ADIFOR Working Note #2:
Using ADIFOR to Compute
Dense and Sparse Jacobians

Christian Bischof
Paul Hovland

CRPC-TR92233
January 1992

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

%

¢ ARG
SO
9,
% , uort®

< ¥
Sty oF &

ANL/MCS-TM-158

ADIFOR Working Note #2:

Using ADIFOR to Compute
Dense and Sparse Jacobians

by

Christian Bischof and Paul Hovland

January 1992

MATHEMATICS AND
COMPUTER SCIENCE
DIVISION

r

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Llinois 60439

ANL/MCS-TM-158

ADIFOR Working Note #2:

Using ADIFOR to Compute
Dense and Sparse Jacobians

by

Christian H. Bischof and Paul Hovland

Mathematics and Computer Science Division

Technical Memorandum No. 158

January 1992

This work was supported by the Applied Mathematical Sciences subprogram of the Office of Energy Research,
U.S. Department of Energy, under Contract W-31-109-Eng-38 and by NSF Cooperative Agreement No.

CCR-8809615.

Iz

Contents

Abstract

1 Introduction

2 Case 1: Dense Jacobian, one independent, one dependent variable

3 Case 2: Dense Jacobian, multiple independent and multiple dependent variables

4 Case 3: Sparse Jacobian, one independent, one dependent variable

5 Case 4: Sparse Jacobian, two independent variables, one dependent variable
5.1 Approach 1 — Generate derivatives only for fnc
5.2 Approach 2 — Generate derivatives for fun

6 Computing Gradients of Partially Separable Functions

7 Conclusions

Acknowledgments

References

1)

11

14
16
17

20

22

22

30

ADIFOR-generated derivative code. If anything, the derivative code offers more scope for
vectorization and parallelization because of the addition of another ‘data parallel’ dimension
in derivative objects.

Extensibility: The fact that ADIFOR employs a consistent subroutine-naming scheme allows the
user to supply his or her own derivative routines. In this fashion, the user can exploit domain-
specific knowledge, utilize vendor-supplied libraries, and speed up computational bottlenecks.

Ease of Use: ADIFOR requires the user to supply the Fortran source code for the subroutine
representing the function to be differentiated and for all lower-level subroutines. The user then
selects the variables (either in parameter lists or in common blocks) that correspond to the
independent and dependent variables. By using the powerful interprocedural analysis tools
of the ParaScope programming environment (3], ADIFOR then automatically determines
which other variables throughout the program must have derivative information associated
with them.

Interactive Interface: An X-windows interface for ADIFOR (called xadifor) is also provided.
Xadifor makes it easy for the user to set up the problem and to rerun ADIFOR if changes
in the code for the target function require a new translation.

ADIFOR is applied to the code of the subroutine that corresponds to the subroutine we wish to
differentiate (foo, say), and to all subroutines called directly or indirectly from foo. Let us assume
that foo describes a function f : [z,w] — [y, 2] and that we are interested in the derivatives -g-%;
that is, the input variable w is treated as constant, and the output variable z is irrelevant. If this
is the case, we call = the independent variable and y the dependent variable. We are aware
of the fact that the terms “dependent,” “independent,” “variable,” and “parameters” are used in
many different contexts, yet we found that this terminology corresponds best to our mathematical
idea of derivatives, since we will compute derivatives of the “dependent” variables with respect to
the “independent” ones.

We require the user to tell ADIFOR the names of the independent variables and the names of
the dependent variables. In many codes, dependent and independent variables may share storage.
For example, on entry to foo, array A may be initialized to what we consider mathematically to be
the value of the independent variable z, and during the course of executing foo, ¥ will be written
into A. This poses no problem for ADIFOR. It produces a subroutine named gfoo<n> (where
<n> is some number encoding which variables were dependent and independent), which computes
the first derivatives of the function computed by foo, as well as foo itself.

To propagate derivative information in the forward mode, we have to associate derivative objects
with the independent variables, the dependent variables, and all those program variables whose
value depends (directly or indirectly) on an independent variable and that influence the value of a
dependent variable. That is, if x is independent, y is dependent, and z depends on x and y depends
on z, then z also needs a derivative object. A variable with which we associate a derivative object is
called an active variable, any other variable is a passive variable. Dependent and independent
variables are always active, and integer variables are always passive.

The user need not specify as passive or active variables local to foo or parameters or local
variables in routines called by foo. Using the powerful interprocedural analysis tools available

in the ParaScope environment [3], we can determine all active variables from a definition of the
independent and dependent ones. This allows for a simple user interface that corresponds as much
as possible to the mathematical intuition underlying foo.

The derivative codes produced by ADIFOR have a gradient object associated with every active
variable. The convention is to associate a gradient g$<var> of leading dimension 1dg$<var> with
variable <var>. The calling sequence of gfoo<n> is derived from that of foo by inserting an
argument g$p denoting the length of the gradient vectors as the first argument, and then copying
the calling sequence of foo, inserting g$<var> and ldg$<var> after every active variable <var>.
Passive variables are left untouched.

