/s

ADIFOR Working Note #8:
Hybrid Evaluation of Second
Derivatives in ADIFOR

Christian Bischof
George Corliss
Andreas Griewank

CRPC-TR92238
May 1992

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

.13
Z

——

ANL/MCS-TM-166

ADIFOR Working Note #8:
Hybrid Evaluation of Second Derivatives in ADIFOR

by

Christian Bischof, George Corliss, and Andreas Griewank

May 1992

‘\P;“ONAL ¢

)

O

MATHEMATICS AND
. COMPUTER SCiENCE
& DIVISION

< A
ity o ©

nRG
=t ON'Vé\
G0 . yuor¥®

1

6P

wk

b

Contents
Abstract 1
1 Goals 1
2 Need for Second Derivatives 1
3 Building Blocks 2
3.1 Forward-Mode Hessians oot v v v 2
3.1.1 Example — Multiplicationo 2
3.1.2 Example — Short Subroutineo 3
3.2 Interpolation Utilizing Forward-Mode Univariate Taylor Series 6
3.2.1 Interpolation oo 6
329 Forward-Mode Univariate Taylor Series o vvvvoc oo oo ee e 7
3.3 Preaccumulation e e it 9
4 Generation of Code for Second Derivatives 10
5 Example of the Generated Code 12
5.1 Step 1. Write Original Code oo v v v e 13
5.2 Step 2. Run ADIFOR on examp2.dr.f + examp2.f e e e e 13
5.3 Step 3. Run ADIFOR-generated Code ooovvceevoe e e 14
5.4 Step 4. Extract ADIFOR-generated Code for Assignment 14
5.5 Step 5. Run ADIFOR on examp2G.dr.f + examp2G.f---" 14
5.6 Step 6. Run ADIFOR-generated Codeo oovvvve oo 16
5.7 Step 7. Model Code for ADIFOR-generated Second Derivatives 16
5.8 Step 8. Run the Model Second-Deérivative Codeo oo 19
6 Pending Implementation Issues 20
6.1 Data Structures for p Taylor Series oo v oo 20
6.2 In-line vs Subroutine Call i 20
6.3 DIIVEIS . « « o o e e e e e e e e e e e e e e e e e e e 21
Appendix A. Unoptimized ADIFOR-generated Code for Listing 1 22

Appendix B. Main Program for Computing Dense Hessians as Partial Derivatives 25

Appendix C. Main Program for Computing Dense Hessians as Univariate Taylor
Series 29

Appendix D. Driver Program to Call Undifferentiated Code 35

Appendix E. Driver Program to Call ADIFOR-generated First Derivative Code 36

Appendix F. Driver Program to Code Extracted for Single Assignment 38
Appendix G. Driver Program for Hessian by ADIFOR 40
Appendix H. Driver Program to Call ADIFOR-like Hessian Code 43
Appendix L. Library Utility Routines 44
References 46

il

h

ADIFOR Working Note #8:

Hybrid Evaluation of Second Derivatives in
ADIFOR

by

Christian Bischof, George Corliss, and Andreas Griewank

Abstract

Many algorithms for scientific computation require second- or higher-order partial derivatives,
which can be efficiently computed by propagating a set of univariate Taylor series. We describe
how to implement second-order mixed partial derivative computations in ADIFOR (Automatic Dif-
ferentiation In FORtran), a Fortran-to-Fortran source transformation tool. Globally, we propagate
three-term univariate Taylor series in the forward mode. Locally, we preaccumulate local gradients
and Hessians for complicated expressions on the right-hand sides of assignment statements. We
describe the source transformations and give an example of the transformed code.

1 Goals
The goals of this paper are
1. to describe the code generated by ADIFOR to compute second derivatives and
2. to document some of the design decisions made in arriving at this implementation.

We assume that the reader is familiar with the Fortran-to-Fortran source transformation tool
ADIFOR (Automatic Differentiation In FORtran) as described in [1, 2, 3, 4, 6], as well as with the
theoretical framework for computing second- and higher-order mixed partial derivatives by interpo-
lating from sets of univariate Taylor series [5]. Here, we describe the implementation in ADIFOR of
the framework outlined in [5].

In Section 2, we outline briefly where second derivatives are required for reliable scientific compu-
tation. A more complete survey of algorithms that require second- and higher-order derivatives is in
[5]. In Section 3, we discuss components of the algorithm we implement in ADIFOR for computing
second derivatives: forward-mode Hessians, interpolation, forward-mode Taylor series, and preaccu-
mulation. Section 4 contains a discussion of the tasks accomplished by ADIFOR in its generation
of code to compute second-order derivatives. An example in Section 5 applies ADIFOR’s tasks to a
simple subroutine. Finally in Section 6, we discuss some implementation decisions.

2 Need for Second Derivatives

The primary motivation for adding to ADIFOR the ability to compute second Jerivatives comes
from optimization. Given f : R" — R, unconstrained optimization algorithms minimize f locally
by solving V f = 0 using a Newton or a secant-type iterative method [7, 8]. The Newton iteration
requires the Hessian V2f. In nonlinearly constrained optimization, the curvature of the constraint

surfaces is represented by the Hessians V2c; of the active constraints c;(z) = 0. Often, all these
second derivatives are aggregated into the Hessian of the Lagrangian

VL =V3f+ Z i Vi,
- :

where the Lagrange multipliers); are derived in some way from first-derivative information, namely,
the gradients of the objective and the active constraints. In most large-scale optimization problems,
the Hessians of the objective and constraints are sparse or otherwise structured.

3 Building Blocks

In this section, we discuss three building blocks that together make up the algorithm we imple-
ment in ADIFOR for computing second derivatives:

1. forward-mode Hessians,

2. interpolation utilizing forward-mode univariate Taylor series, and

3. preaccumulation.

Globally at the level of the entire function being differentiated, we can choose either alterna-
tive 1 or alternative 2. The second alternative is preferred because it can be used to exploit the
sparsity often present in Hessian matrices, it parallelizes and vectorizes, and it generalizes to higher
derivatives.

Locally for complicated right-hand sides of assignment statements, we can choose the size of units
for which the univariate Taylor series are propagated. We can parse each complicated expression into
an equivalent sequence of unary and binary operations, as the discussion of alternative 2 in Section
3.2 suggests. Preaccumulating local derivatives, as discussed in Section 3.3, allows us to propagate
series at the level of the statements in the original code, rather than to the smaller units of binary
operations. Preaccumulating local derivatives of complicated expressions saves storage space, code
size, and execution time. Eventually, we will generalize the preaccumulation technique to Fortran
functions and to some subroutines and basic blocks.

In the rest of this section, we examine in detail the three building blocks listed above.

3.1 Forward-Mode Hessians

One could compute the gradient and the dense Hessian of f by propagating the first- and second-
derivative objects strictly in the forward mode of automatic differentiation [10]. We describe how
this would be done, to show that the combination of preaccumulation and interpolation yields much

more efficient code.

3.1.1 Example — Multiplication

Suppose that u and v are active variables (they depend on values of independent variables). The
values of Vu, Vv, V2u, and V2v have been computed along with the values for u and v. As an
example of a typical operation, suppose that f = f(u,v) =u-v. Then by the chain rule, we have

f = w
Vf = u-Vv+Vu-v (1)
V2f = u-Viu+Vu- (V)T + Vo (Vu)T +v- Vi

Table 1 gives' the computational complexity for the x operator.

1

Table 1. Computational complexity of the x operator for dense, forward-mode Hessians

To Evaluate +’s x’s
Function 0 1
Gradient n 2n
Hessian 1.5n(n+1) 2n(n+1)

The complexity of the other operators is similar, differing only in the constants. The storage com-
plexity for the naive forward propagation of Vf and V2f is proportional to n?/2 times the storage
required for computing f. The time and storage complexity for the naive forward propagation
contrasts sharply with the corresponding complexities for the univariate Taylor series whose com-
plexities are a small multiple of (the number of nonzero elements of V2f) x (the corresponding costs
for f).

The alternative of using overall reverse-mode propagation of adjoint values [9] is attractive for
computing gradients; but for the highly structured Hessians and higher-order derivatives, the global
application of the forward mode is satisfactory. We avoid the overhead of run-time recording of each
operation, while retaining the flexibility to apply compile-time reversal of complicated expressions
and eventually some basic blocks of code. The code generated by ADIFOR uses a hybrid of the
forward and the reverse modes at the statement level.

3.1.2 Example — Short Subroutine

Here we give a more complete example of the forward propagation of dense Hessians. The
ADIFOR-generated code includes many code optimizations.

Suppose that the original subroutine fcn provided by the user for the computation of a function
f:z € R* — f € R contains an active variable u. For the present discussion, we assume that
p = pmax = n. Then the ADIFOR-generated variables g$u and h$u in h$fcn contain

ghu(j) = &2, forj=1()p

nSu(j, i) = 52g, forj=1(1)p, i=1(1)j

We illustrate the code to be generated by ADIFOR by a simple example similar to that used
in [3] to motivate the hybrid mode for first-derivative objects.
Consider the subroutine in Listing 1.

subroutine fcn (x, xdim, f, fdim)
integer xdim, fdim

real x(xdim), f(fdim)

£(1) = =x(1) / (x(2) = x(3) * x(4))
return

end

Listing 1. Subroutine fcn

We nominate x as an independent variable and f as a dependent variable. In this example, there
are n = 4 independent variables.

The raw, unoptimized code segment for computing the gradient in the hybrid mode is shown
in Listing 2. The complete subroutine gfcn3, the subordinate subroutine saxpy4, and 2 main
program comparing the Jacobian computed by gfcn3 given in Listing 2 with the hand-coded
Jacobian are included in Appendix A. While this code resembles ADIFOR-generated code, we point
out that the actual code generated by ADIFOR is much more efficient than the code in Listing 2.
We include this code as a basis for building the Hessian code in Listing 3.

subroutine gfcn3 (gp, x, g$x, 1dg$x, xdim, £, g¥f, 1dg$f, fdim)
integer xdim, fdim, g$p3, ldg$x, ldg$f
real x(xdim), £(£fdim), g$x(ldg$x,xdim), g3£(1dgs$f,fdim)

[£(1) = -x(1) / (x(2) * x(3) * x(4)) .
r$0 = x(1); r$1 = x(2); r$2 = x(3); r$3 = x(4); r$4 = -r$0
r$S = r$1 * r$2; r$6 = r$5 * r3$3; r$7 = r$4 / r$6

c Initialize adjoints

r$obar = r$ibar = r$2bar = r$3bar = r$4bar = r$Sbar = r$ébar = 0.0
r$7bar = 1.0

c Adjoint for r$7 = r$4 / r$6
r¢dbar = r$4bar + r37bar * (1.0 / r$6)

r¢6bar = r¢6bar + r$7bar * (-r$7 / r$6)
c Adjoint for r$6 = r$5 * r$3
r$5bar = r$Sbar + r$6bar * r$3. .
r$3bar = r$3bar + r$6dbar * r3s
c Adjoint for r$5 = r$1 * r$2
r$ibar = r$ibar + r$Sbar * r$2
r$2bar = r$2bar + r$Sbar * r$i
c Adjoint for r$4 = -r$0
r$Obar = r$Obar + r$4bar = (-1.0)

call saxpy4 (pmax, gp, r$obar, g$x(1,1), r$ibar, g¥x(1,2),
+ r$2bar, g$x(1,3), r$3bar, g$x(1,4), g$£(1,1))
£(1) = r$7

return

end

Listing 2. Computing the gradient in the forward mode

The gradient object g$x is initialized to an n x n identity matrix.
The code that might be generated by ADIFOR to compute both the gradient and the dense
Hessian in the forward mode is shown in Listing 3.

subroutine gfcn3 (gp, x, géx, h¥x, ldgsx, xdim, 1, gf, hf, 1dgsf, fdim)
integer xdim, fdim

real x(xdim), £(fdim) ,

integer gp, pmax, ldg$x, ldgsf, g$is, gj

parameter (pmax = 4)

real g$x(1dg$x,xdim), h$x(ldg$x,1dgsx,xdim), g3f(1dgsf,fdim) , h3f(1dgsf,1dgsf,fdim),

