Automatic Differentiation Applied
to Unsaturated Flow - ADOL-C Case Study

G. Corliss
A. Griewank
T. Robey
S. Wright

CRPC-TR92240
1992

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, IL 60439

ANL/MCS-TM-162

Automatic Differentiation Applied to
Unsaturated Flow — ADOL-C Case Study

by

George Corliss, Andreas Griewank, Tom Robey,” and Steve Wright

Mathematics and Computer Science Division

Technical Memorandum No. 162

April 1992

“SPECTRA Research Institute, 1613 University Blvd. NE, Albuquerque, NM 87102-1710

This work was supported by the Applied Mathematical Sciences subprogram of the Office of Energy
Research, U.S. Department of Energy, under Contract \V-31-109-Eng-38 and through NSF Cooper-
ative Agreement No. CCR-8809615.

Contents

Abstract

1

2

[4)]

7

8

Purpose

Unsaturated Flow Problem
First Attempts
Exploitation of Structure

Conversion to ADOL-C
5.1 Step 1: Convert to C++
5.2 Step 2: Convert the Function dual to Use Type adouble

5.3 Step 3: Record the “tape”

5.4 Reverse Mode
Results

Conclusions about Automatic Differentiation

Linear Equation Solver

Appendix A. Step6.c — Eight Reverse Sweeps

Appendix B. Step2.c — Eight-Vector Reverse Mode

Appendix C. Step7.c — Eight-Vector Short Reverse Mode

Appendix D. Mapindex.c — Row and Column Interchanges

References

iii

...................

.........................

...............

...............

...............

...............

()

o UL LW [V

0o

[]

11

13

17

20

Automatic Differentiation Applied to
Unsaturated Flow — ADOL-C Case Study

by

George Corliss, Andreas Griewank, Thomas Robey, and Steve Wright

Abstract

We have experimented with many variants of the code dual.c for two-dimensional unsaturated flow
in a porous medium. The goal has been to speed up the evaluation of derivatives required for a
Newton iteration. We have primarily investigated the use of ADOL-C, a C++ tool for automatic
differentiation and have come to the following conclusions:

e Three colors suffice for computing the nonlinear portion of the J acobian. That speeds up the
Jacobian evaluation in the original code by a factor of two.

e The use of ADOL-C for automatic differentiation does not speed up the code. The best result
we have achieved for automatic differentiation takes twice as long as the original centered
difference approximation.

e The derivative values computed by ADOL-C are more accurate than the centered difference
approximations.

o We can realize big savings in the linear equation solver.

1 Purpose

The purpose of this report is to document the steps we took in analyzing a code for unsaturated
flow in porous media for the purpose of applying automatic differentiation and of speeding up the
execution of the code.

2 TUnsaturated Flow Problem

The problem is a two-dimensional unsaturated flow in a porous medium. The intended application
is modeling flow in a region consisting of fractured tuff with conductivities that vary by ten or more
orders of magnitude, often over very short distances. The code is written in C and uses a mixed
finite element approach with a quasi-Newton iteration to handle the very high nonlinearity. The
nonlinear equations are contained in the subroutine adual(x,f). Centered differences were used
to calculate a very sparse 1989 x 1989 Jacobian J. The resulting linear equation was solved by a
bi-conjugate gradient algorithm.

We approached the code hoping to demonstrate the superiority of the ADOL-C (3] implementa-
tion of automatic differentiation over the centered difference approximations used in Robey’s original
code. The high degree of nonlinearity was felt to be a potential cause of inaccuracy using centered
differences, and we hoped that automatic differentiation could improve accuracy and speed.

The test problem considered here is a 1-D test problem exhibiting a particularly simple structure.
We hope to develop strategies that generalize to higher-dimensional problems of practical interest.

3 First Attempts

The initial experiments with the first version of the dual.c code underscored the regularity of the

structure of the Jacobian matrix, a fact that eventually led to major performance improvements.
ADOL-C supports both the forward and the reverse modes (see [2]) of automatic differentiation.

It is not clear which method should be preferred for computing the square Jacobian required for this
problem.