In its simplest form, the functionality of ADIFOR can be summarized as follows:

In general, if x(1:n) are the independent variables, and y(1:m)
the dependent ones, then g$x is a gSp x n matrix (1dg$x 2> gdp).
and g8y is a gSp x m matrix (1dg$y > m). The functionality of
g$foois: Given input values x and g$x, this subroutine computes

y = foo(z), and ¢Sy = (foo'(z)gSzT)T.

In this paper, we shall not concern ourselves with the way code is generated or with the input
provided to ADIFOR. For these details, the reader is referred to [2]. Even though the ADIFOR in-
terface conceptually never changes, the actual initialization of ADIFOR code may vary depending
on context. We focus instead on the proper and efficient use of ADIFOR-generated codes through
detailed examination of the following cases:

e Dense Jacobian, one independent, one dependent variable

e Dense Jacobian, multiple independent, multiple dependent variables
e Sparse Jacobian, one independent, one dependent variable

e Sparse Jacobian, two independent variables, one dependent variable
o Partially separable functions

In most of these cases, a “variable” denotes an array; thus, we shall be dealing with vector-valued
functions.

2 Case 1: Dense Jacobian, one independent, one dependent variable

Our first example is adapted from Problem C2 in the STDTST set of test problems for stiff
ODE solvers [7] and was brought to our attention by George Corliss. The routine FCN2 computes
the right-hand side of a system of ordinary differential equations ¥ = yp = f(z,y) by calling a
subordinate routine FCN:

C File: FCN2.f
SUBROUTINE FCN2(M,X,Y,YP)
INTEGER N
DOUBLE PRECISION X, Y(M), YP(M)
INTEGER ID, IWT
DOUBLE PRECISION W(20)
COMMON /STCOMS/W, IWT, N, ID

CALL FCN(X,Y,YP)
RETURN
END

C File: FCN.f

SUBROUTINE FCN(X,Y,YP)

c ROUTINE TO EVALUATE THE DERIVATIVE F(X,Y) CORRESPONDING TO THE
c DIFFERENTIAL EQUATION:
c DY/DX = F(X,Y) .
c THE ROUTINE STORES THE VECTOR OF DERIVATIVES IN YP(*). THE
c DIFFERENTIAL EQUATION IS SCALED BY THE WEIGHT VECTOR W(s*)
c IF THIS OPTION HAS BEEN SELECTED (IF SO IT IS SIGNALLED
c BY THE FLAG IWT).

DOUBLE PRECISION X, Y(20), YP(20)

INTEGER ID, IWT, N

DOUBLE PRECISION W(20)

COMMON /STCOMS/W, INWT, N, ID

DOUBLE PRECISIDN SUM, CPARM(4), YTEMP(20)

INTEGER I, IID

DATA CPARM/1.D-1, 1.DO, 1.D1, 2.D1/

IF (IWT.LT.0) GO TO 40

D020 I =1, N

YTEMP(I) = Y(D)
Y(I) = Y(D)*W(I)
20 CONTINUE
40 IID = MOD(ID,10)

c ADAPTED FROM PROBLEM C2

YP(1) = -Y(1) + 2.DO
SUM = Y(1)*Y(1)
DOSOI =2, N
YP(I) = -10.0D0*I*Y(I) + CPARM(IID-1)*(2%*I)*SUM
SUM = SUM + Y(I)*Y(I)
50 CONTINUE

IF (IWT.LT.0) GO TO 680
DO 660 I =1, N
YP(1) = YP(I)/W(I)
Y(I) = YTEMP(I)
660 CONTINUE
680 CONTINUE
RETURN
END

Most software for the numerical solution of stiff systems of ODEs requires the user to supply a
subroutine for the Jacobian of f with respect to y. Such a subroutine can easily be generated by
ADIFOR. For the purposes of automatic differentiation, the vector ¥ is the independent variable,
and the vector YP is the dependent variable. Then ADIFOR produces

subroutine g$fcn236(g$p$, m, x, y, gdy, ldgdy, yp, gsyp, 1dgsyp)

c
c ADIFOR: runtime gradient index
integer g3p
c ADIFOR: translation time gradient index :

integer g$pmax$
parameter (g$pmax$ = 20)

c ADIFOR: gradient iteration index
integer gis

integer 1dgS$y

integer 1dg$yp

integer n

double precision x, y(m), yp(m)
integer id, iwt

double precision w(20)

common /stcomS/ v, iwt, n, id

c ADIFOR: gradient declarations

double precision g$y(ldgsy, m), gdyp(1dgdyp, m)

if (g3p$.gt. gSpmax$) then
print *, "Parameter g$p is greater than g$pmax.”
stop

endif

call gfcn6(gsps, x, y, gdy, 1dgdy, yP, gsyp, 1dgsyp)

return

end

subroutine gfcn6(gsps, x, y, gdy, 1dgdy, yp, g$yP, 1dgsyp)

c ADIFOR: runtime gradient index

integer gp

C ADIFOR: translation time gradient index
integer g$pmax$
parameter (g$pmax$ = 20)

c ADIFOR: gradient iteration index
integer gi

integer 1dgSy

integer 1ldgSyp

ROUTINE TO EVALUATE THE DERIVATIVE F(X,Y) CORRESPONDING TO THE
DIFFERENTIAL EQUATION:

DY/DX = F(X,Y) .