+ r$4, g$r$a(pmax), h$r$4(pmax,pmax), r$S, gr5(pmax), hr5(pmax,pmax),
+ r$6, g$r$6(pmax), h$r$6(pmax,pmax), r$7, gr7 (pmax) , hr7(pmax,pmax), r$8
Storage:
partial f_k

= h$f (j, i, k)

0O o0 onon

partial x_j partial x_i

c £(1) = -x(1) / (x(2) * x(3) * x(4))
r$4 = -x(1)
do 99990 gj = 1, g¥p$
g$r3a(gsis) = - gox(g$js,1)
do 99990 gis = gi, g3p$
hr4(g$js,gsis) = - h3x(g$j$,gdis,1)
99990 continue

r$5 = x(2) * x(3)
do 99980 gj = 1, gp
g3r$5(gsis) = x(2) = g¥x(g$j$,3) + g3x(g$j$,2) » x(3)
99980 continue
do 99982 gj = 1, gp
do 99982 gis = gj, gsp$

i

h$rss (g$j$,gsis)
+ = x(2) * h$x(g$js,gsis,3) + gdx(g3is,2) *» gx(g$js,3)
+ + gox(gjs,2) » gdx(gis,3) + h¥x(gj,g$is,2) * x(3)

99982 continue

r$6 = r$5 * x(4)
do 99970 gj = 1, g¥p$
gr36(gsjs) = r3$s = gix(g$js,q) + g3rss(gsis) = x(4)
99970 continue
do 99972 gj = 1, gdp$
do 99972 gi = gj, gdp$

hr6(gsjs,gsis)
+ = r$5+ hx(g$js,gsis,4) + gdre5(gsis) * gix(g$js,d)
+ + gr5(g$is) * gx(gsis,4) + h$re5(gsjs,g¥is) * x(4)

99972 continue

C r$7 = r$4 / r$6
r$8 = 1.0 / r$6
r$7 = r$4 » r$8
do 99960 gj = 1, gdp$
gr7(gs$js) = (gérsa(gsjs) - g3r$6(gsjs) » r$7) * ri8
99960 continue
do 99962 gj = 1, g¥p$
do 99962 gis = gijs, gdp$

h3r$7(gs$js,g$is)
+ = (hr4(gsjs,gsis) - (gdr36(gsis) » g¥rs7(gs$js)
+ + g9r$6(gsjs) * gIrs7(gsis) + n$rs6(gsjs,gdis) » rs$7)) » r$s8

99962 continue

£(1) = r$7
do 99950 gj = 1, gp
g$£(gs$js,1) = gSre7(gsj%)
do 99950 gi = g$js, g¥p$
h$£(gs$j$,g$is,1) = h3r$7(g$js,gsis)
99950 continue

return
end

Listing 3. Computing the Hessian in the forward mode

The Hessian object h$x is initialized to a n x n x n zero matrix because %i—i = 0 for all &, j, and

i

‘Next, we give code for some operators and elementary functions. We generate the first- and
second-derivative objects strictly in the forward mode. This is not the code we will eventually
generate, but it is necessary to formulate this code in order to evaluate the relative merits of partial
derivatives versus univariate Taylor series for computing dense Hessians (see Section 3.2).

The setting for the operators for computing dense Hessians as their constituent partial derivatives
is this: We assume that the user’s original code has been parsed into a sequence of assignment
statements (as in Listing 4) involving only unary or binary operations or elementary functions.

r§0 = u + v
r§1t =u=*v
r$2=u/v
r$3 = exp (v)

Listing 4. Code parsed to unary or binary operations

The variables u and v are active. We use exp as the prototype for all elementary functions for the
purpose of specifying code for the operators. When we have evaluated alternatives and settled on a

plan for Hessian calculation, then we will give the code for all elementary functions. Listing 5 shows
the code for multiplication. A complete program including the code for +, *, /, and exp is included

as Appendix B.

¢ MULTIPLICATION: £ = u * v

c

c daf dv du

c ~= = U k== + == v

c dx dx dx

c

c 2 2 2

c d f dv du dv du dv du
c m——— = g % === $ = == f mm ¥ == mmm=— * v
c dx dy dx dy dy dx dx dy dx dy
c

r$1 s u=*v

do gj =1, p
g3r$1(gsjs) = u * gov(gsjs) + ghu(gsjs) *» v
do gis = 1, gj

hr1(g$is,gsis) = u * hev(g$j$,gsis) + glu(gsis) » gdv(gsjs)

+ + gu(g$js) = gv(gsis$) + hsu(g$js,gdis) » v

end do
end do

Listing 5. Multiply operator for forward-mode, dense Hessians as partial derivatives

3.2 Interpolation Utilizing Forward-Mode Univariate Taylor Series

As an alternative to the forward-mode propagation of Hessian matrices at the global level of
the entire function being differentiated, we prefer to compute second-order partial derivatives by
interpolation utilizing forward-mode univariate Taylor series. The mathematical theory of recovering
high-order mixed partial derivatives from values propagated as univariate Taylor series is given in [3].
Here, we outline the ideas and sketch an implementation.

3.2.1 Interpolation

Suppose we have a program that evaluates a scalar function w = f(u,v) with two independent
variables u and v € R. In agreement with the design philosophy of ADIFOR, we consider differen-
tiation with respect to a vector of n = 2 parameters z and y that are not necessarily the same as u
and v. Denoting partial differentiation by subscripts, we will now try to calculate the 6-tuple

W, Wg, Wy, Wez, Wry, Wyy
on the basis of the user-supplied data
U, Uz, Uy, Uzz, Uzy, Uyy 3D V, Uz, Vy, Vzz, Vzy, Vyy-
In other words, the scalar arguments u and v have been replaced by the quadratic polynomials

Py(z,y) = u+uzz+uyy+ 0.5uzzz? + uzyzy + 0.5uy,3%, and
P,(z,y) =v+v:z+vyy+ 0.50z22% + vzyTy + 0.5vyyy2.

We wish to calculate the polynomial
Pu(z,y) = w+ wzz + wyy + 0.5wzz? + wryzy + 0.5wyyy°

that satisfies
f(u(z, v), v(z,¥)) = Pulz,y) + O(=* + ¥°).

We can achieve this goal by propagating the 6-tuples representing first and second derivatives
with respect to z and t through the program that defines f. The storage per intermediate scalar
variable is simply 6 = (;), and the cost of a convolution is 15 = (g) arithmetic operations. Hence,
we may assume that the run time of the code in polynomial arithmetic will be roughly 15 times
slower than the evaluation of the function itself.

Next, suppose we wish to determine P, by propagating only univariate Taylor series through
the program. The input expansions

u(z) =u+tusz+ 0.5uzzz2> and v(z) =v+vz+ 0.5v702°2

yield the coefficients w, w; and w;,. Differentiating along the y axis yields wy and wyy. The only
coefficient missing is the cross term wzy. To obtain it, we can differentiate along the diagonal by
setting z = y = s for a third differentiation parameter s. The input polynomials
u(s) = u+ (uz + ty)s + (Ugy + 0.5uzz + 0.5uy,)s?, and
v(s) = v+ (vz + vy)s + (vzy + 0.5vzz + 0.50yy)s>
yield some expansion
w(s) = f(u(s),v(s)) = w+ as + Bs* + O(s*).

By using the chain rule, the coefficients a and 3 satisfy the identities

a = w, = w; +wy, and
ﬁ = w,,/2 = Wy + O.SUI:: + O-SIDyy.

Thus, we can calculate the missing cross term as
Wzy = B — 0.5(wzz + wyy)-

This is a simple instantiation of the general interpolation procedure described in (5] for an arbitrary
number of independent variables and for arbitrary order mixed partial derivatives.

3.2.2 Forward-Mode Univariate Taylor Series

Here, we consider how univariate Taylor series provide the values required to compute dense
Hessians by the interpolation scheme outlined in Section 3.2.1. The complexity of the operators is
similar to the complexity of the operators for full, dense Hessians described in Section 3.1.

To see how the interpolation scheme works in the special case of second partial derivatives,
suppose that z and y are independent variables. Let s :=z +y. If f = f(s) = f(z,y), then

df 6f 6z O8f &y
9295 Ty *os

ds

_ of of

= Bz*1+ay*1
aef _ i[ﬁ] _3_[91]
asz = 35 |3z] T3 |3y

8%f o8z O°f Oy O*f 98z 8 f Oy
52295 T 526y 55 T 520y 85 | 05 " Bs
62f 62f 62f

322 T ey T o

Hence, we expand the Taylor series for f with respect to z, y, and s = z + y, all at the same
expansion point (whose value is suppressed in the notation for clarity):

Table 2. Storage structure for h$f

+ £ =gt(e) £’ =h$1(e)
Atz:| f %é %;4
Ats: | f %{ -Z—i{-
2
Aty: | f %5 gy

The series for z and for y yield the gradient and the diagonal entries in the Hessian. The off-diagonal

entry is ,) \)
2r g (21 (25421)). o
O0zdy ds? oz2 = 0y?

We can view the computations implied by Table 2 as vector instructions to be executed for each
Taylor series in the table. Alternatively, the number of operations required to compute the values
in the second column equals the number of independent variables, since #'(2) = /(1) + £'(3).
The number of operations required to compute the values in the third column equals the number
of nonzero elements in the Hessian matrix. With these storage optimizations, the storage and
operations required by the univariate Taylor polynomials are 1+n+n* (n+1)/2, the same storage
and operations required for f, V£, and Hessian (f) in the full, dense mode.

Next, we look at the operators for sets of univariate Taylor polynomials in the hope that they
are simpler than the corresponding operators for full, dense Hessians described in Section 3.1.

If the function whose Hessian is sought has n independent variables, then we must compute
n(n + 1)/2 univariate Taylor series corresponding to the number of possibly distinct entries in the
Hessian. If the Hessian is sparse, we propagate univariate Taylor series only for the nonzero entries
in the Hessian. We order the index of £’ and £’ as suggested by Table 3 in the column-major
order of the lower triangular part of the Hessian matrix.

Listing 6 shows the code for the multiplication operation. A complete program including the
code for +, *, /, and exp is included as Appendix C.

¢ MULTIPLICATION: £ =u * Vv

c

c daf dv du

c -— = u ®-=-- + -— %V

c dx dx dx

c

c 2 2 2

c d f dv du dv du

c e_——- = Y K === + 2 % - %= 4 ===V
c 2 2 2

c dx dx dx dx dx

c

c We divide both sides by 2 to store the Taylor coefficient.
c

r$1 =u *v
do gj =1, p

gsr31(g$ijs) = u * gsv(gsjs) + gou(gsis) » v

hr1(g$js) = u * hv(gsjs) + 2 » gsu(gsis) * gov(gdis) + h3u(gjs) = v
end do

Listing 6. Multiplication operator for forward Hessians as univariate series

Table 3 gives the computational complexity of the univariate Taylor x operator, assuming the
Hessian matrix is dense.

Table 3. Maximum computational complexity of the univariate Taylor x operator

To Evaluate +’s X
Function 0 1
Gradient n 2n
Hessian n(n+1) 1.5n(n+1)

The complexity of the other operators is similar, differing only in the constants. Compared with
the complexity of propagating forward-mode Hessians (see Table 1), univariate Taylor series save
about 1/3 of the + and 1/4 of the x operations. In addition, there is a one-time cost associated with
constructing the off-diagonal elements of the Hessian according to Equation (2).

We prefer the technique of interpolation utilizing forward-mode univariate Taylor series to the
forward-mode propagation of Hessian matrices (Section 3.1) for implementation in ADIFOR because

interpolation
o handles sparse Hessians by generating series only for nonzero entries,
e handles very large Hessians by generating elements in multiple sweeps,

e can generate arbitrary elements with little redundant computation,

e parallelizes and vectorizes,

o uses simple data structures — scalars and vectors, rather than symmetric matrices,
e is easier to understand when coding individual operators, and

o generalizes to higher derivatives.

