Design and Parallel Implementation
of Two Numerical Methods for Modeling

the Atmospheric Circulation

I-Liang Chern
Ian Foster

CRPC-TR91239
October 1991

To appear in Proceedings on "Parallel Computational Fluid Dynamics,"
Stuttgart, Germany, June 10-12, 1991, Editors: K. G. Reinsch, et al.,
Elsevier Science Publishers B. V., 1992, pp. 83-96. Also preprint
MCS-P264-0991.

Center for Research on Parallel Computation
Rice University -

P.O. Box 1892

Houston, TX 77251-1892

10 agppCdal 11l Frgeeeuliiiye Ui Ll LUl RiLe Wt e etl =2
Computational Fluid Dynamics", Stuttgart, Germany,
10-12 June 1991, Editors: K. G. Reinsch, et al.

Design and Parallel Implementation of Two Numerical Methods
for Modeling the Atmosphenc Clrculatlon

I-Liang Chern and Ian Foster

- Mathematlcs a.nd Computer Scxence D1v151on Argonne Na.tlonal La.boratory, Argonne,
_ IL 60439, USA - -

Abstract .

We propose two numerical methods suitable for sxmulatmg on parallel supercomputers
~ the time evolution of the primitive equations used in atmospheric circulation models.
The first is a control volume method on an icosahedral-hexagonal gnd on the sphere.
This method has a number of computational advantages compared to other methods
used for the same purpose, including a nearly uniform resolution on the sphere, no pole
problem, and reduced global data communication requirements. The second method is a
composite-mesh, second-order Godunov method. This also avoids global communication
and the pole problem and, in addition, is able to handle discontinuities. We perform
several simulations to demonstrate the convergence of the two methods. We outline
the techniques used to achieve parallel implementations and report on computational
experiments that demonstrate the methods’ suitability for parallel execution.

1 Introduction

The core of a modern climate modeling system is a general circulation model (GCM), a
numerical model for simulation of the large-scale flow motions of the atmosphere [14]. A
GCM usually consists of two parts: the dynamics and the physical parametrization. The
dynamics component employs a numerical algorithm to integrate the governing evolution
equations of the atmosphere. The numerical grid scale associated with the algorithm is
usually large (hundreds to thousands' of kilometers). " Sub-grid scale physical processes
(e.g., cloud, radiation) are then formulated as parameterized functions of large-scale flow
variables. This formulation, called physical parametrization, is more accurate’if the grid
scale is small. Thus, accurate simulation of both dynamics and sub-grid scale physmal
processes requires that simulations be performed at high resolutions. .. - ~

As the performance of massively parallel computers overtakes that of conventlonal
supercomputers, a need arises for new numerical methods and implementation techniques
capable of taking advantage of these new computer architectures. This need is partic-
ularly acute in climate modeling: parallel computation promises to deliver the order-of-
magnitude increases in throughput required for long-term, high-resolution climate studies,
but the numerical methods traditionally used in chmate models are not obviously well-
suited to parallel implementation (3, 9].

1This research was supported by the Atmospheric and Climate Research Division and the Applied
Mathematical Sciences subprogram of the Office of Energy Research, U.S. Department of Energy, under
Contract W-31-109-Eng-38.

Most existing climate models are based on the spectral transform method [1]. The
spectral method is popular because of its spectral accuracy and its avoidance of the pole
problem. However, the method also has a number of serious problems, including non-local
effects, high computational requirements at fine resolutions, and high communication
requirements on parallel computers. TR L e

Explicit grid-point methods are attractive from the point of view of parallel execution
as they require little global communication .- Besides, it is much easier to implement the
adaptive mesh refinement technique to grid-point methods. However, most grid-point
models suffer from the pole problem due to the use of a spherical coordinate system and
a uniform latitude-longitude grid. _

In this paper, we propose two grid-point methods that avoid the pole problem while
retaining the “local communication”}property of explicit methods. They are thus suit-
able for parallel computers. The first is a conservative control volume method on an
icosahedral-hexagonal grid. This method avoids the pole problem by the use of the
primitive form of the evolution equations in the 3-D Cartesian coordinate system and
the quasi-homogeneity of the icosahedral grid on the sphere. The second method is a
composite-mesh finite difference method. The pole problem is avoided by the use of the
primitive equations in the north/south polar stereographic coordinates and by a shape-
preserving interpolation used near the equator. For simplicity, we consider the application
- of the methods to the shallow water equations on the sphere; however, the methods are
directly applicable to the primitive equations used in GCMs. The control volume method
is used to perform a Rossby-Haurwitz wave simulation, while the composite mesh method
is used to perform a rigid body rotation of a cosine hump over the pole. A detailed
description of the control volume method, a brief history of the approach, and several
convergence tests are provided in [5].