4 Exploitation of Structure

It is well known that J has a very regular sparse structure arising from the underlying discretization

grid (see Figure 1).
\

\

™~

Figure 1. Sparsity structure of J

The Jacobian has the form

_|\ D
I = Cy 0
C
The matrix B = J(0..935,0..935) is block diagonal. The diagonal blocks are 4 x 4 blocks of the form
4 2 1 2
2421
112 4 2
21 2 4

The matrix D = J(936..1286,0..935) is built of 3 x 8 blocks along the slanted diagonal. The slanted
diagonal has slope 3/8. The matrix D = J(0..935,936..1286) is equal to D7 in the limit as the
nonlinear perturbation approaches zero. It is D that will be our focus in computing J.

The matrix C; = J(1287..1519,0..935) has four slanted diagonals, each with slope 1/4. The
upper two diagonals have values —2, while the lower two diagonals have values +2. The matrix
Co = J(1519..1988,0..935) has slanted diagonals with slopes 1/2 and values £1.

Robey recognized that f depends only linearly on z, except for the dependence of fo.93s on
To36..1286- That is, he coded most of the elements of J as linear functions of z. Only the elements
of J that belong to D are more complicated to compute. In principle, the elements of D could be
computed analytically since they involve only sums and products of components of z. This was not
done because it is too hard to recognize and code the patterns of which components of z impact
which components of f. X

Robey also recognized that the 351 rows of D could be computed in only six passes. The combi-
nation of partitioning J and coloring D reduced the time required to approximate J from about 31
minutes to about 5.78 seconds on a SPARC 1+. This is the code that formed the basis for the further
explorations described below. This code is available by anonymous ftp from boris.mscs.mu.edu
(134.48.4.4) in subdirectory pub/corliss/Robey/Feb.04.

5 Conversion to ADOL-C

Griewank and Corliss were interested in dual.c as an example to demonstrate ADOL-C [3]. ADOL-
C is an automatic differentiation tool using overloaded operators in C++. In this section, we describe
the steps involved in converting the original unsat.c code to generate J using ADOL-C.

5.1 Step 1: Convert to C++

The program unsat was first converted to run with the GNU G++ implementation of C++. The
following modifications were necessary:

o Remove system-dependent graphics capabilities that had no significance to the mathematical
problems of computing derivatives and solving a system of linear equations.

e Convert all function headers from their acceptable C form

int step(x,s)
double *x,*s;

to a form acceptable to C++
int step (double *x, double *s)

In addition, some diagnostic print statements were removed, and some were added, system-dependent
timing instrumentation was added.

The resulting code ran, appeared to give correct answers, and required 5.78 seconds on a
SPARC 1+ to evaluate the nonlinear part of the Jacobian D. This version of the code is in
boris.mscs.mu.edu:pub/corliss/Robey/Feb.19.

Study of the structure of D suggested that it could be computed with three colors instead of the
six colors used by Robey. In function step, we eliminated the for (1=0; ...) loops and the if
(redblack(j] ...) tests. Thisisfilestep3.c inboris.mscs.mu. edu:pub/corliss/Robey/Feb19.
Using three colors reduced the time required to compute D from 3.78 seconds to 2.87 seconds.

5.2 Step 2: Convert the Function dual to Use Type adouble

Now we were ready to explore the use of automatic differentiation. In the unsaturated flow code,
the function to be differentiated is isolated in

int dual (double *xv, double =*r)

{
int i,j,k;
double kinv,xdelta,ydelta,norm,t,p0,p1,s[3];
JENTRY =cptr;

which calls

_extern double *yc,sm,sf;

double konduct (double *xv, int elem)
{
int i,j,m,gp;
double p,rho,s,t,gamma,y,kc,kminv,kfinv;

In dual, xv contains the independent variables, and r contains the dependent variables. Both dual
and konduct are called from several places in the code, so we needed to leave the original functions,
while providing new ones called adual and akonduct to be called from step to compute the Jacobian.

