logical configuration of
PEs capable of meeting the algorithmic needs. Sev-
eral approaches to fault-tolerance reported in the lit-
erature include: spatial redundancy (or hardware re-
dundancy), temporal redundancy and algorithm-based
fault-tolerance schemes (Huang and Abraham, 1984;
Kung and Lam, 1984). We are extending the ca-
pabilities of the simulator to simulate random faults
in the array and to observe the performance of dy-
namic fault-reconfiguration algorithms that have been
designed into the PEs of a given processor array.

CONCLUSIONS

Systolic architectures and algorithms have received
significant attention in the last decade. There are a
variety of formal methods available for the realization
of systolic algorithms from a high-level problem spec-
ification. The translation of a systolic algorithm to
hardware and its implementation on custom VLSI or
DSP arrays is aided by the use of a simulator for sys-
tolic arrays. In this paper, we presented a systolic ar-
ray simulator. It is a set of library routines which use
the Connection Machine for the efficient simulation of
systolic arrays. The model of the array used in simu-
lation maps each processor of the array to a physical
processor on the Connection Machine. The simula-
tor is a valuable tool in the verification and testing
of systolic array designs. Current work on the simu-
lator is aimed at extending its capabilities to aid in
design for fault-tolerance and optimal strategies for
fault-reconfiguration. o

ACKNOWLEDGMENTS

Use of the Connection Machine at Rice was provided
by the Center for Research on Parallel Computation
under NSF Cooperative Agreement Number CCR-
9120008 with support from the Keck Foundation and
Thinking Machines Corporation. This work was sup-
ported in part by the National Science Foundation un-
der Research Initiation Award MIP-8909498.

References

Covington, R. G., Dwarkadas, S., Jump, J. R,
Madala, S., and Sinclair, J. B. 1991, “The Efficient
Simulation of Parallel Computer Systems”. Interna-
tional Journal in Computer Simulation, 1:31-58.

Dawkins, W. P. 1989. Efficient Simulation of Sim-
ple Instruction Set Array Processors. Master’s thesis,
Rice University, Department of Electrical and Com-
puter Engineering, Houston, TX.

Dew, P. M. and Manning, L. J. July 1986, “Compari-
son of Systolic and SIMD Architectures for Computer
Vision Computation”. In Proc. Inter. Workshop on
Systolic Arrays, University of Oxford.

Flynn, M. J. 1966, “Very High Speed Computing Sys-
tems”. Proceedings of the IEEE, Vol. 54:1901-1909.

Fortes, J. A. B. and Moldovan, D. I. August 1985,
“Parallelism Detection and Algorithm Transformation

Techniques useful for VLSI Architecture Design”. J. .

Parallel Distributed Comput., 2:277-301.

Gentleman, W. M. and Kung, H. T. August 1981,
“Matrix Triangularization by Systolic Arrays”. Proc.
SPIE Real-Time Signal Processing IV, 298:19-26.

Hemkumar, N. D. and Cavallaro, J. R. May 1992, “A
Systolic VLSI Architecture for Complex SVD”. In
Proceedings IEEE Int. Symp. on Circuits and Systems,
volume 3, pages 1061-1064, San Diego, CA.

Huang, K. H. and Abraham, J. A. June 1984,
“Algorithm-based Fault-tolerance for Matrix Opera-
tions”. IEEE Transactions on Computers, Vol. C-
33(6):518-528.

Kung, H. T. January 1982, “Why Systolic Architec-
tures?”. IEEE Computer, 15(1):37—46.

Kung, H. T. and Lam, M. S. 1984, “Fault-
Tolerant VLSI Systolic Arrays and Two-Level Pipelin-
ing”. Journal of Parallel and Distributed Computing,
1(1):32-63.

Kung, H. T. and Leiserson, C. E. 1980. Algorithms
for VLSI Processor Arrays. In Introduction to VLSI
Systems, Mead, C. and Conway, L., editors, pages 271~
292. Addison-Wesley, Reading, MA.

Kung, S. Y. 1987. VLSI Array Processors. Prentice
Hall, Englewood Cliffs, NJ.

Moldovan, D. I. January 1987, “ADVIS: A Software
Package for the Design of Systolic Arrays”. IEEE
Transactions on Computer-Aided Design, Vol. CAD-
6(1):33-40. ,

Rajopadhye, S. V. and Fujimoto, R. M. 1990, “Au-

tomating the Design of Systolic Arrays”. Integration -
the VLSI Journal, 9.

Rao, S. K. 1986. Regular Iterative Algorithms and
their Implementations on Processor Arrays. PhD the-
sis, Stanford University.

Thinking Machines 1990a. Connection Machine, In-
troduction to Programming in C/Paris. Thinking Ma-
chines Corporation, Cambridge MA.

Thinking Machines 1990b. Connection Machine,
Model CM-2 Technical Summary. Thinking Machines
Corporation, Cambridge MA.

Thinking Machines 1990c. Connection Machine, Pro-
gramming in C* Thinking Machines Corporation,
Cambridge MA.

Thinking Machines 1992. Connection Machine, Model
CM5 Technical Summary. Thinking Machines Corpo-
ration, Cambridge MA.

Ullman, J. D. 1984. Computational Aspects of VLSI.
Computer Science Press, Rockville, MD.