Parallel implementations of both methods have been developed and ported to a number
of parallel computers, including Intel iPSC/860 and Touchstone DELTA, Symult s2010,
and Sequent Symmetry. Good parallel performance is achieved on all machines. The
parallel codes permit empirical study of parallel performance and scalability issues that
will be important when designing future parallel climate models. The parallel codes were
developed using PCN, a portable parallel programming system developed at Argonne
National Laboratory and Caltech. The PCN system includes a parallel programming
language, support for integration of Fortran and C code, and sophisticated profiling tools.

2 Control Volume Method

Finite difference methods on an icbsahedral—hekagonal grid have béeii developéd by Sadourny

et al. [12], Williamson [15], and Masuda and Ohnishi [10]. The new elements introduced
here include a symmetrized icosahedral grid, the use of the primitive form of the equa-
tions in the 3-D Cartesian coordinate system, a projective bilinear interpolation, and a
high-order Gaussian quadrature integration formula. The method uses only a local stencil.

2.1 A Symmetrized Icosahedral Grid

An icosahedral-hexagonal grid is constructed on a sphere from a spherical icosahedron
that has 12 nodes and 20 equilateral triangular surfaces. Each spherical triangle is further
partitioned into N2 smaller triangles based on some geodesic arguments. A symmetriza-
tion procedure is adopted to make the grid more homogeneous [5]. All points in this
constructed grid have six surrounding triangles, except for the 12 principal nodes of the
icosahedron, which have only five. At each grid point, we connect by geodesic curves the
centroids of these neighboring triangles to give hexagons or pentagons. These hexagons
and pentagons are our control area elements for numerical integration.

For convenience in implementation, each triangle is joined with one of its neighbors to
form a rhombus; each of these 10 rhombi then contains an N x N mesh. The two polar
points are located in two separate “polar rhombi”.

2.2 The Shallow-Water Equatlons

We avoid the pole problem by expressing the shallow-water equations on the umt sphere
in the 3-D Cartesian coordinate system:

U,+V.-F=H; +H,, e S?, | : (2.1)
where 5 -
| @ _ oV
o< 5] 7= [t
0 0 '
= [3 x ¢V] = [—Wl%?] | - @

Here £ = (z,,72,z3) is the position vector on the unit sphere S?; ¢ is the geopotential;
p = ¢%/2; V is the 3-D wind which is tangent to the sphere; and f = 2Q2siné is the
Coriolis parameter, where 2 is the angular velocity of the earth times the radius of the
earth. The term —¢|V|2x is the centripetal force to keep the flow on the sphere.

2.3 A Control-Volume Method

Let us consider a control area element A centered at Py and surrounded by the geodesics
Ci, i = 1, L. We first integrate (2.1) without the centripetal force over a control volume
element A and apply Stokes’s theorem_to obtain :

[/ Teda= }:/ F-ids+ [[Hyda. (2.4)

i=1

Here, 7 is the inner normal of the geodesic curve C; on the sphere, and U= (¢,17)‘ is

an intermediate state. Then, the intermediate velocity V is projected onto the tangent
space of the sphere. This takes care of the contribution of the centripetal force.

Next, we discretize (2.4) using the leap-frog method in the temporal direction and
using the midpoint rule for the line integrals in the spatial direction. Let us denote by

U"(Po) the average state of U at time step n in the control area element A centered at
Py; by M; the midpoint of the geodesic curve C;; and by At, As;, and AA, respectively,
the temporal mesh size, the arc length of the geodesm curve C; and the surface area of A.

+1
Then the intermediate state Urtl = (¢"+1 V)t is defined by
TRy = U"‘I(Po')
2At L
U A ;
+ 7k L FO7(M) - Tl A,

The new velocity is obtained by

- ~n+l :n%—l ‘ o ‘ :
Vrl=V (VD)7 (2.6)

The mid-states U (M;) are obtained by a ‘projected’ bilinear interpolation from U™ at
the four pomts Py, P, and P, where P;, 1 = 1, L are the nelghbonng grid points of
Po [5].