In ADOL-C, all variables requiring derivative objects, including all independent variables and
all dependent variables, must be declared as type adouble. In each function, some of the double
variables require derivatives, while others do not. Also in konduct, the global variables sm and st
must be of type adouble, but they do not really need to be global. Hence, the new headers are as
follows:

#include "adouble.h"

int adual (adouble *xv, adouble *r)
{
int i,j.k;
double xdelta,ydelta,norm,t,p0,p1,s[3];
adouble kinv;
JENTRY =cptr;
adouble akonduct (adouble #*xv, int elem);

and

#include "adouble.h"
#include "adutils.h"

extern double.tyc:

adouble akonduct (adouble *xv, int elem)

{
int i, j, m, gp;
double gamma, y;
adouble p, rho, s, t, kc, kminv, kfinv, sm, sf;

No changes of any kind were required to the body of either function. We did, however,
remove from adual code that is required to compute the value of f but that is not required to
compute the elements of D, which require only r[0..935]. The resulting code is in files adual.c
and akonduct.c in boris.mscs.mu. edu:pub/corliss/Robey/Feb_14.

5.3 Step 3: Record the “tape”

The next step was to modify the three-color finite difference code in step3.c to use automatic
differentiation instead. We followed the instructions in (3] first for the forward mode of automatic
differentiation.

We removed the finite difference code from step3.c:

/* Nonlinear part */
stepsize=1.0e-7;
for (i=0;i<3;i++) {
for (j=0;j<elements;j++) {
deltax[j]=(fabs(xv[8*elements+3#j+i])>1.0) 7 stepsizex
fabs(xv[8+*elements+3#j+i]) : stepsize;
xv[8selements+3*j+il+=deltax[jl;

}
x=dual(xv,r);

if (k<0)
return(-2);

for (j=0;j<8=elements;j++)
df[j1=r(jl;

for (j=0;j<elements;j++) {
xv[8telements+3-j+i]=x[8telements+3#j+i]—deltax[j];

}
x=dual(xv,r);

if (x<0)
return(-2);
for (j=0;j<elements;j++) {
for (x=0;k<8;k++) {
df[8:j+k]=(df[Btj+k]-r[8*j+k])/(2.0tdeltax(j]):
if (df(8+j+k] != 0.0) {
jnptr = (JENTRY #*) calloc(1,sizeof (JENTRY));
if (jnptr == NULL)
return(-1);
jnptr->col = 8selements+3sj+i;
jnptr->value = -df [8=j+k];
jnptr->next = NULL;
if (row[8=j+k] == NULL)
row[8*j+k] = jnptr;
else {
jptr = row[8=j+k];
while (jptr->next != NULL)
jptr = jptr->next;
jptr->next = jnptr;
} /= end if (row =/
} /% end if (df =/
} /* end for (k =/
} /+ end for (j =/
} /% end for (i =/
for (i=0;i<dim;i++)
xvil=x[i];

We added include files:

)]

#include "adouble.h"
#include "adutils.h"

We replaced the finite difference code with code to do the following:

1.

IS

Declare variables for ADOL-C.
Insert calls to trace_on and trace_off to mark the active section of the code.
Nominate independent variables.

Call adual within the active section to record the “tape”. The function value is computed at
this point.

. Nominate dependent variables.

. Make three passes in the forward mode:

(a) Initialize independent and dependent derivative objects.
(b) Call forward.

(c) Extract derivatives.

The derivative values computed by ADOL-C were extracted from DependY and stored into the
original data structure for J.

{ // (Should be unnecessary) open ADOL-C block

unsigned short Tape_Tag = 1;

int Keep =0;

int degree = 1;

double *»Indep_X = new doubles[dim];
double *#Depend_Y = new double*[dim];
adouble ad_xv[dim];

adouble ad_r(dim];

int adual (adouble =, adouble #*);

for (j = 0; j < dim; j ++) {

Indep_X[j] = new double[2];

Depend_Y[j] = new double[2];
}
/* Compute right hand side vector f */
f=(double *) calloc(dim,sizeof (double));
if (£==NULL)

return(-1);

trace_on (Tape_Tag, Keep);
for (i = 0; i < dim; i ++) {
if ((i <= 935) || (1287 <= 1)) {
ad_xv([i] = x([i]l;