3.3 Preaccumulation

The discussion in Section 3.2 of interpolation assumed that complicated expressions appearing
on the right-hand side of assignment statements are parsed into an equivalent sequence of unary
and binary operations. In this section, we show how the preaccumulation of local gradients and
Hessians of complicated expressions yields savings of storage space, code size, and execution time by
propagating Taylor series at the level of statements in the original code, rather than at the smaller
level of binary operations.

Let the variables u and v depend on a vector z of independent variables. The first and second
derivatives Vu, Vv, V2u, and V2v are available from earlier computations. If w = f(u,v), the chain

rule tells us that

ow ow

Vw = au-Vu-i-.av-Vv, and
ow fw
2 - R vz 2=y 2
Viw = 5u Vu+av Ve (3)
32w 2 62‘w azw 2
+-6F'(Vu) +2m-Vu-Vv+5v—2--(Vv).

: « » : : dw dw 3Pw 8w 3duw :
Hence, if we know the “local” derivatives (5%,%>) and (532 3255 2%) of w with respect to v and

u, we can easily compute Vw and V2w, the derivatives of w with respect to z. An example of
Equation (3) is given in Equation (2) for the simple case w = f(u,v) = u-v. Equation (3) for
propagating Taylor series has the much simpler form given by Equation (5).

The idea is that the large “global” derivatives Vw are propagated in the forward mode from one

assignment statement to another, while the scalar “local” derivatives (%%, %) are preaccumulated

independently of the larger flow of control from one statement to the next. ADIFOR was the first
tool for automatic differentiation to use preaccumulation of local derivatives by applying the reverse
mode at the statement level for the efficient computation of first derivatives [3,6]. The hierarchy of
“local” and “global” derivatives extends to higher-order derivatives.

If w= f(s1,.--,5), let Vf and V2f denote the “local” gradient and Hessian, respectively, of f
with respect to sy, ...,sk. If we extend Equation (3) to complicated right-hand sides, we get

w = f(sl"";sk)

k
w’ = Z(Vf),‘~s;’

i=1

= VfT-S' (4)
k k
v = Y |(Vh) s sl (VP h)is 5]
i=1 i=1
= VfT.s"+sT.V2f.5. (5)

Equation (5) represents derivatives in each of the p directions, which may be computed in parallel.

The important point to note in Equation (5) is that there are only two vector loops of length
p, independent of the number of variables or operations on the right-hand side of the assignment
statement. The local k-element gradient V f and the local k2-element Hessian V2 f can be computed
in any manner. We may apply preaccumulation again to less complicated subfunctions, or we may
use the forward mode, the reverse mode, a combination of the two, or analytic formulas, if they are
easy to derive.

4 Generation of Code for Second Derivatives

The central insight for the implementation in ADIFOR of the code for second derivatives is this:

ADIFOR uses the reverse mode at the statement level to generate code for
computing Vf. By essentially applying ADIFOR again to that generated
code, we obtain code for V2f. The result is code for the preaccumulation
of local derivatives.

In this section, we outline how this central insight is implemented in ADIFOR. In the following

section, we give an example.

Since the number of independent variables is known at compile time, extensive scalar code
optimizations can be applied in the computation of Vf. In particular, if all loops are completely
unrolled, we prune many computations by exploiting the symmetry in V2f. But even ignoring the
symmetry is not a big issue, since k (the number of active variables appearing on the right-hand side
of an assignment statement in the user’s original code) is usually quite small. In this way, generating
the code for computing second derivatives is just an application of the current ADIFOR technology.

In generating the code for Equations (4) and (5), we perform the same kinds of optimization
that we are doing now concerning zeros and ones. Specifically, in the code generated by ADIFOR

e we propagate three-term Taylor series, one series for each nonzero element in the Hessian.
e we propagate series in an overall forward mode similar to current gradients.
o For each composite assignment statement, we

— generate gradient code for that assignment,
— pass the generated code to ADIFOR “recursively,” and

10

Iy,

— integrate the results.

In general, let us consider an assignment statement with k variables on the right-hand side:

w=7° (si, s2, ..., sk)

We wish to transform the code for the assignment statement into code to propagate the first- and
second-derivative objects w’ and w”. The tasks for the code transformation algorithm are as follows:

Task 1: Parse the expression on the right-hand side into a sequence of m simple assignment state-
ments consisting of at most unary or binary operators or elementary functions:

Block 1:
r$0 = si
$m = ...
w = r$m

Task 2: Generate and store the code for the appropriate adjoint objects for the code from Block
1 in reverse mode:

Block 2:

c r$m = ...
r$?$bar = r$7?$bar + rmsbar * ...
r7bar = r$?$bar + rém$bar * ..

sig$bar

sk$bar

For each assignment statement in Block 1, we generate one or two statements incrementing
a bar object. Somewhere in Block 2, there must be at least one statement incrementing the
bar object associated with each of the variables s1, s2, ..., sk.

Task 3: For each variable x appearing on the left-hand side of an assignment statement in Block 1
orin Block 2, declare a variable h$x(k), (where k is the number of variables on the right-hand
side of the assignment statement being processed.

Task 4: Call ADIFOR “recursively.” That is, take the assignment statements in Block 1 followed
by the assignment statements in Block 2, parse them, and generate code for the appropriate
adjoint objects in reverse mode. The application of ADIFOR to this code is simpler than
in the general case because all assignment statements are already parsed into a form with at
most a unary or a binary operation or an elementary function, except that the assignment
statements for the bar object in Block 2 have a special form with two binary operations +
and *. However, the form of the bar assignments is known in advance. For each assignment

statement of the form

r$j = £ (r$1, r$2)

in Block 1, we generate code of the form

c. r$j = £ (r$1, r$2)
do g$i =1, k
hrj(gsis) = £_{r$2} » her$1(gsis) + £_{r$1} * h$r$2(gsis)
end do
r$j = £ (r$1, r$2)

11

For each assignment statement of the form

r$jsbar = r§js$bar + r$i1$bar * x

in Block 2, we generate code of the form

c rjbar = r$jsbar + r$isbar * x
do g$i =1, Kk
hrjsbar(ghis) = hrj$bar(g$is) + x * hr1$bar(gsis)
+ r$1gbar * h3x(g$i$)
end do
r$jsbar = r§jdbar + r$igdbar * x

Task 5: Generate the final loop:

do g$i = 1, g$p$
gdw(g$is) = sisbar * g$s1(g$is) + s2$bar * g$s2(g$is)
+ ... + sk$bar * g$sk(gi)
h$w(g$is$) = siSbar * h$s1(gis) + s28bar * h$s2(g$i$)
+ ... + sk$bar * h3sk(g$i$)
+ h$sisbar(1) * g$si(gi)**2
+ h$s2%bar(2) * g¥s2(g$is)»»2
+ ... + hskbar(k) = g$sk(g$i$)**2
+ 2.0 * g$s1(g$i$)
+ (hsibar(2) * g$s2(g$is)
+ ... + h$sigbar(kx) = g$sk(g$is))
+ 2.0 * g$s2(g$is)
+ (h$s28bar(3) * g$s3(g$is)
+ ... + h$s2$bar(k) * gsk(gi))

+ ...+ 2.0 * g¥s{k-1}(g$i%)
+ (h$s{k-1)$bar(x) * gésk(gis))

end do
v = r$m

The second assignment inside the do loop implements Equation (4); the third implements
Equation (5). We might choose to call a subroutine (different for each value of k), but calling

a subroutine interferes with code optimization.

Task 6: Apply code optimization. Then write the resulting code.

5 Example of the Generated Code

As an example of the tasks that ADIFOR must perform to generate code to compute second-order
derivatives, we take the assignment statement

w=-y/ (z*2z*2)

used as an example in [3] to motivate the generation of code for the hybrid mode. We proceed
in incremental steps from a simple subroutine containing this assignment statement to the final
subroutine illustrating the code to be generated by ADIFOR. We give the relevant code fragments

in the text and relegate listings of the complete programs to appendixes.
We emphasize that the steps described here are steps to understanding the code to be generated

by ADIFOR. We are doing by hand what we expect ADIFOR to do automatically. In operation,
the generation of code for second derivatives by ADIFOR is as transparent to the user as running

ADIFOR for first derivatives.

12

5.1 Step 1. Write Original Code

Listing 7 shows a subroutine containing the example assignment statement. A driving program
to call subroutine examp2 is given in Appendix D.

subroutine examp2 (x, xdim, f)
integer xdim
real x(xdim), y, z, %

and z depend in some way on x(1..xdim)
x(1)
x(2)

y
y
z
c Consider the assignment statement
w=-y/ (z*z*2)

c f depends in some way on ¥
f=w

return
end

Listing 7. Original code for example assignment statement

5.2 Step 2. Run ADIFOR on examp2.dr.f + examp2.f

Our intention is to apply ADIFOR. to the code generated by ADIFOR. Hence, the second step
is to

1. nominate x as an independent variable,

2. nominate £ as an dependent variable,

3. set pmax = 4 (the number of locations in x), and

4. run ADIFOR on examp2.dr.f + examp2.f to generate examp2.5.%.

Listing 8 shows the portion of examp2.5.f that generates the first-derivative objects for the example
assignment statement. The complete subroutine examp2.5.£ is given in Appendix E.

c Consider the assignment statement
c w=-y/ (z*z=*2z)

r$1l =z * 2

r$2 = r¥1 * z

r$3 = -y / (r$2)
r$2bar = (-r$3 / (r$2))
r$ibar = r$2bar * (2)

zbar = r$2bar * (r$1)
zbar = zbar + r$ibar * z
zbar = zbar + r$ibar * z
ybar = -(1.0d0 / r$2)

do 99993 gi = 1, gp
gu(g$is) = ybar * gdy(g$i$) + zbar * g$z(g$is)
99993 continue
v = r$3

Listing 8. ADIFOR-generated first-derivative code

13

5.3 Step 3. Run ADIFOR-generated Code

As a check on correct programming, we run the ADIFOR-generated code examp2.5.f with its
driver examp2_grad.f (see Appendix E). We get the correct results shown in Listing 9.

ADIFOR-generated code.
F = =0.12500
grad F = -1.250000E-01 1.875000E-01 0.000000E+00 0.000000E+00

Listing 9. Results from ADIFOR-generated first-derivative code

5.4 Step 4. Extract ADIFOR-generated Code for Assignment

Our intention is to implicitly pass to ADIFOR the code it has previously generated for each
right-hand side. That is, the recursive ADIFOR call is repeated for each assignment statement.

Here, we simulate a recursive ADIFOR call by extracting from examp2.5.f the first-derivative
code for only the example assignment statement under study here. That is, we extract the code
shown in Listing 8 from examp2.5.f and place it into a subroutine of its own. We add parameters
and variable declarations as appropriate. The resulting subroutine examp2G is shown in Listing
10. The function of subroutine examp2G is to compute the local gradient of w with respect to the
variables y and z that appear on the right-hand side of the example assignment statement. These
local derivatives will be assembled later to form the global derivatives of w with respect to the
independent variables x according to Equations (4) and (5)-

subroutine examp2G (gp, v, g3y, z, gz, W, gw)

integer gp, gdpmax$, gdis

parameter (g$pmax$ = 4)

real r$2bar, r$ibar, ybar, zbar, ri, r2, r$3
real y, z, ¥

real g$y(g$pmaxs$), g$z(gépmaxs), g$w(g$pmax$)

c Consider the assignment statement
c w=-y/ (z*2z*2z)

r$1 =2z * 2z

r$2 = r$1 * z

r$3 = -y / (r$2)

r$2bar = (-r$3 / (r$2))

r$ibar = r$2bar * (z)

zbar = r$2bar * (r$1)
zbar = zbar + r$ibar * z
zbar = zbar + r$ibar * z

ybar = =(1.0d0 / r$2)

do 99993 gis = 1, gp

gu(g$is) = ybar *» gSy(g$i$) + (zbar =+ g3z (g$is))

99993 continue

v = r$3

return
end

Listing 10. Subroutine for computing the local gradient

5.5 Step 5. Run ADIFOR on examp2G.dr.f + examp2G.f

We wish to apply ADIFOR to the subroutine examp2G.1 shown in Listing 10. Because of known
limitations of the current ADIFOR implementation, we made the following modifications:

14

1. replace 1.0d0 by 1.0 (Fortran knows about type coersion, but ADIFOR does not),
2. replace $ by Q (xadifor recognizes only characters in the official Fortran character set), and

3. replace bar by B (ADIFOR can generate variables whose names conflict with variables already
present in the code).