The following artificial dissipation and time filter are introduced to stablize the scheme.
The artificial dissipation pu(U"~'(P;) = U""Y(P,)) ® 7@ |um;, is added to F(U"(M;)). The
time filter is defined by the following formula:

U™ = U™ + o(U™1 — 2U" + U™, (2.7)

Here, U is the filtered state. The coefficients # and a are chosen to be 2 and 0.01,
respectively.

The method described above is formally second order. However, it becomes first order
near the edges of the 20 equilateral triangles due to a slight inhomogeneity of the grid.
‘To obtain a second order scheme on the whole globe while retaining a stencil that uses
only nearest neighboring data, we numerically integrate the flux integral Ic,F-fids by
using a two-point Gaussian quadrature rule:

(W' F(T(Q))) - ftlgs +w?F(TN QD)) - filgs) Asi

- where Q Q? are the two quadrature nodes on the geodesic curve C; and the weights
w! = w? = 1/2. The states U (Q}) and U"(Q?) are obtained by the above projective
bilinear interpolation.

2.4 Convergence Tests

The Rossby-Haurwitz waves (R-H waves) are perturbations of a zonal flow by spherical
harmonics. Their simulation is one of the standard tests used to validate the correctness of
numerical methods for the shallow-water equations on the sphere. The Rossby-Haurwitz
waves are given by the stream function [11] -

= —a?wsinf + a®K cos® fsinf cos R), (2.8)

where w, K, and a (radius of the earth) are constants; and R = 2,3,--- is the wave
number. The corresponding geopotential ¢ can be found by integrating the equations
given above and is given by (38) in Phillips [11]. These waves are stable for R < 5 and’
unstable for R > 5. We have performed 10-day simulations for the low-order control
volume method for R = 4 at the two resolutions N = 16 and N = 32. The Courant

number is set to be 0.6, which yields At = 10.6 minutes for N = 16 and 5.3 minutes for

N = 32 for these data. Some of our results are illustrated in Figure 1 (a)-(d); we find
- that our method is more stable than previous schemes using a similar icosahedral grid

~(cf. [17, Figs. 3 and 4], and [16, Figs. 1 and 2]. For the conservative properties of the
method, we find that, at day 10, mass is conserved but 1.3% (resp. 0.8%) of total energy
and 8.4% (resp. 6.7 %) of total enstrophy are lost with N = 16 (resp. N = 32). More
detailed convergence tests for the low-order method are reported in [5]. Convergence tests
for the high-order method are in progress. = - - -

VeV Ve i

%%§

-
o

%ﬁ
%%

7 JO

5
8
s
&
Q
8
]
8
o
&
]
8
g8
5

(c) N16, day 10 ') (e) N32, day 10
Figure 1: Simulated geopotential, Rossby-Haurwitz wavenumber 4

3 Composite-Mesh Method

Composite mesh finite difference methods for climate modeling have been studied by
Phillip [11] Stoker and Isaacson [13], and Browning [2]. The method proposed here is
an extension of Browning’s. The new elements introduced here are a high-order, shape-
preserving interpolation and a second-order Godunov finite difference method for the

TN AR T L LIRS e T ety 0 e g e e e en e tren eas e e g eresee - va s e

purpose of handling sharp gradients.

3.1 The Coordinates and the Equations

We use the following polar Si;ereogré.phic coordinate systems:

X = mecosfcos), S
'Y = mecosfsin), -

where A is the longitude, @ is the latitude, and m = 2(1 +gsin 6)~! is the map factor. For
the northern hemisphere projection ¢ = 1, while for the southern hemisphere projection

qg=-1. : . =
The shallow water equations in these coordinate systems in the flux form are
LY G DS
3t(m U)+6X(m F)+6Y(m G)=m—"H
: oU %
U=|¢U |, F=|¢U?+p |, G=| UV |,
oV UV | V2 +p
, 0 . . 0] , 0
H=gqfo| V | — ¢(XV-YU)/2| V | - p/2| X

Here, (U, V') are velocity components in the stereographic coordinate, and p = ¢2 /2.