}
else {

ad_xv[i] <<= x[i]; // Nominate ADOL-C independent variables
}

}

k = adual (ad_xv, ad_r);

if (k<0) .
return(-2);
for (i = 0; i < dim; i ++) {
if (i < 8*elements) {
ad_r[i] >>= £[i]; // Nominate ADOL-C dependent variables

}
else {

£(i] = value (ad_r[i]);
}

}

trace_off ()

times (buffer);
Time_Begin_Step = buffer->tms_utime;

/* Nonlinear part */
for (i = 0; i <3;1i++){
for (j = 0; j <351; j ++) {
Indep_X[jl1[0] = x[8+elements+j];
Indep_X[jI[1] = 0.0;
}
for (j = 0; j < 8%elements; j ++) {
Depend_Y[j1[0] = 0.0;
Depend_Y(j]1[1] = 0.0;
}
for (j=0;j<elements;j++) {
Indep_X[3+j+i] (1] = 1.0;
}

forward (Tape_Tag, 8*elements, 251, degree, Keep, Indep X, Depend_Y);

for (j=0;j<elements;j++) {
for (k=0;k<8;k++) {
df = Depend_Y[8+j+k]l[1];
if (df '=0.0) {
jnptr = (JENTRY #) calloc(1,sizeof (JENTRY));
if (jnptr == NULL)
return(-1);
jnptr->col = 8%elements+3*j+i;
jnptr->value = -df;
jnptr->next = NULL;
"if (row[8+j+k] == NULL)
row[3*j+k] = jnptr;
else {
jptr = row(8*j+k];
while (jptr->next != NULL)
jptr = jptr->next;
jptr->next = jnptr;
} // end if (row
} // end if (df
} // end for (k
} // end for (j
} // end for (i
} // (Should be unnecessary) close ADOL-C block

Warning: The declarations and magic numbers are explicitly tailored for the input file flux.in.
For other data, the structure and size of the Jacobian must be re-examined.

The resulting code is in file step4.c in boris.mscs.mu.edu:pub/corliss/Robey/Feb14. It
required 3.33 seconds to evaluate D, or twice as long as the three-color finite difference code.

5.4 Reverse Mode

ADOL-C can also evaluate derivatives in the reverse mode. The reverse mode is usually faster than
the forward mode when there are more independent variables than there are dependent variables.
The entire Jacobian is square, but the block D that we are computing is composed of 3 x 8 blocks.
This configuration implies that the forward mode (or finite differences) can be computed in three
passes, while the reverse mode requires eight passes. We write three versions of step using the
reverse mode:

step6.c: Eight reverse sweeps. Similar to the three forward sweeps.
step2.c: Eight-vector reverse. The eight reverse sweeps are all performed at once.

step7.c: Eight-vector short reverse. The eight reverse sweeps are all performed at once, taking
advantage (as in the three forward sweeps) of the fact that we do not need to differentiate with
respect to all x, nor are we required to differentiate all dependent variables.

The code may be found in boris.mscs.mu.edu:pub/corliss/Robey/Feb14. Since none of these
versions was as fast as the three forward sweeps, we omit the code here, but we include the relevant
portions of the code as appendixes to serve as examples for programming the reverse mode.

6 Results

Table 1 gives the timing comparisons of the various versions of step described above. These are the
times in seconds on a SPARC 1+ required to compute D, the nonlinear portion of the Jacobian J.

Table 1. CPU Times for Jacobian computation

Method File Seconds
6-color finite differences unsat 5.78
3-color finite differences unsat3 2.87
3-color forward mode unsat4 5.33
8 sweeps of reverse mode unsat6 18.78
8-vector reverse mode unsat?2 11.15
8-vector short reverse mode | unsat7 11.12

The “tape” for the three-color forward mode evaluation was 1.5 mega-bytes long.

In general, the derivatives computed by automatic differentiation are more accurate than those
computed by finite differences. In some applications, the improved accuracy enables Newton’s
method to converge in fewer iterations.