These limitations will be removed in subsequent versions of ADIFOR. Then we wrote a driver and
ran the resulting code (see Appendix F) to verify correct programming.

We are now ready for the recursive application of ADIFOR. The assignment statements in Listing
10 are relatively simple. Hence, the code generated by ADIFOR is much simpler than for the general
case of complicated right-hand sides. This relative simplicity allows ADIFOR to perform further
code optimizations not illustrated here. To apply ADIFOR the second time, we

1. nominate y and z as independent variables,
2. nominate gqw (renamed g$w) as the dependent variable,

3. set pmax = 2 (the number of variables on the right-hand side of the example assignment
statement), and

4. run ADIFOR on examp2G.dr.f + examp2G..f to generate examp2g.74.f.

Listing 11 shows the portion of examp2g.74.£ that generates the first derivative objects for gqw. The
complete subroutine examp2g.74.f is given in Appendix G. The code to be generated by subsequent
versions of ADIFOR will be much more compact because ADIFOR will use the reverse mode on
basic blocks, rather than on individual statements as illustrated here.

c Consider the assignment statement
c w=-y/ (z*z*2z)
c rql =z * z

do 99988 gi
gdrq1 (g$is)
99988 continue
rql =z * z
Cc rq2 = rql * z
do 99987 gis = 1, glp$
g9rq2(g$is) = z » gérqi(gsis) + rql * gdz(g$is)
99987 continue
rq2 = rql * z
c rq3 = -y / rq2
r$1 = -y / (rq2)
do 99986 gi = 1, gIp$
g$rq3(gs$is) = -(1.0d0 / rq2) = géy(gdis) + ((-r$1 / (rq2)) * g3$rq2(g$is))
99986 continue
rq3 = r$1
c rq2b = -rq3 / rq2
r$1 = -rq3 / (rq2)
do 99985 gis = 1, gp
g$rq2b(g$is) = -(1.0d0 / rq2) * g$rq3(g$is) + ((-r$1 / (rq2)) * gdrq2(g$i$))
99985 continue
rq2b = r$1
C rqib = rq2b * z
do 99984 gis = 1, gdp$
g$rq1b(g$is) = z = grq2b(g$is) + rq2b * gdz(g$i$)
99984 continue
rqib = rq2b * z
Cc zb = rq2b * rqi
do 99983 gi = 1, gsp$
g$zb(g$is) = rql * gdrq2b(g$is) + rq2b * g3rq1(g$is)

1, gép$
(z + z) * g$z(g$is)

won

15

99983 continue
zb = rq2b * rqi
C zb = zb + rqib * z
do 99982 gis = 1, gdp$
g3zb(g$is) = gzb(gsis) + z =+ gdrqib(gsis) + rqib » gsz(g$is)
99982 continue
zb = zb + rqlb * z
C zb = zb + rqlb * z
do 99981 gi = 1, gép$
g$zb(gsis) = gSzb(g$is) + z » gdrqib(gis) + rqib * g3z (geis)
99981 continue
zb = zb + rqib * z
do 99999, gqiq = 1, gqrq
c gqw(gqiq) = -1.0 / rq2 * gqy(gaiq) + zb * gqz(gqiq)
r$o = -1.0 / (rq2)
do 99980 gi = 1, gp
g$gqu(gsis, gqiq) = gqy(gaiq) * (-r$0 / (rq2)) =* gdrq2(gsis)
* + gqz(gqiq) * g$zb(g$is)
99980 continue
gaw(gaiq) = r$0 * gay(gqiq) + zb * gqz(gaia)
99993 continue
99999 continue
v = rq3
return
end

Listing 11. Code from recursive ADIFOR call

It is important to understand what we have computed. Subroutine examp2G computes gqw, the
local gradient of first derivatives of w with respect to y and z. By instructing ADIFOR to differentiate
gqw with respect to y and z, we have generated subroutine examp2g.74 to compute the local Hessian

of w with respect to y and z.

5.6 Step 6. Run ADIFOR-generated Code

As a check on correct programming, we wrote a driver program and called the ADIFOR-generated
subroutine examp2g.74. The complete code is contained in Appendix G. The local gradient and

Hessian computed are shown in Listing 12.

Hessian by Adifor (Adifor (examp2.f)).
W = -0.12500
grad W = -1.250000E-01 1.875000E-01

Hessian W =
1 0.000000E+00 1.875000E-01
2 1.875000E-01 -3.750000E-01

Listing 12. Local gradient and Hessian computed by examp2g.74

5.7 Step 7. Model Code for ADIFOR-generated Second Derivatives

Now we are ready to merge the ADIFOR-generated first-derivative code in subroutine examp2.5.f
with the ADIFOR-generated local second-derivative code in subroutine examp2g.74 to get subrou-
tine examp2H shown in Listing 13. The subroutine in Listing 13 is essentially the code ADIFOR
generates for second derivatives, except that this code contains explanatory comments, and the
ADIFOR-generated code benefits from code optimizations not illustrated here. Comments in this

code clarify details of the merging process.

16

A

subroutine g$examp23$5(gp, x, gx, hdx, ldg$x, xdim, £, g$f, hf, ldgf)

Purpose: Explore 2nd derivative code.
Hand-written ADIFOR-like Hessian code
Author: George Corliss, 26-FEB-1992
Reference:
Simple example from Working Note 1, Section 2.
Discussion:
Merge examp2.5.f (gradient) + examp2g.74.f (local Hessian)
g$... denote global objects
h$... denote objects local to one assignment statement.

o000

Formal f is active.
Formal x is active.

aaaa

integer gp, g$pmax$, gis, 1dgs$f

parameter (g$pmax$ = 10)

real r$ibar, r$2bar, ybar, zbar, r$1, r$2, r$3
c Added ADIFOR-like variables:

real r$4, r$5, r$6

real f, g$f(1ldg$f), h$f(1dgst)

integer xdim, 1ldg$x

real x(xdim), g$x(1dg$x, xdim), h$x(1dg$x, xdim)

real y, z, ¥ ’

real g$y(gspmax$), h$y(gdpmax$), g$z(gipmax$), h3z(g$pmax$),
+ géw(gdpmax$), hdv(g$pmax$)

c Declarations for local gradient objects
Dimension is largest number of variables occurring in any RHS
c in which this variable is involved.
real h$y(2), h$z(2), hr1(2), hr2(2), hr3(2), hr2bar(2),
+ hribar(2), h$ybar(2), h$zbar(2)

]

c y and z depend in some way on x(1..xdim)
c y = x(1)
do 99995 gi = 1, gp
gdy(gdis) = g¥x(gsis, 1)
h3$y(g$is$) = h¥x(gs$is, 1)
99995 continue
y = x(1)

c z = x(2)
do 99994 gi = 1, gp

g3z (gsis$) = g¥x(gs$is, 2)
h$z(g$is$) = héx(g$is, 2)
99994 continue
z = x(2)

Consider the assignment statement

w=-y/ (z %2z *2)

r$1 =z * 2

r$2 = r$1 * z

r$3 = -y / (r$2)

r$2bar = (-r$3 / (r$2))

r$ibar = r$2bar * (2)

zbar = r$2bar * (r$1)

zbar = zbar + r$ibar * z

zbar = zbar + r$ibar * z

ybar = -(1.0d0 / r$2)

do 99993 gi = 1, gp
g$u(g$is) = ybar * g3y(gi) + (zbar * g$z(g$is))

c9993 continue

LEGEGEGEGEG GGG I e I e

17

v = r$3

h$u

For

A0 O0a00a000 0000

gp: Within this block, the variable named gp is renamed

to hp. Its value is equal to the number of variables
on the rhs.

hy, hz: Local gradient objects of dimension = hp

= (u.y, u.z)

each global univariate Taylor series being propagated,
£ (y, 2)

v =
w.u =fy*yu+fz*zu
w’ =fy*y +fz=*2
w_{uu} = f_y * y_{uwu} + £_z * z_{uu}
+ 2% f {yz} * yu=*zu
+ £_{yy} * (you)"2 + £_{zz} * (z_u)"2
w? =fy*sy?+tzrz +2xf{yzdry 2’

+ £_{yy} = (y)~2 + £_{zz} * (z2)72

¢ Initialize objects local to statement:

hps = 2
h$y(1) = 1.0
h$y(2) = 0.0
h$z(1) = 0.0
h$z(2) = 1.0
¢ Compute ybar = f_y, zbar = f_z
c h$w = £_{yy}, £.{yz}, f_{zz}:
c r$1 =2z * z
do 99988 gi = 1, hp
hr1(gis) = (z + z) » h$z(g$is)
99988 continue
r$1 =2 * z
c r$2 = r$1 * z
do 99987 gi = 1, hip$
hr2(g$is) = z * h$rs$1(gsis) + ré1 » h$z(g$is)
99987 continue
r$2 = r$1 * z
c r$3 = -y / r$2
r$4 = -y / (r$2)
do 99986 gi = 1, h3p$
hr3(g$is) = =(1.0d0 / r$2) * h$y(g$is)
* + ((~r$4 / (r$2)) = hr2(g$is))
99986 continue
r$3 = r$4

c Re-insert the code that vas optimized out:

c

99985

99984

ybar = -1.0 / r$2
r$6 = -1.0 / r$2
do gis = 1, hp
h$ybar(g$i$) = -(r$6 / r$2) * n$r32(g¥is)
end do
ybar = r$6

r$2bar = -r$3 / r$2
r$s = -r$3 / (r$2)
do 99985 gi = 1, hp
h$r3$2bar(gis) = ybar » hr3(gsis) + ((-r$5 / (r$2)) * hr2(gsis))
continue
r$2bar = r$s
r$ibar = r$2bar * z
do 99984 gi = 1, hp
hribar(gi) = z * hr2bar(g$is) + r$zbar * h$z(g$i$)
continue
r$ibar = r$2bar * z

18

c zbar = r$2bar * r$1
do 99983 gi = 1, hp
h$zbar(g$i$) = ré$1 = h$r32bar(g$is$) + r3$2bar » hrs1(g$is)
99983 continue
zbar = r$2bar * r$1
c zbar = zbar + r$ibar * z
do 99982 gi = 1, hp
h$zbar(g$i$) = h$zbar(gsi$) + z * h3r$ibar(g$is)
* + r$ibar * h$z(gi)
99982 continue
zbar = zbar + r$ibar * z
c zbar = zbar + r$ibar * z
do 99981 gi =1, hp
h$zbar(g$is$) = h$zbar(gis) + z * hribar(gsis)
* + r$ibar * h3$z(gi)
99981 continue
zbar = zbar + r$ibar * z

At this point, in order to generate the statement

gdw(gsis) = -1.0 / r$2 » gdy(g$is) + zbar * g$z(g$i$)
the compiler must already know that

w_y = ybar = -1.0 / r$2

v_z = zbar
Hence, w_{yy} = h$ybar(1)

w_{yz} = h$ybar(2) = h$zbar(1)

w_{zz} = h$zbar(2)

0000000

c Compute global univariate Taylor series:
c w =1 (y, 2)

c w =fy*y +£f_z=*2

c W'=f ysxy +f zxz+2xxf {yz}*y =2z
c + £_{yy} = (y?)"2 + £_{zz} * (2°)"2

do gis =1, gdp$
gSv(g$is) = ybar * gdy(g$is$) + zbar * g$z(g$is)
h$w(g$i$) = ybar * h3y(g$i$) + zbar * h$z(g$is)

* + 2.0 * h$ybar(2) * g3y(gs$is) * g$z(g$is)
* + h3ybar(1) * gdy(gi) * gdy(gsis)
* + h$zbar(2) * g$z(gsis) * g3z (g$is)
end do
w =r$3
c f depends in some way on ¥
f=w

do 99992 gi = 1, g3p
g3f(g$is) = g¥w(gsis)
h3£(gis) = h$w(g$is)
99992 continue
return
end

Listing 13. Model code for ADIFOR-generated second derivatives

5.8 Step 8. Run the Model Second-Derivative Code

When we write a driver program (see Appendix H) and run the merged subroutine examp2H
shown in Listing 13, we get the correct global gradient and Hessian shown in Listing 14.