3.2 Grid, Interpolation, and Method

We use a uniform grid on the planes tangent to the sphere at the north and south poles
respectively and with the unit sphere projected onto these planes by the polar stereo-
graphic projections. The actual computational grid on each plane extends slightly be-
yond the equator for stability reasons. The boundary data on each plane are obtained by
interpolation of data from the other plane. We use a two-dimensional, shape-preserving,
Hermite cubic interpolant [18], where the shape-preserving derivative constraint is the
one proposed by de Boor and Swartz [7], and a tensor product formula is used to extend
a one-dimensional interpolant to a two-dimensional interpolant.

For -the finite difference method, we use Strang’s splitting formula by solving the
following two one-dimensional problems)

) 9 '

E(m_TU') + B—X(m-lF) = m"2H1 . (39)

9, _o 9 . _ —2

gt-(m U) + W(m G) =m™"H, (3.10) »

A second-order Godunov method is adopted to solve the above equations. The ingredients
of this method in our application are a piecewise linear reconstruction, the von Leer
limiter [6], and a generalized Riemann solver. The generalized Riemann solver provides
an approximate solution to (3.9) or (3.10) with a piecewise linear initial data. A detailed
description of this solver will be reported in a future paper.

4

3.3 Test of a Rigid Bod& Rotation

To study the convergence of this method, a preliminary test is the following rigid body
rotation test [19]. We consider the linear advéction equation

u¢+V Vu—O

- ‘where V is a tangent vector field on the sphere genera.ted by a ngld body rotation. The
'initial data is a cosine hump on the equator. Figure 2 shows the plots of the hump at the
initial time and at the time after one cycle rotation. We see almost no error in the shape
and location and only a small amount of dissipation. A more detailed convergence test is
under way.

Figure 2: Rigid body rotatlon of a cosine hump, (a) initial time, (b) after one cycle
rotation

‘4 Parallel Implementations

We have devoted considerable effort to implementing the two numerical methods on par-
allel computers, both because we feel that the development of the:necessary parallel
algorithms is of interest in its own right, and because we needed a basas for empmcal
evaluation of the parallel scalability of the two methods. - S

Out parallel implementations are designed to execute on parallel computers in which
processors communicate by sending messages through a communication network (multi-
computers). We choose to work with such computers both because they appear to be
more scalable than shared memory computers, and because the message-passing model is
easily emulated on shared memory machines.

Both the control volume and composite mesh methods are explicit methods: that is,
the computation performed to update the state of a grid point requires only the value of
that grid point and a small number of “near neighbors”. In general, parallel algorithms
for explicit methods are obtained by partitioning the data domain into disjoint subdo-
mains (the partition being chosen to minimize communication requxrements) organizing
communication between subdomains to communicate data from “near neighbors”, and

mapping the subdomains to processors in a parallel computer in a way that maximizes
parallel efficiency. ‘

We apply this general strategy when developing parallel algorithms for the two meth-
ods. Partitioning is straightforward in both cases, but communication and mapping are
complicated by inhomogenieties in the problem domains and, in the composite mesh
method, interpolation between the north and south mesh. We find that some care is
needed if good performance is to be achieved. :

The parallel performance of explicit codes is often constrained by the need to perform
a global reduction operation at each step in order to compute a time step that does not
violate the CFL condition. However, as the maximum speed of an atmospheric flow tends
not to vary greatly over time, it is common in atmospheric modeling to adopt a fixed time
step and then verify that this is valid at each step. This approach is adopted here.

A novel feature of our approach is our use of the high-level parallel programming
system PCN (4] to implement the parallel algorithms, rather than low-level send /receive
primitives as is common in scientific programming. We report on this aspect of our work
in some detail, as it may be of interest to others developing similar codes. .

PCN provides a number of features which simplify the task of developing high perfor-
mance parallel programs. These include: explicit support for parallelization of existing
code written in C or Fortran; integrated profiling tools; a high-level concurrent language
for specification of concurrent algorithms; separate specification of partition and mapping;
and portability across a range of different machines [8]. The portability of PCN programs
is particularly useful: for example, it proved possible to develop and refine our parallel
codes on a Sun workstation and then to execute the resulting codes on a variety of parallel
machines without modification.