THE ROUTINE STORES THE VECTOR OF DERIVATIVES IN YP(*). THE
DIFFERENTIAL EQUATION IS SCALED BY THE WEIGHT VECTOR W(*)
IF THIS OPTION HAS BEEN SELECTED (IF SO IT IS SIGNALLED

BY THE FLAG IWT).

double precision x, y(20), yp(20)

integer id, ivt, n

double precision w(20)

common /stcom5/ w, ivt, n, id

double precision sum, cparm(4), ytemp(20)

integer i, iid

data cparm /1.d-1, 1.d0, 1.d1, 2.d1/

aOaaoaoaaaaa

c ADIFOR: gradient declarations
double precision g$y(ldgsy, 20), g$yp(ldg$yp, 20)
double precision g$sum(g$pmax$), gSytemp(g$pmax$, 20)
if (g3p$.gt. gdpmax$) then
print *, "Parameter g$p is greater than gdpmax."
stop
endif
if (iwt .1lt. 0) then
goto 40
endif
do 99999, i =1, n
c ytemp(i) = y(i)
do gis = 1, g3p$
gSytemp(g$is, i) = gdy(g$is, i)
enddo
ytemp(i) = y(i)
c y(i) = y(@i) = w(i)
do g%is = 1, g3p$
gsy (g$is, i) = w(i) = gdy(gs$is, i)
enddo
y@) = y@i) = w(d)
20 continue
99999 continue

40 iid = mod(id, 10)
c ADAPTED FROM PROBLEM C2
c yp(1) = -y(1) + 2.d0
do gi = 1, gp
gyp(gsis, 1) = -gdy(gsis, 1)

enddo
yp(1) = -y(1) + 2.40
c sum = y(1) * y(1)

do gi = 1, g3p$
gssum(gi) = y(1) *= gSy(g$is, 1) + y(1) = g3y(g$is, 1)
enddo
sum = y(1) = y(1)
do 99998, i =2, n
c yp(i) = -10.0d0 = i = y(i) + cparm(iid - 1) * (2 ** i) * sum
do gi = 1, g3p$
gSyp(gis, i) = cparm(iid - 1) = (2 == i) = gdsum(g$is) + -1
*0.0d0 = i = g3y(g$is, i)

enddo
yp(i) = -10.0d0 * i = y(i) + cparm(iid - 1) = (2 ** i) * sum
c sum = sum + y(i) = y(i)

do gis = 1, g3p$
gSsum(g$is) = gdsum(g$is) + y(i) = gdy(gsis, i) + y(i) = gdy
*(g$is, i)
enddo
sum = sum + y(i) * y(i)
50 continue
99998 continue
if (iwt .1t. 0) then
goto 680
endif
do 99997, i =1, n
c yp(i) = yp(@d) / w(d)
do gi = 1, g3p$
gSyp(gsis, i) = (1 / w(i)) = gsyp(gsis, i)

enddo
yp(i) = yp(3) / v(1)
c y(i) = ytemp(i)

do g3i$ = 1, gp
g3y (g$is, i) = gSytemp(g$i$, i)

enddo
y(i) = ytemp(i)
660 continue
99997 continue
680 continue
return
end

In accordance with the general policy outlined in § 1, the derivative objects g8y and g$yp are

declared as matrices with 20 columns (since both y and yp were declared as vectors of length 20) and
leading dimension 1dg$y and 1dg$yp, respectively. The parameter g$p denotes the actual length
of the gradient objects in a call to g$fcn2$6. Since Fortran 77 does not allow dynamic memory
allocation, derivative objects for local variables are statically allocated with leading dimension pmax,
whose value was selected by the user during the invocation of ADIFOR. A variable and its associated
derivative object are treated in the same fashion: that is, if x is a function parameter, so is g$x.
Derivative objects corresponding to locally declared variables or variables in common blocks are
declared locally or in common blocks as well.
Subroutine g$fcn2$6 relates to the Jacobian

oypy ... A
9y, OYm
Jyp = : :
dypm ... Oybm
9y, Oym

as follows: Given input values for gép$, m, x, y, gdy, 1dg$y, and 1dg$yp, the routine g$£cn2%6
computes both yp and g$yp. where

gSyp(1:g8p,1:m) = (Jyp(gdy(1:g8p,1 :m)T))T.

The superscript T denotes matrix transposition. The user must allocate g$yp and g$y with leading
dimensions 1dg$yp and 1dg$y that are at least g8p. While the implicit transposition may seem
awkward at first, this is the only way to handle assumed-size arrays (like real a(*)) in subroutine
calls.

Assume that m and g$p are 20 and that 1dg$yp and 1dg$y are at least 20. Then we can compute
the derivative matrix Jy, simply by initializing g$y to the identity:

EERREERKERKKEKEX
= Approach 1 =
REERERERRERREKEX
Do10I=1, M
D0OSJ=1, M
G$Y(I1,J) = 0.0D
5 CONTINUE
G$Y(I,I) = 1.0D0
10 CONTINUE
call g$fcn2$6(20, m, x, y, gdy, 1dgdy, yp, g$yp. ldgs$yp)