7 Conclusions about Automatic Differentiation

e ADOL-C can be applied to existing C codes that are large and complicated enough to have
real scientific interest.

e In this application, the fastest ADOL-C code takes twice as long as the best finite difference
code.

o In this application, the reverse mode takes about twice as long as the forward mode, while it
must perform nearly three times as many sweeps (8 vs. 3).

e In this application, the vector reverse is about 1/3 faster than the corresponding number of
reverse sweeps performed separately.

e Recognizing that short vectors can be used for the independent and the dependent variables
saves only an insignificant amount of time, but it is more complicated to code.

8 Linear Equation Solver

In truth, we have been looking at the wrong problem so far. It takes less than 3 seconds to compute
the nonlinear part of J, but it takes up to 430 seconds to solve the system of linear equations. The
original intent was to explore the application of ADOL-C, but we also pass along observations about
linear equation solvers.

The existing code stores J as a sparse matrix and solves the linear equation to find the Newton
step using a biconjugate gradient iterative algorithm.

One alternative is to use the general direct sparse solver written in C available from netlib.
(Send a message “send index from sparse” to netlib@ornl.gov.) Another alternative is to take
better advantage of the structure of J.

Wright observed that a matrix with the regularity of the structure of J can be put into a banded
form by suitable interchanges of rows and columns. The numbers of rows of B, D, C, and C; are
936, 351, 232, and 470, respectively. These are almost exactly in the ratios 8 : 3: 2 : 4. (That is why
we cited the slopes of the slanting diagonals in Section 4.) The ratios would be exactly 8 :3:2:4
if the number of rows were 936, 351, 234, and 468, respectively.

To transform J into a banded matrix, we take 8 rows from B, then 3 rows from D, then 2 rows
from C}, then 4 rows from C>, and then repeat. The columns are reordered in the same way. To make
things come out right, we take only one row of Cy and 5 rows of C> on the first and last passes. The
program given in Appendix D (in boris.mscs.mu.edu:pub/corliss/Robey/Feb_19/mapindex.c)
sets up an array to map the old indices to the new ones, reads from standard input J in an ¢, j, J;
format, and writes to standard output J in a similar format, except that rows and columns have
been interchanged to make it banded. The half-band width is 28.

In principle, one could modify step to immediately store J in a banded form.

Once one has J in a banded form, there are at least two alternatives:

1. Continue to use bicon. It should converge much faster when applied to a banded matrix.
2. Use a banded solver.

We strongly recommend the second alternative. We anticipate that a direct banded solver will
be much faster than a general iterative solver like bicon. One such banded solver can be found in
bandtest.f (test file) and tom_band.f (reads the output of mapindex and solves) in boris.mscs.mu. edu:pub/corl

The problems we are really interested in solving are 2-D problems. The bands described in
Section 4 do not generalize to 2-D problems. While both B and D are banded in the 2-D problem,
C is not. The variation of condutivities is greater for 2-D problems than 1-D problems due to the
increased dimension and flow paths.

The Jacobian of this problem is rank deficient due to the form of the flux boundary conditions.
The rank defieciency is caused by not being able to specify the pressures at the flux boundaries.
The problems of real interest are not necessarily rank deficient. However, the rapid changes in
conductivities can cause poor conditioning of the Jacobian or possibly rank deficiency. One can

handle rank deficiency by adding some constraints to uniquely define a solution. Alternatively, one
should take into account the suggestions of Griewank [1] on the behavior of Newton’s method and
its variation for singular systems. Two different situations must be distinguished. In the first case,
there is (locally) a smooth solution manifold of dimension p, and the rank of the Jacobian drops
by exactly p at the solutions. In that case, Newton’s method and variations have been observed to
converge quite rapidly in terms of the residual norm, even though the iterates may wander up and
down the solution manifold a bit. In the second case, when the rank drop of the Jacobian exceeds
the dimension of the (largest) solution manifold, the situation is completely different. For any fixed
point iteration of the form

znew =G [""old' f (:OId)]

with f = 0, the algebraic system being solved converges from almost all starting points sublinearly
if G is differentiable with respect to the residual vector f. The only way to maintain at least linear
convergence is to use Newton’s method without bounding the inverse or to append the linear system
by equations that enforce singularity. (R-sublinear convergence means that the k-th root of the k-th
residual norm tends to 1 in theory. In practice, that amounts to the iteration’s stalling completely.)