19

Series for F

1
2
3
4
5
6
7
8
9
10
For F
Gradient :
Hessian :
1
2
3
4

-1.250000E-01
-1.250000E-01
-1.250000E-01
-1.250000E-01
-1.250000E-01
-1.250000E-01
-1.250000E-01
-1.250000E-01
-1.250000E-01
~1.250000E-01

value:
-1.250000E-01

0.000000E+00

1.875000E-01

0.000000E+00
0.000000E+00

-1.250000E-01
6.250000E-02
1.875000E-01

-1.250000E-01
1.875000E-01
0.000000E+00

-1.250000E-01
1.875000E-01
0.000000E+00
0.000000E+00

-1.250000E-01

1.875000E-01

-3.750000E-01
0.000000E+00
0.000000E+00

0.000000E+00
0.000000E+00
-3.750000E-01
0.000000E+00
-3.750000E-01
0.000000E+00
0.000000E+00
-3.750000E-01
0.000000E+00
0.000000E+00

0.000000E+00

0.000000E+00
0.000000E+00

0.000000E+00

0.000000E+00

Listing 14. Global gradient and Hessian from the hand-written second-derivative code

6 Pending Implementation Issues

In this section, we simply mention some issues that remain to be settled with respect to second

derivatives.

6.1 Data Structures for p Taylor Series

We have identified three data structures in which the p Taylor series could be stored.

Alternative 1.1: Three separate objects: value, x(p); first derivative,

derivative, h$x(p) = z".

Alternative 1.2:

Alternative 1.3:

Combined array x(p,0:2).

g$x(p) = z'; and second

Value x(p) and a combined array x(p,2) containing the derivative objects.

We prefer alternative 1.1, for two reasons:

e it generalizes to higher derivatives, and

e the h$routine should also return values directly, as the original routine did.

6.2 In-line vs Subroutine Call

This paper illustrates the code in a con

tations:
Alternative 2.1:

Alternative 2.2:

Generate code in line.

Call generated subroutine for each right hand side.

We prefer alternative 2.1, for three reasons:

o Better code optimization. In particular, the code
derivatives can be heavily optimized.

e Better parallelization and vectorization scope.

« No bloat in the number of subroutines, even though the code is large.

20

ceptual way. We have identified two possible implemen-

generated to compute local second

The issue here is that the preaccumulation of local derivatives is an “off-line” process with
respect to the broader picture of the overall forward-mode propagation of sets of Taylor series at
the statement level. However, compiler technology for code optimization transcends this distinction.
In Listing 13, the assignment statements g$w(g$i$) = ... and h$w(gi) = ... contain several
ebar objects. In many computations (computational models based on grids, for example), many of
the corresponding ebar objects are 0, 1, 2, or other simple expressions which can be folded into the
code using conventional compiler constant-folding techniques. Then, subexpressions of the forms
0+, 0*e, and 1+ e are simplified appropriately before ADIFOR generates the code for computing

the derivatives.
For derivatives higher than second order, custom-generated subroutines might be better.

6.3 Drivers
We need at least four drivers for ADIFOR:
e Given sparsity pattern, compute Hessian and return in sparse data structure
e Compute dense Hessian
e Compute Hessian x vector
e Compute Hessian x matrix
In Appendix I, we give several prototype library utilities:
sereye.f Initialize univariate series for dense Hessian
'prtser.f Print univariate series
prthes.f Print value, gradient, Hessian

ser2he.f Convert univariate series to value, gradient, Hessian form

Acknowledgments

We thank Alan Carle for his helpful suggestions regarding higher derivatives and for his essential
role in the ADIFOR. development project.

21

Appendix A. Unoptimized ADIFOR-generated Code for Listing 1

C Purpose: Explore 2nd derivative code.

C Raw Fortran to be hand translated a la ADIFOR

c Hand ADIFORed with no optimization.

C Author: George Corliss, 06-§0V-1991

C Results:

c X: 1.0000000E+00 2.0000000E+00 3.0000000E+00 4.0000000E+00
C F : -4.1666668E-02

integer xdim, fdim, pmax, i, j

parameter (xdim = 4, fdim = 1, pmax = xdim)
real x(xdim), f(£dim), jac_f(fdim,xdim),
+ g$x(pmax,xdim) , gf(pmax,fdim)

do 10 i =1, xdim
10 x(i) =1
write (6, 1010) (x(i), i = 1, xdim)
1010 format (’X : ?, 1p10el5.7)
call fen (x, xdim, £, fdim)
write (6, 1020) (£(i), i = 1, fdim)
1020 format (’F : 7, 1p10el5.7)
call jac (x, xdim, f, fdim, jac_f)
do 20 i =1, fdim
write (6, 1030) (jac_f(i,j), j = 1, xdim)
1030 format (’Jacobian: ’, 1p10el5.7)
20 continue

call eye (g$x, pmax)
call gfcn3 (xdim, x, g$x, pmax, xdim, £, g$f, pmax, £dim)
write (6, 1020) (£(i), i = 1, fdim)
do 30 i =1, fdim
write (6, 1030) (g$f£(j,i), j =1, xdim)
30 continue
do 40 i = 1, fdim
write (6, 1040) ((jac_f(i,j) - g$£(j,i)), j = 1, xdim)
1040 format (’Jac err : ’, 1p10e15.7)
40 continue

stop
end

subroutine fcn (x, xdim, £, fdim)
integer xdim, fdim
real x(xdim), f(fdim)

£(1) = =x(1) / (x(2) * x(3) * x(4))
return
end

subroutine jac (x, xdim, £, fdim, jac_f)
integer xdim, fdim
real x(xdim), £(fdim), jac_f(fdim,xdim)

£(1) = -x(1) / (x(2) * x(3) * x(4))

jac_£f(1,1) = -1.0 / (x(2) * x(3) * x(4))
jac_£(1,2) = x(1) / (x(2) = x(2) *-x(3) = x(4))
jac_£(1,3) = x(1) / (x(3) * x(2) * x(3) = x(4))
jac_£(1,4) = x(1) / (x(4) * x(2) * x(3) * x(4))
return

end

22

subroutine gfcn3 (gp, x, g$x, 1ldg$x, xdim, £, g$f, 1dg$f, fdim)

integer xdim, fdim

real x(xdim), f(fdim)

integer gp, ldgéx, ldg$f

real g$x(ldg$x,xdim), g$f(ldgsf,fdim)

£(1) = -x(1) / (x(2) * x(3) * x(4))
r$0 = x(1)

r$1 = x(2)

r$2 = x(3)

r$3 = x(4)

r$4 = -r$0

r$5 = r$1 * r$2

r$6 = r35 * r3$3

r$7 = r$4 / r$6

Initialize adjoints
r$0bar
r$ibar
r$2bar
r$3bar
r$4bar
r§Sbar
r$6bar
r$7bar

wononn
» O 0000 O0OOo
000000 O0OO0

Adjoint for r$7 = r$4 / r$6
r$4bar + r$7bar = (1.0 / r$6)
r$6bar + r$7bar * (-r$7 / r$6)

Adjoint for r$6 = r$5 * r$3
r$Sbar + r$6bar * r3$3
r$3bar + r$6bar * r$s

Adjoint for r$5 = r$1 * r$2
r$ibar = r$ibar + r$Sbar * r$2
r$2bar = r$2bar + r$Sbar * rd1

Adjoint for r$4 = -r$0

r$obar = r$Obar + r34bar * (-1.0)

r$4bar
r$6bar

r$Sbar
r$3bar

call saxpy4 (pmax, gp, r$obar, g$x(1,1), r$ibar, g$x(1,2),

+ r$2bar, g$x(1,3), r$3bar, gix(1,4), g$f(1,1))

20

10

£(1) = r$7
return
end

subroutine eye (x, xdim)
integer xdim, i
real x(xdim, xdim)
do 10 i = 1, xdim
do 10 j = 1, xdim
x(i,j) = 0.0
continue
x(i,i) = 1.0
continue
return
end

subroutine saxpy4 (pmax, LenVec,

+ Weighl, Vectrl, Weigh2, Vectr2,
+ Weigh3, Vectr3, Weigh4, Vectr4,
+ : Result)

23

00(\000000000(‘)6

Purpose: SAXPY of 4 vectors.
Input parameters:
pmax
LenVec Length of all vectors
Weighn Scalar weights
Vectrn Vectors
Output parameter
Result(i) = sum Weigh_n * Vectr.n(i)
n
Author: George Corliss, 06-NOV-1991
Assumptions:
A1l vectors have the same logical lengths
(Although allocated lengths may vary)
1 <= LenVec <= allocated sizes of vectors

integer pmax, LenVec, i
real Result(#), Vectri(*), Vectr2(s), Vectr3(s), Vectr4(*)

do 10 i = 1, LenVec
10 Result(i) = Weighl * Vectri(i) + Weigh2 * Vectr2(i)
+ + Weigh3 * Vectr3(i) + Weigh4 * Vectr4(i)
return
end

24

Appendix B. Main Program for Computing Dense Hessians as Partial Derivatives

c Purpose: Illustrate code that ADIFOR might generate for

c forward mode gradients and Hessians.

c Not intended as a rigorous test.

¢ Author: George Corliss, 05-FEB-1992

c Discussion:

c This simulates program fragments from an ADIFOR-generated

c subroutine.

c u, v active, not necessarily independent

c gs$x gradient object

c h$x Hessian object

c Operators for full, dense, forward mode for unary and binary

c operations. We assume that the target of the assignment

c DOES EOT ALSO APPEAR OF THE RIGHT HAND SIDE.

c Results:

c For u value: 3.400000E+00

c Gradient : 1.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
c Hessian :

c 1 0.000000E+00

c 2 0.000000E+00 0.000000E+00

c 3 0.000000E+00 0.000000E+00 0.000000E+00

c 4 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
c For v : value: =-2.100000E+00

c Gradient : 0.000000E+00 1.000000E+00 0.000000E+00 0.000000E+00
c Hessian :

c 1 0.000000E+00

c 2 0.000000E+00 0.000000E+00

c 3 0.000000E+00 0.000000E+00 0.000000E+00

c 4 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
c For Addit: value: 1.300000E+00

c Gradient : 1.000000E+00 1.000000E+00 0.000000E+00 0.000Q00E+00
c Hessian :

c 1 0.000000E+00

c 2 0.000000E+00 0.000000E+00

c 3 0.000000E+00 0.000000E+00 0.000000E+00

c 4 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
c For Multi: value: =7.140000E+00

c Gradient : =2.100000E+00 3.400000E+00 0.000000E+00 0.000000E+00
c Hessian :

c 1 0.000000E+00

c 2 1.000000E+00 0.000000E+00

c 3 0.000000E+00 0.000000E+00 0.000000E+00

c 4 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
c For Divid: value: =1.619048E+00

c Gradient : -4.761905E-01 <=7.709752E-01 0.000000E+00 0.000000E+00
c Hessian :

c 1 0.000000E+00

c 2 =2.267574E-01 =-7.342621E-01

c 3 0.000000E+00 0.000000E+00 0.000000E+00

c 4 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
c For Exp : value: 2.996410E+01

c Gradient : 2.996410E+01 0.000000E+00 0.000000E+00 0.000000E+00
c Hessian :

c 1 2.996410E+01

c 2 0.000000E+00 0.000000E+00

c 3 0.000000E+00 0.000000E+00 0.000000E+00

c 4 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
c

<

integer p, pmax, gj, gis, i, j
parameter (pmax = 4)