On exit from g$£cn2$6, the variable g$yp contains the transpose of the Jacobian Jy,.
Alternatively, we could have computed the Jacobian one column at a time:

wakkkkkkkRRkRER

* Approach 2 =
EXERRRERRRRXER

DO 10 I =1, M

‘initialize first row of G$Y to i-th unit vector

posJ=1, M
G$Y(1,J) = 0.0D
S CONTINUE
G$Y(1,I) = 1.0DO

call ADIFOR-generated derivative code
call g$fcn286(1, m, x, y, g3y, 1dgdy, yp, gsyp, ldgsyp)
store ith column of the Jacobian in ith row of Jactrans array

DO 15 J = 1,M
JACTRANS(I,J) = G$YP(1,7J)
15 CONTINUE
10 CONTINUE

Even though g$yp(i,j) as computed in Approach | equals jactrans(i,j) computed in Ap-
proach 2, the second method is significantly less efficient. This inefficiency arises from the fact that
the value of yp itself is computed once in the first approach, but m times in the second approach.
Thus, it is usually best to compute as large a slice of the Jacobian as memory restrictions will allow.

3 Case 2: Dense Jacobian, multiple independent and multiple dependent variables

The second example involves a code that models adiabatic flow [16], 2 commonly used module in
chemical engineering. This code models the separation of a pressurized mixture of hydrocarbons into
liquid and vapor components in a distillation column, where pressure (and, as a result, temperature)
decrease. This example was communicated to us by Larry Biegler.

In its original version, the top-level subroutine

subroutine aifl(kf)
integer kf

has only one argument. All other information is passed in common blocks. For demonstration
purposes, we changed the interface slightly to

subroutine aifl(kf,feed,pressure,liquid,vapor)
integer kf
real feed(s), pressure(s), liquid(*), vapor(*)

copying the values passed in those arguments into the proper common blocks in aifl. As our first
example, assume that we are interested in aa"j":‘:dd and 83";% *. In this case, ADIFOR generates

* Actually, it is sufficient to compute one or the other, since, because of conservation laws, %—‘-’7%‘! + %"—ﬁ% equals

the identity matrix.

subroutine g$aif1$26(gSp, kf, feed, g¥feed, ldg¥feed, pressure,
$ liquid, g$liquid, ldg$liquid,
$ vapor, g$vapor, ldg$vapor)

integer g$p, kf, ldgSfeed, ldg3liquid, ldg$vapor

real feed(»), gSfeed(ldg$feed,*), pressure(s),
$ liquid(*), gSliquid(ldg$liquid,=),
$ vapor(*), g$vapor(ldg$vapor,*)

In our example, the feed was a mixture of the hydrocarbons N-butane, N-pentane, l-butene,
cis-2-butene, trans-2-butene, and propylene, so the length of feed, liquid, and vapor was six, with
feed(1) corresponding to the N-butane feed, and so on. So if we set g$p=6 and initialize g$feed to
a 6 x 6 identity matrix, then on exit g$liquid(i,j) contains -

0 (component j in liquid)
0 (component i in feed) ’

which predicts by what amount the liquid portion of substance j will change, if the feed of component
i changes.

Suppose that we also wish to treat the pressure at the various inlets as an independent variable,
but (because of the conservation law) we decide not to declare “vapor” as a dependent variable,
ADIFOR generates

subroutine g$aif1314(gSp, kf, feed, g3feed, ldgSfeed,
$ pressure, gdpressure, ldg$pressure,
$ liquid, g$liquid, ldg$liquid, vapor)

The initialization is a little more complicated this time. Assuming that we have 3 feeds (so
pressure has three elements), the total number of independent variables is 6 + 3 = 9. g$liquid
measures the sensitivity of the 6 substances with respect to changes in the 9 independent variables.
Thus,

Jo = Oliquid §liquid
liguid = \ B pressure’ O feed
is a 6 x 9 matrix. ADIFOR computes

$teed’ T
g$liquid = (Jliquid(gotes T)) .
gdpressure
If we wish to compute the whole Jacobian J, then
gSfeed”
g$pressureT

must be initialized to a 9 x 9 identity matrix. Thus, g$feedT must contain the first six rows of a
9 x 9 identity matrix (since there are six variables in the feed), and g$pressureT must contain the

10

last three rows of a 9 x 9 identity matrix. This configuration is achieved by initializing

1 00000 00 0\
010000 0 00
001000 0 0O
000100 0 00
giteed=| 0 0 0 0 1 0 |, and gdpressure=| 0 0 0
000 0O01 0 00
000O0O0TO 1 00
000O0O0O 010
00000 O 00 1)

4 Case 3: Sparse Jacobian, one independent, one dependent variable

From the previous discussion, ADIFOR may seem to be well suited for computing dense Jaco-
bian matrices, but rather expensive for sparse Jacobians. A primary reason is that the forward mode
of automatic differentiation upon which ADIFOR is mainly based (see [2]) requires roughly g$p op-
erations for every assignment statement in the original function. Thus, if we compute a Jacobian J
with n columns by setting gSp = n, its computation will require roughly n times as many operations
as the original function evaluation, independent of whether J is dense or sparse. However, it is well
known [5,8] that the number of function evaluations that are required to compute an approximation
to the Jacobian by finite differences can be much less than n if J is sparse. Fortunately, the same
idea can be applied to greatly reduce the running time of ADIFOR-generated derivative code as
well.