4.1 Control Volume Method

Partition. Recall that the icosahedral mesh can be considered as consisting of ten
equi-sized rhombi and two polar points. A natural partition decomposes each non-polar
rhombus into a number (say C?) of subrhombi, giving a total of 10C? + 2 subdomains,
10C? containing (N/C)? points (where N2 is the total number of points in a rhombus)
and the two polar rhombi containing one point each. S

To give an indication of how PCN is used to specify the concurrent aspects of the con-
trol volume code, we sketch in Figure 3 the PCN code that implements this decomposition.
The PCN procedure sphere comprises a set of arguments (c,n, ...) representing the size
of the problem, etc., and a parallel block (represented as {Il pt, ..., pn}) indicating
that procedures mesh(1,c,n,...), ...;pole(11,n,...) are to be executed concurrently.
When executed, the sphere procedure creates twelve concurrently executing processes
representing the ten rhombi and two poles. In a similar fashion, the mesh procedure
creates C? subrhombi processes to handle computation within a single rhombus.

Communication. All communication in this code is nearest neighbor and results from
the use of a six-point stencil in the numerical method. Inhomogeneities at the poles and
between adjacent sub-rhombi from different rhombi lead to irregularities in this commu-
nication. However, it turns out that each subrhombi requires values from either five or six

-y

sphere(c,n,...)

{|]| mesh(0,c,n,..
mesh(i,c,n,.
mesh(2,c,n,.
mesh(3,c,n,.
mesh(4,c,n,...
mesh(5,c,n,.
mesh(6,c,n,...
mesh(7,c,n,...
mesh(8,c,n,...
mesh(9,c,n, ..
pole(10,n,...),
pole(i1,n,...)

- - -

- - - -

. . . .

.

N N NN NN N\
-

.

}

mesh(me,c,n,...)
{I] iint..c, j in 1..c: submesh(me,i,j,n,...)}

Figure 3: Top-level PCN code

other subrhombi. The communication channels used to perform the necessary exchanges
are specified by introducing shared variables into the code in Figure 3.

Mapping. The mapping problem is defined as follows: allocate subdomains identified by
the partition to processors in a way that achieves minimal run-time. This minimization
involves avoiding load imbalances and communication costs. In the present instance,
determination of an optimal mapping is complicated by the spherical problem domain
and the irregular communication patterns. However, we have found that even simple,
non-optimal mappings give reasonable parallel efficiencies on multlcomputers such as the
Symult s2010 and the Intel Touchstone Delta, due to the hlgh commumcatwn performance
of these machines and their use of cut-through routing. -

PCN allows us to separate the tasks of (a) mapping our application to an abstract
process structure and (b) mapping this process structure to a parallel computer. The first,
application-specific mapping is expressed in terms of an abstract, machine-independent
structure consisting of “rhombi” and “poles”; the mapping of this abstract structure to
a parallel computer is specified by an application-independent (but machine-dependent)
library. We illustrate this approach by showing in Figure 4 an annotated version of the
code fragment given above. The annotations (@rhombus(0), etc.) alter the mapping and
hence the parallel performance of the code but not the result computed.

The use of an abstract mapping structure provides portability: the parallel code can
be ported to a different architecture (e.g., a hypercube instead of a mesh) simply by
providing a library that embeds the abstract structure in the new architecture. It also

RIS e

10

sphere(c,n,...)

{ll mesh(0,c,n,...)erhombus(0),
mesh(1,c,n,...)Qrhombus(1),
mesh(2,c,n,...)@rhombus(2),
mesh(3,c,n,...)Q@rhombus(3),
mesh(4,c,n,...)@rhombus(4),
mesh(5,c,n,...)Qrhombus(5),
mesh(6,c,n,...)Q@rhombus(6),
mesh(7,c,n,...)Q@rhombus(7),
mesh(8,c,n,...)0rhombus(8),
mesh(9,c,n,...)0rhombus(9),
pole(10,n,...)Qnorth_pole,
pole(i1,n,...)@south_pole

}

mesh(me,c,n,...)
{Il iin 1..c, j in 1..c : submesh(me,i,j,n,...)0{i,j} }

Figure 4: Top-level code with mapping annotations

simplifies the exploration of alternative mappings. For example, it is likely that on larger
meshs performance can be enhanced by a careful mapping of communicating subrhombi
to nearby processors. This can be achieved by changing a library, not the application
code.