25

real u, g$u(pmax), h$u(pmax,pmax),

+ v, g$v(pmax), h$v(pmax,pmax),
+ r$0, g$rs$o(pmax), h$r$0(pmax,pmax),
+ r$1, g$r$1(pmax), h$r$i(pmax,pmax),
+ r$2, g$rs$2(pmax), h$r$2(pmax,pmax),
+ r$3, g$r$3(pmax), h$r$3 (pmax,pmax)
[
¢ INITIALIZATION:
c
p = pmax
u= 3.4
v =-2.1
do j=1,p
gdu(j) = 0.0
gs$v(j) = 0.0
doi=1,j
h$u(j,i) = 0.0
h$v(j,i) = 0.0
end do
end do
gu(1) = 1.0
g$v(2) = 1.0

call prthes (’u ’, p, pmax, u, gu, hu)
call prthes (’v ’, p, pmax, v, g$v, hsv)

a0 a0 a0a0o0n0a0o0 000

ADDITIOR: £ = u + v

af du dv
- B == § ==
dx dx dx
2 2 2
d £ du dv
= +
dx dy dx dy dx dy

r$0 = u + v
do gj =1, p
g3r30(gsis) = gdu(gsjs) + gv(gsjs)
do gis = 1, g3$ji¢
hr0(gjs,gis) = hsu(gjs,g$is) + h3v(gsjs$,gsis)
end do
end do

aoaoaoan0o0on0o0o0o0o0o0n

MULTIPLICATION: £ = u * v

af dv du
- = y % == 4+ == %V
dx dx dx

2 2 2
d f dv du dv du dv du
----- = Uk memm= + == % == 4 == k== === kY
dx dy dx dy dy dx dx dy dx dy

26

r$1 =u *x v
do gj =1, p
g3rs1(gs$is) = u » gév(gsjs) + gdu(gdjs) = v
do gis = 1, g3
hr1(gsjs,gis) = u » h¥v(g$js,gsis)

+ + glu(gsis) = gdv(gsjs)
+ + gdu(g$is) » gdv(gsis)
+ + h$u(g$j$,gsis) = v
end do
end do

o600 0600000000000

DIVISIOE: £ =u / v, v*f=u

df dv du
VEk == 4 =——xf = ==
dx dx dx
2 2 2
d f dv df dv df dv du
V % ————- 4+ =k == o} == ==} mm——— *f = ———=-
dx dy dy dx dx dy dx dy dx dy
=======
r$2=u/v

do gj =1, p
g3r$2(gsis) = (gSu(gsijs) - gdv(gs$js) * r$2) / v
end do
Two separate loops are necessary because
the Hessian requires the gradient of f.
do gj =1, p
do gis = 1, gj
hr2(gs$js,gsis) = (h$u(gs$js,gsis)

+ - gdv(gs$is) = gr32(gsjs)
+ - g3v(gj) » gérs$2(gsis)
+ - h$v(g$j$,gsis) * rs2)
+ /v
end do
end do
c
c EXPONENTIAL: f = exp (u),
c
c df du
c -— = f * ==
c dx dx
c
c 2 2
c d £ du df du
c - = f & =———e 4+ —— o -
c dx dy dx dy dy dx
c

r$3 = exp (u)
do gj =1, p
gsre3(gs$js) = rd$3 » giu(gs$js)
“do gi = 1, gj
hr3(gjs,gdis) = r$3 * hdu(g$js,gsis)
+ : + g9r33(g$is) * gu(gsjs)
end do

27

end do

a0 o0 A0

RESULTS:

call PrtHes (’Addit’, p, pmax, r$0, g$r$0, h$r$0)
call PrtHes (’Multi’, p, pmax, r$1, gér$1i, hrs1)
call PrtHes (’Divid’, p, pmax, r$2, g$r$2, h$rs$2)
call PrtHes (’Exp °’, p, pmax, r$3, g$r$3, h$r$3)

stop
end

subroutine PrtHes (name, length, ldg.x, X, grad_x, Hess_x)

character*6 name

integer length, ldg.x, i, j
real x, grad_x(ldg_x), Hess_x(1dg_x,1dg_x)

write (6, 1010) name, x, (grad_x(i), i =1, length)

write (6, 1020)
do j =1, length

write (6, 1030) j, (Hess_x(j,i), i =1, 3

end do

1010 format (/ ’For ’, A6, ’:

+ / ’'Gradient : °’
1020 format (’Hessian :’)
1030 format (I11, 1PSE15.6)

return
end

’

value:’, 1PE15.6,
1PSE15.6, / 100(10X, 1PSE15.6, /)

28

Appendix C. Main Program for Computing Dense Hessians as U

c
c
c

c
c
c
c
c
c
[~
c
c
c
c
[+
c
c
C
c
c
c
c
c
[+
c
[~
[
[
c
c
c
c
c
c
[
c
c
c
c
c
c
c
c
c
c
c
[+
[
c
c
c
c
c
c
C

Illustrate code that ADIFOR might generate for

Purpose:
univariate Taylor series to generate
gradients and Hessians
Not intended as a rigorous test.
Author: George Corliss, 12-FEB-1992
Modifications:

12-FEB-1992 George Corliss

Adapted from hes_oprs.f

This simulates program fragments from an ADIFOR-generated

Discussion:
subroutine.

u, v

h$x Taylor series object.
1
2 3
4 5 6
7 8 9 10

Ordering:

We compute Taylor coefficients u"(i)/it.
Function values are computed redundantly.

computation, that is easier to read.
each processor computes its own Copy.

computation,

active, not necessarily independent

For sequential

For parallel

Operators for univariate Taylor series for unary and binary

We assume that the target of the assignment

DOES HOT ALSO APPEAR OF THE RIGHT HAED SIDE.

operations.
Results:
For u : value:
Gradient : 1 .000000E+00

Hessian @
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
value:
0.000000E+00

o W -

For v :
Gradient :
Hessian
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
value:
1.000000E+00

oW

For Addit:
Gradient :
Hessian @
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
value:
'=2.100000E+00

B W

For Multi:
Gradient :
Hessian
0.000000E+00
1 .000000E+00
0.000000E+00
0.000000E+00
value:
-4.761905E-01

bW R

For Divid:
Gradient :
Hessian :
0.000000E+00
-2.267573E-01
0.000000E+00
0.000000E+00
value:

w W

For Exp

3.400000E+00

0.000000E+00

0.000000E+00
0.000000E+00
0.000000E+00

-2.100000E+00

1.000000E+00

0.000000E+00
0.000000E+00
0.000000E+00

1.300000E+00

1.000000E+00

0.000000E+00
0.000000E+00
0.000000E+00

-7 .140000E+00

3.400000E+00

0.000000E+00
0.000000E+00
0.000000E+00

-1.619048E+00

-7.709752E-01

~7.342621E-01
0.000000E+00
0.000000E+00

2.996410E+01

0.000000E+00

0.000000E+00
0.000000E+00

0.000000E+00

0.000000E+00
0.000000E+00

0.000000E+00

0.000000E+00
0.000000E+00

0.000000E+00

0.000000E+00
0.000000E+00

0.000000E+00

0.000000E+00
0.000000E+00

29

0.000000E+00

0.000000E+00

0.000000E+00

0.000000E+00

0.000000E+00

0.000000E+00

0.000000E+00

0.000000E+00

0.000000E+00

0.000000E+00

nivariate Taylor Series

a0 o0oo0oo0ao0ao0o0n

Gradient :
Hessian :

B W e

2.996410E+01

2.996410E+01
0.000000E+00
0.000000E+00
0.000000E+00

0.000000E+00

0.000000E+00
0.000000E+00
0.000000E+00

0.000000E+00

0.000000E+00
0.000000E+00

0.000000E+00

0.000000E+00

o0 oo

o

HumInd
HumSer

real u, h$u(NumSer, 0:SerOrd), v, h$v(HumSer, 0:SerOrd),

Bumber of independent variables (= p)
Number of series

for second derivatives, NumSer = p(p+1)/2

SerOrd Series Order
integer NumInd, BumSer, SerOrd, j
parameter (NumInd = 4, HumSer = 10, SerOrd = 2)

+ r$0, h$r$0(HumSer, 0:SerOrd), r$1, hri(BumSer, 0:SerOrd),
+ r$2, h$r$2(HumSer, 0:SerOrd), r$3, hr3(HumSer, 0:SerOrd)

integer pmax

Auxiliaries for comparison:

parameter (pmax = 4)
real g$u(pmax), Hes$u(pmax,pmax),

g$v(pmax), Hes$v(pmax,pmax),

gr0(pmax), Hesr0(pmax,pmax),
gr1(pmax), Hes$rs1(pmax,pmax),
gr2(pmax), Hesr2(pmax,pmax),
gr3(pmax), Hesr3(pmax,pmax)

o o0 0o

+

+

+

+

+

INITIALIZATION:

u= 3.4
v =-2.1

do j =1, Hu

mSer

Function values:

First derivatives:

Second derivatives:

h$u(j,0) = u
h$v(j,0) = v
h$u(j,1) = 0.0
h$v(j,1) = 0.0
h3$u(j,2) = 0.0
h$v(j,2) = 0.0
end do
h$u(1,1) = 1.0
h$u(2,1) = 1.0
h$u(4,1) = 1.0
h$u(7,1) = 1.0
h$v(2,1) = 1.0
h$v(3,1) = 1.0
h$v(5,1) = 1.0
h$v(8,1) = 1.0

call Ser2He (NumSer, SerOrd, hu, u, gu, Hes$u, pmax)
call Ser2He (NumSer, SerOrd, hv, v, gv, HesS$v, pmax)

call PrtSer
call PrtHes
call PrtSer
call PrtHes

(u
Cu

COv

’, NHumSer, SerOrd, h$u)

', pmax, pmax, u, gu, Hesu)
v ', HumSer, SerOrd, h$v)

', pmax, pmax, v, gv, Hesv)

30

nnnnnnnnnnnnnr

ADDITION: £ = u + v

df du dv

P

dx dx dx
2 2 2
d £ du dv
_——— B wmm- o =——
2 2 2
dx dx dx

r$0 = u + v
do gj = 1, HumSer

hr0(gsj,0) = h3u(g$js,0) + h$v(gj,0)
or = r$0
hr0(gs$js,1) = hsu(g$js,1) + h$v(g$js$,1)
hro(gsj$,2) = hsu(g$js,2) + h$v(g$i$,2)
end do

nnnnnnnnnnnnnnnr

MULTIPLICATIOR: £ = u * v

df dv du

-— = u %= + =— %V

dx dx dx

2 2 2

d £ dv du dv du

—_—— = Y k=== + 2% - % == + === * v
2 2 2

dx dx dx dx dx

We divide both sides by 2.

r$1 =u *v
do gj = 1, HumSer

hr1(gj,0) = h$u(g$js,0) = h$v(g$js$,0)
or = r$1
hr1(g$js,1) = u = h$v(gjs,1) + h$u(g$j$,1) *» v
hr1(gj,2) = u » h$v(gsjs,2) + h$u(gjs,1) * hv(g$js,1)
+ + h3u(gsjs$,2) * v
end do

<
c
¢ DIVISION: £f=u /v, v*f=u
c
c df dv du
c V== + -—xf = ==
c dx dx dx
[o4 ====
c
c 2 2 2
c d f dv df dv du
c V== 4+ 2% - % == + === xf = ===
c 2 2 2
c dx dx dx dx dx
c

31

o

We divide both sides by 2.

or

+

r$2=u/v
do gj =1, Hum
hr2(gj,0)

hr2(g$js,1)
hr2(gj,2)

Ser

= h3u(gj,0) / hs$v(g$j$,0)

r$2

(h$u(g$js$,1) - h$v(gjs,1) » r$2) / v
(h$u(g$js$,2) - h$v(gjs,1) » h¥r$2(gsjs,1)
- hev(gj,2) * r$2) / v

¢ Better parallelism from:
c hr2(gj,2) = (h$u(gsjs,2)
c + - h3v(gs$js,1) * (hSu(g$js,1)
c + - h$v(g$js$,1) » r$2) / v
c + - h$v(gs$js$,2) * r$2) / v
end do
<
c
c EXPONENTIAL: £ = exp (u),
c
c af du
c == = f * --
c dx dx
c
c 2 2
c dt du df du
c ——— = f K === $ == % =
c 2 2
c dx dx dx dx
[~
c We divide both sides by 2.
c
r$3 = exp (u)
do gj = 1, HumSer

hr3(gj,0) = exp (h$u(g$j$,0))
c or = r$3

h$r33(g$js,1) = r$3 * hu(g$js,1)

hr3(gj,2) = r$3 * h$u(g$js,2)