The idea is best understood with an example. Assume that we have a function

h
fa
F= fa :zER‘-—»yeRs
fa
fs

whose Jacobian J has the following structure (symbols denote nonzeros, and zeros are not shown):

O
O o
J = A Lo
A O
A O

That is, the function f, depends only on z;, f, depends only on z; and z4, and so on. The key idea
in sparse finite difference approximations is to identify so-called siructurally orthogonal columns j;
of J- that is, columns whose inner product is zero, independent of the value of z. In our example,
columns 1 and 2 are structurally orthogonal, and so are columns 3 and 4. This means that the set

11

of functions that depend nontrivially on z,, and the set of functions that depend nontrivially on z;
are disjoint.

To exploit this structure, recall that ADIFOR (ignoring transposes) computes J - S, where S is
a matrix with g$p columns. For our example, setting S = I4x4 will give us J at roughly four times
the cost of evaluating F, but if we exploit the structural orthogonality and set

0

O O = -

0
1 1
1

the running time for the ADIFOR code is roughly halved. Note that the ADIFOR-generated code
remains unchanged.

As a more realistic example, we consider the swirling flow problem, part of the MINPACK-2 test
problem collection [1]. Here we solve a nonlinear system of equations F(z) = 0 for F : R" — R".
The swirling flow code has the form

subroutine dswirl3(nxmax,x,fvec,fjac,1ldfjac,job,eps,nint)
integer nxmax, ldfjac, job, nint
double precision x(s), fvec(s), fjac(ldfjac,*), eps

Like all codes in the MINPACK-2 test collection, it is set up to compute the function values (in
fvec) and, if desired. the analytic first-order derivatives (in f£jac) as well. The vectors x and fvec
are of size nxmax = 14*nint. For example, for nint = 4, the Jacobian of F is of size nxmax = 36
and has the structure shown in Figure 1.

Figure 1: Structure of the swirling flow Jacobian, n = 56

The derivative subroutine produced by ADIFOR is

12

subroutine g$dswrl3s3 (g$p, nxmax, x, g$x, ldgs$x,
+ fvec, g$fvec, ldgsx,
+ fjac, ldfjac, 1, eps, nint)

If we initialize g$x to a 56 x 56 identity matrix, and let gsp=>56, and if 1dg$x is at least 56, then on
exit from g$dswrl3$3, g$fvec will contain the transpose of %—5—, stored as a dense matrix. Asit turns
out, less than 7 % of the total operations performed with gradient objects in the ADIFOR code
involve nonzeros. On the other hand, by using a graph-coloring algorithm designed to identify
structurally orthogonal columns (we used the one described in [4]), we can determine that this
Jacobian can be grouped into 14 sets of structurally orthogonal columns, independent of the size
of the problem. In our example, columns 1, 16, 31, and 51 were in the first group: columns 2, 17,
37, and 43 were in the second group; and so on. We can take advantage of this fact by initializing
the first column of ngT such that it has 1.0 in rows 1, 16, 31, and 51; by initializing the second
column of ngT such that it has 1.0 in rows 2, 17, 37, and 43; and so on. The structure of ngT thus
initialized is shown in Figure 2 together with the resulting compressed Jacobian g&'fvecr. Note that
instead of g8p= 56 we now can get by with g$p= 14, a sizeable reduction in cost.

.
sscscer
o eeees

.
ssse o seccoee
eseooeoe

Figure 2: Left: Structure of (g$x)T Right: Structure of (gStvec)T

Assuming that celor(i) is the “color” of column i of the Jacobian and that nocolors is the
number of colors (in our example we had 14 colors), the following code fragment properly initializes
g$x, calls g8dswrl3$3 to compute the compressed Jacobian, and then extracts the Jacobian.

n = 14*nint
doi=1,n
do j = 1, nocolors
g$x(j,i) =0

13

enddo
gsx(color(i),i) = 1
enddo

call g$dswrl3$3 (nocolors, nxmax, x, g$x, pmax,

+ fvec, g$fvec, pmax,
+ fjac, ldfjac, 1, eps, nint)
c job = 1 indicates that only the function value is to be computed in
dswrl3.
c nonzero(j,i) is TRUE if the (j,i) entry in the Jacobian is nonzero,

and FALSE otherwise.

doi=1,n
do j=1, n
if nonzero(j,i) then
jac(j,i) = gSfvec(color(i),j)
else
jac(j,i) = 0.0
endif
enddo
enddo

Computing the Jacobian with ADIFOR in this way performed at least as well as the analytic
MINPACK-2 Jacobian on both a SPARC-compatible Solbourne 5E/900 and a one-processor Cray
Y/MP.