Another approach to improving the performance of the linear equation solver is to apply a
suitable preconditioner. Most simple preconditioners require either a positive definite matrix or
diagonal dominance which do not apply to this problem. Work on implementing a more complicated -
preconditioner that takes advantage of the structure of the Jacobian is in progress.

10

Appendix A. Step6.c — Eight Reverse Sweeps

This appendix lists the portion of the code in step which computes D using eight reverse sweeps.

{ // (Should be unnecessary) open ADOL-C block

unsigned short Tape_Tag = 1;

int Keep =13

int degree = 0;

double *Weight_U = nev double[dim]; // Weight matrix
double **Depend_Y = nev double*[dim]; // Result adjoints
adouble ad_xv[dim];

adouble ad_r[dim];

int adual (adouble *, adouble *);

for (i = 0; i < dim; i ++) {

Depend_Y[i] = nev double(degree+1];
}
/* Compute right hand side vector f =/
f=(double *) calloc(dim,sizeof (double));
if (£==NULL)

return(-1);

trace_on (Tape_Tag, Keep);
for (i = 0; i < dim; i ++) {
ad_xv[i] <<= xv[i); // Nominate ADOL-C independent variables

}
x = adual (ad_xv, ad_r);
if (k<0)

return(-2);
for (i = 0; i < dim; i ++) {
ad_r(i] >>= £({i]; // Nominate ADOL-C dependent variables
}
trace_off ();

times (buffer);
Time_Begin_Step = buffer->tms_utime;

/* Nonlinear part =/
for (k = 0; k < 8; kX +) {
for (i = 0; i < dim; i ++) {
Weight_U[i] = 0.0;
Depend_Y[i][0] = 0.0;
}

for (j = 0; j < elements; j ++) {
Height-u[a:j+k] =1.0;
}

reverse (Tape_Tag, dim, dim, degree, Weight U, Depend_Y);
for (i=0;i<3;i++) {
for (j=0;j<elements;j++) {

df = Depend_Y[8#elements+3*j+i] [0];
if (df'!'=0.0) {

11

jnptr=(JENTRY *) calloc(1,sizeof (JENTRY));
if (jnptr==NULL)
return(-1);
jnptr->col=8*elements+3*j+i;
jnptr->value=-df;
jnptr->next=NULL;
if (row[8*j+k]==NULL)
row[8*j+k]=jnptr;
else {
jptr=row[8*j+k]; .
while (jptr->next!=NULL)
jptr=jptr—>next;
jptr->next=jnptr;
} // end if (row
} // end if (df
} // end for (j
} // end for (i
} // end for (k
} // (Should be unnecessary) close ADOL-C block

12

Appendix B. Step2.c — Eight-Vector Reverse Mode

This appendix lists the portion of the code in step which computes D using one reverse sweeps
consisting of eight vectors. '

{ // (Should be unnecessary) open ADOL-C block

unsigned short Tape_Tag = 1;

int Keep =1;

int degree = 03

double *+Weight U = nev doublex[8]; // Weight matrix

double #**Depend_Y = (double #*+) new double*=[8]; // Result adjoints
adouble ad_xv[dim];

adouble ad_r[dim];

int adual (adouble *, adouble *);

for (k. = 0; k < 8; k ++) {
Weight_U[X] = new double(dim];
Depend_Y[k] = new double*[dim];
for (i = 0; i < dim; i ++) {
Weight_U(x] (il = 0.0;
Depend_Y[k][i] = nev double[degree+1];
Depend_Y[x][i]J[0] = 0.0;
}
o
for (j = 0; j < elements; j ++) {
for (k = 0; k < 8; k ++)
Weight_U[x][8*j+k] = 1.0;
} // end for (j
/* Compute right hand side vector f */
f=(double *) calloc(dim,sizeof(double));
if (f==NULL)
return(-1);

trace_on (Tape_Tag, Keep);
for (i = 0; i < dim; i ++)