+ + h3r3(gjs,1) » hsu(gsjs,1) / 2.0
c Better parallelism from:
c + + r$3 * h$u(g$js,1)
c + * h3u(g$js,1) / 2.0
end do

c
c RESULTS:
c

call Ser2He (HumSer, SerOrd, hro, r$0, g$r$0, Hes$r$0o, pmax)
call Ser2He (NumSer, SerOrd, hri, r$1, g$r$1, Hes$r$1, pmax)
call Ser2He (NumSer, SerOrd, hr2, r$2, g$r$2, Hes$r$2, pmax)
call Ser2He (NumSer, SerOrd, hr3, r$3, g$r$3, Hes$r$3, pmax)

call PrtSer (’r$0 ’, NumSer, SerOrd, h$r$0)
call PrtHes (’Addit’, pmax, pmax, r$0, g$r$0, Hes$r$0)
call PrtSer (°’r$1 ’, NumSer, SerOrd, h$r$1)
call PrtHes (’Multi’, pmax, pmax, r$1, g$r$1i, Hes$r$1)
call PrtSer (’r$2 ’, NumSer, SerOrd, h$r$2)
call PrtHes (’Divid’, pmax, pmax, r$2, g$r$2, Hes$r$2)
call PrtSer (’r$3 ?, NumSer, SerOrd, h$r$3)

32

call PrtHes (’Exp ’, pmax, pmax, r$3, g$r$3, Hes$rs3)

stop
end

subroutine Ser2He (NumSer, SerOrd, Ser_V,
+ Value, Grad_V, Hess_V, pmax)

c Purpose: Convert univariate Taylor series form
c to value, gradient, and Hessian form.

integer NumSer, SerOrd, pmax, i, j, index(10,10)
real Ser_V(NumSer,0:Ser0rd),
+ Value, Grad_V(pmax), Hess_V (pmax,pmax)

¢ Index a lower triangular matrix in a sequential order:
if (pmax .gt. 10) then
write (#, ») ’Error in Ser2He.’
STOP
end if
do j = 1, pmax
doi=1,3
index(j,i) =i+ j=* (j-1) /2
end do
end do

Value = Ser_V(1,0)

do j =1, pmax
Grad_V(j) = Ser_V(j*(j+1)/2,1)
Hess_V(j,j) = 2.0 * Ser_V(index(j,j),2)
do i =1, j-1

Hess_V(j,i) = Ser_V(index(j,i),2) - Ser_V(index(j,j),2)

+ - Ser_V(index(i,i),2)

end do
end do

return
end

subroutine PrtSer (name, ldg_x, Len_x, Ser_x)
character*6 name

integer 1dg.x, Len.x, i, j

real Ser_x(ldg_x,*)

write (6, 1010) name
do j =1, 1ldg.x
write (6, 1020) j, (Ser_x(j,i+1), i = 0, Len_x)
end do
1010 format (/ ’Series for ’, A6, ’:7)
1020 format (I11, 1PSE15.6, 100(14Xx, 1PSE15.6/))

return
end

subroutine PrtHes (name, length, 1ldg._x, X, grad_x, Hess_x)
character*6 name

integer length, ldg.x, i, j

real x, grad_x(ldg_x), Hess_x(1ldg_x,1dg.x)

write (6, 1010) name, X, (grad_x(i), i =1, length)
write (6, 1020)

33

do j =1, length
write (6, 1030) j, (Hess_x(j,i), i =1, j)
end do
1010 format (/ ’For ?’, A6, ’: value:’, 1PE15.6,
+ / ’Gradient : ’, 1P5E15.6, / 100(10X, 1PSE15.6, /))
1020 format (’Hessian :’)
1030 format (Ii1, 1PSE15.6)

return
end

34

Appendix D. Driver Program to Call Undifferentiated Code

c
Cc
C
C
C
C
Cc

Purpose: Explore 2nd derivative code.

Driver program to call undifferentiated code.

Author: George Corliss, 25-FEB-1992
Reference: Simple example from Vorking Note 1, Section 2.

Results:

1010

Undifferentiated code.
F= -0.12500

program driver

integer xdim
parameter (xdim = 4)
real x(xdim),

do i =1, xdim
x(i) =i
end do
call examp2 (x, xdim, f)
write (6, 1010) £
format (’Undifferentiated code.’ /' F =, £10.5)

stop
end

subroutine examp2 (x, xdim, f)
integer xdim
real x(xdim)
real y, z, ¥

x(1)

and z depend in some way on x(1..xdim)
= x(2)

y
y
z

¢ Consider the assignment statement

w=-y/ (z*2z%*2)

f depends in some way on ¥
f=w

return
end

35

‘Appendix E. Driver Program to Call ADIFOR-generated First Derivative Code

Purpose: Explore 2nd derivative code.
Driver program to call ADIFOR-generated first derivative code.
Author: George Corliss, 25-FEB-1992
Reference: Simple example from Working Hote 1, Section 2.
Results:
ADIFOR-generated code.
F = -0.12500
grad F = -1.250000E-01 1.875000E-01 0.000000E+00 0.000000E+00

aaaaoaaoaaaaaq

program driver

c Declare:
integer xdim
parameter (xdim = 4)
real x(xdim), £
real g$x(xdim,xdim), g$f(xdim)

c Initialize:
do i =1, xdim
x(i) = i
end do
call eye (g$x, xdim)

c Compute derivatives:
call g$examp2$5 (xdim, x, g$x, xdim, xdim, £, g$f, xdim)

c Report:

write (6, 1010) £, (g$£(i), i =1, xdim)
1010 format (’ADIFOR-generated code.’ /

+ > F =, £10.5 /

+ > grad F =, 1p8e14.6)

stop
end

subroutine g$examp2$5(gps, x, gdx, ldgs$x, xdim, £, g$f, 1dg$f)

Formal f is active.
Formal x is active.

aoaaaa

integer gp
integer g$pmax$
parameter (g$pmax$ = 4)
integer gi
real r$2bar
real r$ibar
real zbar

real r$3

real r$2

real r$1
integer ldg$f

real f

real g$f(1dgsf)

integer xdim

real x(xdim)

real g$x(ldg$x, xdim)

integer ldg$x

real y, z, w

real g$y(gspmax$), g$z(gSpmax$), géw(gpmax$)

36

C y and z depend in some way on x(1..xdim)
if (gp .gt. g¥pmax$) then
print *, ’Parameter g3p is greater than g$pmax.’
stop
endif
c y = x(1)
do 99995 gis = 1, gdp$
gy (gsis) = g¥x(g$is, 1)
99995 continue
y = x(1)
c z = x(2)
do 99994 gi = 1, gép$
gsz(gi) = gex(gsis, 2)
99994 continue

z = x(2)
c Consider the assignment statement
c w=-y/ (z*z*2z)

r$1 =2z * 2
r$2 = r$1 * z
r$3 = -y / (r$2)
r$2bar = (-r$3 / (r$2))
r$ibar = r$2bar * (2)
zbar = r$2bar * (r$1)
zbar = zbar + r$ibar * z
zbar = zbar + r$ibar * z
do 99993 gis = 1, g¥p$
gsu(gsi$) = -(1.0d0 / r$2) * g3y (gsi$) + (zbar * g$z(g$is))
99993 continue
v = r$3
C f depends in some way on ¥
f=w
do 99992 g3i = 1, gIp$
g3t (gsis) = gv(gsis)
99992 continue
return
end

37

Appendix F. Driver Program to Code Extracted for Single Assignment

Purpose: Explore 2nd derivative code.
Driver program to code extracted for single assignment.
Author: George Corliss, 25-FEB-1992
Results:
Code extracted for single assignment.
L) = =0.12500
grad W = -1.250000E-01 1.875000E-01 0.000000E+00 0.000000E+00

aaooaoaaaaq

program driver

c Declare:
integer xdim
parameter (xdim = 4)
real y, gdy(xdim), z, g$z(xdim), v, g$w(xdim)

c Initialize:
y=1.0
z=2.0
gdy(1) = 1.0
g$z(2) = 1.0

c Compute derivatives:
call examp2G (2, y, g3y, z, gz, w, gv)

c Report:
write (6, 1010) w, (g$w(i), i =1, xdim)

1010 format (’Code extracted for single assignment.’ /
+ ? W =, £10.5 /
+ ’» grad W =, 1p8el4.6)

stop
end

subroutine examp2G (gQpQ, y, gQy, z, gQz, v, gaw)

C Purpose: Explore 2nd derivative code.

c Extract ADIFOR-generated code for one assignment
C statement from examp2.5.f

C Author: George Corliss, 25-FEB-1992

C Modifications:

c 1.0d0 -->1.0

c $ -->Q

Cc Remove redundant parentheses

C Combine ADIFOR-generated declarations

c bar -=> B

integer gQpQ, gQpmaxQ, gQiQ

parameter (gQpmaxQ = 4)

real rQ2B, rQiB, zB, rQ3, rQ2, rQ1

real y, z, w, gQy(gQpmaxQ), gQz(gQpmaxQ), gQqw (gQpmaxQ)

c Consider the assignment statement
[w==-y/ (z*2z%*2z)

Qi =z * z

rQ2 = rQ1l * 2

rQ3 = -y / rQ2

rQ2B = -rQ3 / rQ2
rQiB = rQ2B * z
zB = rQ2B * rQ1
zB = zB + rQ1B * z

38

zB = zB + rQiB * z
do 99993 gQiQ = 1, gQpQ
Q9 (gQiQ) = -1.0 / rQ2 » gy (gQiQ) + zB * gQz(gQiQ)
99993 continue

w = rQ3
return
end

39

Appendix G. Driver Program for Hessian by ADIFOR (ADIFOR (w = -y / (z*2*z)))

Purpose: Explore 2nd derivative code.
Driver program Hessian by Adifor (Adifor (examp2.1))
Author: George Corliss, 25-FEB-1992
Description:
We want to compute the Hessian of W with respect to y and z.
Subroutine examp2g.74 computes g$w as the gradient of W with
respect to y and z. Hence, we want to differentiate g$w with
respect to y and z.
Results:
Hessian by Adifor (Adifor (examp2.f)).
W = -0.12500
grad W = -1.250000E-01 1.875000E-01
Hessian W =
i 0.000000E+00 1.875000E-01
2 1.875000E-01 -3.750000E-01

aacaoaaoacoanan0o0oan0aaaQ

program driver

c Declare:
integer xdim
parameter (xdim = 2)
real y, gQy(4), z, gQz(4), v, gQu(4)
real g$y(xdim), g$z(xdim), g$gQw(xdim,4)

c Initialize:
y=1.0
z =2.0
gy (1)
gQz(2)
gy (1)
g$z(2)

nouwouon
o
0O 00O

c Compute derivatives:
call g$examp2g$74 (xdim, xdim, y, g3y, xdim, gqy, z, g¥z, xdim,
* gqz, ¥, gqv, g¥gqv, xdim)

c Report:
write (6, 1010) w, (gQu(i), i = 1, xdim)
1010 format (’Hessian by Adifor (Adifor (examp2.f)).’ /
+) 1) ', £10.5 /
+ » grad ¥ = ’, 1p8el4.6)
write (6, 1015)
1015 format (' Hessian W =?)
do j =1, xdim
write (6, 1020) j, (gdgqw(j,i), i =1, xdim)
1020 format (i5, 4x, 1p8e14.6)
end do

stop
end

subroutine g$examp2g$74(gp, gapq, ¥, 8%y, 1dg$y, gqy, z, 8%z, 1d
*g$z, gqz, W, gqv, g¥gav, ldgdgqw)

Formal gqw is active.
-Formal z is active.
Formal y is active.

aaoaaa

integer gp
integer g$pmax$

40

anoacaaogaocaoaaqaaa

parameter (g$pmax$ = 2)
integer gi

real r$i

real r$0

integer ldgdy

integer 1dg$z

Purpose: Explore 2nd derivative code.