5 Case 4: Sparse Jacobian, two independent variables, one dependent variable

The coating thickness problem, conveyed to us by Janet Rogers of the National Institute of
Standards and Technology, presents many alternatives for using ADIFOR-generated subroutines.
The code for this problem is (in abbreviated form) shown below:

SUBROUTINE fun(n,m,np,nq,

+ beta,xplusd,ldxpd,
+ £,1df)
¢ Subroutine Arguments
c ==>n number of observations
c =>n number of columns in independent variable
c ==> np number of parameters
c ==> nq number of responses per observation
c ==> beta current values of parameters
c ==> xplusd current value of independent variable, i.e., x + delta
c ==> ldxpd leading dimension of xplusd
c <== £ predicted function values

14

c ==> 1df leading dimension of £

¢ Variable Declarations
INTEGER i,j,k,1df,ldxpd,m,n,np,nq,numpars
INTEGER ia, ib
DOUBLE PRECISION beta(np),f(ldf,nq),xplusd(ldxpd,m)

double precision par(20),fn(2)

do 10 k=1,np
par(k) = beta(k)
10 continue

do 100 i=1,n
do 20 j=1,m
par(np+j) = xplusd(i,j)
20 continue

¢ compute function values (fn) given parameters (par)
call fnc(par,fn)

£(i,1) = £n(1)
£(i,2) = £n(2)

100 continue
return
end

subroutine fnc(x,fn)

integer m,np,nq

parameter (np=8,m=2,nq=2)

integer i

double precision x(np+m),fn(nq)
double precision beta(np),xplusd(m)

do 10 i=1,np
beta(i) = x(i)
10 continue
do 20 i=1,m
xplusd(i) = x(np+i)
20 continue

¢ compute first of multi-response observations

fn(1) = Dbeta(l)
+ + beta(2)#*xplusd(1)

15

+ + beta(3)*xplusd(2)
+ + beta(4)#*xplusd(1)#*xplusd(2)

¢ compute second of multi-response observations

fn(2) = Dbeta(5)

+ + beta(6)*xplusd(1)
+ + beta(7)*xplusd(2)
+ + beta(8)=*xplusd(1)*xplusd(2)
return
end

The special format of this code is due to its embedding in the ODRPACK software for orthogonal
distance regression. We are interested in the derivatives of £ with respect to the variables beta and
xplusd. We shall explore various ways to do this in some detail.

5.1 Approach 1 — Generate derivatives only for fnc

The easiest approach is to generate the derivative code only for fnc, since it is clear from the
code that £(i,1:2) depends only on beta(1 :np) and xplusd(i,1:m). ADIFOR then produces

subroutine gancS3(x,gx,ldgx,fn,gan,lngfn)

integer m, np, nq

parameter(np = 8, m = 2, nq = 2)

double precision x(np+m), fn(nq), g$x(1dgsx,np+m), gdfn(ldgsfn,nq)

If inside fun we replace the call to fnc with a call to gfnc3, always initializing g$x to a 10 x 10
identity matrix before the call, then

02(5.3) 4 _y . 8j=12

gan(kxj) = my =4,

and
91(i, J)
d xplusd(i,k—np)’

Closer inspection reveals that the 10 x 2 array gSfn always has the following structure (numbers
are used to identify nonzero elements):

gStn(k,j) = E=9,10.

OO OO WWI -

—
to®uonoooo

~
—t
—

—
(=]

In other words, £n(i,1) depends only on beta(1:4), and £n(i,2) depends only on beta(5:8).
Hence, we can compute a compressed version of g$fn at reduced cost by merging rows 1 and 5, 2
and 6, 3 and 7, and 5 and & of g$fn. Keeping in mind that g$fn is the transpose of the Jacobian,
this is an especially simple case of the compression strategy outlined in the previous section. This
is achieved by initializing

10 0 01 0 0 0 0O
o1 0 0 0 1 0 0 O 0
o | 001000 1000
8x=1 43 090 0 1000 10 0|’
o 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 O 1
which results in
1 5
2 6
3 7
gSfn = 4 8
9 10
11 12

All the nonzero values of the Jacobian are now computed at roughly 60% of the cost of the previous
approach.

On a SPARC-compatible Solbourne 5E/900 with a clock resolution of 0.01 seconds, executing fun
took 0.01 seconds, computing derivative values using g$fnc without compression took 0.06 seconds,
and exploiting the structure of g$fn through the initialization of g$x shown above reduced that time
to 0.03 seconds.

5.2 Approach 2 — Generate derivatives for fun

An alternative method of applying ADIFOR is to process subroutine fun. ADIFOR detects
the interprocedural data dependence between fun and fnc and therefore generates gfun176 as
well as gfnc3, with gfnc3 called properly within gfun176. We obtain

subroutine gSfun$176(gSp,n,m,np,nq,beta,gsbeta,ldgsbeta,

$ xplusd,g$xplusd,ldg$xplusd,ldxpd,£ ,g$f,1dgst,1df)
integer g$p, n, m, np, nq, 1dg$beta,1dg$xp1usd.ldxpd,ldgsf ,1df
double precision beta(np), g$beta(ldg$beta,np),

$ xplusd(ldxpd,m), g$xplusd(ldg$xplusd,ldxpd,m),

$ £(1df,nq), g$f(1dgs$f,1ldf,nq)

Now we have three-dimensional derivative objects, which somewhat complicates the initialization of

g$xplusd and the interpretation of the results in g$1f. However, this is not too difficult if we keep
in mind that we wish to initialize