{
ad_xv[i] <<= xv[i]; // Nominate ADOL-C independent variables
}
X = adual (ad_xv, ad_r);
if (k<0)

return(-2);
for (i = 0; i < dim; i ++)
¢ f
ad_r{i] >>= £[il; // Nominate ADOL-C dependent variables
}

trace_off ();

times (buffer);
Time_Begin_Step = buffer->tms_utinme;

/* Nonlinear part */
reverse (Tape_Tag, dim, dim, 8, degree, Weight_ U, Depend_Y);

for (i=0;i<3;i++) {

13

for (j=0;j<elements;j++) {
for (k=0;k<8;k++) {
df = Depend_Y[X] [8+elements+3*j+i][0];
if (d£!=0.0) {
jnptr=(JENTRY *) calloc(1,sizeof (JENTRY));
if (jnptr==NULL)
return(-1);
jnptr->col=8*elements+3tj+i;'
jnptr->value=-df;
jnptr->next=NULL;
if (row[8=j+k]==NULL)
row[8*j+k]=jnptr;
else {
jptr=row[8*j+k];
vhile (jptr->next!=NULL)
jptr=jptr->next;
jptr->next=jnptr;
} // end if (row
} // end if (df
} // end for (k
} // end for (j
} // end for (i
} // (Should be unnecessary) close ADOL-C block

14

Appendix C. Step7.c — Eight-Vector Short Reverse Mode

This appendix lists the portion of the code in step which computes D using one reverse sweeps
consisting of eight vectors shortened to take advantage of the fact that we are only computing a
portion of J.

{ // (Should be unnecessary) open ADOL-C block

unsigned short Tape_Tag = 1;
int Keep =1;
int degree = 0;
double =sWeight U
double *=**Depend_Y
adouble ad_xv([dim];
adouble ad_r(dim];
int adual (adouble *, adouble *);

nev doublex[8]; // Weight matrix
(double #***) new double*%[8]; // Result adjoints

for (x = 0; k < 8; k +) {
Weight_U[k] = new double[dim];
Depend_Y (k] = new double=[dim];
for (i = 0; i < dim; i +) {
Weight _U[X][i] = 0.0;
Depend_Y[k][i] = new double[degree+1];
Depend_Y([x][i]J[0] = 0.0;
}
}
for (j = 0; j < elements; j ++) {
for (k = 0; k < 8; k ++)
Weight_U(k][8+j+k] = 1.0;
} // end for (j
/= Compute right hand side vector f #/
f=(double *) calloc(dim,sizeof (double));
if (£==NULL)
return(-1);

trace_on (Tape_Tag, Keep);
for (i = 0; i < dim; i ++) {
if ((i <= 935) |l (1290 <= i)) {
ad_xv[i) = xv[i];

}
else {

ad_xv(i] <<= xv[i]; // Nominate ADOL-C independent variables
}

}
X = adual (ad_xv, ad_r);

if (k<0)
return(-2);
for (i = 0; i < dim; i ++) {
if (i < 8=xelements) {
ad_r[i] >>= £[il; // Nominate ADOL-C dependent variables
}
else {
£[i] = value (ad_r[il);

15

}
}
trace_off ();

times(buffer);
Time_Begin_Step = buffer->tms_utime;

/% Nonlinear part */
reverse (Tape_Tag, 8*elements, 354, 8, degree, Weight_ U, Depend_Y);

for (i = 0; i < 3; i ++) {
for (j = 0; j < elements; j +) {
for (k = 0; k < 8; k ++) {
df = Depend_Y[k][3+j+i][0];
if (df !'=0.0) {
jnptr = (JENTRY #) calloc(1,sizeof (JENTRY));
if (jnptr == NULL)
return(-1);
jnptr->col = 8%elements+3*j+i;
jnptr->value = -df;
jnptr->next = NULL;
if (row[8#j+k] == NULL)
row[8+j+k] = jnptr;
else {
jptr = row[8*j+k];
while (jptr->next != NULL)
jptr = jptr->next;
jptr->next = jnptr;
} // end if (row
} // end if (df
} // end for (k
} // end for (j
} // end for (i
} // (Should be unnecessary) close ADOL-C block

16

Appendix D. Mapindex.c — Row and Column Interchanges

/*

/*
/%
/*
*/

/*
/*
/*
/*
/=
/*
/*

File: MAPINDEX.c 20-FEB-1992

Purpose: Map index to transform Robey’s Jacobian into a
banded structure.
Author: George Corliss, Argonne National Labs, 19-FEB-1992.