Extract ADIFOR-generated code for one assignment
statement from examp2.5.f

Author: George Corliss, 25-FEB-1992
Modifications:

1.0d0 =--> 1.0

$ ——>Q

Remove redundant parentheses

Combine ADIFOR-generated declarations

bar =-> B

integer gqpq, gqpmaxq, gqiq

parameter (gqpmaxq = 4)

real rq2db, rqib, zb, rq3, rq2, rqi

real g$rq2b(g$pmax$), gérqib(gspmaxs$), g$zb(gdpmax$), gérq3(gspm

*ax$), gérq2(gspmax$), gérql(g$pmax$)

99988

99987

real y, z, v, gqy(ggpmaxq), gqz(gqpmaxq), gqv(ggpmaxq)
real g$y(ldgsy), g$z(1ldgsz), ggqw(ldgdgaw, gqpmaxq)
integer 1dg$gqv
Consider the assignment statement
w=-y/ (z#%z*2)
if (gp .gt. gépmax$) then
print #, ’Parameter g$p is greater than g$pmax.’
stop
endif
rql =z * z
do 99988 gi = 1, gp
gdrqi(gsis) = (z + z) = gdz(g$is)
continue
rql =z * z
rq2 = rql * 2z
do 99987 gis = 1, g3p
g3rq2(gsis) = z * gdrq1(gis) + rql * g3z (g$is)
continue
rq2 = rql * z
rq3 = -y / rq2
r$1 = -y / (rq2)
do 99986 gi
gdrq3(gsis)

1, gsp$
-(1.0d0 / rq2) * gdy(gsis$) + ((-r$1 / (rq2)) * g

*$rq2(g$is))

99986

c

*%

99985

99984

99983

continue
rq3 = r$1
rq2b = -rq3 / rq2
r$1 = -rq3 / (rq2)
do 99985 gi = 1, gp
g$rq2b(g$is) = -(1.0d0 / rq2) =* gsrq3(gsis) + ((-r$1 / (rq2))
gérq2(gsis))
continue
rq2b = r$1
rqib = rq2b * z
do 99984 gi = 1, gp
gérqlb(g$is) = z * g¥rq2b(g$is) + rq2b » g$2(g$is)
continue
rqldb = rq2b * z

~zb = rq2b * rql

do 99983 gi = 1, gp
gdzb(gis) = rql * g3rq2b(gis) + rq2b =* gdrq1(g$is)
continue

41

zb = rq2b * rqi
c zb = zb + rqib * z
do 99982 gi = 1, gp
g3zb(g$is) = g$zb(g$is) + z * glrqlb(gsis) + rqid * gz (gsis)
99982 continue
zb = zb + rqib * 2z
c zb = zb + rqib * z
do 99981 gis = 1, gép$
g3zb(g$is) = gSzb(gsis) + z * gIrqib(g$is) + rqib *+ g9z(g$is)
99981 continue
zb = zb + rqib * z
do 99999, gqiq = 1, gqpq
c gav(gqiq) = -1.0 / rq2 * gqy(gqiq) + zb * gqz(gqiq)
r$0 = -1.0 / (rq2)
do 99980 gis = 1, gép$
gdgqw(gsis, gaiq) = gay(gqiq) * (-r$0 / (rq2)) * g¥rq2(g$is)
* + gqz(gqiq) * g$zb(g$is)

99980 continue
gqv(gqiq) = r$0 * gqy(gqiq) + zb * gqz(gqiq)
99993 continue .
99999 continue
w = rq3
return
end

42

Appendix H. Driver Program to Call ADIFOR-

Purpose:

Author:
Reference:
Discussion:

Results:
Series for F :

-1 .250000E-01
-1 .250000E-01
-1.250000E-01
-1.250000E-01
-1 .250000E-01
-1.250000E~-01
-1 .250000E-01
~1.250000E-01
-1 .250000E-01
-1.250000E-01
value:
-1.250000E-01

For F

Gradient
Hessian
0.000000E+00
1.875000E-01
0.000000E+00

Cc
C
C
C
Cc
Cc
C
C
c
C
C
Cc
C
C
C
C
C
C
C
C
C
C
C
C
C 0.000000E+00

v e [
w W OO N W

program driver

c Declare:
integer xdim,
parameter (xdim =
real x(xdim), £

real hx(ser-p,order,xdim), hf(s
real temp, g$temp(xdim), h$temp

¢ Initialize:
do i =1, xdim
x(i) =i
end do

call SerEye (ser_p, order, xdim,

P= ser_p

c Compute derivatives:
call g$examp2$5 (p,

c Report:
write (6, 1010)

order, ser_p,
4, order = 2, ser_p = 10)

Explore 2nd derivative code.

Driver program to call ADIFOR-

George Corliss, 26-FEB-1992
Simple example from Working Hote 1, Section 2.

Compute the DENSE Hessian by Taylor Series

-1.250000E-01
6.250000E-02
1.875000E-01

-1.250000E-01
1 .875000E-01
0.000000E+00

-1.250000E-01
1.875000E-01
0.000000E+00
0.000000E+00

-1.250000E-01

1.875000E-01

-3.750000E-01
0.000000E+00
0.000000E+00

P

hx)

er_p,order)
(xdim,xdim)

like Hessian code

0.000000E+00
0.000000E+00
-3.750000E-01
0.000000E+00
-3.750000E-01
0.000000E+00
0.000000E+00
-3.750000E-01
0.000000E+00
0.000000E+00

0.000000E+00

0.000000E+00
0.000000E+00

x, hx, ser_p, xdim, £, hf, ser_p)

1010 format (’Hessian by hand-coded second derivatives.’)

like Hessian Code

0.000000E+00

0.000000E+00

call PrtSer CO’F », ser_p, order, T, ht)

call Ser2He (ser_p, order, hf, temp, gltemp, h$temp, xdim)
call PrtHes OF », xdim, xdim, temp, g$temp, h$temp)
stop

end

43

Appendix I. Library Utility Routines

¢ File: SEREYE.f 26-FEB-1992
subroutine SerEye (NumSer, SerOrd, V_Size, Ser.V)

Purpose: Initialize univariate Taylor series to compute

c

c a dense Hessian stored in the order
c 1

c 2 3

c 4 5 6

c Assumptions:

c V_Size <= 10

c NumSer = V_Size * (V_Size + 1) / 2

c SerOrd = 3

integer NumSer, SerOrd, V_Size, i, j, index(10,10)
real Ser_V(HumSer,SerOrd,V_Size)

¢ Index a lower triangular matrix in a sequential order:
if (V_Size .gt. 10) then
write (#, *) ’Error in SerEye.’
STOP
end if
do j =1, V_Size
doi=1,]
index(j,i) =i+ j=* (-1 /2
end do
end do

do k =1, V_Size
do i = 1, NumSer
¢ Second derivative:
Ser_V(i,2,k) = 0.0
end do
c First derivative:
do j =1, V_Size

doi=1,
if ((i .eq. X) .or. (j .eq. K))
+ Ser_V(index(j,i),1,k) = 1.0
end do
end do
end do
return
end
¢ File: PRTSER.f 12-FEB-1992

subroutine PrtSer (name, ldg._x, Len_x, X, Ser_x)
character*6 name

jnteger 1dg._x, Len_x, i, j

real x, Ser_x(ldg.x,*)

write (6, 1010) name
do j =1, ldg.x
grite (6, 1020) j, x, (Ser_x(j,i+1), i =1, Len_x)
end do
1010 format (/ ’Series for ’, A6, 1:2)
1020 format (I11, 1PSE15.6, 100(14X, 1P5E15.6/))

return

44

end

C File: PRTHES.f 06-FEB-1992

subroutine prthes (name, length, ldg.x, X, grad_x, Hess_x)
character#*6 name

integer length, ldg.x, i, j

real x, grad_x(ldg.x), Hess_x(1ldg.x,1ldg_x)

write (6, 1010) name, X, (grad_x(i), i =1, length)

write (6, 1020)

do j =1, length

write (6, 1030) j, (Hess_x(j,i), i =1, j)

end do
1010 format (/ 'For ?, A6, ’: value:’, 1PE15.6,

+ / ’Gradient : ?, 1PSE15.6, / 100(10X, 1PSE1S.6, /)
1020 format (’Hessian :’)
1030 format (Iil, 1P5E15.6)

return
end

C File: SER2HE.f 11-MAR-1992

subroutine Ser2He (HumSer, SerOrd, Ser_V, Grad_V, Hess_V, pmax)

Purpose: Convert univariate Taylor series form
c to value, gradient, and Hessian form.

(4]

integer NumSer, SerOrd, pmax, i, j, index(10,10)
real Ser_V(NumSer,SerOrd), Grad_V(pmax), Hess_V(pmax ,pmax)

¢ Index a lover triangular matrix in a sequential order:
if (pmax .gt. 10) then
write (*,) ’Error in Ser2He.’
STOP
end if
do j =1, pmax
doi=1,3]
index(j,i) =i+ j* (5-1) /2
end do
end do

do j =1, pmax
Grad_V(j) = Ser_V(j*(j+1)/2,1)
Hess_V(j,j) = Ser_V(index(j,j),2)
doi=1, j1
Hess_V(j,1i) = (Ser_V(index(j,i),2) - Ser_V(index(j,j),2)
+ - Ser_V(index(i,i),2)) * 0.5
end do
end do

return
end

45

References

[1] Christian Bischof, Alan Carle, George Corliss, and Andreas Griewank. ADIFOR: Automatic
differentiation in a source translation environment. Preprint MCS-P288-0192, Mathematics
and Computer Science Division, Argonne National Laboratory, Argonne, Ill., January 1992.
ADIFOR Working Note # 5. Accepted for the International Symposium on Symbolic and
Algebraic Computation, July 27-29, 1992, Berkeley, Calif.

[2] Christian Bischof, Alan Carle, George Corliss, Andreas Griewank, and Paul Hovland. ADIFOR:
Fortran source translation for efficient derivatives. Preprint MCS-P278-1291, Mathematics
and Computer Science Division, Argonne National Laboratory, Argonne, Ill., December 1991.
ADIFOR Working Note # 4.

[3] Christian Bischof, Alan Carle, George Corliss, Andreas Griewank, and Paul Hovland. Gen-
erating derivative codes from Fortran programs. Scientific Computing, to appear. ADIFOR
Working Note # 1. Also appeared as Preprint MCS-P263-0991, Mathematics and Computer
Science Division, Argonne National Laboratory, Argonne, 1ll., September 1991, and as Techni-
cal Report 91185, Center for Research in Parallel Computation, Rice University, Houston, Tex.,

1991.

[4] Christian Bischof, George Corliss, and Andreas Griewank. ADIFOR exception handling. Techni-
cal Memorandum ANL/MCS-TM-159, Mathematics and Computer Science Division, Argonne
National Laboratory, Argonne, Ill., January 1992. ADIFOR Working Note # 3.

[5] Christian Bischof, George Corliss, and Andreas Griewank. Structured second- and higher-
order derivatives through univariate Taylor series. Preprint MCS-P296-0392, Mathematics and
Computer Science Division, Argonne National Laboratory, Argonne, Ill., March 1992. ADIFOR

Working Note # 6.
[6] Christian Bischof and Paul Hovland. Using ADIFOR to compute dense and sparse Jacobians.

Technical Memorandum ANL/MCS-TM-158, Mathematics and Computer Science Division,
Argonne National Laboratory, Argonne, 1ll., October 1991. ADIFOR Working Note # 2.

[7] John Dennis and Robert B. Schnabel. Numerical Methods for Unconstrained Optimization and
Nonlinear Equations. Prentice-Hall, Englewood Cliffs, N.J., 1983.

[8] John E. Dennis and Robert B. Schnabel. A view of unconstrained optimization. In G. L.
Nembhauser, editor, Handbooks in Operations Research and Mathematical Software, volume 1,

pages 1-72. Elsevier, 1989.

[9] Andreas Griewank. On automatic differentiation. In M. Iri and K. Tanabe, editors, Mathe-
matical Programming: Recent Developments and Applications, pages 83-108. Kluwer Academic

Publishers, 1989.

[10] Louis B. Rall. Differentiation in Pascal-SC: Type GRADIENT. ACM Trans. Math. Software,
10(2):161-184, June 1984.

46