17

gS’betaT
g$xp1usdT

to an identity matrix. The number of elements in xplusd is n*m, and the number of elements in
beta is np. For the coating thickness problem, n=63, m=2, and np=8. Hence, the identity matrix
should be 134 x 134. This is also the value we shall use for g$p. Initialization of g$beta follows
the scheme outlined in § 3; that is, the first 8 rows should be an 8 x 8 identity matrix, and the
remaining 126 rows should be initialized to zero. How to initialize g$xplusd is less readily apparent,
for it is not immediately obvious how to form a 126 x 126 identity matrix from a three-dimensional
structure. However, if one looks at the way Fortran stores two-dimensional structures in memory,
a simple scheme for storing the Jacobian develops. In Fortran, element (j,7) in an n x m array
is stored as if it were element n % (i — 1) + j of a one-dimensional array. Thus, we can apply this
technique to map the 126 columns of the Jacobian that should be initialized to the identity onto
g$xplusd. Specifically, element (np+k, j, 1) is initialized to 1 if and only if k = 63* (i —1)+ 7. The
following code segment accomplishes this initialization.

c n=63, m=2, np=8

gsp$ = np + m*n
do 441 =1, np
do 144 j = 1, gp
gdbeta(j,i) = 0.0
144 continue
gSbeta(i,i) = 1.0
44 continue
do4Si=1,m
do 145 j =1, n
do 245 k = 1, g3p$
g$xplusd(k,j,i) = 0.0
245 continue
g$xplusd(np+((i-1)*n)+j,j,i) = 1.0
145 continue
45 continue

When initialized in this manner, ADIFOR computes

(., _(8f _8f Y
g5t = (Jf - (3beta’6zp1usd>))

However, the performance of this approach is poor, since we totally ignore the sparsity structure
of the Jacobian. As a result, the computation of J; takes 0.77 seconds on a Solbourne 5E/900. A
better way to find the Jacobian of £ using g$1un$176 is to take note of the structures used by fun.
From this, it becomes obvious that 3;%%'7:[];7] is nonzero only when i = k. As a consequence, we
may change the

18

e

gdp = np + m*n

g$xplusd (np+((i-1)*n)+j,j,i) = 1.0
to the much simpler

gp=np +m

gdxplusd(np+i,j,i) = 1.0

with the understanding that g$f (np+i,j,k) (i = 1..m) represents %. This is equivalent to
initializing

10000000\ (00\
01000000 00
00100000 00
00010000 00
gSbeta = ggggé?gg , and g$xplusd[n] = g?)
00000O0O0T10 00
0000O0TO0O01 00
000O0O0O OO 0O 1 0
\0 000000 O) \0 1)

This implementation is much more efficient than that described in the preceding paragraph and more
closely mimics the behavior of the original subroutine fun. As a consequence, the time required to
execute gzun176 using this initialization is 0.07 seconds.

As discussed in § 5.1, only half of the derivatives of £ with respect to beta are nonzero. Specif-
ically, %E—H’ is nonzero for j = 1..4 and zero for j = 5..8, while 585’;[:—;% is zero for j = 1.4
and nonzero for j = 5..8. This information can be used to further compress the Jacobian. The

initialization

1 0001000 00
01 000100 00
gSbeta = g g (1) 2 g g ‘1) (1) , and g3xplusd[n] = g g
0 0000 O0OTPO 10
0 0000 O0O0TO 0 1

compresses the Jacobian into only 6 columns. Columns 1 through 4 represent the nonzero derivatives
of £ with respect to beta, while columns 5 and 6 correspond to the derivatives of £[i,j] with
respect to xplusd[i,1..2], as above. This initialization may be accomplished with the following
code fragment.

19

¢ n=63, m=2, np=8
halfnp = 4
gp$ =4 +m
do 44 i = 1, halfnp
do 144 j = 1, g3p$
gsbeta(j,i) = 0.0
g$beta(j,i+thalfnp) = 0.0
144 continue
gdbeta(i,i) = 1.0
gSbeta(i,i+halfnp) = 1.0
44 continue
do4Si=1,m
do 145 j =1, n
do 245 x = 1, gSp$
g$xplusd(k,j,i) = 0.0
245 continue
g$xplusd(halfnp+i,j,i) = 1.0
145 continue
45 continue

This approach is efficient, capable of computing all derivatives in 0.03 seconds. However, it has the
disadvantage that the initialization routine might have to be changed if fnc or np is altered.

6 Computing Gradients of Partially Separable Functions

A particular class of functions that arises often in optimization contexts is that of the so-called
partially separable functions [6,11,12,14,15]. That is, we have a function f : R® — R which can be
expressed as

nf
f(z) =) filz).
i=1

Usually each f; depends on only a few (say, n;) of the z’s, and one can take advantage of this fact
in computing the (sparse) Hessian of f.

As was pointed out to us by Andreas Griewank, this structure can also be used advantageously
in computing the (usually dense) gradient V f of f.

Assume that the code for computation of f looks as follows:

subroutine f(n,x,fval)
integer n
real x(n), fval, temp

fval = 0

call fi(n,x,temp)
fval = fval + temp

20

......

call fnb(n,x,temp)
fval = fval + temp

return
end

If we submit £ to ADIFOR, it generates
subroutine gan(n,x,ng,ldgsx,ival,gvaal,ldgsfval).

To compute V f, the first (and only) row of the Jacobian of f, we set gdp= n and initialize g$x to
a n x n identity matrix. Hence, the cost of computing V£ is of the order of n times the function
evaluation.