Map the original Jacobian into a banded structure for faster solution.
There are 4 blocks of columns: 0..935, 936..1286, 1287..1518, and
1519..1988. We take columns in proportions: 8, 3, 2, 4, except that
the block 1287..1518 is 2 columns short (hence initial and tail
stages take only 1 column each), and the block 1287..1518 is 2 columns
to long (hence initial and tail stages take S columns each). There
are 3 stages in defining the mapping: initial, body, and tail.

Original New

Block 1:
0 0
7 7
j=1
8 17
15 25
j = 115
920 1955
927 1962
928 1972
935S 1979
Block 2:
936 8
937 9
938 10
j=1
939 - 25
940 26
941 27
j = 115
1281 1963
1282 1964
1283 1965
1284 1980
128S 1981
1286 1982
Block 3:

17

=/

1287 11

ji=1
1288 28
1289 29
j = 115
1516 1966
1517 . 1967
1518 1983
Block 4:
1519 12
1520 13
1521 14
1522 15
1523 16
i=1
1524 30
1527 33
j = 115
1980 1968
1983 1971
1984 1984
198S 1985 -
1986 1986
1987 1987
1988 1988

#include <stdio.h>

main ()

{

int i, j, k, map_index[1989];
int column, row, band_width, element_width;
float value;

/* 1Initial phase: =*/

for (kx = 0; k <= 7; k ++) map_index[X] = k;
for (kx = 0; k <= 2; k ++) map_index[k+936] = k+8;
map_index[1287] = 11;
for (x = 0; k <= 4; k ++) map_index[k+1519] = k+12;
/* Body phase: =/
for (j = 1; j <= 115; j ++) {
for (k = 0; k <= 7; k ++) map_index[x+8%j] = k+17%j;

18

for (x = 0; k <= 2; k ++) map_index[k+3+j+936]
for (k = 0; k <= 1; k ++) map_index[k+2*j+1286]
for (x = 0; X <= 3; k ++) map_index[k+4*j+1520]

k+17%j+8;
K+17#j+11;
k+17#j+13;

}

/* Tail phase: */
for (k = 0; k <= 7; k ++) map_index[x+928]
for (k = 0; k <= 2; k ++) map_index[k+1284]
map_index[1518]
for (k = 0; k <= 4; k ++) map_index[k+1984]
/*

for (k = 0; k < 1989; k ++) .

printf ("old, new: %5d %5d\n", k, map_index[k]);

k+1972;
k+1980;
1983;

k+1984;

*/

band_width = 0;
vhile ((scanf ("%d %d %f", &row, &column, &value)) != EOF) {
element_vidth = map_index[row] - map_index[column];
if (band_width < element_width)
band_vwidth = element_width;
printf ("%Sd %5d %1g\n", map_index[rovw], map_index[column], value);
}

printf ("Band width = %Sd\n", band_width);

} /* end main */

19

References

[1] A. GRIEWANK, On solving nonlinear equations with simple singularities or nearly singular solu-
tions, SIAM Review, 27/4 (1985), 537-563.

[2] A. GRIEWANK, On aulomalic differentiation, in Mathematical Programming: Recent Devel-
opments and Applications, M. Iri and K. Tanabe, eds., Kluwer Academic Publishers, 1989,
pp. 83-108.

[3] A. GRIEWANK, D. JUEDES, J. SRINIVASAN, AND C. TYNER, ADOL-C, a package for the auto-
matic differentiation of algorithms written in C/C++, ACM Trans. Math. Software, (to appear).
Also appeared as Preprint MCS-P180-1190, Mathematics and Computer Science Division, Ar-
gonne National Laboratory, Argonne, 11l., 1990.

20