Performance. The parallel code has been executed on a Sun-4 workstation, a 24-node
Sequent Symmetry shared memory computer, a 192-node Symult s2010 mesh, a 64-node
Intel iPSC/860 hypercube, and the 520-node Intel Touchstone DELTA system. Only

~ preliminary performance results are available at the time of wrxtmg, evaluation and tumng

are ongoing. . s
More-or-less perfect scaled speedups are achieved on each of the parallel ma,chmes

- That is, execution time per step stays approximately constant if the number of grid

points is scaled linearly with the number of processors. This is to be expected, as the
commumcatlon/computatlon ratio stays constant if the problem size is scaled with the
number of processors. _ _- , _

Preliminary non-scaled results for the parallel code are presented in Figure 5. This
shows performance as a function of number of processors, expressed in terms of time per
step, for a problem size of N = 56 (approx. 150 km resolution). Reasonable parallel
efficiencies are achieved on all four parallel machines. On the DELTA, parallel efficiency
is about 70% on 492 processors (C=7).

The PCN system includes a sophisticated set of profiling tools. An integrated profiling
module automatically collects performance information each time a program executes.

]

11

Graphical tools allow this data to be examined on a global, per-node, and per-procedure
basis. These facilities allow us to gain an understanding of the issues determining parallel
performance and to detect performance “bugs” that might otherwise be difficult to locate.

An example display is shown in Figure 6. This is a summary picture of a run on 492
nodes of the Intel Touchstone DELTA, in which each horizontal line is a processor and
shading distinguishs time spent idle (light), busy (dark), and communicating (white). We
immediately see that much of the 30% parallel inefficiency observed on the DELTA is due
to load imbalance: the processors handling location (0,0) in each rhombus are spending
more time computing than other processors. The reason for this imbalance has not yet
been determined. One possibility is that some operations in this region are generating
denormalized numbers; the i860 processor used in the DELTA traps operations on such
values to software handlers, at a cost of many tens of instructions.

4Time(secs) S
S : I _§pzrc-l
les0z —= Sequeni
. \ . . . Symult
AN - o Tl Gamma
’ IO : Thiet DA
~, . .
. { N
- <
4 Y
N ’8\
1e+01 B
\\\ .
\\\\
s S~
\‘n
‘:\ N
l\\\
2 S
\\\\
SN
1e+00 h_‘\\
~
N\)
A
=
5' <T
I~
N
N
2 ~
~
>
N
le-01 ~
~ -
. L
5 AN
A
) - Processors

1e+00 3 le+01 3 le+02 3

Figure 5: Pa.féllel_Performance

4.2 Composite Mesh Methodv

The issues that must be addressed when developing a parallel algorithm for the compos-
ite mesh method are similar to those encountered in the control volume code; hence, we
will not discuss them in detail. We partition the computation by using a straightfor-
ward domain decomposition: the north and south grids are each divided into C? disjoint,
equi-sized subgrids or charts. Communication requirements are a combination of bcund-
ary data exchanges between neighboring charts within the north and south meshs and

200 300 400 500 -600 700 800 - SO0 1000 1100 1200 - 1300 1400 1500 1600

e

Figure 6: PCN performance display: time breakdown

interpolation data exchanges between charts in different meshs.

Mapping is complicated by the fact that the amount of computation in a chart depends
on the proportion of its area covered with computational points. Hence is is sometimes
advantageous to map several charts to a single processor. :

Preliminary experiments show almost linear speedups on a moderate number of pro-
cessors. A load balancing strategy is employed to balance the amount of computation
performed per processor: we generate more charts than processors and use a bin-packing
algorithm to allocate charts to processors. This strategy improves performance by be-
tween five and ten per cent, depending on problem size and number of ProCessors.

5 Comparison with Spectral Transform

Our investigation of alternative numerical methods is motivated in part by the elevated
computational and communication requirements of the spectral transform method, espe-
cially at high resolutions [9]. Hence, we are interested in understanding how the icosahe-
dral, composite mesh, and spectral transform methods compare from the point of view
of parallel performance. We outline here the results of a preliminary comparison of the

e aim e e o g e
B T v LT

13

spectral transform and icosahedral methods.