As an alternative, we realize that with f : R" — R"® defined as

h
g= :
fnb
we have the identities

f(z) = eTg(z), and hence Vf(z) = eTJ,,

where e is the vector of all ones, and J, is the Jacobian of g. We can get the gradient of f by
computing J, and adding up its rows. The corresponding code fragment for computing f is

subroutine f(n,x,fval)
integer n
real x(n)

integer nf, i

parameter (nf = <vhatever>)
real gval(nf)

call g(n,x,gval)
fval = 0
doi=1,nb
fval = fval + gval(i)
enddo

return
end

It may not appear that we have gained anything, since J; is nf x n: if we initialize g$x in

subroutine g$g(g$p,n,x,ng,ldg$x,gval,gngal,ldgsgval)

21

to an n x n identity matrix, then the computation of Jg still takes about n times as long as the
computation of g (or f).
The key observation is that the Jacobian Jg is likely to be sparse, since

(VAT
Jg= : ,
(anb)T

and each of the f;’s depends only on n; of the z’s. By using the graph coloring techniques described
in Section 4, we can compute J, at a cost that is proportional to the number of columns in the
compressed J,, and then add up its (sparse) rows. As a result, we can compute V f at a cost that
is potentially much less than n times the evaluation of f.

4

7 Conclusions

This report demonstrated how to properly use ADIFOR-generated derivative codes. One of
the strengths of ADIFOR. is that it does not assume a particular calling sequence of the function
to be differentiated. We gave examples that showed how to properly use ADIFOR-generated
codes for various styles of codes. We also showed how to exploit a known sparsity structure of the
derivative matrix in the initialization of ADIFOR. code. By properly initializing the derivative
objects corresponding to independent variables, we can merge structurally orthogonal columns and
hence compute derivatives at greatly reduced cost. We also mentioned partially separable functions,
where this technique can also be applied advantageously to the computation of dense gradient
objects.

Acknowledgments

We would like to thank Alan Carle, George Corliss and Andreas Griewank for the many sugges-
tions that found their way into this report. We would also like to thank Larry Biegler and Janet
Rogers for supplying us with test problems.

References

[1] Brett Averick, Richard G. Carter, and Jorge J. Moré. The MINPACK-2 test problem collec-
tion (preliminary version). Technical Report ANL/MCS-TM-150, Mathematics and Computer
Science Division, Argonne National Laboratory, 1991.

[2) Christian Bischof, Alan Carle, George Corliss, and Andreas Griewank. ADIFOR-generating
derivative codes from Fortran programs. ADIFOR Working Note #1, MCS-P263-0991, Math-
ematics and Computer Science Division, Argonne National Laboratory, 1991.

[3] D. Callahan, K. Cooper, R.T. Hood, K. Kennedy, and L.M. Torczon. ParaScope: a parallel pro-
gramming environment. International Journal of Supercomputer Applications, 2(4), December
1988.

22

[4] Thomas F. Coleman. Large Sparse Numerical Optimization, volume 165 of Lecture Notes tn
Computer Science. Springer-Verlag, New York, 1984.

[5] Thomas F. Coleman, Burton S. Garbow, and Jorge J. Moré. Software for estimating sparse
Jacobian matrices. ACAf Transactions on Mathematical Software, 10(3):329-345, 1984.

[6] A. R. Conn, N. 1. M. Gould, and Ph. L. Toint. An introduction to the structure of large scale
nonlinear optimization problems and the LANCELOT project. Report 89-19, Namur University,
Namur, Belgium, 1989.

[7] Wayne H. Enright and John D. Pryce. Two FORTRAN packages for assessing initial value

methods. ACM Trans. Math. Software, 13(1):1-22, 1987. .

(8] D. Goldfarb and P.L. Toint. Optimal estimation of Jacobian and Hessian matrices that arise
in finite difference calculations. Mathematics of Computation, 43:69-88, 1984.

[9] Andreas Griewank. On automatic differentiation. In Mathematical Programming: Recent De-
velopments and Applications, pages 83-108, Amsterdam, 1989. Kluwer Academic Publishers.

(10] Andreas Griewank. The chain rule revisited in scientific computing. Technical Report MCS-
P227-0491, Mathematics and Computer Science Division, Argonne National Laboratory, 1991.

[11] Andreas Griewank and Philippe L. Toint. On the unconstrained optimization of partially
separable objective functions. In M.J.D. Powell, editor, Nonlinear Optimization 1981, pages
301-312, London, 1981. Academic Press.

[12] Andreas Griewank and Philippe L. Toint. Partitioned variable metric updates for large struc-
tured optimization problems. Numerische Mathematik, 39:119-137, 1982.

[13] David Juedes. A taxonomy of automatic differentiation tools. In Andreas Griewank and George
Corliss, editors, Proceedings of the Workshop on Automatic Differentiation of Algorithms: The-
ory, Implementation, and Application, Philadelphia, 1991. SIAM. To appear.

[14] M. Lescrenier. Partially separable optimization and parallel computing. Ann. Oper. Res.,
14:213-224, 1988.

[15] J. J. Moré. On the performance of algorithms for large-scale bound constrained problems. In
T. F. Coleman and Y. Li, editors, Large-Scale Numerical Optimization. SIAM, 1991.

[16] J. M. Smith and H. C. Van Ness. Introduction to Chemical Engineering. McGraw-Hill, New
York, 1975.

23