In comparing the two methods, we assume that the sem1-1mphc1t time steppmg em-
ployed in spectral transform methods allows a time step four times longer than in the
_ fully explicit icosahedral method. We a.djust computational requirements to allow for the
 greater uniformity of the icosahedral grid, but ‘do not take into account the beneﬁts of

spectral accuracy. -

Analytic and empirical studies (of the kind reported in [9]) suggest that the 1cosahedral
method is consistently faster for all problem sizes on medium-grained parallel computers
(e.g., Intel iPSC/860 and Touchstone DELTA). At low resolutions, the spectral method
suffers from high communication costs; at high resolutions, its n3 computation costs
dominate execution time. In addition, the icosahedral method does proportlona.lly better
if either the number of processors or communication costs are increased. .

These results are encouraging. However, although the icosahedral method is always
better, it is only much better on very large problems or computers. The reason that it
is not more competitive in other situations is the excessively small time step enforced
by its purely local communication. Seml-Lagranglan methods may be a solution to this
problem.

References

(1] Bourke, W., An efficient, one-level, pnm1t1ve-equa.t10n spectral model, Mon. Wea.
Rev., 102, 687—701 1972.°

(2] Browning, G., Hack, J., and Swarztrauber, P., A comparison of three numerical
methods for solving differential equations on the sphere, Mon. Wea. Rev., 117(5),
1058-1075, 1989. _

[3] U.S. Department of Energy, Building‘an Advanced Climate Model: Program Plan
for the CHAMMP Climate Modeling Program, Publication DOE/ER-0479T, 1990
(Available from National Technical Information Service). :

[4] Chandy, K.M., and Taylor, S., An Introduction to Parallel ngrammmg, Jones and
Bartlett, 1991.

[5] Chern, I., A control volume method on an icosahedral grid for numerical integration of
the shallow-water equations on the sphere, MCS Preprint MCS-P214-0291, Argonne
National Laboratory, 1991.

[6] Colella, P. and Woodward, P., The piecewise parabolic method (PPM) for gas-
dynamical simulations, J. Comp. Phys., 54, 174-201, 1984.

[7] de Boor, C., and Swartz, B., Piecewise monotone interpolation, J. Approz. Theory,
21, 411-416, 1977.

[8] Foster, I., Kesselman, C., and Taylor, S., Concurrency: Simple concepts and powerful
tools, The Computer Journal, Dec. 1990.

o e o e e =

14

[9] Foster, I., Gropp, W., and Stevens, R., The parallel scalability of the spectral trans-
form method, Mon. Wea. Rev., (to appear).

[10] Masuda Y., and Ohnishi, H., An integration scheme of the primitive equation model
-+ with an icosahedral-hexagonal grid system and its application to the shallow-water

equations, Short- and Medium-Range Numerical Weather Prediction, WHO/IUGG

NWP, Tokyo, 317-326, 1986.

[11] Phillips, N., Numerical inﬁegratioﬁ of the primitive equations on the hémisphere,
-+ Mon. Wea. Rev., 87(9), 333-345, 1959. : A

[12] Sadourny, R., Arakawa, A., and Minitz, Y., Integration of the nondivergent
barotropic vorticity equation with an icosahedral-hexagonal grid for the sphere, Mon.
Wea. Rev., 96(6), 351-445, 1968.

[13] Stoker, J., and Isaacson, E., Final report 1, Courant Institute of Mathematical Sci-
ences, IMM 407, New York University (1975), 73 pp. '

(14] Washington, W., and Parkinson, C., An Introduction to Three-Dimensional Climate
Modeling, University Science Books, 1986.

[15] Williamson, D., Integration of the barotropic vorticity equation on a spherical
geodesic grid, Tellus, 10, 642-653, 1968.

[16] Williamson, D., Integration of the primitive barotropic model over a spherical
geodesic grid, Mon. Wea. Rev., 98, 512-520, 1969.

[17] Williamson, D., A comparison of first- and second-order difference approximations
over a spherical geodesic grid, J. Comp. Phys., T (2), 301-309, 1971.

[18] Williamson, D., and Rasch, P., Two-dimensional semi-Lagrangian transport with
shape-preserving interpolation , Mon. Wea. Rev. 117(1), 102-129, 1989.

[19] Williamson, D., Drake, J., Hack, J., ‘Jacob, R., and Swarztrauber, P., A standard
test set for numerical approximations to the shallow water equations on the sphere,
Tech. Report, NCAR, 1991.

W

»

